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Abstract—The largest source of energy consumption in build-
ings is heating, ventilation, and air conditioning (HVAC). For
an HVAC system to provide comfort and minimize energy
consumption, it is crucial to understand the spatio-temporal
thermal dynamics, especially in large open spaces. To optimize
HVAC control, it is important to establish accurate dynamic
thermal models. For this purpose, we constructed a real-world
testbed by instrumenting an HVAC-controlled auditorium using
multiple types of sensors. Based on the dataset, we develop and
evaluate a novel data-driven approach to model the complex
thermal dynamics in a large space through a combination of
data clustering and system identification techniques. Real-world
data shows that our approach achieves low estimation errors. Our
modeling approach therefore provides a practical foundation for
HVAC control and optimization for large open spaces.

I. INTRODUCTION

Buildings currently account for more than 70% of the
electricity consumption and generate 40% of greenhouse gas
emissions in the United States alone. The largest source of
energy consumption in buildings is heating, ventilation, and
air conditioning (HVAC), accounting for 33% of total building
energy usage. This makes HVAC an attractive target for energy
reductions [1]. Renovating HVAC systems to control the indoor
thermal environment more effectively and efficiently is impor-
tant not only for energy reduction but also thermal comfort
to occupants [2], [3]. In this work, we focus on a particularly
challenging indoor environment, large open spaces such as
auditoriums, theaters and open office spaces. Although there
are some studies on HVAC-controlled residential environments,
large open spaces pose unique challenges to control design due
to their complex spatio-temporal thermal dynamics.

As a foundation for developing fine-grained HVAC control
for a large open space, it is important to develop a practical
approach to estimate thermal models. Given the complexity
of deriving accurate thermal models for large open spaces
based on first principles, a data-driven modeling approach is
appealing in practice. We present an experimental study on
thermal dynamics of a real-life auditorium. In this study we
construct a real-world testbed through fine-grained instrumen-
tation of the auditorium. Through wireless temperature and
humidity sensors, HVAC embedded sensors, a camera and
a condensation particle counter, we have collected a large
multi-modal dataset, thus providing a comprehensive profile of
the physical environment of the auditorium. While a large
sensor network as we exploited in this study is beneficial
for understanding the fine-grained spatial dynamics, it may
not be desirable for long-term operations due to the practical

challenge to maintain numerous sensors. Moreover, based
on the large multi-modal dataset, a complicated model to
predict/estimate thermal behavior of large open spaces can
be readily built but difficult to use for the purpose of control
design due to its complexity. To that end, the objective of this
work is to develop a practical method that builds a simple
but sufficient thermal model that can approximate the spatio-
temporal thermal dynamics based on a small number of sensors.
The novelty of our approach lies in the effective combination
of learning-based sensor selection and system identification
techniques.

In this paper, we first describe the auditorium and the
multimodal sensor network installed throughout the auditorium.
We then build thermal models of the auditorium via system
identification techniques and analyze the quality of the models.
To reduce the complexity of the thermal model, we employ
spectral clustering methods to group sensors according to their
temperature measurement and correlation. By selecting a sensor
from each group, we construct simplified thermal models that
can approximate the spatio-temporal thermal dynamics of the
large space based on training data from a small number of
sensors. Evaluation based on a three-month data trace collected
from the auditorium shows that our models can capture the
thermal dynamics at sufficient accuracy and spatial granularity.
Our modeling approach provides a practical foundation for
fine-grained HVAC control design and optimization for large
open spaces.

II. RELATED WORKS

There are two general approaches to develop the thermal
model of a building: principle-driven approach and data-
driven approach. Principle-driven modeling [4], [5], [6] relies
on fundamental thermodynamic and fluid-dynamic principles
to build the model framework, while leveraging details of
the materials and construction of the environment to derive
parameters for the model. Although a fine-grained principle-
driven model can accurately predict thermal dynamics of
the building, its cost, such as computation overhead and a
thorough understanding of structures, material and interaction
of components in the building, greatly restricts its application
in a real-world environment [7], [6], [5].

