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Abstract—Environmental sensing is essential for many appli-
cations. Many existing efforts rely on the readings provided
by the weather stations maintained by federal, regional, or
local government agencies. While the accuracy of the read-
ings provided by those weather stations is high, the ability of
such data to reflect the temperature variability experienced by
urban populations is generally low. Therefore, recent studies
have proposed to deploy new infrastructures with low-power
communication and energy harvesting capabilities to provide
fine-scale measurements. Recently, there has been an increasing
interest in deploying environmental sensing systems with LoRa
radios and solar panels. However, there have been very few
studies looking into the reliability of solar power in the LoRa-
based environmental sensing settings. In this paper, we present
an empirical study that investigates how well solar energy powers
an environmental sensing platform. Our study shows that solar
energy generation forecasting plays an important role in the
performance of the sensing platform. To address the challenges,
we develop a novel solution that leverages LoRa, energy har-
vesting, and domain adaptation to enable reliable environmental
sensing. Experimental results show that our solution outperforms
the baselines and effectively supports end devices to perform
environmental sensing operations without interruptions.

Index Terms—Environmental sensing, LoRa, energy-
harvesting, domain adaptation

I. INTRODUCTION

Environmental sensing is essential for many applications.

Many existing efforts rely on the readings, such as temperature

and humidity, provided by the weather stations maintained

by federal, regional, or local government agencies. For in-

stance, Zhang et al. used the temperature readings provided

by the weather stations to conduct research on predicting

heat-related mortality in urban environments [1]. While the

accuracy of the readings provided by those weather stations

is high, the ability of such data to reflect the temperature

variability experienced by urban populations is generally low

because the measurements are collected at the mesoscale

(3,000−100,000m). In addition, the weather stations are often

located in open areas to ensure no interference from shading,

therefore they do not reflect the distribution of populations,

nor of built environments that can generate urban heat island

effects. In reality, the temperature varies at the microscale

(<100m) and the local scale (100−3,000m), and the health

§The first two authors contributed equally.

risks associated with extremely hot weather are assumed to

vary with the exposure. To overcome such limitations, recent

studies have proposed to deploy new infrastructures with low-

power communication and energy harvesting capabilities to

provide fine-scale measurements [2].

Recent years have witnessed rapid deployments of LoRa

networks to support environmental sensing applications. As

an emerging Low-Power Wide-Area Networks (LPWAN) tech-

nology, LoRa provides a low-cost wireless solution that sup-

ports long-range data collection for low data rate applica-

tions [3]. Over the past decade, LoRa networks have been

deployed in 153 countries to support various applications, such

as smart agriculture [2], smart city [4], and smart energy [5].

On the other hand, solar power harvesting is appealing for use

in environmental sensing applications, because solar panels are

relatively inexpensive and easy to deploy, and they provide

a renewable power source to operate sensing platforms in

locations that are remote, hard to reach, or simply difficult

or expensive to run electrical wires or replace batteries.

Therefore, there has been an increasing interest recently in

deploying environmental sensing systems with LoRa radios

and solar panels.

However, there have been very few studies looking into the

reliability of solar power in the LoRa-based environmental

sensing settings. In this paper, we present an empirical study

that investigates how well solar energy powers a LoRa-based

sensing platform. Our study shows that solar energy generation

forecasting plays an important role in the performance of a

sensing platform. However, accurately forecasting the amount

of generated solar energy is challenging due to the location-

specific gap. Weather variations, including cloud cover, tem-

perature, and atmospheric conditions, significantly affect solar

energy output. The models trained in one location may not

work well in another because of different weather patterns.

Deep learning techniques can improve forecasting accuracy

but require extensive datasets for training and refinement.

However, collecting sufficient labeled data for an accurate

model is time-consuming and demands much human effort.

Based on the insights gathered from our empirical study,

we develop a solution that leverages a teacher-student neural

network to train a precise solar energy generation forecasting

model with a few labeled data and a new time-slot-based cycle



assignment method to enable reliable environmental sensing.

Specifically, we make the following contributions in this paper:

• We perform an empirical study that identifies the chal-

lenges of using solar energy to power a LoRa-based

sensing platform;

• We formulate the solar power forecasting as a machine

learning problem and reveal the location-specified gap,

which prevents the model trained using publicly accessi-

ble data from providing good forecasting performance in

real-world deployments;

• We develop a domain adaptation-based method to close

the gap and train a good solar power forecasting model

using publicly accessible data and a small number of local

measurements;

• We develop a method that schedules the duty cycle of an

end device to maximize the number of samples it collects

in each time period without running out of battery;

• We implement our methods and test our solution in a

real-world environment. Experimental results show that

our solution outperforms the baselines and effectively

supports end devices to perform environmental sensing

operations without interruptions.

