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Abstract—Wireless Sensor-Actuator Network (WSAN) technol-
ogy is gaining rapid adoption in process industries in recent years.
A WSAN typically connects sensors, actuators, and controllers
in industrial facilities, such as steel mills, oil refineries, chemical
plants, and infrastructures implementing complex monitoring
and control processes. IEEE 802.15.4 based WSANs operate at
low-power and can be manufactured inexpensively, which make
them ideal where battery lifetime and costs are important. Recent
studies have shown that the selection of network parameters
has a significant effect on the network performance. However,
the current practice of parameter selection is largely based on
experience and rules of thumb involving a coarse-grained analysis
of expected network load and dynamics or measurements during
a few field trials, resulting in non-optimal decisions in many cases.
In this work, we develop the Parameter Selection and Adaptation
FramEwork (P-SAFE) that optimally configures the network
parameters based on the application Quality of Service (QoS)
demand and adapts the configuration at runtime to consistently
satisfy the dynamic requirements. We implement P-SAFE and
evaluate it on three physical testbeds. Experimental results show
our solution can significantly better meet the application QoS
demand compared to the state of the art.

Index Terms—Industrial Wireless Sensor-Actuator Networks,
Parameter Adaptation, Parameter Selection

I. INTRODUCTION

Wireless Sensor-Actuator Network (WSAN) technology is
gaining rapid adoption in process industries in recent years. A
WSAN typically connects sensors, actuators, and controllers in
industrial facilities, such as steel mills, oil refineries, chemical
plants, and infrastructures implementing complex monitoring
and control processes. IEEE 802.15.4 based WSANs oper-
ate at low-power and can be manufactured inexpensively,
which make them ideal where battery lifetime and costs
are important. Battery-powered wireless modules easily and
inexpensively retrofit existing sensors and actuators in indus-
trial facilities without running cabling for communication and
power. The stringent reliability and real-time requirements of
industrial process applications distinguish industrial WSANs
from traditional Wireless Sensor Networks (WSNs) designed
for best effort services. To meet the stringent requirements,
industrial WSAN standards such as WirelessHART [1] made
a set of specific design choices. For instance, WirelessHART
adopts a centralized network architecture and employs the
Time Slotted Channel Hopping (TSCH) technology [2]: Time
is divided into time slots, which are long enough for packet
transmission and its acknowledgement; All devices in a net-
work are time synchronized and hop channels to exploit

frequency diversity; A TSCH schedule determines each device
what to do in each time slot: transmit, receive, or sleep.
Compared to the Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA), the Time-Division Multiple Access
(TDMA) based TSCH offers time-deterministic packet deliv-
eries, which makes it attractive for real-time communication.
With a decade of real-world deployments, industrial standards
have demonstrated the feasibility for the TSCH based WSANs
to achieve reliable low-power wireless communication in in-
dustrial environments. Therefore, the TSCH technology was
adopted by the leading industrial WSAN standards (Wire-
lessHART [1] and ISA100 [3]) and the one being standardized
by IETF (6TiSCH [4]) and amended into the IEEE 802.15.4
standard in 2012 [5].

Recent studies have shown that the selection of network
parameters such as the Packet Reception Ratio (PRR) thresh-
old for link selection, the number of channels used in the
network, and the number of transmission attempts for each
packet has a significant effect on the performance of industrial
WSANs [6], [7]. However, the current practice of parameter
selection is largely based on experience and rules of thumb
involving a coarse-grained analysis of expected network load
and dynamics or measurements during a few field trials. For
instance, WirelessHART has specified the use of all available
channels after the human network operator manually blacklists
noisy ones [1] and the Emerson Process Management, a
leading process automation supplier, suggests using a constant
value (i.e., 60%) as the PRR threshold to select links for
routing [8]. Unfortunately, a recent study shows that these
specifications are error prone [6]. For example, using more
channels is not always desirable in industrial WSANs, since
more channels mean more channel diversity but a large number
of channels may reduce route diversity with negative effects
on routing and scheduling.

