
DiGS: Distributed Graph Routing and Scheduling
for Industrial Wireless Sensor-Actuator Networks

Junyang Shi, Mo Sha
Department of Computer Science

State University of New York at Binghamton
{jshi28, msha}@binghamton.edu

Zhicheng Yang
Department of Computer Science

University of California, Davis
zcyang@ucdavis.edu

Abstract—Wireless Sensor-Actuator Networks (WSANs) tech-
nology is appealing for use in industrial IoT applications because
it does not require wired infrastructure. Battery-powered wireless
modules easily and inexpensively retrofit existing sensors and
actuators in industrial facilities without running cabling for
communication and power. IEEE 802.15.4 based WSANs operate
at low-power and can be manufactured inexpensively, which
makes them ideal where battery lifetime and costs are important.
Almost a decade of real-world deployments of WirelessHART
standard has demonstrated the feasibility of using its core
techniques including reliable graph routing and Time Slotted
Channel Hopping (TSCH) to achieve reliable low-power wireless
communication in industrial facilities. Today we are facing the
4th Industrial Revolution as proclaimed by political statements
related to the Industry 4.0 Initiative of the German Government.
There exists an emerging demand for deploying a large number
of field devices in an industrial facility and connecting them
through a WSAN. However, a major limitation of current WSAN
standards is their limited scalability due to their centralized
routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. This
paper decentralizes the network management in WirelessHART
and presents the first Distributed Graph routing and autonomous
Scheduling (DiGS) solution that allows the field devices to
compute their own graph routes and transmission schedules.
Experimental results from two physical testbeds and a simulation
study show our approaches can significantly improve the network
reliability, latency, and energy efficiency under dynamics.

Index Terms—Wireless Sensor-Actuator Networks, Industrial
Internet of Things, Graph Routing, Transmission Scheduling

I. INTRODUCTION

The Internet of Things (IoT) refers to a broad vision
whereby things such as everyday objects, places, and environ-
ments are interconnected with one another via the Internet [1].
Until recently, most of the IoT infrastructure and applications
development work by businesses have focused on smart homes
and wearables. However, it is “production and manufacturing”
cyber-physical system (CPS), underlying the 4th generation
of industrial revolution (or Industry 4.0), that presents one
of the largest economic impact potential of IoT [2] – up to
$47 trillion in added value globally by 2025 (according to
McKinsey’s report on future disruptive technologies) [3].

Industrial networks, the underlying support of Industrial IoT
(IIoT), typically connect hundreds or thousands of sensors and
actuators in industrial facilities, such as steel mills, oil refiner-
ies, chemical plants, and infrastructures implementing complex

monitoring and control processes. Although the typical process
applications have low data rates, they pose unique challenges
because of their critical demands for reliable and real-time
communication in harsh industrial environments. Failing to
achieve such performance can lead to production inefficiency,
safety threats, and financial loss. These requirements have
been traditionally met by specifically chosen wired solutions,
e.g., Highway Addressable Remote Transducer (HART) [4],
where cables connect sensors and forward sensor readings to a
control room where a controller sends commands to actuators.
However, wired networks are often costly to deploy and
maintain in industrial environments and difficult to reconfigure
to accommodate new production process requirements.

Wireless Sensor-Actuator Networks (WSANs) technology
is appealing for use in industrial process applications because
it does not require wired infrastructure. Battery-powered wire-
less modules easily and inexpensively retrofit existing sensors
and actuators in industrial facilities without running cabling
for communication and power. IEEE 802.15.4 based WSANs
operate at low-power and can be manufactured inexpensively,
which makes them ideal where battery lifetime and costs
are important. Almost a decade of real-world deployments of
WirelessHART standard [5] has demonstrated the feasibility of
using its core techniques including reliable graph routing and
Time Slotted Channel Hopping (TSCH) to achieve reliable
low-power wireless communication in industrial facilities.
Under graph routing, a packet is scheduled to reach its desti-
nation through multiple redundant paths to enhanced end-to-
end reliability. TSCH requires that all devices in the network
are time synchronized and hop channels to exploit frequency
diversity.

Today we are facing the 4th Industrial Revolution as
proclaimed by political statements related to the Industry
4.0 Initiative of the German Government [6]. There exists
an emerging demand for deploying a large number of field
devices in an industrial facility, e.g., hundreds of devices over
an oil field, and connecting them through a WSAN. However,
a major limitation of current WSAN standards such as Wire-
lessHART is their limited scalability due to their centralized
routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. For
instance, when encountering network dynamics (e.g., node
or link failure, topology change), the centralized Network

Manager (a software module) in a WirelessHART network
has to regenerate the routes and transmission schedule and
then distribute them to all devices, introducing long delay and
large overhead.

Recently, there has been an increasing interest in developing
new distributed scheduling on top of the distributed tree-based
routing protocols proposed in the wireless sensor networks
(WSNs) literature (e.g., RPL [7] and CTP [8]) to replace
the centralized routing and scheduling in industrial WSANs.
For instance, the IETF created the 6TiSCH working group to
standardize how to use an IPv6-enabled upper stack on top of
IEEE 802.15.4e TSCH networks [9]. Duquennoy et al. devel-
oped the Orchestra that allows nodes in the RPL networks to
compute their own schedules [10]. Unfortunately, the stringent
reliability and real-time requirements of industrial applications
distinguish traditional WSNs from industrial WSANs, that
packet lost must become an exception and redundant routes
between a source and a destination are essential to meet
with guaranteed service. Our study shows that the networks
relying on the tree-based routing suffer long repair time and
insufficient reliability when encountering external interference
and node failure.