The data-driven approach decides the structure or param-
eters of the model based on measurement data collected
from the environment. Aswani et al. [8] propose a macro-
level model for thermal environment in a building. A semi-
parametric regression technique is used to derive a simple



model without explicit heat load effects. However, from the
perspective of modeling, our research is different to this
work in several aspects. First, the floor plan of the building
studied in [8] consists of multiple small offices shared with
a public space and the offices are the focus in their study.
In contrast, in this work we investigate a large open space
with spatial variability in its thermal dynamics. Second, in
our research, the heat load generated by occupants, lighting
systems and ambient environment are explicitly incorporated
into the model. Matchstick [9] is a modeling framework for
thermal environment in buildings, especially for residential
rooms. A temperature predictor is built based on a simple, zonal
model (each zone corresponding to one room) which explicitly
incorporates different heat loads. However, their zonal model
treats a room as a single zone and hence is not applicable to
a large open space.

The models proposed in this paper are also different from
the fine-grain zonal models in previous work [7], [6], [5]. First,
since deployment of sensors is constrained by the physical
constraints of the rooms, it is impossible to form a regular
zone geometry like a rectangle, which is common in other
works of zonal thermal model. Hence there are no physical
zone boundary and then no clear defined neighbors for each
zone. Second the sources that affect thermal dynamics of the
auditorium such as VAVs and light systems are difficult to
be divided into zones. For example, our auditorium has four
VAVs but only two air outlets which span the entire auditorium.
Third, it is also difficult to group occupants according to their
locations given the lack of clear physical zoning.

A key challenge when deploying sensor networks is to
decide the locations of sensors in order to obtain the most useful
information about the environment at minimal deployment
and maintenance cost. This sensor selection problem has
received considerable attention [10], [11], [12], [13], [14], [15].
Studies on optimizing sensor selection can be categorized into
two classes: geometric and model-based approaches [11]. A
model-based approach assumes or identifies a deterministic
or statistical real-world model and then optimizes the sensor
placement according to the objective function related to the
model. The key to the model-based approach is the objective
function [16], [12]. In the statistics community, standard
metrics are used to serve as objective functions, for example,
Bayesian experimental design and entropy [13], [10], [11],
[14], [15]. These works on sensor selection do not address the
problem of modeling the thermal dynamics of the environment.
While we also employ sensor clustering to reduce the number of
sensors needed for thermal modeling, the purpose of our sensor
clustering is to simplify the thermal model while still capturing
the spatio-temporal thermal dynamics of the environment.

The work in [17] is mostly related to our research, in
which they incorporate sensor selection in thermal modeling.
The authors propose to reduce the thermal model complexity
through aggregating some zones by optimizing model accuracy.
The model reduction is based on the thermal resistance and
capacitance (thermal RC) model. However their data-driven ap-
proach mainly identifies aggregated parameters in a dynamical
model. Furthermore, it is difficult to separate thermal resistance
and capacitance, limiting the applicability of this approach in
practice.

III. AUDITORIUM TESTBED

We developed and deployed an indoor wireless monitoring
system to measure multiple physical properties of an audi-
torium. The system consists of a wireless sensor network
with temperature and humidity sensors. We also collect the
operational variables (e.g., air flow rate and temperature) of
the HVAC system through its own monitoring system. Together,
these sensors provide a comprehensive profile of the thermal
and air quality environment of the auditorium.

A. Auditorium

The instrumented auditorium is located in the basement
of Brauer Hall at Washington University in St. Louis. It is
a multifunction conference room, hosting classes, seminars,
group meetings and other types of events. The auditorium has a
capacity around 90 occupants and is equipped with a computer,
two projectors and lighting. The HVAC is programmed to
switch from off mode to on mode at 6:00 am and then back to
off mode at 9:00 pm. Each mode is associated with different air
flow rates. The inlet air temperature and flow rate are controlled
by four Varied Air Volumes (VAVs).
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Fig. 1: The auditorium and sensors. Red circles represent
temperature and humidity sensors. Blue squares are the
existing thermostats of the HVAC system while the black
triangle is a web camera.

B. Monitoring system

To study fine-grained spatio-temporal dynamics we instru-
mented the auditorium with a multitude of sensors including
39 temperature sensors, a web camera (for occupancy), and
existing sensors embedded with the HVAC system (for air flow
and temperature from the HVAC).