Thanks to some recent work [9]–[12], we are confident we
are just seeing the tip of the iceberg in terms of how much
performance can be improved through enabling parameter
adaptation. However, to fully realize the benefits offered by
the parameter adaptation, two fundamental challenges must be
overcome: (i) Conceptual gap: There exists a large conceptual
gap between the high-level application Quality of Service
(QoS) requirements and the low-level network parameters. It
requires expert knowledge to find the parameters whose per-
formance satisfies given requirements. Although most network



parameters have been studied individually in the context of
WSNs, there still exist phenomena that are unknown under
an industrial WSAN setting. For example, a recent study
shows that the performance of WSANs does not improve
monotonically with more channels used because of the tradeoff
between channel diversity and route diversity [6]. Owing to
the lack of understanding of the underlying functional form
of the relationships between high-level requirements and low-
level parameters, the selection of suitable parameters becomes
challenging. (ii) Complex QoS demand: Most industrial pro-
cess applications today pose multiple (sometimes conflicting)
QoS requirements on information exchange to their underlying
networks. Learning the QoS demand of process applications
that truly reflects their needs is particularly challenging, as
multiple requirements must be met and tradeoffs have to be
made among conflicting ones. The traditional solutions, which
require users to order their QoS requirements or rely on a
coarse-grained weighted sum calculation, always result in non-
optimal decisions in practice.

To address the above-stated challenges, we develop the Pa-
rameter Selection and Adaptation FramEwork (P-SAFE) that
optimally configures the network parameters based on the ap-
plication QoS demand and adapts the configuration at runtime
to consistently satisfy the dynamic requirements. Specifically,
this paper makes the following contributions:

• We design a rigorous modeling method that relates the
high-level application QoS requirements to the low-level
network parameters;

• We formulate the parameter selection into a multi-
objective optimization problem and employs the NSGA-II
algorithm to identify the best tradeoff decisions.

• We develop a novel approach that learns the QoS prefer-
ences from the control application based on its specified
ranges of desirability and uses the linear physical pro-
gramming technique to identify the single (most attrac-
tive) best tradeoff decision.

• We implement P-SAFE and evaluate it on three physical
testbeds. Experimental results show our solution can
significantly better meet the application QoS demand
compared to the state of the art.

The remainder of the paper is organized as follows. Sec-
tion II reviews the related work. Section III introduces the
design of our P-SAFE and Section IV presents our QoS learn-
ing approach. Section V evaluates P-SAFE and Section VI
concludes the paper.

II. RELATED WORKS

Recently, there has been significant research on real-time
industrial WSANs spanning transmission scheduling, routing
algorithms, and network protocols. For instance, Watteyne
et al. presented the implementations of IP-based real-time
communication over TSCH [13].Saifullah et al. presented a
schedulability analysis under graph routing in WirelessHART
Networks [14] and Gunatilaka et al. proposed a channel
selection approach [6]. Wu et al. and Shi et al. developed
real-time routing protocols [15]–[17]. Lu et al. provided a

comprehensive survey of recent advances in this increasingly
important class of wireless networks [18]. Yet, a key missing
piece in industrial WSANs is a self-adaptation component,
which allows WSANs to optimally configure themselves based
on specific QoS requirements and adapt the configurations at
runtime to consistently satisfy the dynamic requirements in
uncertain environments. This paper aims to accomplish this
and advance the state of the art of real-time industrial WSANs
through creating a new paradigm of parameter adaptation.

The characteristics of 802.15.4 wireless links have been
studied extensively in the context of WSNs. For instance, there
has been a vast array of research that empirically studied the
link quality with different platforms, under varying experi-
mental conditions, assumptions, and scenarios [19]. There also
has been extensive research investigating the benefit of multi-
channel communication in WSNs and mesh networks. The
extensive studies produced valuable guidelines on selecting
parameters but also caused a perception that those parameters
can be selected manually during the deployment based on
experience and rules of thumb involving a coarse-grained
analysis of expected network load and dynamics or measure-
ments during a few field trials. As a result, WirelessHART has
specified the use of all available channels after the human net-
work operator manually blacklists noisy ones [1] and Emerson
Process Management, a leading process automation supplier,
has specified to use 60% as a threshold to select links [8].
Unfortunately, a recent study shows that these specifications
are error prone [6]. Thanks to some recent works, we are
confident we are just seeing the tip of the iceberg in terms
of how much performance can be improved through enabling
runtime parameter adaptation. Zimmerling et al. developed the
pTunes framework that reduces the packet loss when facing
network changes through enabling adaptation of radio on and
off timings and demonstrated its performance through applying
it to X-MAC and LPP protocols [9]. Peng et al. [10] and Wang
et al. [11] developed methods to reduce energy consumption
by adapting the sleep intervals in duty-cycled MACs. Fu et al.
highlighted the challenges of adapting multiple parameters si-
multaneously because of their joint effect on performance [12].
Although these works have some fundamental limitations,
such as only adapting deployment-independent parameters,
requiring a precise knowledge of their effect on performance,
and optimizing towards a single requirement, they have shed
light on the promising opportunity for constructing a self-
adaptive network. However, there is hardly any precedent for a
rigorous scientific method to model the effect of deployment-
dependent parameters and generate a robust set of strategies to
support network parameter decisions. This motivates our work
to enable the parameter adaptation in WSANs.