This paper aims to address the stated scalability and relia-
bility challenges; to our knowledge, it represents the first Dis-
tributed Graph routing and autonomous Scheduling (DiGS)
solution that allows the field devices to compute their own
graph routes and transmission schedules. Specifically, this
paper makes the following contributions:
• We develop a distributed routing protocol that generates

and operates with graph routes by extending RPL, the
routing protocol for low-power IPv6 networks standard-
ized by the IETF ROLL working group, with minimal
changes;

• We design an autonomous scheduling approach that al-
lows the field devices to compute their own transmission
schedule autonomously based on the graph routes;

• We implement our proposed solution and evaluate it on
two physical testbeds located in different cities as well
as a simulator. Experimental results show our approaches
can significantly improve the network reliability and
latency under dynamics.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work and Section III introduces the
background of WirelessHART networks. Section IV presents
our empirical study and Sections V and VI describe the design
of DiGS. Section VII presents the evaluation and Section VIII
concludes the paper.

II. RELATED WORKS

Routing for wireless mesh networks and WSNs have been
studied extensively in the literature. Multipath routing pro-
tocols (e.g., [11]–[15]) are proposed to enhance reliability
by providing a few either node-disjoint or link-disjoint paths
between source and destination. There also exist RPL based
multipath routing protocols (e.g, [16]–[20], which are designed
to balance the traffic load and energy consumption among

nodes in the network. Comparing to these protocols, the graph
routing specified in WirelessHART is designed to achieve high
reliability by providing a high degree of routing redundancy to
the TSCH networks. Its real-world deployments during the last
decade have demonstrated the feasibility of achieving reliable
low-power wireless communication in industrial facilities. Han
et al. [21] and Wu et al. [22] proposed to generate graph
routes in a centralized fashion, while Modekurthy et al.
developed a protocol that generates graph routes distributedly
based on the Bellman-Ford Algorithm [23]. In this paper, we
develop the distributed graph routing protocol by extending the
widely used RPL, integrate it with an autonomous scheduling
approach, and demonstrate their performance when encounter-
ing network dynamics through extensive experiments on two
physical testbeds.

There has been increasing interest in studying transmission
scheduling for time-critical process monitoring and control
applications over WirelessHART networks [24]–[27]. All these
scheduling solutions designed to work with graph routing
are centralized solutions which are designed to run on the
centralized Network Manager. There also exists research on
developing distributed scheduling for RPL networks [10],
[27]–[32]. For instance, Duquennoy et al. developed the Or-
chestra that allows nodes in the RPL networks to compute
their own schedules [10]. The IETF created the 6TiSCH
working group to standardize how to use an IPv6-enabled
upper stack on top of IEEE 802.15.4e TSCH networks [9].
However, our study shows that the network running RPL
suffers long repair time and unsatisfactory reliability when
encountering external interference and node failure. Another
recent research direction is synchronous transmissions [33]–
[37]. However, synchronous transmissions always require a
centralized node to manage the synchronous transmissions.
In contrast to the existing work, this paper presents the first
autonomous scheduling approach that allows the field devices
to compute their own schedule autonomously based on the
graph routes.

III. BACKGROUND OF WIRELESSHART NETWORKS

As shown in Figure 1, a WirelessHART network consists
of a gateway, multiple access points, and a set of field
devices (i.e., sensors and actuators) forming a multi-hop mesh
network. The access points and field devices are equipped
with half-duplex omnidirectional radio transceivers compatible
with the IEEE 802.15.4 physical layer [38]. The multiple
access points are wired to the gateway and provide redun-
dant paths between the wireless network and the gateway. A
WirelessHART network is managed by a centralized Network
Manager. The Network Manager, a software module running
on the gateway, is responsible for collecting the topology
information from the devices, determining the routes and
transmission schedule of the network, and disseminating them
to all devices. WirelessHART adopts the centralized routing
and scheduling that enhance the predictability and visibil-
ity of network operations at the cost of scalability. When
encountering dynamics (e.g., node or link failure, topology

Fig. 1. Architecture of WirelessHART networks (Credit: HART Communi-
cation Foundation [4]).

Fig. 2. A graph routing example. The solid lines represent the primary paths
and the dashed lines represent the backup paths).

change), the Network Manager must regenerate the routes and
transmission schedule and then distribute them to all devices,
which introduce long delay and large overhead. To address this
problem, our work is to develop a distributed graph routing
and autonomous scheduling to enhance the scalability of the
network.

Graph Routing: WirelessHART adopts graph routing to
enhance end-to-end reliability by taking advantage of the route
diversity. Graph routing involves a routing graph consisting of
a directed list of paths between the field devices and access
points. Graph routing consists of a single primary path and
a backup path for each node. As illustrated in Figure 2, the
packet may take backup routes (through node C, D, or E)
to reach the access points (AP1 and AP2) if the links on
the primary path (through nodes A and B) fail to deliver a
packet. The graph routing specified by WirelessHART requires
each node to have at least two outgoing paths. Based on the
graph routes, the Network Manager allocates the time slots
and channels to the devices to assure the packet deliveries.

TSCH MAC and Transmission Scheduling: TSCH technol-
ogy inherits from WirelessHART and has been implemented
as a MAC protocol, and was introduced as part of the IEEE
802.15.4e standard in 2012 for the industrial process control
and automation [39]. WirelessHART employs the TSCH MAC
that offers deterministic and collision-free communication.

Fig. 3. Time consumed by the Network Manager in WirelessHART to update
routes and transmission schedule.

Based on TSCH MAC, all nodes need to be globally time
synchronized by exchanging the Enhanced Beacons (EBs) and
the time synchronization trickles from the access points to the
leaf nodes. Time is divided into 10 ms time slots, which are
long enough for packet transmission and its acknowledgement
(ACK); several time slots are grouped into one slotframe
which appears periodically in every node. A TSCH schedule
determines a node what to do in each time slot: transmit,
receive, or sleep, and a time slot can either be dedicated or
shared. In a dedicated slot, only one transmission is allowed in
each channel which is fully contention free, while in a shared
slot, two or more senders compete for a transmission in a
CSMA/CA fashion. According to the time slot offset in one
slotframe, the TSCH scheduling entity (Network Manager in
WirelessHART) can determine whether to transmit a packet,
receive a packet, or synchronize nodes to global time, etc.
With our solution, the network no longer needs a centralized
Network Manager to determine the functionality of every time
slot. Each node computes its own primary and backup paths
toward its destination based on its local topology information
and the transmission schedule is automatically determined and
updated once the network topology changes.