1) Temperature sensors: The temperature sensors were
originally wireless thermostats manufactured by Emerson and
modified for measuring temperature and humidity. The sensors
were placed on the walls, ceiling, desks and the podium in
the auditorium to monitor the spatial thermal distribution.
Figure 1 illustrates the location of the temperature sensors.
Although a total of 39 temperature sensors are deployed
in the auditorium, only those sensors installed near ground
are included in this analysis, since they best represent the
comfort of occupants. However the sensors installed on the



upper walls and ceilings will be analyzed in future work
to generate a more comprehensive temperature distribution
profile in the auditorium. Following pre-processing, several
sensors with unreliable results are removed from the dataset.
The final dataset studied in this section consists of thermal
measurements from 25 temperature sensors and 2 thermostats,
depicted in Figure 1. All the sensors send data to a computer
server wirelessly using Bluetooth v2.1 EDR. The accuracy
of temperature sensors is ±0.5◦C. Whenever it detects a
temperature change greater than 0.1◦C, the sensor transmits
the current reading to the base station. All sensor readings are
sent to a database in the cloud.

2) HVAC sensors: We collect the operational data of the
HVAC system through their existing monitoring system. Two
thermostats used by the HVAC system are located on both sides
of the front walls of the auditorium. Four varied air volumes
(VAVs) have sensors record the rate and temperature of air
flow blown from the HVAC into the auditorium. The ambient
temperature and CO2 concentrations are also measured and
recorded by the HVAC. All data from HVAC sensors are stored
in a portal server at intervals between 10 and 30 minutes.

3) Occupancy detection: We deployed a WiFi enabled
webcam at the front of the auditorium to monitor the occupancy
of the auditorium by capturing photos every 15 minutes. This
camera also has an infrared light source, allowing it to take
pictures when the room is dark (e.g., when lights are tuned off
during presentations). The snapshots of the auditorium captured
by the web camera were then sent to the backend server over a
campus-wide WiFi network. For modeling purpose in this work,
the number and locations of occupants were counted offline by
visual inspection of the photos. In the future, occupancy could
be measured automatically using computer vision software.

C. Data set

The data collected from the monitoring system was used
to analyze the thermal dynamics inside auditorium. The data
set includes approximately 14 weeks of data, from January 31,
2013 to May 8, 2013. The different data sets included in this
study are temperature, HVAC (which includes air flow rate and
temperatures), occupancy, and lighting system (on/off).

IV. MODEL IDENTIFICATION

In this section, we construct dynamic models to capture the
spatiotemporal thermal dynamics of the auditorium based on
measurements of all the temperature sensors in our system. We
consider both the first and second order models to approximate
the thermal dynamics of the auditorium. Then we estimate
parameters of the dynamic models based on the data set
collected by the monitoring system. Finally, we compare first-
order and second-order models based on empirical data.

A. Model overview

Our models characterize the impact of multiple heat sources
(such as HVAC, occupants and lighting) on the spatial distribu-
tion and temporal variation of the temperature in the auditorium.
We also model the thermal interactions among the locations of
different sensors due to fluid dynamics of air.

Before formulating the thermal model, we introduce the
following notations.

• T (k) = [T1(k),T2(k), . . . ,Tp(k)]T : Temperature mea-
surements from sensors. k is the index of sampling
times and p is the number of sensors.

• h(k) = [h1(k),h2(k), . . . ,hm(k)]T : Air flow measure-
ments of HVAC. m is number of VAVs.

• o(k): Number of occupants.

• l(k): On/off status of light systems.

• w(k): Ambient temperature.

Then the thermal dynamic model of the auditorium can be
written as

T (k+1) = AT (k)+ [b1 b2 b3 b4]

 h(k)
o(k)
l(k)
w(k)

 (1)

where A is a coefficient matrix, in which off-diagonal elements
represent thermal interaction between the locations of different
sensors, and b1,b2,b3,b4 are column vectors.

The simple first-order model (1) may not capture the
complex air flow dynamics in the auditorium such as the delay
in mixing air from the HVAC. Hence we also investigate a
second-order model, which exploits the same input in model (1)
and assumes there is second order thermal dynamics in the
auditorium. Specifically, the model can be written as[

T (k+1)
∆T (k+1)

]
= A′

[
T (k)

∆T (k)

]
+B′U(k) (2)

where ∆T (k) = T (k)−T (k−1) is the difference of temperature
at sampling time k and A′,B′ are coefficient matrix and U(k) =
[h(k) o(k) l(k) w(k)]T . Because of significant computational
complexity for estimating the model parameters, models based
on higher order thermal dynamics are not considered in this
work.