III. P-SAFE DESIGN

Figure 1 shows the design of our P-SAFE. After the
engineers deploy a WSAN in the field, the Network Analysis
Engine in P-SAFE guides them to implement the deployed
network and target control application in it and also feed in the
collected link (PRR) traces. The engine then simulates network



Fig. 1. System overview.

performance under each parameter configuration and forwards
the results to the Modeling Engine. The Modeling Engine
generates the empirical models that relate the parameter con-
figurations to the performance of WSANs. The Optimization
Engine stores the empirical models and selects the best-
suited network parameters based on the QoS preferences
learned from the control application. The Adaptation Engine
allows the Network Manager (a software module specified by
WirelessHART to manage the network) and control application
to update the network setting, link traces, and QoS preferences
at runtime and adapts the parameters accordingly.

A. Network Analysis Engine

The design goal of our Network Analysis Engine is to
analyze the network performance under each parameter con-
figuration. It is impractical to perform test runs on the physical
WSAN due to the significant overhead. Fortunately, the state-
of-the-art wireless control simulators such as WCPS [20]
and Truetime [21] are capable of holistic studies of CPU
scheduling, communication, and control algorithms [18]. Our
Network Analysis Engine adopts WCPS which employs a fed-
erated architecture that integrates Simulink for simulating the
physical system dynamics and controllers and TOSSIM [22]
for simulating WSANs. Control engineers commonly use
Simulink to design and study control systems, while TOSSIM
has been widely used in the WSN community to simulate
WSANs based on wireless link models that have been val-
idated in diverse real-world environments [23]. WCPS also
provides a WirelessHART implementation in TOSSIM.

After the field engineers deploy a physical WSAN, our
Network Analysis Engine guides them to (i) implement the
deployed WSAN in TOSSIM (e.g., specifying the data sources
and destinations, sampling rates, routing and scheduling algo-
rithms), (ii) feed the link traces collected from the deployed
WSAN into TOSSIM, and (iii) implement the target con-
trol application in Simulink. The Network Analysis Engine
then performs simulations under each parameter configura-
tion. Three key network parameters, identified in the recent
study [6], including (i) PRR threshold for link selection P ,
(ii) number of channels used in the network C, and (iii)
number of transmission attempts scheduled for each packet A

Fig. 2. Network setting on the BU Testbed used in Section III.A (Illustration
and Example) and Section V.A.

TABLE I
DATA FLOWS SET ON THE BU TESTBED USED IN SECTION III.A

(ILLUSTRATION AND EXAMPLE) AND SECTION V.A.

Flow ID Source Destination Period (ms) Priority
1 147 146 800 1
2 144 143 800 2
3 105 104 800 3
4 149 102 800 4
5 136 135 1600 5
6 137 108 1600 6

are considered simultaneously in the simulations. Assuming
the pool of candidate parameters contains nP for P , nC for
C, nA for A, our Network Analysis Engine measures the
network performance including (1) end-to-end latency L, (2)
battery lifetime B, and (3) end-to-end reliability R, under all
nP × nC × nA combinations among those three parameters
(i.e., P , C, and A). The simulated performance together with
its associated parameter configurations are forwarded to the
Modeling Engine. We will next use an example to illustrate
the process.
Illustration and Example:

In the example, we configure six data flows on the BU
Testbed consisting of 50 TelosB motes placed throughout
several office areas including student offices, lounge, labs,
and conference rooms [24]. Figure 2 shows the deployment
and Table I lists the period and priority of each data flow.
The packet delivery deadline is equal to the period. The
graph routing and priority scheduling are employed in the
simulations. We consider P ∈ {0.7, 0.75, 0.8, 0.85, 0.9}, C ∈
{1, 2, 3, 4, 5, 6, 7, 8}, and A ∈ {1, 2, 3}. The performance is
simulated under 120 different parameter configurations.