Our paper is organized into the following sections. Sec-

tion II introduces our environmental sensing platform. Sec-

tion III introduces our empirical study. Section IV and V

present the designs of our solar power forecasting and time-

slot-based cycle assignment methods. Section VI evaluates our

methods. Section VII reviews the related work. Section VIII

concludes this paper.

II. ENVIRONMENTAL SENSING SYSTEM

In this section, we introduce the hardware and software

architecture of our environmental sensing platform.

A. Hardware

Fig. 1. Hardware Module

Module Price

Raspberry Pi 4B $55

TemperHum $32

LoRa HAT $32

PiJuice HAT $69

PiJuice solar panel $112

PiJuice battery $35

Tektyte Log4USB $171

Fig. 2. Retail prices

Figure 1 shows the hardware of our environmental sensing

platform, which is built by integrating several commercial

off-the-shelf hardware modules. Figure 2 lists all hardware

modules and their retail prices. Our sensing platform uses

a Raspberry Pi 4 Model B as its central processing unit,

which controls all sensing and communication peripherals.

The TemperHum hygrometer [6] has temperature and humidity

sensors and forwards sensor readings to the Raspberry Pi

through its USB port. The Dragino LoRa GPS Hardware

Fig. 3. Software architecture of our platform and base station.

Attached on Top (HAT) [7] with a Semtech SX1276/SX1278

LoRa transceiver [8] is integrated with the Raspberry Pi

to support LoRa communication. The PiJuice HAT [9] and

PiJuice solar panel [10] are integrated with the Raspberry Pi

to harvest solar energy. The excess energy is stored in the

PiJuice battery [11]. Tektyte Log4USB multi-meter connects

the PiJuice HAT and the PiJuice solar panel to measure the

power generated by the solar panel [12]. Using those PiJuice

modules allows us to put the Raspberry Pi into sleep model,

which reduces the energy consumption from seven watts to

almost zero. The cost of the sensing platform is around $506

in total.

B. Software Architecture

Figure 3 plots the software architecture of our environmental

sensing system. The software that runs on the end device has

four units: Sensing Unit, Power Management Unit, Com-

munication Unit, and Duty Cycle Execution Unit. The

Sensing Unit is responsible for managing the temperature and

humidity sensors. The Power Management Unit is responsible

for measuring the State of Charge (SOC), which represents

the percentage of the remaining energy in the battery, and the

electric current generated by the solar panel. The temperature,

humidity, SOC, and electric current readings are collected by

the Communication Unit and transmitted to the base station.

Duty Cycle Execution Unit periodically puts the platform into

sleep mode to reduce energy consumption. In each cycle, the

end device wakes up from the sleep mode, performs a set of

activities (e.g., generates and transmits sensor readings), and

then goes back to sleep. Each end device follows the schedule

(i.e., how many cycles each end device can have each day)

generated by the base station to perform activities.

The software that runs on the base station consists of four

units: Sensor Data Manager, Web Data Manager, Com-

munication Unit, and Duty Cycle Control Unit. The Sensor

Data Manager collects temperature and humidity readings

from the Communication Unit and forwards them to the

cloud. The Web Data Manager is responsible for gathering
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Fig. 4. SOC and energy harvested from the solar panel

weather and solar information from the National Solar Radia-

tion Database (NSRDB) provided by the National Renewable

Energy Laboratory (NREL) [13] and forwarding it to the Duty

Cycle Control Unit. The Duty Cycle Control Unit leverages the

NSRDB data, temperature, and humidity readings to determine

the schedule for each end device.

III. EMPIRICAL STUDY

In this section, we present our empirical study that investi-

gates how well solar energy powers the LoRa-based sensing

platform by examining the performance of two classic cycle

assignment algorithms.