B. Parameters identification

Generally, the coefficients in A,B of the model (1) and
A′,B′ of the model (2), can be estimated by solving a least
square problem

argmin ||T̂ −T ||2 (3)

where T̂ = [T̂ (1), . . . , T̂ (N)]T and T̂ (k),(k ∈ 1, . . . ,N) is a
vector of temperature estimated by the model (1) or (2), while
T = [T (1), . . . ,T (N)]T is a vector of measured temperature.

In this work since the temperature and HVAC measurements
have gaps due to unstable working status of the sensor networks
and back end server, an ensemble of data in different time
intervals is used to identify the system parameters. Therefore
the problem (3) is transformed to an piece-wise least square
problem in this case,

argmin
K

∑
i=1
||T̂i−Ti||2 (4)

where i = 1, . . . ,K is the index of continuous sampling time
intervals; T̂i = [T̂ (si), . . . , T̂ (ei)]

T and Ti = [T (si), . . . ,T (ei)]
T ,

where si,ei are the time index of starting and ending of the ith
sampling time interval.



Given the available measurements of temperature in dif-
ferent time intervals, VAVs output, occupants number, on/off
status of lighting systems and ambient temperature, the op-
timizing objective (4) is convex and entails a global optimal
solution. We use the CVX toolbox[18], [19] for Matlab to solve
the optimizing problem (with solver SeDuMi[20]).

C. Model Quality

We now investigate the accuracy of first-order model (1) and
second-order model (2). First, the model quality is evaluated
based on prediction errors. we then analyze how model quality
changes along with parameters such as training and prediction
horizons. For evaluation, we use data spanning 98 days.
Excluding days with sensor and server failures, we use the
data in the remaining 64 days for evaluation. We use the half
of the data set (32 days) to train the models and the other half
to validate estimation error of the models.

We first divide the status of the auditorium into two modes,
occupied and unoccupied according to the working status of
HVAC. In occupied mode, the auditorium is actively controlled
by the HVAC, while in unoccupied mode the HVAC does not
control the temperature but maintains a low level of air flow.
For each day we choose the time intervals representing the
occupied and unoccupied mode, respectively (6:00 am - 9:00
pm for occupied mode and 9:00 pm - 6:00 am for unoccupied
mode). The data belonging to each time intervals in each day is
aggregated as training data across days. It is reasonable to split
the entire data set into two modes because different operating
modes of the HVAC system lead to different thermal dynamics
and hence require different thermal models. The thermal
dynamics of the auditorium during occupied mode greatly
impacts the comfort of occupants and energy consumption
of the HVAC, while the contribution of unoccupied mode is
significantly smaller. Thus we focus on the occupied mode in
our research.

We then pre-process the data traces of wireless temperature
sensors for model identification and estimation. Although a
total of 39 wireless sensors are deployed in the auditorium, only
those sensors installed near ground are included in this analysis,
since they best represent the comfort of occupants. However
the sensors installed on the upper walls and ceilings will be
analyzed in future work to generate a more comprehensive
temperature distribution profile in the auditorium. Following
pre-processing, several sensors with unreliable results are
removed from the dataset. The final dataset studied in this
section consists of thermal measurements from 25 temperature
sensors and 2 thermostats, depicted in Figure 2.

Occupied Unoccupied

First Second First Second
0.68 0.48 0.37 0.25

TABLE I: RMS of prediction error of models in occupied
and unoccupied modes at 90th percentile.

Figure 3 shows the cumulative distribution of the prediction
errors based on results from the identified model (1) and (2),
respectively. The root-mean-square (RMS) error for each sensor
is illustrated in Figure 3 providing a comprehensive picture of
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Fig. 2: Measured temperature by wireless sensors and
thermostats on Fri. Mar. 22, 2013 at 12 : 30pm, when
the auditorium was fully occupied due to a seminar and
HVAC was active (the background is the floor plan of the
auditorium). Circles and numbers indicate locations and
IDs of sensors respectively. The color bar (right) indicates
corresponding temperature of each sensor. Sensor 40 and
41 represent thermostats.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

RMS (
°
C)

E
m

p
ir

ic
a

l 
C

D
F

 

 

first−order

second−order

Fig. 3: RMS of prediction error for all sensors in first-
order and second model under occupied mode (Prediction
window length is 13.5 hours for each day).

the model accuracy. In the 90th percentile, the error range of
each sensor for first-order model is 0.31− 0.99◦C and RMS
error for all sensors is 0.68◦C. For the second-order model,
the error range is 0.18−0.63◦C and RMS is 0.48◦C. For both
models, the prediction window length is 13.5 hours. The RMS
error in 90th percentile for first and second order model in
occupied mode are summarized in Table I. For comparison,
Table I also lists RMS error of both model in unoccupied
mode.