Since it is not feasible to show the data in a four dimension
view, we fix a dimension and present three 3-D plots in
Figure 3. Figure 3(a) shows the end-to-end latency under
different PRR threshold P and number of channels used C
combinations. The results confirm the observation reported in
the early study that more number of channels used cannot
always provide lower latency because of the tradeoff between
route diversity and channel diversity [6]. We also observe
that the effect of PRR threshold on latency gets stronger
when more channels are used in the network. Figure 3(b)
shows that the battery lifetime decreases when either number
of channels used C or number of attempts per packet A
increases. The significance of effects from two parameters
is different. Figure 3(c) shows the end-to-end reliability in



(a) Average latency with three attempts per packet. (b) Average battery lifetime with a 85% PRR
threshold.

(c) Average PDRs with 5 channels used.

Fig. 3. 3D-plot of network performance with different parameter configurations.

term of Packet Delivery Rate (PDR) that increases slightly
with PRR threshold P and significantly with number of
attempts per packet A. While Figure 3 shows some interesting
observations helping us understand the joint effect of those
three parameters, it also highlights an important challenge
posed by the interplay among them, which will be addressed
by our Modeling Engine.

B. Modeling Engine

The design goal of our Modeling Engine is to generate
the empirical models that relate the parameter configurations
to the performance of WSANs. It is a significant challenge
to empirically model the joint effect of the three interplay-
ing parameters without an understanding of the underlying
functional form of the relationships being modeled. Modeling
the relations theoretically is not efficient since the models
can be deployment-dependent (e.g., depending on the par-
ticular network topology, setting, and protocols). Therefore,
our Modeling Engine takes a black-box modeling approach
and adopts the widely used Response Surface Methodology
(RSM) [25] to construct the models. RSM is a black-box
modeling technique and uses polynomial functions to approx-
imate the model functions between the independent variables
(inputs) and the response (outputs) without comprehending the
underlying physical meaning between inputs and outputs, thus
it provides a tractable and inexpensive approximation of the
actual system behavior using polynomial functions.

Our Modeling Engine takes a tuple of performance metrics
(L,B,R) and corresponding parameters (P,C,A) to construct
three performance functions:

L = fL(P,C,A) + ε1

B = fB(P,C,A) + ε2

R = fR(P,C,A) + ε3

(1)

where εi is a random experimental error assumed to have a
zero mean. It is important to note that our Modeling Engine
allows a P-SAFE user to replace the default RSM with another
modeling technique. As an example, we replace RSM with a
Kriging surrogate modeling approach [26] in the following
example and show the models constructed by RSM and
Kriging, respectively. Kriging is a type of spatial interpolation
that uses complex mathematical formulas to estimate values
at unknown points based on the values which are already

Fig. 4. The surface plot of latency when applying RSM. The number of
transmission attempts per packet is set to 3.

Fig. 5. The surface plot of latency when applying Kriging. The number of
transmission attempts per packet is set to 3.

sampled. The estimation of the value is denoted as Z0 and
the observed values are {Z1, ..., ZN} = ZT , so the estimated
value can be expressed as:

Z0 =

N∑
i=1

wiZi (2)

where wi denotes the influence weight. Kriging uses the
minimum variance method to calculate the weights wi.
Illustration and Example (continued):

We use the implementations provided by Design Ex-
pert10 [27] and Matlab SUMO toolbox [28] for RSM and
Kriging modeling, respectively. Figure 4 and Figure 5 show
the surface plots of latency (Eq. 1) when applying RSM and
Kriging on the data trace plotted in Figure 3(a). The generation
of Kriging models consumes much more time compared to
RSM but introduces no error between the resulting mathemat-
ical functions and samples. For example, we run the modeling
process on a Dell Linux laptop with the 2.8GHz Intel Core E3-
1505M with 40 samples plotted in Figure 3(a). The modeling
time when applying RSM and Kriging is 160ms and 4.27s,
respectively. The average modeling errors under RSM and
Kriging are 3.19% and 0%.



Fig. 6. Adaptation Engine’s responses to different changes.

With the open design, a P-SAFE user is free to choose
any modeling technique based on the need of target applica-
tion. Please note that the modeling overfitting may happen,
which motivates us to design the Adaptation Engine (see Sec-
tion III-D) to overcome the modeling inaccuracy at runtime.

C. Optimization Engine

After obtaining the empirical models in Section III-B, the
next step is to generate a novel set of decision-making strate-
gies to select the best-suited network parameters based on the
given QoS requirements specified by the control application.
Specifically, for each given (L,B,R), the parameters can be
obtained by solving an optimization problem based on Eq. 1.
The challenge is that most industrial process applications today
pose multiple (sometimes even conflicting) QoS requirements
on information exchange to their underlying networks. The
traditional solutions, which require network users (e.g., a
control engineer) to order their QoS requirements or rely on a
coarse-grained weighted sum calculation, simplify the problem
but results in non-optimal decisions in many cases. To address
this problem, we develop a novel approach that learns the
QoS demand of a given process application that truly reflects
its needs and simultaneously applies them to the parameter
selection process. The detailed design will be presented in
Section IV.