A. Using a Fixed Number of Cycles

Algorithm 1: Cycle Assignment Algorithm

Input: Power consumption of the device (P c), battery

capacity (C), and the total number of cycles in one day

(Ndc)

Output: Number of cycles (Nc)

1: for each day i in m days do

2: Measure SOC (Sb
i ) at the beginning of the day and

keep the end device operating without sleep;

3: Measure SOC (Se
i ) after 24 hours;

4: Compute the energy generated during the last 24

hours by calculating Ei = 24 ∗ P c − C ∗ (Sb
i − Se

i );
5: if i == 1 or Se

i > Sb
i−1
− Se

i−1
then

6: i++;

7: else

8: Break;

9: end if

10: end for

11: Output Nc = Ndc ∗
∑m

j=1
Ej/(m ∗ 24 ∗ P

c);

Our empirical study starts with running Algorithm 1, which

determines the number of cycles during a 24-hour window

based on the end device’s power consumption (P c) and

battery capacity (C). The key idea is to measure the average

energy generated by the solar panel over a few days and then

calculate the number of cycles by dividing the average energy

by the total consumption if the end device keeps operating

without sleep. We run Algorithm 1 on the end device and

get Nc = 240. We then configure the end device to perform

240 cycles during each 24-hour window and continue our

experiment. Unfortunately, the end device runs out of battery

after experiencing a cloudy day. Figure 4(a) plots SOC and

the amount of energy generated by the solar panel over the 40

hours before the end device ran out of battery. As Figure 4(a)

shows, SOC keeps decreasing from 80% until the sun rises

in the morning (around the 15th hour) as expected. However,

the amount of energy generated by the solar panel fluctuates

between 0 and 0.64Wh during a cloudy day. The solar panel

only charged the battery to 48% before sunset, which is not

enough to power the device for another day. The end device’s

battery runs out at the 40th hour. The results demonstrate that

using a fixed number of duty cycles over the entire day cannot

work well due to the fluctuations of the generated energy.

B. Assigning Different Number of Cycles at Different Time

Algorithm 2: Time-Slot based Cycle Assignment Al-

gorithm

Input: Power consumption of the device (P c), battery

capacity (C), number of time slots during 24 hours (Nt),

and the total number of cycles in one time slot (Ntc)

Output: Number of cycles (Ni) during time slot i
1: for each day j in m days do

2: for each time slot i in day j do

3: Measure SOC (Sb
ji) at the beginning of the time

slot i on day j and keep the end device operating

without sleep;

4: Measure SOC (Se
ji) at the end of the time slot i on

day j;

5: Compute the energy generated during time slot i on

day j by Eji = 24 ∗ P c/Nt − C ∗ (Sb
ji − Se

ji);
6: end for

7: if i == 1 or Se
i > Sb

i−1
− Se

i−1
then

8: j++;

9: else

10: Break;

11: end if

12: end for

13: Output Ni = Ntc ∗
∑m

j=1
Eji ∗Nt/(m ∗ 24 ∗ P

c);

Our empirical study then examines the effectiveness of as-

signing different numbers of cycles at different times through-

out the day. The key idea is to divide 24 hours into a set of

time slots, calculate the average generated energy during each

time slot, and then assign a different number of cycles (Ni)

to the different time slots. Algorithm 2 shows the method we

used to achieve this. We divide 24 hours into 48 time slots,

run Algorithm 2 on the end device, and obtain the 48 cycle

assignments. Figure 4(b) plots SOC and the amount of energy

generated by the solar panel over the 64 hours before the end

device runs out of battery. As Figure 4(b) shows, SOC stays the

same as the device sleeps before the sun rises at the 15th hour

and when the solar panel produced enough energy between the



43rd and 45th hour. SOC decreases to 34% when the solar

panel fails to produce enough energy during a cloudy day. SOC

remains at 33% until the next day and then gradually reduces

to 3%. The end device runs out of battery at the 64th hour.

As Figure 4(a) and 4(b) show, assigning different numbers of

cycles at different times allows the end device to operate more

reliably compared to the solution that uses a fixed cycle for

the entire day. However, none of them can effectively prevent

the end device from running out of battery. Therefore, it is

crucial to consider the energy produced during the next day

when assigning the number of cycles to the end device. This

motivates us to develop a new method for accurate solar power

forecasting.

IV. SOLAR POWER GENERATION FORECASTING

In this section, we formulate the solar power generation

forecasting problem, present the location-specified gap, and

introduce our solution to close the gap.

A. Solar Power Generation Prediction

The primary task in solar power generation prediction is

to predict the power generated by the solar panel during the

next day based on historical data and real-time environmental

measurements. We consider three metrics: temperature mea-

surements Temp, humidity readings Hum, and the power

generation data Power. The input during each time period i
is xi = concatenation(Temp,Hum,Power, T imestamp).
We formulate the solar power generation forecasting task

as a multivariate time series forecasting problem. Let

X = (x1,x2, ...,xm) denote the sequence of historical feature

vectors, and yj denote the solar power generation in the future

time period j. Our goal is to predict future solar power gener-

ation for n time periods, represented as Y = (y1,y2, ...,yn).
We aim to establish a nonlinear mapping fθ(·) : X → Y,

which translates our input sequence X to the output sequence

Y, where θ symbolizes the parameters of our model. Those

parameters are optimized in a data-driven fashion. Given the

continuous nature of solar power generation predictions, fθ
serves as a predictive model. It leverages the concatenated

features from the input sequence to forecast the solar power

generation of future days.