Figure 3 illustrates that the second-order model can generate
more accurate temperature prediction than the first-order model.
Previous studies [5], [7] in thermal modeling of buildings
use the first-order models. The basic assumption of first-order
models is an ideal heat transfer process, that is, the cool or
warm air blown into the room or the zone can immediately
change the temperature of the whole zone. However, there is a



delay between mixing the air from VAVs and the zone leading
to an uneven temperature distribution. Thus the heat transfer
behavior, especially in large open area, can be approximated
as a second order dynamical system more accurately than a
first-order one, as shown in Figure 4.
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Fig. 4: Temperature of the auditorium measured by sensor
1 and temperature estimated by first-order and second-
order model in March 25, 2013.

To explore the impact of training data horizon on model
quality, we perform an experiment in which the models are
trained by the data sets with varied horizons and the identified
models are employed to predict temperature in one day. Top
subfigure of Figure 5 shows RMS of prediction errors for first-
order and second-order models as a function of training data
horizon. Interestingly, we observe more training date does not
necessarily lead to higher prediction accuracy. Actually, in our
evaluation the model identified using only 13 days of training
data leads to the lowest prediction error. We hypothesize the
higher error with more training data may be attributed to over-
fitting. Bottom subfigure of Figure 5 shows RMS of prediction
errors as a function of prediction length. We observe that the
prediction error of the model monotonically increases with the
prediction length, and that second-order models outperforms
first-order models in this comparison.

V. SENSOR CLUSTERING

The objective of this study was to use a dense network of
distributed temperature sensors to efficiently map the thermal
environment of the HVAC-controlled auditorium, and to de-
termine the optimal number and location of sensors needed
to represent the thermal distribution across the entire room.
While the HVAC system employs its own thermostats to
measure the temperature of the auditorium and control output
air flow rate and temperature, in a large open space like the
auditorium spatial thermal distribution may vary significantly.
Thus a small number of sensors may not capture this variability.
Figure 2 indeed indicates that a significant spatial thermal
distribution exists when the auditorium is occupied. According
to the data, the difference between the highest and lowest
temperature readings is almost 2◦C (between sensor 27 and
the two thermostats).

According to a classic thermal comfort model [21], [22],
the thermal comfort index, Predictive Mean Vote (PMV),
of the audience in the auditorium under certain conditions
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Fig. 5: Temperature prediction error (in 90th percentile)
as training data increases (top subfigure) and prediction
length increases (bottom subfigure).

can vary 0.5 along with 2◦C temperature difference, which
may change thermal feel of audiences from comfortable to
slightly cold/warm and implies the thermostats that control the
HVAC may not effectively represent the temperature across
the whole auditorium. While providing a more accurate and
comprehensive thermal profile is optimal to ensure occupants’
comfort, a dense wireless sensor network dedicated to measure
the auditorium is expensive to deploy and maintain. However,
according to Figure 2 the majority of temperature sensors have
only negligible differences (< 0.2◦C ) between them, which is
insignificant for HVAC control and occupants’ comfort.

Therefore, we hypothesize that accurately grouping the
sensors and selecting just one strategically-placed sensor from
each group will adequately represent the thermal profile of the
auditorium and permit better HVAC control. Our approach
to determine effective and efficient measurements for the
auditorium is based on clustering sensors according to their
temperature measurements and then choosing the sensor among
each cluster which represents the whole cluster of sensors.
Although there are other statistical based approaches [11] to
choose a few sensors from a sensor network that representative
of a region, two features distinguish our approach from existing
statistical approaches. First, our approach works in a top-down
manner, selecting appropriate sensors from the sensors network
by splitting the network into several subsets. This approach



provides small-scale temperature profiling which allows us
to understand the temperature distribution of the entire room.
Moreover, our approach does not make the assumption that the
sensors’ measurements follow a multivariate Gaussian process,
which may not hold in a real-world environment.

The importance of clustering has lead to extensive research
on clustering algorithms. Compared to the traditional clustering
algorithms such as k-means or single linkage, spectral cluster-
ing [23], which we used as basis for our work, can derive higher
quality results and, more importantly, be implemented and
solved more efficiently by standard linear algebra computation.