IV. EMPIRICAL STUDY

In this section, we present our empirical studies on the
impact of interference and node failure on the performance
of state of the art WSAN solutions (i.e., WirelessHART
and Orchestra). Our empirical studies are conducted on two
physical testbeds located in different cities: (1) Testbed A
consisting of 50 TelosB motes [40] deployed in the second
floor of a building in the campus of the State University
of New York at Binghamton and (2) Testbed B featuring
44 TelosB motes spanning two floors of a building in the
campus of Washington University in St. Louis (see Figure 8 for
testbed deployments). To study the impact at different scales,
we perform the measurement using four network topologies
of different sizes and locations: (1) Half Testbed A with 20
nodes; (2) Full Testbed A with 50 nodes; (3) Half Testbed B
with 19 nodes in one floor; and (4) Full Testbed B with 44
nodes spanning two floors.

Figure 3 shows the time consumed by the Network Manager
in WirelessHART to collect topology information, regenerate
the routes and transmission schedule, and disseminate them to

Fig. 4. CDF of repair time when the network encounters interference.

Fig. 5. PDR during the repair when the network encounters interference with
different number of jammers.

all devices triggered by the events such as network topology
changes and node/link failure. As showed in Figure 3, the
Network Manager, running on a Dell Linux laptop with a
2.8 GHz Intel Core E3-1505M, spends 203s and 506s for
Half Testbed A and Full Testbed A and 191s and 443s for
Half Testbed B and Full Testbed B on reacting to network
dynamics. These results illustrate the centralized routing and
scheduling adopted by WirelessHART are insufficient for fast
response to network dynamics since the network during the
update has to operate under compromised routes and schedule
leading to degraded performance.

Orchestra runs on top of RPL and schedules the transmis-
sions in a distributed fashion. Figure 4 shows the cumulative
distribution function (CDF) of the repair time used by Or-
chestra to update routes and transmission schedule when the
network encounters the controlled interference generated by
1∼4 jammers running JamLab [41]. We repeat the experiments
three times under each setting. The network repair time ranges
from 20s to 95s (median: 45s) when the jammers generate
signals emulating WiFi data streaming traffic1. We use the end-
to-end packet delivery rate (PDR) as the metric for network
reliability. The PDR of a data flow is defined as the percentage
of packets that are successfully delivered to their destination.
Figure 5 shows the PDRs of 8 data flows during the repair
when 1∼4 jammers are present in the network. Low median
PDRs (0.9, 0.87, 0.845, and 0.825) and large variations are
observed in Figure 5. We observe similar results when using
JamLab to generate jamming signals emulating Bluetooth.
Orchestra requires much shorter repair time compared to

1Co-existence of WSAN devices and WiFi is common in industrial deploy-
ments since WiFi is often used as backhauls to connect multiple WSANs.

WirelessHART and achieves high averaged delivery rates
in clean environments [10], making it a good networking
solution for many real-time applications. However, the repair
time is still too long and its performance when encountering
interference needs to be enhanced for those reliability-critical
industrial WSANs that packet lost must become an exception
to meet with guaranteed service. Our work is therefore an
alternative approach that is complementary to Orchestra for
reliability-critical industrial WSANs and further enhances the
network reliability under network dynamics by developing
new distributed graph routing and autonomous scheduling
approaches.

V. DISTRIBUTED GRAPH ROUTING

In this section, we first describe some terminologies and
then introduce our distributed graph routing protocol that
generates and operates with graph routes. Our protocol is
extended from RPL [7], which is an oriented distance-vector
routing protocol developed for low-power IPv6 networks and
standardized by the IETF ROLL working group. Under RPL,
nodes are organized in a Destination-Oriented DAG (DODAG)
structure and the DODAG is rooted at the border router node
(Internet access point). Each node is attached a rank, i.e., its
distance to the root using a cost function (e.g., the expected
transmission count (ETX) metric), and sends a packet towards
the root by forwarding it to a neighbor node with a smaller
rank. The routes generated by RPL are not graph routes since
each node only has a single preferred parent in the parent set to
which it sends packets. It is to be noted that RPL also allows to
use multiple parents if those parents are equally preferred and
have identical rank, while our protocol assigns two preferred
parents to each node as default routes and builds the routing
graph following the specification of WirelessHART2.

Directed Acyclic Graph (DAG): In a DAG, all links are
oriented in such a way that no cycle exists. All links selected
for routing orient toward or terminate at the access points.
Basically the DAG begins at the leaf nodes and ends at
the access points which can ensure messages to be safely
delivered to the destination without any cycle. The graph
routes generated by our protocol form a DAG.

Best Parent and Second Best Parent: Each node has a best
parent and a second best parent. The best parent locates on
the primary path from the node to the access points with the
smallest accumulated ETX. The path through the second best
parent has the second smallest accumulated ETX and serves
as a backup route.

Rank: Each node has a rank. All access points set their ranks
to 1 and a field device sets its rank by increasing its best
parent’s rank by 1.

2In this paper, we focus on illustrating the generation of the uplink graph
(from the field devices to the access points). Other graphs such as downlink
graph and broadcast graph can be generated following the same method.

Weighted ETX: The weighted ETX (ETXw) of a node is
a cost function quantifying the distance to the access points
through two routes:

ETXw = ω1 ∗ ETXabp + ω2 ∗ ETXasbp (1)

where ETXabp is the accumulated ETX to the access point
through the best parent and ETXasbp is the accumulated ETX
through the second best parent. ω1 and ω2 are two weighting
factors defined as:

ω1 = 1− (1− 1/ETXbp)
2 (2)

ω2 = (1− 1/ETXbp)
2 (3)

where ETXbp denotes the ETX between the node and its best
parent. According to WirelessHART, the transmission and first
retransmission of a packet are scheduled through the primary
route, while the second retransmission is scheduled through
the backup route. Therefore, ω1 represents the probability of
a successful packet delivery during the first two transmission
attempts and ω2 represents the probability of the first two
attempts fail.