B. Location-Specified Gap

Our primary objective is to train a model tailored for time

series data to predict solar power generation on each end de-

vice. We can train the model using either local measurements

or publicly accessible data such as NSRDB. We perform an

empirical study to investigate the efficiency and effectiveness

of both solutions. We create the dataset Dl with seven days

of temperature, humidity, and power generation measurements

collected by our end device, and the dataset Dw by collecting

720 days of temperature, humidity, and power generation

readings from NSRDB. We create the two testing datasets,

Dtl and Dtw, with another two days of measurements: one

collected by our end device and the other from NSRDB.

M
A

E

Days used for training

Fig. 5. MAE when using different
amounts of data in D

l for training.

M
A

E

Test on Dtw

Test on Dtl

Fig. 6. MAE on web testing data
(Dtw) and local testing data (Dtl)
using web training data (Dw).

Using only local measurements (Dl) for training: We first

leverage Dl and Multi-layer Perceptron (MLP) [14] to train

the forecasting model. The input to the models is temperature,

humidity, and generated power readings with timestamps. The

output is a sequence of the power generated by the solar

panel in the next 48 time slots (24 hours). We normalize the

training data (Dl) into the [0, 1] range. Figure 5 shows the

Mean Absolute Error (MAE) when using one to seven days

of local measurements to train the model and evaluating the

testing data Dtl. As Figure 5 shows, MAE decreases from 1.28
to 0.55 as the training data increases from using one to seven

days. The results show that a week of measurements can effec-

tively train a good solar power generation forecasting model.

However, there exists a significant challenge to leverage the

end device to collect enough training data. As Figure 4(a)

and 4(b) show, the end device may run out of battery when

experiencing a cloudy day without good cycle assignments.

Our end device can only collect data for two days without

energy harvesting. However, MAE is high (1.13) when using

two days of data from training. In our experiments, we had

to install power cables to power our end device to create the

training data (Dl) with seven days of measurements. However,

deploying dedicated power supplies for environmental sensors

incurs significant costs, even infeasible in many cases.

Using only web data (Dw) for training: We then leverage Dw

and MLP to train the forecasting model. The NSRDB dataset

contains environmental measurements and solar irradiance

data for our region. We divide the data based on 30-minute

time intervals and convert the Global Horizontal Irradiance

(GHI) in our region to the amount of generated power in

terms of Watts using the linear equation P = GHI ∗ A ∗ α,

where α is the efficiency factor specified by the solar panel

manufacturer and A is the surface area of the solar panel.

Figure 6 plots MAE of the model trained with Dw and tested

on two different testing datasets Dtw and Dtl. As Figure 6

shows, the MLP model trained using the web data (Dw)

provides high modeling accuracy when we test the model on

the web testing data Dtw (MAE = 0.54), as the blue bar

shows. However, the modeling accuracy drops significantly

when we test the models on the local testing data Dtl, as shown

in the red bar (MAE = 2.46). The differences in the modeling

accuracy clearly show the effect of the location-specified gap,

a subtle but important discrepancy between the measurements

collected by NREL and the ones gathered by our end device,



Fig. 7. Teacher-student neural network.

that prevents the forecasting knowledge learned from the web

data from enabling effective performance in the area where our

end device locates. The location-specified gap exists because

the web data cannot provide fine-scale solar information that

can be applied to our local area. Because of the location-

specific gap, the machine learning models trained using the

web data for solar forecasting, no matter how large the data

volume is, may not generalize well to a local dataset.

C. Close the Gap by Domain Adaptation

The location-specific gap found between Dw and Dl moti-

vates us to explore the feasibility of using the extensive web

data together with a small number of local measurements to

train a good model for future solar power forecasting. To this

end, our objective narrows down from solving a regression

problem to using domain adaptation to address the domain

discrepancy issue. Specifically, we first gather Nw data tuples

from the publicly accessible web data (source domain) and

then acquire N l data tuples by collecting data samples from

the local device (target domain). We assume Nw ≫ N l

due to the significant data collection overhead on local data

collection. We assume that the source and target domains

are characterized by different probability distributions q1 and

q2, respectively. Our goal is to construct a deep learning

model that can learn transferable features that bridge the cross-

domain discrepancy and build a regression y = fθ(x), which

can maximize the target domain accuracy (fw → fl) by using

a small amount of local data (Dl).