A. Spectral clustering

Spectral clustering is based on similarity graph [23], which
represents similarity between data points. Each data point xi is
represented by a vertex vi in this graph, and there is an edge
ei j between the vertex vi and v j if the similarity between two
vertices is higher than a given threshold, and the weight wi j of
ei j is the given similarity si j. Thus the problem of clustering can
be transformed to a partition problem using the similarity graph
such that after partition edges in each group have high total
weights while edges between groups have low total weights.

The solution of the problem to partition the similarity
graph relies on the graph Laplacian L = D −W , where
W = (wi j)i, j=1,...,n, and is the adjacent weight matrix for the
graph G, and D is the diagonal matrix, where dii = ∑

n
j=1 wi j.

The most important property of the Laplacian is ability to
identify the connected components in the graph by linear
algebra computations. The eigenvalue gap for the Laplacian
matrix L is defined as logλ L

i+1− logλ L
i , where λ L

i is the ith
eigenvalue of L [24], [25].

The key step in applying spectral clustering to sets of
sensors based on their temperature readings is to construct an
undirected weighted graph G from the sensors set. First, each
pair of sensors (i, j) is assigned an edge ei j and a weight wi j.
The weight characterizes the similarity between two sensors.
Typically, two metrics, euclidean distance or correlation, can
be used to calculate the weight. Weights derived by different
metrics can lead to different clustering results. Once the weight
matrix W is acquired after all sensor pairs are assigned weights,
we can execute a spectral clustering algorithm to cluster sensors
into separate groups. Details of the spectral clustering method
can be found in [23].

B. Clustering sensors based on temperature measurement

In this section we present the results from clustering sensors
based on their temperature measurements. Following the same
methodology described in Section IV.C, we split the 64-day
data set for the occupied mode into two equal parts. The first
half of the dataset is used as training data to derive clusters of
sensors, and the second half of the data serves as validation
data to verify the clustering results.

The clustering results from the algorithms based on Eu-
clidean distance and correlation are shown in Figure 6. Three
clusters are derived from the Euclidean based clustering
algorithm and two clusters from the correlation based algorithm.
The number of clusters is decided by the largest eigengap. For
Euclidean distance based clustering, the largest eigengap is

between the 2nd and 3rd eigenvalues, which entails 3 connected
components.

The results from Euclidean-based clustering indicates that
the majority of sensors with low average temperatures are
located at the front of the auditorium denoted cluster 1, while
those with high temperatures are located at the back of the
auditorium denoted cluster 2. Cluster 3 are those sensors which
failed to exhibit any consistent geographical patterns, making it
difficult to determine the thermal distribution of the auditorium.

For the correlation-based clustering shown in Figure 6, the
sensors can be classified int two distinct groups. Similar to
the results of Euclidean-based clustering, cluster 2 consists of
sensors located at the front of the auditorium, while cluster 1
has sensors at the back of the auditorium. These results indicate
that sensors at the front of the auditorium are influenced more
strongly by HVAC (cooling) than sensors at the back of the
auditorium.

C. Comparison between Euclidean distance and correlation
based clustering algorithms

We compare the clustering results from these two algo-
rithms according to two metrics. The first being the maximum
temperature difference between pairs of sensors in a cluster,
that is, for each pair of sensors in a cluster, we choose their
maximum temperature difference over the entire training period
(32 days), and then plot the CDF of the maximum temperatures
of all pairs of sensors with each cluster. If the temperature
difference is small, then the sensors in one cluster are more
closely related, and one sensor from the group can be chosen to
represent the cluster, saving both maintenance and deployment
costs. The second metric is the correlation between sensors in
any given cluster. If a cluster exhibits high correlation, then
the temperature trends tend to be similar, which can be taken
into account in the design of HVAC control.

Figure 7 shows the maximum temperature distribution and
correlation within each cluster based on the results of the
Euclidean distance algorithm with different numbers of clusters.
When k = 3, which is chosen by the largest eigengap, Cluster
1 and 3 both exhibit relatively small maximum temperature
differences. For the majority of sensors in these clusters (
> 95%), temperature differences are below 1◦C. However,
Cluster 2 has large temperature difference distributions (> 3◦C
for 95% of the sensors), which is almost the same as the total
temperature difference distribution of the sensors throughout
the auditorium. In the correlation map presented in Figure 7,
we group sensors according to the clustering results. The
correlation map of the Euclidean distance based algorithm
illustrates that those sensors which are in the same cluster do
not demonstrate consistently high correlation with each other.
The result is not surprising given that the Euclidean distance-
based algorithm is not designed to take the correlation between
sensors into account when generating clusters.