Join-in Message: All nodes in the network broadcast the
join-in messages periodically allowing new nodes to join the
network. The join-in message contains the rank and ETXw

of the node.

Joined-callback Message: Once a node selects its best or
second best parent, it sends a joined-callback message to the
selected node to inform the selection.

Our distributed graph routing algorithm is presented in
Algorithm 1 which runs on the access points and field devices
to construct the routing graph towards the access points. When
a network starts, all access points initialize their rank to 1 and
ETXw to 0 and then begin to broadcast the join-in messages.
The rest nodes set their rank and ETXw to infinity. When
a node receives the join-in messages from other nodes, it
selects its best parent and second best parent based on the
accumulated ETX values and then sets its rank by increasing
its best parent’s rank by 1. After joining the network, the node
begins to broadcast the join-in messages.

The routing graph building procedure begins from the access
points until reaching all leaf nodes. Each node selects its
best and second best parents, as required by WirelessHART,
towards the access points according to the accumulated ETX
values. It is important to note that the initialized ETX be-
tween two nodes are determined by the Received Signal
Strength (RSS). We empirically set RSSmin = −90dBm and
RSSmax = −60dBm. If the RSS value is larger than -60
dBm, the ETX is set to 1. If the RSS value is smaller than
-90 dBm, the ETX is set to 3. The ETX in between is scaled
proportionally between 1 and 3. The ETX value gets penalized
if a transmission error occurs (e.g., no ACK).

A node runs the Algorithm 1 when it receives a join-in
message. The Trickle algorithm [42] is used to control the
generation of the join-in messages. A timer varying from Imin

to Imax is used to control the internal between two consecutive
join-in messages. Specifically, the Trickle algorithm uses Imin

Algorithm 1: Distributed Graph Routing Algorithm
//Table I shows the notations
Input : RootID, NodeID
Output: RouteTable
RouteTable← NULL;
ETXw(NodeID) = Rank(NodeID) =∞;
if NodeID == RootID then

//access point
Set Rank = 1 and ETXw = 0;
Broadcast join-in messages;

end
if Rank(NodeID) ==∞ and NodeID! = RootID

then
//field device receives the first join-in message from i
Set ETXa(NodeID, i) =
ETX(NodeID, i) + ETXw(i);

Set message sender as its best parent;
Set ETXmin = ETXa(NodeID, i);
Set Rank(NodeID) = Rank(i) + 1;
Send joined-callback messaget;

end
if Rank(NodeID)! =∞ and NodeID! = RootID then

//field device receives the non-first join-in message
from i

Set ETXa(NodeID, i) = ETX(NodeID, i) +
ETXw(i);

if ETXa(NodeID, i) < ETXmin then
Set its best parent as the second best parent;
Set message sender as its best parent;
Set ETXmin = ETXa(NodeID, i)
Set Rank(NodeID) = Rank(i) + 1;
Send joined-callback message;

end
if ETXa(NodeID, secondbestparent) >
ETXa(NodeID, i) >= ETXmin and
Rank(i) < Rank(NodeID) then

Set message sender as second best parent;
Send joined-callback message;

end
ETXw(NodeID) =
ω1 ∗ ETXa(NodeID, bestparent) + ω2 ∗
ETXa(NodeID, secondbestparent);

Broadcast join-in message;
end
if Receive joined-callback message then

Update RouteTable and add the message sender as a
child;

end

TABLE I
NOTATIONS USED IN ALGORITHM 1.

Symbol Description
ETXw(i) Weighted ETX from node i to access points
ETXa(i, j) Accumulated ETX from node i to access points

through node j
ETX(i, j) ETX between node i and j
ETXmin(i) Min accumulated ETX from node i to access points
Rank(i) Rank of node i

(a) Network Topology. (b) Graph Routes.

Fig. 6. Example of the route generation.

as the first interval and then doubles the size of the interval
until it reaches Imax. If a node detects a change of its own
best parent or second best parent, it resets its Trickle timer to
Imin to quickly update its ETXw and rank to its neighbors.
The Trickle algorithm dynamically scales the interval length
to enable fast yet low cost updates on ETXw and rank.

A. Routing Example

Figure 6 shows an example with two access points and
four field devices. The dash lines in Figure 6(a) denotes the
links with the ETX values. When the network starts, AP1
and AP2 broadcast their rank and ETXw. #5 selects AP1
as its best parent and AP2 as its second best parent since
ETXa(5, AP1) is smaller than ETXa(5, AP2). Similarly, #6
selects AP2 as its best parent and AP1 as its second best
parent. Both #5 and #6 set their ranks to 2 and begin to
broadcast the join-in messages. The link between #5 and #6
is not selected for routing since #5 and #6 have the same
rank. This design is used to avoid loops. #4 selects #6 as its
best parent since ETXa(4, 6) has the smallest value and sets
its rank to 3. #3 compares ETXa(3, 4) with ETXa(3, 5) to
determine the best and second best parents. Figure 6(b) shows
the generated graph routes. The solid lines represents the
primary paths (#3→#4→#6→AP2 and #5→AP1) and the dash
lines represents the backup routes (#3→#5, #4→#5, #5→AP2,
and #6→AP1).

VI. AUTONOMOUS SCHEDULING

In this section, we introduce our autonomous transmission
scheduling approach that allows the field devices to compute
their own transmission schedule autonomously based on the

graph routing presented in Sections V. Our scheduling ap-
proach has the salient feature that requires no schedule negoti-
ation or sharing among neighboring nodes, which significantly
reduces the communication overhead.