Figure 7 shows our teacher-student neural network for

domain adaptation. We first train our teacher neural network

with web data (Dw). To keep our model lightweight, we

employ MLP with three layers: 4 and 128 neurons in the

first two hidden layers and one neuron in the output layer to

forecast the solar power generation in each time slot. Rectified

Linear Unit (ReLU) and softmax activate the hidden and

output layers, respectively. The teacher’s parameters (θ1) are

learned by minimizing the Mean Squared Error (MSE) loss:

LMSE(θ1) =
1

n

n∑

i=1

(yi − ŷi)
2, (1)

where n is the number of the training data samples, yi is the

power generation ground truth at the time slot i, and ŷi is the

power generation prediction at the time slot i.
Similarly, we can train our student neural network with our

local dataset (Dl). To bridge the gap between the teacher and

the student, we use the Maximum Mean Discrepancy (MMD)

loss criterion. MMD loss measures the distances in probability

using a Hilbert Matrix. To do so we first must calculate the

kernel base matrix as an approximation to the Hilbert Matrix

given the two inputs yl, and ŷl to obtain our matrices K,

Kl = k(yl, ŷl), Kw = k(yw, ŷw), Klw = k(yl, yw), where K

can be defined by equation 2:

K(X,Y) = e−
||(X−Y)||2

2·σ2 (2)

where X and Y serve as inputs, K is the output kernel

matrix, and σ is the kernel bandwidth factor. The kernel

bandwidth σ represents the width of the Gaussian kernel used

for matrix estimation. By varying the size of σ, we can impact

the smoothness in the kernel of our data. In particular, by

increasing σ, the kernel becomes wider and smoother. We then

use the kernels Klw, Kl, and Kw calculated from the previous

equation to find the MMD loss described by equation 3:

LMMD =
1

|Kw|2
(
∑

diag(Kw) +
∑

Kw)

−
2

|Kw| ∗ |Kl|
(
∑

KLW )

+
1

|Kl|2
(
∑

diag(Kl) +
∑

Kl)

(3)

We use the respective lengths of our Kernel matrix and our

diagonals to calculate the MMD loss required for our solution

according to existing literature [15]. After obtaining both

the model-specific MSE loss and the MMD loss, we can

calculate our combined loss L(θ), which we use to optimize

the parameters of our teacher-student neural network.

L(θ) = LMSE + LMMD (4)

LMSE represents our individual model loss, and LMMD rep-

resents our combined model loss calculated using MMD, and

θ denotes the parameters learned by our model. The teacher-

student neural network allows our solar power generation fore-

casting method to produce a forecasting model with extensive

web data and a smaller amount of local measurements.

V. TIME-SLOT BASED CYCLE ASSIGNMENT

In this section, we present our method that leverages our

solar power forecasting model to assign cycles on each end

device to maximize the number of samples it collects in each

time slot without running out of battery.

A. Overview

Our time slot-based cycle assignment method takes the solar

power forecasting model fθ(x), the temperature, humidity,

and SOC measurements collected during the last 24 hours

as input and performs four processing steps including Solar

Power Prediction, Power Distribution Calculation, Power



Fig. 8. Four-step time slot-based cycle assignment.

Assignment Calculation, and Duty Cycle Calculation, as

Figure 8 shows. Solar Power Prediction takes the temperature,

humidity, and power with a timestamp in the previous day as

input to predict the solar power generation in the upcoming

day. It forwards the prediction to Power Distribution Calcu-

lation, which computes the number of time slots with zero

and non-zero power generation. Leveraging the solar power

prediction and the distribution of solar power in different

time slots provided by Power Distribution Calculation, Power

Assignment Calculation rebalances the energy distribution for

zero and non-zero power time slots. Duty Cycle Calculation

then uses the rebalanced energy distribution to generate the

assignments on the number of cycles for each time slot in the

next 24 hours. In this section, we present those four steps in

detail.

