
Enabling Direct Message Dissemination in
Industrial Wireless Networks via Cross-Technology

Communication
Di Mu, Yitian Chen, Xingjian Chen, Junyang Shi

Department of Computer Science
State University of New York at Binghamton

Email: {dmu1, cyitian1, xchen218, jshi28}@binghamton.edu

Mo Sha∗
Knight Foundation School of Computing

and Information Sciences
Florida International University

Email: msha@fiu.edu

Abstract—IEEE 802.15.4 based industrial wireless networks
have been widely deployed to connect sensors, actuators, and
gateway in industrial facilities. Although wireless mesh networks
work satisfactorily most of the time thanks to years of research,
they are often complex and difficult to manage once the networks
are deployed. Moreover, the deliveries of time-critical messages
suffer long delay, because all messages have to go through
hop-by-hop transport. Recent studies show that adding a low-
power wide-area network (LPWAN) radio to each device in
the network can effectively overcome such limitations, because
network management and time-critical messages can be transmit-
ted from gateway to field devices directly through long-distance
LPWAN links. However, industry practitioners have shown a
marked reluctance to embrace the new solution because of the
high cost of hardware modification. This paper presents a novel
system, namely DIrect MEssage dissemination (DIME) system,
that leverages the cross-technology communication technique to
enable the direct message dissemination from gateway to field
devices in industrial wireless networks without the need to add
a second radio to each field device. Experimental results show
that our system effectively reduces the latency of delivering time-
critical messages and improves network reliability compared to
a state-of-the-art baseline.

Index Terms—Industrial Wireless Network, IEEE 802.15.4,
Message Dissemination, Cross-Technology Communication,
LoRa, Transmission Scheduling

I. INTRODUCTION

The Internet of Things (IoT) refers to a broad vision
whereby everyday objects, places, and environments are in-
terconnected via the Internet [1]. Until recently, most of the
IoT infrastructure and application development by businesses
have focused on smart homes and wearables. However, it is
the production and manufacturing segment of the IoT, which
underlies the Fourth Industrial Revolution (or Industry 4.0 [2]),
that promises one of the largest potential economic effects
of IoT [3] – up to $47 trillion in added value globally by
2025, according to the McKinsey report on future disruptive
technologies [4]. Industrial networks that serve industrial
IoT typically connect field devices (sensors and actuators)
and gateway in industrial facilities, such as manufacturing
plants, steel mills, oil refineries. Industrial applications pose
unique challenges to networking due to their critical demand

for real-time and reliable communication in harsh industrial
environments. Failure to achieve such performance can lead to
production inefficiency, safety threats, and financial loss. The
stringent demand has been traditionally met by specifically
chosen wired solutions, such as the highway addressable
remote transducer (HART) communication protocol [5], where
cables connect sensors and forward sensor readings to the
gateway where a controller sends commands to actuators.
However, wired networks are often costly to deploy and
maintain in industrial environments and difficult to reconfigure
to accommodate new production requirements.

Over the past decade, IEEE 802.15.4 based wireless net-
works have been widely adopted to replace wired networks
in industrial facilities. Battery-powered wireless modules are
used to easily and inexpensively retrofit existing sensors and
actuators without the need to run cables for communication
and power. To meet the stringent reliability and real-time
requirements, the industrial wireless standards, such as Wire-
lessHART [6], ISA100 [7], WIA-FA [8], and 6TiSCH [9],
make a set of specific design choices, such as employing the
time slotted channel hopping (TSCH) technology, which dis-
tinguish themselves from traditional wireless sensor networks
(WSNs) designed for best effort services [10]. A decade of
real-world deployments of those standards has demonstrated
the feasibility to achieve reliable wireless communication in
industrial facilities. Although wireless mesh networks work
satisfactorily in industrial facilities most of the time thanks
to years of research, they are often complex and difficult
to manage once the networks are deployed. Moreover, the
deliveries of time-critical messages, especially those carrying
urgent information such as emergency alarms, suffer long
delay, because all messages have to go through hop-by-hop
transport. Recent studies show that adding a low-power wide-
area network (LPWAN) radio (e.g., a LoRa [11] radio) to each
device in the network effectively overcomes such limitations,
because messages and time synchronization beacons can be
transmitted from gateway to field devices directly through
long-distance LPWAN links [12], [13]. However, industry
practitioners have shown a marked reluctance to embrace the
new solution because of the high cost of hardware modifica-∗ Corresponding author

tion.
To address the issue, we develop a novel system, namely DI-

rect MEssage dissemination (DIME) system, that leverages
the cross-technology communication (CTC) from LoRa to
IEEE 802.15.4 devices [14], [15] to enable the direct message
dissemination from gateway to field devices in industrial
wireless networks without the need to add a second radio to
each field device. To our knowledge, this paper represents the
first networking solution that takes advantage of CTC to reduce
the network management complexity and the latency of deliv-
ering time-critical messages in industrial wireless networks.
Specifically, we make the following contributions:

• We develop a new TSCH slotframe structure, which
enables direct message dissemination using CTC;

• We develop a novel autonomous transmission scheduling
method that runs on top of the routing protocol for low-
power and lossy networks (RPL) on each device and
schedule transmissions without the need to handshake
with neighboring devices;

• We implement DIME and evaluate it on a physical
testbed with 40 devices. Experimental results show that
DIME significantly improves end-to-end reliability and
reduces end-to-end latency compared to a state-of-the-art
baseline.

The remainder of this paper is organized as follows. Section II
introduces the background of TSCH, RPL, and CTC. Sec-
tion III presents our DIME system. Section IV discusses our
testbed and evaluation of DIME. Section V reviews the related
work. Section VI concludes the paper.

II. BACKGROUND

In this section, we introduce the background of TSCH, RPL,
and CTC.

A. TSCH

TSCH [16] was introduced in 2012 as an amendment (IEEE
802.15.4e) to the medium access control (MAC) portion of
the IEEE 802.15.4 standard. It is designed to provide time-
deterministic packet deliveries for industrial process control
and automation. TSCH divides time into timeslots (or slots) for
time-deterministic media access and enables channel hopping
in every timeslot for resilience against interference. Under
TSCH, the gateway and all field devices in the network must
keep globally time synchronized to support time slotted access.
Starting from the gateway, each synchronized device shares
its time information to its neighboring devices by periodically
broadcasting enhanced beacons (EBs). Contained in each EB,
the absolute slot number (ASN) indicates the number of
timeslots passed since the network starts. ASN is set to zero
when the network starts and increased by one at the end of
each timeslot. A fixed number of timeslots are grouped into
a slotframe, which repeats over time. This fixed number is
defined as the slotframe length LSF . A timeslot in a slotframe
is specified by the time offset to, the channel offset co, and
the type of operation (e.g., transmission, reception, or sleep).

The time offset to of a timeslot is represented by the modulo
operation between ASN and LSF :

to = mod(ASN,LSF) (1)

A sequence of channels used for channel hopping, called
frequency hopping sequence (FHS), is known by all devices.
The frequency channel used in a timeslot is determined by
FHS, ASN, the channel offset (co), and the length of FHS
(LFHS):

channel = FHS(mod(ASN + co, LFHS)) (2)

A TSCH schedule generated by a transmission scheduling
algorithm determines each device’s operation type and channel
offset in every timeslot.

B. RPL

RPL is a destination oriented distance-vector routing pro-
tocol designed to support multi-hop routing on the resource-
constrained field devices with IPv6 compatibility. RPL uses a
destination-oriented directed acyclic graph (DODAG) rooted
at the gateway (border router device). Each field device in the
network computes its rank based on a cost function, such as
the accumulated expected transmission counts (ETXs) from
itself to the gateway. DODAG information object (DIO) mes-
sages are broadcasted in the network to exchange the routing
information between neighboring devices, which allows each
field device to update its rank and preferred parent device. A
destination advertisement object (DAO) message is sent to the
selected parent device from the child device. By exchanging
DIO and DAO messages, each device sets up its downward
and upward routes in the DODAG.

C. CTC

The CTC techniques are designed to enable direct com-
munication between two heterogeneous wireless devices that
run different physical layers but in the same frequency band.
As a key technology that enhances wireless coexistence in
the 2.4 GHz frequency band, CTC has been explored in
recent research to enable the direct communication between
WiFi and IEEE 802.15.4 devices [17]–[25], between WiFi
and Bluetooth devices [26], [27], and between Bluetooth and
IEEE 802.15.4 devices [28], [29]. The emerging LPWAN
technologies, such as LoRa, have emerged to provide low-
power long distance wireless connections. To leverage the long
communication range of LPWANs, several CTC techniques
have been proposed to enable direct messaging from LoRa
to IEEE 802.15.4 device [14], [15], [30], [31]. For example,
under the CTC technique developed by Shi et al. [14], [15],
an IEEE 802.15.4 radio detects the radio-frequency (RF)
energy patterns transmitted from a LoRa radio in the 2.4 GHz
frequency band and decodes the information carried by those
patterns. Shi et al. identified 454 distinguishable RF energy
patterns, which can be used to encode information in a 15ms
timeslot.

Fig. 1. System architecture of DIME.

Fig. 2. Slotframe structure.