D. Adaptation Engine

The Adaptation Engine allows the Network Manager and
control application to update the network setting, link traces,
and QoS preferences at runtime and adapts the parameters
accordingly. Since changing network parameter introduces sig-
nificant communication and computation overhead, our engine
employs a hybrid approach that combines event-driven and
time-driven adaptations and responds differently when facing
different changes. Figure 6 shows the actions of our Adap-
tation Engine in response to different kinds of changes. For
example, the engine invokes the Network Analysis Engine and
Modeling Engine to remodel the network and then reperform
the optimization if the network setting (e.g., data sources and
destinations) changes. It skips the modeling process and reruns
the optimization if the application requirements change but the
network setting stays the same. The modeling and optimization
processes are invoked to examine the network by a timerif no

event-driven adaptation is triggered during a long period. If
the new optimized parameter configuration is not significantly
better than the current one (i.e., smaller than a threshold), it
is retained; else the network switches to a new configuration.

IV. QOS LEARNING APPROACH

As discussed in Section III-C, most industrial process ap-
plications today pose multiple (sometimes even conflicting)
QoS requirements on information exchange to their underlying
networks. Learning the QoS demand of process applications
that truly reflects their needs is particularly challenging, as
multiple requirements must be met and tradeoffs have to be
made among conflicting ones. The traditional weighted sum
approach merging multiple QoS requirements into a single
objective function suffers from three significant limitations
when applied in industrial WSANs:

• It is difficult to specify good weights that truly reflect the
QoS preferences of a process application;

• A change in the QoS preferences of a process application
does not readily translate into a change in specified
weights;

• When a process application has non-linear QoS require-
ments, if the Pareto frontier [29] (i.e., the collection of
non-dominated or best tradeoff solutions) is non-convex
and/or disjointed, it can fail to obtain the best tradeoff
solutions, and even higher order weighted combinations
(i.e.,

∑
wif

n
i , where n is an even number such as 2, 4, ...)

could face difficulty in leading to the Pareto frontier [30].

The difficulty is pervasive in the context of conflicting QoS
requirements, where blindly optimizing a weighted aggregate
of the multiple QoS requirements provides limited to no
information regarding the tradeoffs that exist among them.
For example, is it beneficial to improve the reliability by A%
in exchange of degradations of B% latency and C% energy
consumption?

To avoid using the rules of thumb QoS orders or weights,
we formulate our optimization problem into a multi-objective
optimization problem and applies a widely used evolutionary
algorithm to identify the best tradeoff solutions. We then
develop an approach using the physical programming tech-
nique1 to identify the most attractive tradeoff decision. We
also provide the entire set of best tradeoff solutions to the P-
SAFE users in case they want to see all available choices and
tradeoffs.

A. Problem Formulation and Optimization

The objective of selecting the best parameter configuration
is to (i) minimize the end-to-end latency L, (ii) maximize the

1The physical programming technique was developed in the area of
multidisciplinary design optimization to address engineering design problems
such as aircraft and automobile design. It provides a powerful methodical
approach to obtain the most attractive best tradeoff decision from the set of
best tradeoff solutions [31], [32].



Fig. 7. Control performance metrics marked in a step response example.

lifetime B, and (iii) maximize the network reliability R. Thus
the problem can be formulated as

min/max : fL(P,C,A), fB(P,C,A), fR(P,C,A)

subject to : P ∈ [Pmin, Pmax]

C ∈ [Cmin, Cmax]

A ∈ [Amin, Amax]

(3)

where [Pmin, Pmax], [Cmin, Cmax], and [Amin, Amax] denote
the feasible ranges of the PRR threshold P , the number of
channels used C, and the number of attempts for each packet
A, and fL(P,C,A), fB(P,C,A), fR(P,C,A) represent the
vector of objectives that should be minimized or maximized
subject to a number of bounds. We adopt the NSGA-II
algorithm [33], one of the most widely used multi-objective
evolutionary algorithms, to solve the problem. Since Eq. 3
defines three different objectives, there does not exist a single
best solution which simultaneously optimizes all objectives.
NSGA-II gives a large number of best tradeoff solutions lying
on or near the Pareto frontier, which can serve as the parameter
selection candidates. The next step therefore is to obtain the
single (most attractive) best tradeoff decision based on the
needs of target process application.