B. Solar Power Prediction

Algorithm 3: Solar Power Generation Prediction Al-

gorithm

Input: Power consumption of the device (P c), battery

capacity (C), length of time slot (Tc), solar power

generation prediction model (fθ)

Output: Solar power generation prediction (P)

1: for each time slot i over previous day do

2: Collect temperature (Tempi), humidity (Humi), and

timestamp (T imestampi) at time slot i;
3: Measure SOC (Sb

i ) at the beginning of time slot i;
4: Measure SOC (Se

i ) at the end of time slot i;
5: Measure uptime of the end device (tui ) in time slot i;
6: Compute the power generated during time slot i by

P̂i = (tui ∗ P
c − C ∗ (Sb

i − Se
i ))/Tc;

7: end for

8: P← fθ(Temp,Hum, P̂,Timestamp)
9: Output P

Algorithm 3 takes the end device’s power consumption

(P c) and battery capacity (C) as input and predicts the solar

energy generation in the next 24 hours (P) by harnessing the

temperature, humidity, and SOC readings and the forecasting

model (fθ) presented in Section IV. Specifically, Algorithm 3

first gathers the temperature (Tempi) and humidity (Humi)

readings with timestamps (T imestampi) for each time slot

from the preceding day (line 2). It then measures SOC (Sb
i )

at the beginning of time slot i (line 3) and records SOC (Se
i )

at the end of that time slot (line 4). Algorithm 3 measures the

active operational duration, or uptime (tu), within the time

slot (line 5). The power generated by the solar panel (P̂i) is

calculated by dividing the difference between the energy flux

from (or to) the battery (C ∗ (Sb
i − Se

i )) and the cumulative

energy expended over uptime during that time slot (tu∗P c) by

the time slot cycle (Tc) during time slot i (line 6). Iterations

continue until reaching the end of that day (line 7). Finally,

leveraging the collated data consisting of temperature (Temp),

humidity (Hum), solar power output (P̂ ), and respective times-

tamps (Timestamp) from every time slot of the preceding day,

Algorithm 3 determines the anticipated solar power generation

(P) based on the solar power generation prediction model (fθ)

(line 8).

C. Power Distribution Calculation

Algorithm 4: Power Distribution Calculation Algo-

rithm
Input: The solar power prediction (P), number of time slots

during 24 hours (Nt)

Output: Number of time slots with zero power generation

(n0),

Number of time slots with non-zero power generation

(n1)

1: Initialize n0 = 0;

2: for time slot i in Nt time slots do

3: if Pi == 0 then

4: n0 ++;

5: end if

6: i++;

7: end for

8: n1 = Nt − n0;

9: output n0, n1

Power Distribution Calculation takes the predicted solar

power generation (P) as input and then discerns the number of

time slots characterized by zero solar energy generation (n0)

versus those exhibiting non-zero solar energy generation (n1).

Algorithm 4 shows the algorithm. The key idea is to perform

a methodical examination of each time slot within the solar

power forecast (P) to tally time slots with either the absence or

presence of solar power generation. Specifically, Algorithm 4

initializes the zero time slot counter (n0) at 0 (line 1) and then

sequentially inspects each power prediction at time slot i (Pi)

within the set of Nt time slots (line 2). For each time slot,



if Pi is zero, the counter n0 is incremented (lines 3-5). The

algorithm repeats this process until it reaches the last time slot

(Nt) (lines 6-7). After this, Algorithm 4 ascertains the count

of time slots exhibiting non-zero solar power (n1) (line 8).

D. Power Assignment Calculation

Algorithm 5: Power Assignment Algorithm

Input: The solar power generation prediction (P ), the

number of time slots with zero power generation (n0),

the number of time slots with non-zero power generation

(n1), number of time slots during 24 hours (Nt), length

of time slot (Tc), the night-time ratio parameter used for

assigning the power distribution (σ0)

Output: Energy distribution after reassignment (Ê)

1: Calculate the Energy distribution (E = P ∗ Tc) according

to the power forecasting;

2: Calculate the Energy assigned to zero solar power

generation time slot by Eas =
∑Nt

i=1
Pi ∗ Tc ∗ σ0/n0;

3: Calculate the Energy taken from non-zero solar power

generation time slot by Eam =
∑Nt

i=1
Pi ∗ Tc ∗ σ0/n1;

4: for time slot i in Nt time slots for E do

5: if Ei < Eam + Eas then

6: Êi = Eas;

7: else

8: Êi = Ei − Eam;

9: end if

10: i++;

11: end for

12: return Ê

Power Assignment Calculation takes the solar power gen-

eration prediction (P ), the number of time slots with zero

(n0), and non-zero (n1) power generation to rebalance the

power distribution. Algorithm 5 shows our power rebalance

policy, which distributes energy based on the predicted power

generation (P ) across the time slots characterized by zero

(n0) and nonzero (n1) energy generation while considering the

night time ratio (σ0). The ratio σ0 represents the proportion

of the total solar energy designated for time slots with zero

power generation, typically occurring at night. The key idea

is to reallocate a fraction of energy from the time slots with

nonzero power generation to those with zero energy generation

and produce a new energy prediction (Ê).