Figure 8 presents the results from correlation-based clus-
tering with different numbers of clusters. When k = 2, which
is also chosen by the largest eigengap, Cluster 2 demonstrates
temperature differences which are slightly greater than 1◦C
at 95% of sensors, while Cluster 1 has differences greater
than 2.7◦C ( 95% of sensors). Compared to the result from
Euclidean distance-based clustering which had two clusters
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Fig. 6: Clustering sensors based on Euclidean distance (top) and correlation (bottom). The left column indicates the
locations of sensors while colors represent clusters. The middle column represents eigenvalues of Laplacian. The right
column shows the mean temperature for each cluster.
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Fig. 7: Euclidean distance based clustering algorithms. k represents cluster number. The top row is distribution of
maximum temperature differences while the bottom row is the correlation map. k = 3 is chosen by the largest eigengap.
Overall indicates the maximum temperature difference between all sensors in the auditorium



with small temperature differences and one cluster with a
greater temperature difference, this method generates clusters
that have smaller temperature differences than the temperature
difference between all sensors. More importantly, sensors
within the same cluster demonstrate strong correlation with
each other.

VI. MODEL SIMPLIFICATION

The thermal model presented in Section IV is derived
from temperature measurements from all the sensors in the
auditorium, which, however, is not appropriate for designing
HVAC control systems. First, the complicated structure and
large number of parameters in the model introduce considerable
computation overhead, prohibiting an efficient implementation
of HVAC control algorithms. Moreover, the maintenance of a
large number of sensors is difficult and time consuming for
long-term operations. Hence, a simpler but still representative
thermal model is necessary for HVAC systems.

As discussed in Section V, the temperature measurements
of some sensors are closely correlated, providing opportunities
to reduce the complexity of the model by building models using
a subset of sensors in the auditorium. Selecting appropriate
sensors from a large set of sensors is an important problem in
both sensor networks and spatial statistics, where it is referred
to as spatial sampling. We propose to select a representative
sensor from each cluster of sensors generated using the spectral
clustering method described in the last subsection. A simpler
thermal model can then be estimated based on the selected
sensors. The challenge is to select a set of sensors that leads
to a thermal model capturing the spatiotemporal dynamics at
sufficient granularity and accuracy.

In this section we first introduce different sensor selection
methods based on sensor clustering and compare their per-
formance. Then we present the results of a simplified model
identification strategy based on the sensor selection methods
are discussed.

A. Sensor selection

Leveraging the sensor clustering approach presented in
Section V, we consider two methods to select a sensor from
each cluster.

• Stratified random selection (SRS) : The sensor set is
first divided into strata1 by clustering. Then the simple
random selection is able to be carried out within each
cluster to select a representative sensor.

• Stratified near-mean selection (SMS) : Although SRS
can improve accuracy due to clustering, deliberately
designed mechanism rather than random selection of a
representative sensor can achieve more accurate results.
SMS first divides the sensor set into several strata like
SRS. Then in contrast to randomly choose a sensor,
SMS select the sensors with thermal measurement
closed to the mean of the cluster since the representa-
tive sensor is expected to capture the thermal mean of
the cluster.

1Strata is a term used spatial statistics equivalent to a cluster

As a baseline comparing to SRS and SMS, we also consider
a naive sensor selection method which randomly chooses
sensors from all the sensors ignoring clustering results.

• Simple random selection (RS) : RS chooses representa-
tive sensors from the all sensors with equal probability.
To compare to SRS and SMS, RS assign these sensors
as the representative sensor to clusters generated by
SRS and SMS.

• Gaussian Process (GP) : GP is based on [11] and
chooses representative sensors to improve total mutual
information, that is, find the sensors are most informa-
tive about unsensed location.

B. Comparison of sensor selection strategies

In this section we compare the performance of the different
sensor selection methods. Based on discussion in section V,
clustering based on correlation can group sensors in a more
consistent manner. Hence the correlation based clustering is
used to generate sensor clusters for SRS and SMS.

Table II shows the errors of different sensor selection
methods to predict cluster means when we used 2 clusters.
In Section V, two physical zones, warm and cool, can be
identified by the thermal clustering algorithm. As comparison,
two thermostats and sensors chosen by near-optimal sensor
placement based on Gaussian Process (GP) [11] are also
presented in Table II.