Following the suggestion in Orchestra, we separate the
network traffic into three types: synchronization traffic, routing
traffic, and application traffic. The EBs are used for time
synchronization thus belong to the synchronization traffic. The
join-in and joined-callback messages used to select parents are
part of the routing traffic. The packets containing application
data belong to the application traffic. Three slotframes with
different periods are designed to carry different types of traffic.
Under our scheduling approach, each node first generates three
schedules following the slotframes based on its node id (e.g.,
MAC address), traffic demand, and routing table and then
combines them into a single schedule to execute at runtime.
Here are the key scheduling rules of our approach:

Use of Dedicated and Shared Slots: To achieve determinis-
tic behavior, the synchronization and application traffic uses
the contention-free dedicated slots, while the routing traffic
employs the shared slots to accommodate network topology
changes.

Assigning Slots for Synchronization: When a node attempts
to join the network, it first snoops the channel to capture an
EB from its neighbors. A captured EB allows a joining node
to synchronize its clock and learn the transmission schedule
currently used in the network. After the synchronization, the
node selects its best and second best parents as presented in
Sections V. Under our scheduling approach, the node i uses
the ith slot in the synchronization slotframe to broadcast EB
and jth slot to receive EB from its best parent (node j).

Assigning Slots for Routing: A fixed, shared slot in the
routing slotframe is assigned for all nodes to exchange routing
related packets including the join-in and joined-callback mes-
sages. All nodes in the network use the same time slot offset
for the routing traffic.

Assigning Slots for Application: According to Wire-
lessHART, multiple transmission attempts are scheduled for
each packet through its primary and backup routes. The node’s
packet transmission and reception schedules are determined by
its unique node id (NodeID) and parent-child relationship.
Under our scheduling approach, a node uses the sth time slot
in the application slotframe for the pth transmission attempt:

s = A ∗ (NodeID −NAP)−A+ p (4)

where A denotes the total number of transmission attempts for
each packet and NAP denotes the number of access points.

Schedule Combination: After generating the three individual
schedules, the node then combines them to a single one for
execution at runtime. To resolve slot assignment conflict dur-
ing the combination, we assign different priorities to different
types of traffic. The most critical synchronization traffic has
the highest priority, while the application traffic has the lowest

(a) Graph routes in the example.

(b) Synchronization Schedule.

(c) Routing Schedule.

(d) Application Schedule.

(e) Combined Schedule

Fig. 7. Three schedules for different traffic and combined schedule.

priority. The schedule for traffic with lower priority yields
during the combination. It is important to note that no traffic
is constantly blocked since the three slotframes have different
periods.

Section VI-A uses an example to illustrate the scheduling
process and Section VI-B analyzes the performance.

A. Scheduling Example

Figure 7 illustrates our scheduling approach. Figure 7(a)
shows the graph routes (primary paths: #3→#1, #4→#2;
backup paths: #3→#2, #4→#1). In the example, the periods
of the synchronization, routing, and application schedules
(slotframe lengths) are assumed to be 61, 11, and 7 time slots,
respectively. The combined schedule has 61 ∗ 11 ∗ 7 = 4697

time slots in total. As Figure 7(b) showed, node #3 uses the
third time slot to transmit its EB and receive the EB from
its best parent in the first slot. Figure 7(c) shows the routing
schedule which assigns the first slot for routing and Figure 7(d)
shows the application schedule which deliveries a packet from
#3 and a packet from #4 to the access points in every 7
time slots. Figure 7(e) shows the combined schedule. There
exist conflicts during the combination. Each node resolves
the conflicts locally. For example, #1 and #3 use the first
slot for the synchronization traffic with highest priority in
their combined schedule, while #2 and #4 use the slot for
routing3. It is important to note that each node generates its
combined schedule only based on local information requiring
no schedule negotiation or sharing from its neighbors, which
represents an important feature of our approach.

B. Performance Analysis

Under our scheduling approach, each slotframe repeats at
a constant period and the transmission behavior is equivalent
to Orchestra. The synchronization and application traffic using
dedicated slots is by design contention-free, while the routing
traffic utilizing shared slots has a contention probability:

pc(routing) =

{
1− e−T∗L/N , if L ≥ N

1− e−T , otherwise
(5)

where T , N , and L denotes the average traffic load on the
slot under a Poisson distribution, the number of nodes in the
network, and the slotframe length. Here, for simplicity, we
assume a simple network of N nodes, all connected to each
other, and a single slotframe.

The probability of a slotframe A to be skipped due to a
conflict with any other slotframe during the combination is:

pskip(A) = 1− (
∏

∀B∈SF,Bpri>Apri

(1− p(confA,B))) (6)

where SF denotes the set of all slotframes in the network,
Bpri denotes the priority of B, and p(confA,B) denotes the
event of a given slot in A conflicting with any slot in B.
As reported in Orchestra, the probability of an application or
routing slotframe to be skipped is expected to be very low
in practice since the synchronization period determined by
the hardware clock drift is much longer than the routing and
application periods and the routing traffic is actually controlled
by the Trickle algorithm. Our experimental results also confirm
this and show high PDRs.

VII. EVALUATION

We have implemented our solution (DiGS) in Contiki [43],
an open source operating system for IoT, and evaluated it in
three aspects: end-to-end reliability, end-to-end latency, and
the energy consumption per received packet. To demonstrate
the feasibility of our solution, we repeat the experiments
on two physical testbeds located in the campuses of the

3Although the slot is assigned for routing, whether using it or not at runtime
is controlled by the Trickle algorithm as discussed in Section V.

(a) Testbed A with 50 nodes. (b) Testbed B with 44 nodes spanning two floors (Access Points: 130, 128; Source nodes: 144, 126,
136, 142, 115, 106; Jammers: 124, 141, 138.).

Fig. 8. Locations of the access points, field devices, and jammers in two Testbeds.

(a) CDF of PDR. (b) CDF of latency. (c) Boxplot of latency under Orchestra.

(d) Boxplot of latency under DiGS. (e) CDF of power consumption per received packet.(f) A micro-benchmark measurement on the packet
delivery success rate among 8 data flows.