B. LPPA: A Linear Physical Programming based Approach

Instead of requesting the network users to specify the
weights among different QoS requirements (with which they
are less familiar), our Linear Physical Programming [34] based
Approach (LPPA) allows the users to specify meaningful
ranges of desirability on the control performance metrics (with
which they are familiar). For example, Figure 7 illustrates
seven example control metrics: overshoot O, settling time
Tsettling, rise time Trise, peak time Tpeak, peak P , setting
max Smax, and setting min Smin. For the decreasing prefer-
ence metrics (e.g., O), we use gi to denote the ith generic
criterion value, so the range of desirability can be defined
as: (i) Highly Desirable Range (gi ≤ t+i1): an acceptable range
over which the improvement that results from further reduction
of the criterion is desired but is of minimal additional value;
(ii) Desirable Range (t+i1 ≤ gi ≤ t+i2): an acceptable range
that is desirable; (iii) Tolerable Range (t+i2 ≤ gi ≤ t+i3):
an acceptable range that is tolerable; (iv) Undesirable Range
(t+i3 ≤ gi ≤ t+i4): an acceptable range that is undesirable;
(v) Highly Undesirable Range (t+i4 ≤ gi ≤ t

+
i5): an acceptable

range that is highly undesirable; and (vi) Unacceptable Range
(t+i5 ≤ gi): the range of values that is not acceptable (can be
perceived as a hard constraint). Similar ranges of desirability,

(a) Class-1S. (b) Class-2S.

Fig. 8. Different class functions ith objective.

t−ij , can be defined for the increasing preference metrics (e.g.,
Trise). Therefore, we define two different class-functions as
follows:

• Class-1S: Smaller-Is-Better, i.e., minimization.
• Class-2S: Larger-Is-Better, i.e., maximization.

It is important to note that unlike weights in the weighted sum
method, the parameters t+ij and t−ij defined above are physically
meaningful constants that are specified by control applications
in light of user-supplied preferences associated with the ith
metric (e.g., latency, battery lifetime, or reliability).

Our Network Analysis Engine guides the field engineer to
implement the target control application in the simulator (see
section III-A). Our LPPA first translates the desirability ranges
on the control performance metrics into the desirability ranges
on the QoS metrics by performing control simulations.

The ranges of all QoS metrics are then to be exploited
by physical programming through an inter-criteria rule called
“One Versus Others (OVO),” where a full improvement of gi
across a given range of preference is over a full reduction of
all the other criteria across the next better range of preference.
This is accomplished through a mapping of the preferences
to a transformed class function space. Figure 8 shows the
functions for Class-1S and Class-2S. The L, B, and R values
are mapped to the desirability values zi (called z-value). A
lower zi is always more desirable. By using the class functions,
our approach converts three different criteria (i.e., L, B, and
R) on the horizontal axis to z-value on the vertical axis for
comparison. Then the aggregated z is used as a metric for
desirability. The mathematical relations are as below:

zs ≡ zi(t+is) ≡ zi(t
−
is) ∀i; (2 ≤ s ≤ 5); z1 ≡ 0 (4)

where s denotes a generic junction and i denotes the criterion
number, and zs means the z-value in each junction point on
the vertical axis as shown in Figure 8. Eq. 4 guarantees that
different metrics are treated equally when they are in the same
desirability region.

The increasing value of zi for ith criterion between adjacent
junction points can be calculated by:

z̄s ≡ zs − zs−1; (2 ≤ s ≤ 5); z1 ≡ 0 (5)

showing that different criteria increase uniformly across the
same desirability region.

Following the OVO rule, we apply the relationship:

z̄s = β(nc − 1)z̄s−1; (3 ≤ s ≤ 5);nc > 1;β > 1 (6)



where nc denotes the number of criteria which equals to 3
based on our design. β is used as a convexity parameter.
And z̄2 should be initialized manually with a small positive
number. However, it cannot guarantee the convexity of the
class function only based on Eq. 6. The following functions
should be satisfied in order to meet with convexity property:

t̄+is = t+is − t
+
i(s−1); t̄

−
is = t−is − t

−
i(s−1); (2 ≤ s ≤ 5) (7)

where t̄+is and t̄−is denote the sth range of the ith criterion on
the horizontal axis. So the magnitude of the slopes of each
line (w+

is and w−
is) takes the following form:

w+
is = z̄s/t̄+is;w

−
is = z̄s/t̄−is; (2 ≤ s ≤ 5) (8)