Specifically, Algorithm 5 first finds the predicted energy

generated (E) by evaluating the predicted power generations

(P ) through the entire time slot (Nt) (line 1). Algorithm 5

then finds the energy assigned to close to zero energy time

slots (Eas) by aggregating the values of E, factoring in the

ratio σ0, and then dividing by n0 (line 2). It then calculates

the energy derived from the time slots with nonzero solar

energy generation (Eam), achieved by aggregating the values

of P , considering the σ0 ratio, and then dividing by n1 (line

3). Algorithm 5 then examines each time slot i within the

total set of Nt time slots from the forecast (P ) (line 4). If

the solar energy generated during the current time slot falls

below the threshold ( Eam+Eas) (line 5), the adjusted power

distribution (Êi) is set to Eas (line 6). Otherwise, Eam is

subtracted from the current forecast value (Ei) (lines 7-8).

This process is repeated for every time slot in E (lines 9-11).

Finally, Algorithm 1 generates a rebalanced energy distribution

(Ê) (line 12).

E. Duty Cycle Calculation

Duty Cycle Calculation is the last step in our method. It

determines the duty cycle (Ni) for a specific time slot. Distinct

from prior steps, Duty Cycle Calculation operates at the

runtime of each time slot, which enables dynamic optimization

tailored to each interval. With the distributed energy (Êi)

during time slot i, Duty Cycle Calculation calculates the

number of cycles (Ni) for each time slot i as follows:

Ni = Ntc ∗Nt ∗ Êi/(P
c ∗ 24) (5)

Where Nt denotes the total number of time slots within a 24-

hour window, Êi is the energy distribution post-rebalancing

for time slot i, Ntc is the total number of cycles in one

time slot, and P c denotes the device’s power consumption.

Consequently, we can ascertain the number of duty cycles (Ni)

for each time slot dynamically.

VI. EVALUATION

We perform a series of experiments to validate the effi-

ciency of our solution to provide continuous operations to the

end device. We first evaluate the capability of our domain

adaptation-based method to produce a good solar power gener-

ation forecasting model. We then apply the forecasting model

trained by our method in our time slot-based cycle assignment

method to examine the performance of our solution.

A. Performance of Our Solar Power Generation Forecasting

Method
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We first evaluate the capability of our domain adaptation

method to produce good solar power generation forecasting

models. We use two days of temperature, humidity, and power

generation measurements collected by our end device (Dl) and

the 720 days of readings from the NSRDB dataset (Dw) to

train the forecasting model. Figure 9 plots the MAE values of
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Fig. 11. Performance of our solution over seven days

our forecasting model over the seven testing days. As com-

parisons, Figure 9 also plots the MAE values of two baseline

models: one trained on only Dw and the other trained on only

Dl. As Figure 9 shows, the forecasting model produced by

our method consistently provides the best performance. For

example, the MAE value offered by our method is 0.85 on

Day 1, while the MAE values provided by our baselines are

1.31 (using Dl) and 2.88 (using Dw), respectively. Similarly,

the MAE value offered by our method is 0.38 on Day 5,

while the MAE values provided by our baselines are 0.59

and 2.01, respectively. The results show that our domain

adaptation method effectively closes the location-specified gap

and produces good solar power generation prediction with the

web data and only two days of local measurements.

We then evaluate the effects of the Gaussian kernel band-

width σ, on the performance of our method. The selection of σ
value affects the width of our Gaussian distribution kernel. A

smaller bandwidth can lead to kernel estimation under smooth-

ing. Figure 10 plots the MAE values of the forecasting model

trained with our method when it uses different σ values. As

Figure 10 shows, the forecasting performance slightly changes

(ranging from 0.48 to 0.53) when using different σ values. The

forecasting model offers the best performance (MAE = 0.48)

when our method sets σ to 2.5. The results show that the solar

power generation forecasting model produced by our method

is resilient to changes in the bandwidth factor.

B. Performance of Our Solution

We then evaluate the performance of our time slot-based

cycle assignment method combined with our solar forecasting

method, comparing it against four baselines: Algorithm 1,

Algorithm 2, our method with the forecasting model trained

with Dw, and our method with the forecasting model trained

with Dl. We deploy the base station and four end devices

in an outdoor environment and measure their performance

when they use four different solutions. Figure 11(a) plots the

minimum SOC achieved during each of the seven testing days.