Fig. 9. Performance under DiGS and Orchestra when the network encounters interference on Testbed A.

State University of New York at Binghamton and Washington
University in St. Louis: (1) Testbed A consisting 50 TelosB
motes deployed in the 2th floor of a building [44]; and (2)
Testbed B featuring 44 TelosB motes spanning two floors
of a building [45]. Figure 8 shows the testbed deployments.
We run experiments on Testbed A with 300 flow sets, each
of which contains 8 data flows that have different sources
and destinations and repeats the experiments on Testbed B
with 220 flow sets, each of which contains 6 flows. Two
access points are configured on each testbed. Each source node
generates a packet in every 5 seconds. We set the length of
synchronization, routing, and application slotframes to 557,
47, and 151 time slots, respectively, for all experiments.

We observe that Orchestra significantly outperforms Wire-
lessHART under network dynamics (see Section IV), therefore
compare our solution against Orchestra4 instead of Wire-

4We use the Orchestra implementation in Contiki provided by the authors
in [10].

lessHART and examine their performance under two scenar-
ios: one under interference (Section VII-A) and the other
with node failure (Section VII-B). JamLab is used to generate
controlled interference with different strength and pattern. We
also measure the efficiency of DiGS to initialize the network
(Section VII-C) and perform a simulation study with 150
nodes in the Cooja simulator [46] (Section VII-D).

A. Performance under Interference

As Figure 8 showed, we configure three nodes to run
JamLab and generate signals emulating WiFi data streaming
traffic. To create a larger interference range and emulate the
higher transmission power employed by 802.11, we configure
the nodes running JamLab to transmit at higher transmission
powers. Figure 9 shows the performance under DiGS and Or-
chestra when the network encounters interference. Figure 9(a)
plots the CDF of PDR. On average, DiGS achieves 8.3%
higher PDR than Orchestra. In addition, 75.0% of the flow
sets under DiGS achieve PDRs higher than 95.0%, while

(a) CDF of PDR. (b) CDF of latency. (c) CDF of power consumption per received
packet.

Fig. 10. Performance under DiGS and Orchestra when the network encounters interference on Testbed B.

(a) PDR of each data flow. (b) A micro-benchmark measurement on the packet
delivery success rate among 8 flows on Testbed A.

(c) CDF of power consumption per received packet.

Fig. 11. Performance under DiGS and Orchestra when the network encounters node failure on Testbed A.

only 12.5% under Orchestra provide that. More importantly,
DiGS delivers a significant improvement over Orchestra in the
worst-case PDR (from 76.0% to 90.3%), which represents a
significant advantage in industrial applications that demand
high reliability in harsh industrial facilities. The higher PDRs
provided by DiGS under interference benefit from the route
diversity offered by the graph routing.

As Figure 9(b) showed, DiGS reduces the median latency
from 917.5ms to 601.3ms and averaged latency from 1214.1ms
to 649.5ms compared to Orchestra. The reduced latency pro-
vided by DiGS represents a significant advantage in industrial
applications allowing it to employ control loops with tighter
deadlines. Moreover, as shown in boxplots Figure 9(c) and
Figure 9(d), DiGS achieves a smaller variation of latency than
Orchestra, which represents another significant advantage in
industrial applications that demand predictable performance.
This result shows that DiGS employing the distributed graph
routing is indeed more resilient to interference thanks to route
diversity. Figure 9(e) shows the CDF of power consumption
per received packet under DiGS and Orchestra5. DiGS pro-
vides an average of 0.056mW decrease in power consumption
per received packet compared to Orchestra. Although the
idle listening overhead introduced by DiGs leads to moderate
increases in total energy consumption, the slight increases in
power consumption are in exchange for a significant improve-
ment on reliability, resulting in an overall reduction on power
consumption per received packet. Figure 9(f) plots a micro-
benchmark measurement on the packet delivery success rate
among 8 data flows between the 74th and 84th packets are
forwarded in the network. When encountering the controlled
interference, 3 flows lose the 75th, 76th, and 77th packets

5We only consider the power consumed by the radio and estimate it based
on the timestamps of radio activities and the radio’s power consumption in
each state according to the CC2420 data sheet [47]

when running Orchestra. Those flows recover from the packet
lost and successfully deliver the 78th, 80th, and 82th packets,
respectively. Orchestra consumes 35s to recover from inter-
ference by updating the routing and scheduling, while DiGS
provides seamlessly packet delivery during the process.

Similar gains are seen for DiGS on Testbed B. As Fig-
ure 10(a) showed, under the configuration of 6 data flows,
DiGS achieves a worst-case PDR of 93.2%, a median PDR of
94.5%, and a 90th percentile PDR of 97.7%, outperforming
Orchestra by 7.6%, 5.2%, and 4.7%, respectively. As shown
in Figure 10(b), the improvements offered by DiGS in worst-
case latency and median latency are 213.0ms and 232.7ms,
respectively. As Figure 10(c) showed, DiGS also provides
higher energy efficiency when encountering interference over
Orchestra (i.e., 0.057mW decrease in the power consumption
per received packet), resulting from the significant improve-
ment on reliability.

B. Performance with Node Failure

We also explored DiGS’s performance with node failure by
turning off 4 nodes on the routing graph in turn. We repeat the
experiments for 34 times. Figure 11 shows the performance
comparison between DiGS and Orchestra when the network
encounters node failure on Testbed A. As Figure 11(a) showed,
6 of the total 8 data flows becomes completely disconnected
under Orchestra after the nodes fail, while all flows still
achieve a 100% PDR under DiGS.

Figure 11(b) plots a micro-benchmark measurement on the
packet delivery success rate among 8 data flows when a node
suddenly fails. 6 data flows are affected and lose the 34th
packet and then recover after 10s when running Orchestra,
while DiGS successfully delivers all packets through backup
routes. As Figure 11(c) showed, DiGS survives node failure
without losing any packet and achieves a 9.01mW decrease
on power consumption per received packet compared to Or-

(a) CDF of PDR. (b) CDF of latency. (c) CDF of radio duty cycle per received packet.