Based on Eq. 8, the difference between the slope of each line
w̄+

is and w̄−
is is:

w̄+
is = w+

is − w
+
i(s−1); w̄

−
is = w−

is − w
−
i(s−1); (2 ≤ s ≤ 5) (9)

The convexity requirement can be achieved by the relation-
ship:

w̄min = min
i,s
{w̄+

is, w̄
−
is} > 0; (2 ≤ s ≤ 5) (10)

indicating that the slope of lines should increase monotoni-
cally. An iteration of increasing β by a step of 1 is needed
until it satisfies Eq. 10 to meet with convexity.

We use the deviation value (d−is,d+is) to calculate the aggre-
gated z and the final decision making among the best tradeoff
solutions is selected by calculating the below expression:

min
d−
is,d

+
is

nc∑
i=1

5∑
s=2

(w̄−
isd

−
is + w̄+

isd
+
is)

subject to :

gi − d+is ≤ t
+
i(s−1); d

+
is ≥ 0; gi ≤ t+i5 (i = 1, 2, 3, s = 2, ..., 5)

gi + d−is ≥ t
−
i(s−1); d

−
is ≥ 0; gi ≥ t−i5 (i = 1, 2, 3, s = 2, ..., 5)

(11)

All the best tradeoff solutions on the Pareto frontier com-
puted by NSGA-II are fed into Expr. 11. The final best-
suited network parameter configuration results in the minimum
aggregated z (Expr. 11).

V. EVALUATION

To validate the efficiency of P-SAFE in optimally configur-
ing the network parameters and adapting them at runtime to
consistently satisfy the application QoS demand, we perform
a series of experiments. We first examine the capability of P-
SAFE to effectively adapt the parameters to accommodate QoS
demand changes and then evaluate P-SAFE’s performance
under different network settings. We compare our P-SAFE
against three baselines: (i) the method specified in Wire-
lessHART, (ii) the CR+CP approach [6], and (iii) the optimal
solution using a brute-force method2 and repeat the experi-
ments on three physical testbeds located in different cities: (1)
the BU Testbed consisting of 50 TelosB motes deployed on
a single floor of a building [24]; (2) the CPSL Testbed with

2The brute-force method cannot be used in practice because of its heavy
computation overhead. We run it offline and use it only for the comparison
purpose.

TABLE II
PARAMETERS SELECTED BY P-SAFE.

Set # # of Channels PRR Threshold # of Attempts
1 2 89% 3
2 3 73% 3
3 3 71% 2
4 3 71% 2
5 3 71% 2
6 2 70% 2
7 3 72% 3
8 3 72% 3

TABLE III
PARAMETERS SELECTED BY OPTIMAL.

Set # # of Channels PRR Threshold # of Attempts
1 3 76% 3
2 3 76% 3
3 3 72% 2
4 3 85% 2
5 3 85% 2
6 2 88% 2
7 3 71% 3
8 3 71% 3

60 motes spanning three floors of a building [35]; and (3)
the Indriya Testbed, an open access 105-node testbed deployed
in a 3-floor building at National University of Singapore [36].
In all experiment, we empirically set β to 15 and z̄2 to 0.1
in P-SAFE to satisfy the convexity and OVO requirements in
LPPA and assume that two Lithium Ion AA batteries with
a total capacity of 22,100J are used to power each node for
battery lifetime calculation.

A. Adaptation to QoS Demand Changes

To test P-SAFE’s capability to consistently satisfy the
application QoS demand, we perform a series of controlled
experiments where the control application specifies different
ranges of desirability on three QoS attributes: latency, battery
lifetime, and PDR. We set up six data flows with periods
ranging from 800ms to 1600ms and two access points (node
121 and 124) on the BU Testbed. Figure 2 shows the network
setting and Table I lists the source, destination, data period,
and priority of each data flow. We employ an interacting two-
tank control system [37] running on top of the network. The
control application uses a timer to issue eight different sets
of real-world desirability ranges, provided by our industry
partner, to P-SAFE one by one with a 1 hour time interval.
Only one QoS attribute is changed at a time. Table II and
Table III show the parameters selected by P-SAFE and optimal
for each set of desirability ranges. The selections made by P-
SAFE and optimal are alike resulting in similar performance,
as shown in Figure 9. P-SAFE effectively selects the best
tradeoffs among three QoS attributes and always keeps the
latency, battery lifetime, and PDR in the tolerable range or
better. Please be noted that WirelessHART and CR+CP do
not consider the desirability ranges, thus they select the same
parameters for all eight sets. WirelessHART decides to use
8 channels, 60% as the PRR threshold, and 3 attempts per
packet, while CR+CP selects 4 channels, 85% as the PRR



(a) Latency. (b) Battery lifetime. (c) PDR. −lg(1 − PDR) is used for y-axis for
clarity.