Sensor selection 99 percentile of prediction error (◦C)

SMS 0.38
SRS 0.73
RS 1.07

Thermostats 1.89
GP 1.53

TABLE II: Comparison of sensor selection methods (2
clusters, 1 sensor per cluster).

Since SMS selects sensors closed to the mean of the whole
cluster, the prediction error for the cluster thermal mean is
the smallest among the sensor selection methods. In contrast
SRS chooses a sensor from the cluster randomly, increasing
its prediction error. For RS, which chooses sensors ignoring
clustering results, the error of prediction grows because the
chosen sensors may be in the same cluster. Like RS, the
thermostats are located in the cool zone of the auditorium
so cannot predict the thermal mean of warm zone. The sensor
placement based on Gaussian Process (GP) chooses sensors
with highest mutual information, which are in the warm zone
and hence cannot accurately predict the thermal mean in cool
zone.

The results in Table II are based on only one sensor per
cluster. If more sensors are chosen in one cluster and the mean
of sensors is used as approximation of the cluster mean, the
prediction error can be reduced further. Figure 9 shows that the
prediction becomes more accurate if more sensors are selected
in each cluster for SRS.

To investigate the performance of sensor selection methods
with different numbers of clusters, we plot 99 percentile of
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Fig. 8: Correlation based clustering algorithms. k is cluster number. The top row is distribution of maximum temperature
differences while the bottom row is the correlation map. k = 2 is chosen by the largest eigengap. Data labelled as Overall
indicates the maximum temperature difference between all sensors in the auditorium
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Fig. 9: Prediction error decreases when number of chosen
sensors in one cluster increases.

prediction errors of SRS, SMS and RS along the cluster number
in Figure 10. In general, sensors chosen by clustering based
on sensor selection methods, i.e., SRS and SMS, can predict
cluster thermal mean more accurately than RS. Specifically,
when the number of cluster is less than 5, the difference
between the prediction error of clustering base sensor selection
and RS is less than 1◦C, and the difference increases quickly to
around 2◦C if the number of clusters is greater than 5. Based
on the results in Section V, prediction error of RS entails the
thermal difference between clusters, while the prediction error
of SRS and SMS entails thermal difference in clusters. Results
in Figure 10 corresponds increasing thermal difference between
clusters when the number of clusters increases. For SRS and
SMS, the prediction errors of both methods tend to converge
because the sensors per cluster reduces when there are more
clusters.
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Fig. 10: Comparison of sensor selection methods with
different number of clusters.

C. Simplification of model by sensor selection

Sensor selection methods choose representative sensors
from sensor clusters to estimate the cluster mean, which
are able to be used as thermal measurements to identify
simplified thermal model of the auditorium. Figure 11 shows
the prediction error of the reduced models, which are identified
by sensors based on sensor selection methods. Similar to the
results shown in Figure 10, the models based on sensors chosen
by SRS and SMS more accurately predict the cluster thermal
mean than the model on sensors chosen by RS. We also observe
that the prediction error reduces when the sensors number
increases, indicating that model quality improves when more
sensors are involved in model identification.

VII. CONCLUSION

Optimized HVAC control is crucial to improving the energy
efficiency of buildings. The design and optimization of HVAC
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Fig. 11: Comparison of accuracy of simplified model
according to different sensor selection methods.

control rely on accurate models that capture the thermal
dynamics of the environment. However, thermal modeling is
challenging for large open spaces with complex spatiotemporal
dynamics. Traditional single sensor models fail to capture
the spatial variations and correlations in a large space, while
models based on dense measurements require a large number
of sensors to be maintained during system operation. We
tackle this challenging problem through a data-driven modeling
approach that combines learning-based sensor clustering and
system identification. We propose a three-step method to
construct a thermal dynamic model: (1) in the training phase
a dense sensor network is deployed in the space to capture
the fine-grained spatiotemporal dynamics; (2) sensors are then
clustered based on their correlations and differences and a
sensor is selected from each cluster; (3) a dynamic model is
estimated using system identification based on the selected
sensors. Evaluation based on data traces collected from a
real-world auditorium indicates our models can capture the
spatiotemporal thermal dynamics in a large auditorium at
sufficient accuracy and granularity, while requiring only a small
number of sensors to be used for long-term operation. Our
modeling approach can therefore provide a practical basis for
more accurate and effective HVAC control.
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