Fig. 12. Simulation with 150 nodes in Cooja Simulator.

Fig. 13. Network initialization time comparison between DiGS and Orchestra.

chestra. As shown in Figure 11, DiGS provides significant
improvements on failure tolerance and energy efficiency over
Orchestra, which are critical properties for industrial applica-
tions.

C. Network Initialization

To study the efficiency of DiGS to initialize the network, we
measure the time duration of each node joining the network
(i.e., between the network start and each node synchronizing
with the network and setting its preferred parents). Figure 13
shows the CDF of joining time of 50 nodes on Testbed A under
DiGS and Orchestra. DiGS does result in a slight increase in
network initialization time (from 23.0s to 24.1s) compared to
Orchestra as a result of one more preferred parent selected by
each node to construct the network. The averaged joining times
of 50 nodes are 15.4s and 14.3s under DiGS and Orchestra,
respectively. The slight increases in network initialization
are in exchange for moderately enhancing the reliability and
latency when the network encounters interference and node
failure. This tradeoff makes DiGS well-suited for industrial
applications running in dynamic environments with critical
performance demands.

D. Simulation Study with 150 Nodes

To explore DiGS’s performance at a larger scale, we perform
a simulation study using the Cooja simulator. In the simula-
tions, 150 nodes and two access points are placed in a 300m
X 300m area. We run simulations with 300 flow sets, each of
which contains 20 data flows that have different sources and
destinations. Each source node generates a packet in every 10
seconds. 5 Cooja disturber nodes are configured to turn on and
off in every 5 minutes to interfere nearby links.

Figure 12 shows the performance under DiGS and Orches-
tra when the network encounters interference. Figure 12(a)
presents the CDF of PDR. On average, DiGS achieves 16.3%
higher PDR than Orchestra. In addition, 53.0% of the flow
sets under DiGS achieve PDRs higher than 95.0%, while only
11.0% under Orchestra provide that. Moreover, DiGS delivers
a significant improvement over Orchestra in the worst-case
PDR (from 86.7% to 63.0%). As Figure 12(b) showed, DiGS
reduces the median latency from 1950.0ms to 1560.0ms and
averaged latency from 2068.6ms to 1565.7ms compared to
Orchestra. DiGS improves the reliability and latency under
interference at the cost of slight increases on the radio duty
cycle. As shown in Figure 12(c), DiGS suffers an average
of 0.056% increase on radio duty cycle per received packet
over Orchestra. The slight increases in duty cycle per received
packet are in exchange for a critical improvement on reliability
and latency.

VIII. CONCLUSIONS

The “production and manufacturing” CPS, underlying the
Industry 4.0, that presents one of the largest economic impact
potential of IoT. IEEE 802.15.4 based WSANs are appealing
for use in industrial IoT applications since they operate at
low-power and can be manufactured inexpensively. Almost a
decade of real-world deployments of WirelessHART standard
has demonstrated the feasibility of using its core techniques
including reliable graph routing and TSCH to achieve reliable
low-power wireless communication in industrial facilities.
However, a major limitation of current WSAN standards
is their limited scalability due to their centralized routing
and scheduling that enhance the predictability and visibility
of network operations at the cost of scalability. This paper
decentralizes the network management in WirelessHART and
presents the first distributed graph routing and autonomous
scheduling solution that allows the field devices to compute
their own graph routes and transmission schedules. Experi-
mental results from two physical testbeds and a large-scale
simulation show our solution provides significant improvement
on network reliability, latency, energy efficiency, and failure
tolerance under dynamics, critical properties for industrial
applications, over state of the art at the cost of slightly higher
power consumption and longer network initialization.

ACKNOWLEDGMENT

The authors thank Dr. Chenyang Lu and Dolvara Gunatilaka
at Washington University in St. Louis for facilitating the

experiments on their testbed. This work was supported by the
NSF through grant CRII-1657275 (NeTS).

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, “How smart, connected products are
transforming competition,” Harvard Business Review, vol. 92, no. 11,
pp. 64–88, 2014.

[2] A. Thierer and A. Castillo, “Projecting the growth
and economic impact of the internet of things,” Jun
2015. [Online]. Available: https://www.mercatus.org/publication/
projecting-growth-and-economic-impact-internet-things

[3] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson,
and A. Marrs, “Disruptive technologies: Advances that will
transform life, business, and the global economy,” May
2013. [Online]. Available: http://www.mckinsey.com/business-functions/
digital-mckinsey/our-insights/disruptive-technologies

[4] HART Communication Protocol and Foundation (Now FieldComm
Group). [Online]. Available: http://www.hartcomm.org/

[5] WirelessHART. [Online]. Available: https://fieldcommgroup.org/
technologies/hart

[6] H. Kagermann, W. Wahlster, and J. Helbig. (April
2013) Recommendations for Implementing the Strategic
Initiative Industrie 4.0. [Online]. Available: http:
//www.acatech.de/fileadmin/user%5fupload/Baumstruktur%5fnach%
5fWebsite/Acatech/root/de/Material%5ffuer%5fSonderseiten/Industrie%
5f4.0/Final%5freport%5f%5fIndustrie%5f4.0%5faccessible.pdf

[7] T. W. (Ed.), P. T. (Ed.), A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RFC 6550,” in RPL: IPv6
Routing Protocol for Low power and Lossy Networks, 2012.

[8] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
Tree Protocol,” in Sensys, 2009.

[9] IETF 6TiSCH working group. [Online]. Available: https://datatracker.
ietf.org/wg/6tisch/

[10] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Sensys, 2015.

[11] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A Framework for
Reliable Routing in Mobile Ad Hoc Networks,” in INFOCOM, 2003.

[12] D. Ganesan, R. Govindan, S. Shenker, and D. E. Highlyresilient,
“Energy-Efficient Multipath Routing in Wireless Sensor Networks,” in
ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 5, no. 4, 2001.