Fig. 9. Resulting performance under P-SAFE and optimal.

Fig. 10. Aggregated z under different methods.

Fig. 11. Aggregated z with 30 different network settings on the BU Testbed.

threshold, and 75% threshold for the backup route, and 3
attempts per packet. Figure 10 shows the comparisons on
the aggregated z-value z, the metric indicating how well the
performance meets the application QoS demand, among four
approaches. P-SAFE significantly outperforms WirelessHART
and CR+CP. The maximum aggregated z under P-SAFE is no
more than 5.78, very close to what optimal provides (4.22).
WirelessHART has the worst performance, with an average
aggregated z of 225.55 and a worst-case value of 745.55.
This is because WirelessHART uses a predetermined PRR
threshold and operates on all available channels. CR+CR
reduces the average aggregated z to 26.40 and the worst-case
to 69.85, since it considers the effect of PRR threshold and
number of channels used on network performance. However,
CR+CR fails to make tradeoffs when facing conflicting QoS
requirements resulting in substantially higher aggregated z
values compared to what P-SAFE and optimal offer.

B. Performance under Different Network Settings

To explore the consistency of P-SAFE’s performance, we
run the experiments under different network settings on three
testbeds. We create thirty different network settings by varying
the sources, destinations, data periods, and priorities of data
flows on the BU Testbed. Figure 11 plots the Cumulative
Distribution Function (CDF) of aggregated z under Wire-
lessHART, CR+CP, P-SAFE, and optimal, respectively. As
Figure 11 showed, the performance of P-SAFE is very close to

Fig. 12. The deployment of CPSL Testbed. Blue circles denote sensors and
actuators and red squares represent two access points.

the one under optimal. The worst-case (maximum) values are
6.78 and 3.69 under P-SAFE and optimal, while the maximum
values under WirelessHART and CR+CP are 89.32 and 62.41.
P-SAFE achieves an average aggregated z of 2.76, represent-
ing 14.1X and 8.9X lower compared to WirelessHART and
CR+CP, respectively.

Fig. 13. Aggregated z with 30 different network settings on
the CPSL Testbed.

Fig. 14. Aggregated z with 30 different network settings on
the Indriya Testbed.

We also repeat the experiments on the other two testbeds.
On each testbed, we perform the experiments under 30 dif-
ferent network settings. Figure 12 shows the deployment of
60 TelosB motes on the CPSL Testbed spanning three floors
of a building. Figure 13 plots the CDF of aggregated z under
different approaches. We observe similar performance. The
maximum aggregated z values are 5.61 and 4.67 under P-
SAFE and optimal, while the worst-case values under Wire-
lessHART and CR+CP are 69.28 and 47.23, respectively. P-
SAFE achieves an average aggregated z of 2.08, representing



22.5X and 15.0X lower compared to WirelessHART and
CR+CP, respectively. Figure 14 plots the CDF of aggregated
z under different approaches. The maximum z under P-SAFE
is 6.24, while the one under optimal is 5.62. WirelessHART
and CR+CP have substantially higher aggregated z, with an
average aggregated z of 41.13 under WirelessHART and 32.73
under CR+CP. The consistent results collected from various
network settings under all three testbeds show that P-SAFE
consistently better meets the application QoS demand, bene-
fiting from our modeling method, multi-objective optimization,
and QoS learning approach discussed in Section III.

VI. CONCLUSIONS

Recent studies have shown that the selection of network
parameters has a significant effect on industrial WSANs’ per-
formance. However, the current practice of parameter selection
is based on experience and rules of thumb involving a coarse-
grained analysis of expected network load and dynamics or
measurements during a few field trials, resulting in non-
optimal decisions in many cases. This paper presents the P-
SAFE, a framework that optimally configures the network
parameters based on the application QoS demand and adapts
the configuration at runtime to consistently satisfy the dynamic
requirements. P-SAFE has been evaluated on three physical
testbeds. Experimental results show our P-SAFE can signifi-
cantly better meet the application QoS demand compared to
the state of the art.
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