III. OUR DESIGN OF DIME

In this section, we first present an overview of DIME
and then introduce the designs of our slotframe structure,
CTC technique, synchronization controller, and transmission
scheduler in detail.

A. System Overview

The primary design goals of DIME are to ensure timely
deliveries of time-critical messages from gateway, reduce net-
work management complexity, and improve network reliabil-
ity. To achieve such goals, the network that runs DIME allows
its gateway to directly disseminate time-critical messages to
field devices through long distance CTC links, leverage CTC
packets to synchronize the clocks of all devices in the network,
and deliver important messages through both CTC and hop-
by-hop transport. Figure 1 shows the system architecture of
DIME. The gateway is equipped with two radios: an IEEE
802.15.4 radio and a LPWAN radio and each field device
is equipped with an IEEE 802.15.4 radio. DIME adopts the
IEEE 802.15.4 and LPWAN physical layers to handle the
interactions between DIME and its underlying radio hardware.
CTC Encoder that runs on the gateway and CTC Decoder that
runs on the field device create the CTC link between them.
DIME extends TSCH, namely TSCH-DIME MAC, by adding
Slotframe Structure, Synchronization Controller, and Trans-
mission Scheduler. Slotframe Structure specifies three types of
slotframes for time synchronization, routing, and application
traffic. Synchronization Controller manages the CTC-based
time synchronization process on each device. Transmission
Scheduler that runs on each device is responsible for deter-
mining the device’s action and communication channel in each
timeslot. The application and the routing protocol (e.g., RPL)
run on top of TSCH-DIME MAC. The detailed design of each
component will be presented next.

Fig. 3. Timeslot in direct messaging phase.

B. Slotframe Structure

We follow the suggestions made by Duquennoy et al. [32]
and define three types of slotframes: one for time synchro-
nization traffic, one for routing traffic, and one for applica-
tion traffic. Figure 2 shows the slotframe structure. The first
timeslot of each synchronization slotframe is reserved for the
gateway to broadcast a CTC beacon. All field devices are
active in that timeslot and use the beacon to synchronize their
clocks (see Section III-D). The first timeslot of each routing
slotframe is shared among the gateway and all field devices to
exchange the packets generated by the routing protocol. Each
application slotframe consists of three phases: uplink phase,
direct messaging phase, and downlink phase. The timeslots in
the uplink phase are reserved for the field devices to forward
the packets generated by the source devices to the gateway
and the timeslots in the downlink phase are reserved for the
field devices to forward the packets generated by the gateway
to the destination devices. One or more timeslots in the direct
messaging phase are reserved for the gateway to send direct
messages to the destination devices through the long distance
CTC links.

Figure 3 shows the timeslot in the direct messaging phase.
The CTC transmission starts at TxOffset, which is the time
offset computed according to the on-air time duration of the
CTC transmission to make sure that the CTC transmission
finishes at the exact end of that timeslot. TxOffset must be
no less than the recommended value in TSCH (e.g., 3ms for
a 15ms timeslot) to make CTC transmissions tolerable to the
clock drifts on field devices. The receiver starts to listen to
the channel at RxOffset and looks for the start of a CTC
message during RxWait. If the receiver cannot detect any
CTC signals during RxWait, it turns off the radio to save
energy; otherwise, it keeps the radio on to receive and decode
the CTC message. We employ a coding method with a set
of distinguishable CTC symbols, which can be encoded in a
single timeslot (see Section III-C).

C. CTC

DIME is not tied up with any CTC techniques. Our im-
plementation adopts a state-of-the-art technique developed by
Shi et al. [14], which supports CTC from LoRa to IEEE
802.15.4 device in the 2.4 GHz frequency band and employs
a coding method with 454 distinguishable CTC symbols.
DIME reserves eight symbols for CTC beacons and the rest
for application messages. All CTC symbols can fit into a
single 15ms timeslot. Under such a CTC technique, the
LoRa transmitter generates radio energy patterns by tuning
the packet payload length and the time to transmit packets.
The IEEE 802.15.4 device receiver samples the received signal

strength (RSS) values to recognize the radio energy patterns.
The LoRa packets with 15 different payload lengths can
generate the on-air transmission time ranging from 3.705ms to
14.405ms within a 15ms timeslot. Depending on the variable
payload length, one or more (up to four) LoRa packets can
be transmitted within a timeslot. Non-transmitting time can be
selectively inserted between two consecutive packets to create
more energy patterns. A unique CTC symbol is created by the
combined energy pattern of the transmitted LoRa packet(s) in
a timeslot and the optional non-transmitting time between the
packets. Our IEEE 802.15.4 devices can continuously sample
the RSS with the interval of 0.088ms, which is enough to
distinguish different LoRa packet lengths and the presence of
non-transmitting time.