[13] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, and T. Hwee-
Pink, “Im2pr: Interference-Minimized Multipath Routing Protocol for
Wireless Sensor Networks,” in Wireless Networks, vol. 20, no. 7, 2014.

[14] K. X. J. Zhang and H. J. Chao, “Load Balancing in IP Networks
Using Generalized Destination-Based Multipath Routing,” in IEEE/ACM
Transactions on Networking, vol. 23, no. 6, 2015.

[15] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and
Algorithms for Efficient and Correct Multipath QoS Routing in Link
State Networks,” in IWQoS, 2015.

[16] Q. Le, T. Ngo-Quynh, and T. Magedanz, “Rpl-based multipath routing
protocols for internet of things on wireless sensor networks,” in Interna-
tional Conference on Advanced Technologies for Communications, 2014,
pp. 424–429.

[17] B. Pavkovi, F. Theoleyre, and A. Duda, “Multipath opportunistic rpl
routing over ieee 802.15.4,” in The 14th ACM international conference
on Modeling, analysis and simulation, 2011, pp. 179–186.

[18] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: Opportunistic routing meets duty cycling,” in
ACM/IEEE 11th International Conference on Information Processing
in Sensor Networks, 2012, pp. 185–196.

[19] O. Iova, F. Theoleyre, and T. Noel, “Exploiting multiple parents in
rpl to improve both the network lifetime and its stability,” in IEEE
International Conference on Communications, 2015, pp. 610–616.

[20] Z. Wang, L. Zhang, Z. Zheng, and J. Wang, “An optimized rpl protocol
for wireless sensor networks,” in IEEE 22nd International Conference
on Parallel and Distributed Systems, 2016, pp. 294–299.

[21] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and
Real-Time Communication in Industrial Wireless Mesh Networks,” in
RTAS, 2011.

[22] C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and
Y. Chen, “Maximizing Network Lifetime of WirelessHART Networks
under Graph Routing,” in IoTDI, 2016.

[23] V. Modekurthy, A. Saifullah, and S. Madria, “Distributed graph routing
for wirelesshart networks,” in International Conference on Distributed
Computing and Networking (ICDCN), 2018.

[24] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end Communication
Delay Analysis in Industrial Wireless Networks,” in IEEE Transactions
on Computers, vol. 64, no. 5, 2014.

[25] C.Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks,”
in IWQoS, 2014.

[26] S. Zhang, G. Zhang, A. Yan, Z. Xiang, and T. Ma, “A Highly Reliable
Link Scheduling Strategy for WirelessHART Networks,” in ATC, 2013.

[27] X. Zhu, P.-C. Huang, S. Han, A. Mok, D. Chen, and M. Nixon, “Roam-
ingHART: A Collaborative Localization System on WirelessHART,” in
RTAS, 2012.

[28] N. Burri, P. V. Rickenbach, and R. Wattenhofer, “Dozer: Ultra-Low
Power Data Gathering in Sensor Networks,” in IPSN, 2007.

[29] A. Tinka, T. Watteyne, K. S. J. Pister, and A. M. Bayen, “A Decentral-
ized Scheduling Algorithm for Time Synchronized Channel Hopping,”
in EAI Endorsed Transactions on Mobile Communications and Appli-
cations, vol. 11, no. 1, 2011.

[30] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic Aware Scheduling Algorithm for Reliable Low-power Multi-hop
IEEE 802.15.4e Networks,” in PIMRC, 2012.

[31] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, “Label
Switching over IEEE 802.15.4e Networks,” in Transactions on Emerging
Telecommunications Technologies, vol. 24, no. 5, 2013.

[32] P. Zand, A. Dilo, and P. Havinga, “D-MSR: A Distributed Network
Management Scheme for Real-Time Monitoring and Process Control
Applications in Wireless Industrial Automation,” in D-MSR: A Dis-
tributed Network Management Scheme for Real-Time Monitoring and
Process Control Applications in Wireless Industrial Automation, vol. 13,
no. 7, 2013.

[33] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-Power
Wireless Bus,” in SenSys, 2012.

[34] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in SenSys, 2013.

[35] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
Efficient All-to-All Data Sharing and In-Network Processing at Scale,”
in SenSys, 2013.

[36] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast Data
Dissemination with Constructive Interference in Wireless Sensor Net-
works,” in NSDI, 2013.

[37] M. Doddavenkatappa and M. C. Chan, “P3: A Practical Packet Pipeline
using Synchronous Transmissions for Wireless Sensor Networks,” in
IPSN, 2014.

[38] Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), IEEE, 2006.

[39] “IEEE 802.15.4e WPAN Task Group.” [Online]. Available: http:
//www.ieee802.org/15/pub/TG4e.html

[40] TelosB: Telosb Mote Platform, Datasheet Provided by MEMSIC Inc.
[Online]. Available: http://www.memsic.com/userfiles/files/Datasheets/
WSN/telosb%5fdatasheet.pdf

[41] C. A. Boano, T. Voigt, C. Noda, K. Rmer, and M. Ziga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in IPSN, 2011.

[42] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “RFC 6206,” in The
Trickle Algorithm, 2011.

[43] Contiki: The Open Source OS for the Internet of Things. [Online].
Available: http://www.contiki-os.org/

[44] “Testbed at the State University of New York at Binghamton.” [Online].
Available: http://www.cs.binghamton.edu/\%7emsha/testbed

[45] “Testbed at the Washington University in St. Louis.” [Online].
Available: http://cps.cse.wustl.edu/index.php/Testbed

[46] Cooja Simulator. [Online]. Available: https://github.com/contiki-os/
contiki/wiki/An-Introduction-to-Cooja

[47] CC2420: 2.4 GHz IEEE 802.15.4 ZigBee-ready RF Transceiver,
Datasheet Provided by TI Inc. [Online]. Available: http://www.ti.com/
lit/ds/symlink/cc2420.pdf