As Figure 11(a) shows, only our solution can prevent the end

device from running out of battery. The SOC values under

our solution vary from 17% to 39%. As comparisons, the end

devices that employ the forecasting models trained with Dw

or Dl run out of battery during its first day. The end devices

that use Algorithm 1 or Algorithm 2 to assign cycles run out

of battery during the second or third day.

TABLE I
NUMBER OF TIME SLOTS WITHOUT ANY SAMPLES IN EVERY TESTING DAY

BECAUSE OF THE DEAD BATTERY. HERE, W Dw MEANS MODEL WITH

WEB DATA, W Dl MEANS MODEL WITH LOCAL DATA.

Day Alg 1 Alg 2 w Dw w Dl Ours

1 0 26 9 19 0
2 0 26 31 31 0
3 26 31 32 33 0
4 27 29 30 30 0
5 15 27 28 29 0
6 2 28 28 28 0
7 14 28 27 27 0

Overall 84 195 185 197 0

Figure 11(b) plots the minimum number of samples col-

lected by the end devices in any time slot during each day.

By running our solution, the end device can collect at least

75 samples during each 30-minute window. In comparison,

the end devices that run all the baselines cannot perform

environmental sensing cycles without interrupts.

Table I lists the number of time slots without any samples

collected. As Table I lists, our solution is the only one that

allows the end device to carry out data collection without

interruptions during the entire seven days.

VII. RELATED WORKS

Solar forecasting has been studied in the literature of Wire-

less Sensor Networks (WSNs) [16], [17]. For example, nu-

merical weather prediction is a physics-based prediction model

widely used with machine learning post-processing [18]. Selvi

et al. demonstrated the benefits of using regressive and Deep

Neural Network (DNN) models for solar forecasting [19].

Solar energy generation is highly dependent on weather con-

ditions, including cloud cover, temperature, and atmospheric

conditions. The inherent variability and unpredictability of

weather make it challenging to accurately forecast the amount

of generated solar energy, especially for short-term or intra-

day forecasts [20]. While machine learning models offer

promising improvements in solar forecasting accuracy, they

require large datasets for training and validation. Developing

and refining these models to improve their predictive accuracy

and generalizability across different geographical locations and

conditions is an ongoing challenge. In contrast to the existing

efforts, our work focuses on closing the location-specified gap

by leveraging the correlation between temperature, humidity,

and solar power generation to train a solar power generation

forecasting model with publicly accessible data and a small

number of local measurements.

Many approaches have been developed in the literature to

balance the power consumption of an end device by scheduling

its workloads. For instance, Caruso et al. proposed a method

that schedules a list of tasks by solving an optimization

problem with the current allotted energy available on the

device as input [21]. Audet et al. developed an algorithm that

schedules recurring tasks based on the harvested energy and

the cost of each task [22]. Compared to the existing work, this

paper focuses on investigating how to leverage solar power

forecasting to schedule the duty cycle of an end device to



maximize the number of samples it collects in each time

period without running out of battery. Our work is therefore

orthogonal and complementary.

Domain Adaptation aims to learn from one or multiple

source domains and produce a model that performs well

on a related target domain and has been successfully used

in computer vision [23], natural language processing [24],

industrial network configuration [25], and building occupancy

estimation [26]. Recent work has focused on transferring

DNN representations from a labeled source dataset to a target

domain where labeled data is sparse or non-existent. The main

strategy is to guide feature learning by minimizing the differ-

ence between the source and target feature distributions. MMD

has been successfully used for domain adaptation, which

computes the norm of the difference between two domain

means (the expectations of the source and target domain) [27].

For example, Tzeng et al. used MMD in addition to the regular

classification loss on the source to learn a representation that

is both discriminative and domain invariant [28]. Despite the

extensive literature on domain adaptation, little work has been

done to investigate whether it can be applied to close the

location-specified gap in solar energy generation forecasting

with the teacher-student neural network. To our knowledge,

our work is the first that leverages the teacher-student neural

network to adapt the solar energy generation forecasting model

trained from one location to another using publicly accessible

data and a small number of local measurements.

VIII. CONCLUSIONS

In this paper, we show that solar energy generation fore-

casting plays an important role in the performance of an envi-

ronmental sensing platform, formulate solar power generation

forecasting as a machine learning problem, and develop a

novel domain adaptation-based method to train the solar power

generation forecasting model using publicly accessible data

and a small number of local measurements. In addition, we

develop a new method that schedules the duty cycles of an

end device to maximize the number of samples it collects in

each time period without running out of battery. Experimental

results show that our solution outperforms the baselines and

effectively supports end devices to perform environmental

sensing operations without interruptions.
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