D. Synchronization Controller

Synchronization Controller that runs on each field device
is responsible for using the periodically broadcasted CTC
beacons to synchronize its clock. As discussed in Section II,
TSCH uses EBs for time synchronization. DIME replaces
EBs with CTC beacons, which are used to time synchronize
all devices and accommodate the new device when it joins
the network. Similar to EBs, the CTC beacons contain time
information and are broadcasted periodically. Unlike EBs
that are flooded by all field devices in the network, the
CTC beacons are only transmitted by the gateway, which
significantly reduces time synchronization overhead. All field
devices use the gateway as their time source and use the CTC
beacons to keep them time synchronized. Each CTC beacon
is transmitted in the first timeslot of each synchronization
slotframe. When the transmission of a CTC beacon is finished,
all field devices use the time when the CTC signal disappears
to synchronize their local clocks. Each CTC beacon carries
the synchronization period number (SPN), which can be used
to calculate the absolute time since the network starts. SPN
can be encoded in one CTC beacon or multiple consecutive
synchronization slotframes, where the CTC beacon in the last
synchronization slotframe contains a special CTC symbol that
indicates the end of SPN encoding. SPN is initialized as 0 and
incremented by 1 after each time that it has been encoded.
Assuming there are Nsym CTC symbols reserved for the
CTC beacons, each SPN is encoded in NSF synchronization
slotframes, the length of a synchronization slotframe is Lsync

SF

timeslots, and the duration of a timeslot is Ts, the maximum
time Tmax that can be represented by SPN can be calculated
as

Tmax = Ts × Lsync
SF ×NSF × (Nsym − 1)(NSF−1). (3)

For example, if Nsym = 8, NSF = 10, Lsync
SF = 397, and

Ts = 15ms, then Tmax is more than 76 years. Based on the
received SPN, the field devices can calculate the current ASN
by

ASN = SPN × Lsync
SF ×NSF . (4)

There are two ways for a new device to join the network.
It either joins the network when it starts or after the network

starts. When the network starts to operate, the gateway con-
tinuously broadcasts CTC beacons for a fixed period of time
(e.g., 30s), which allows all field devices to set their CTC
physical-layer parameters (e.g., the RSS threshold for CTC
signal detection) based on link measurements. If a field device
joins the network when the network has already started, it uses
the default CTC physical-layer parameters and looks for the
CTC beacons, which allows it to derive the complete SPN and
ASN. Please note that there is no need for the field devices
that join the network when it starts to derive SPN, because the
ASN starts from 0.

E. Transmission Scheduler

Transmission Scheduler that runs on each device is respon-
sible for generating the operation schedule for that device.
It first determines whether the device transmits, receives, or
sleeps in each timeslot of every slotframe and generates a
operation schedule for each slotframe. It then combines all
schedules into a single one for runtime execution. The priority
assigned to each slotframe determines whether the schedule
of that slotframe should yield to another when a scheduling
conflict appears during the schedule combination process. The
lengths of all slotframes are three mutually prime numbers to
minimize the schedule conflicts. We will discuss the priority
assignments and transmission scheduling next.
Synchronization Slotframe has the highest priority because
the network cannot operate without time synchronization. The
only active timeslot scheduled in the synchronization slotframe
is the first one, where the time offset to is 0 and the operation
channel is fixed to the best one available.
Routing Slotframe has the priority lower than Synchroniza-
tion Slotframe’s. The first timeslot of each routing slotframe
is scheduled to exchange routing information, where the time
offset to is 0 and the channel offset co is 1.
Application Slotframe has the lowest priority. As Figure 2
shows, the application slotframe has three phases: uplink
phase, direct messaging phase, and downlink phase.

To provide contention-free transmissions, Transmission
Scheduler assigns a sender-based dedicated (SBD) timeslot in
the application slotframe’s uplink phase to each field device to
forward the application traffic generated by the source devices
to the gateway. Similarly, Transmission Scheduler assigns a
receiver-based dedicated (RBD) timeslot in the application
slotframe’s downlink phase to each field device to forward
the application traffic generated by the gateway to the desti-
nation devices. In the uplink phase, each field device receives
incoming packets during its child devices’ SBD timeslots
and forwards them during its own SBD timeslot. The time
offset of each SBD timeslot tSBD

o is calculated by performing
the modulo operation between the sender device’s ID txID
(txID ⩾ 1) and the length of the uplink phase LUP :

tSBD
o (txID) = mod(txID − 1, LUP) (5)

Following Eq. 5, each device can calculate each timeslot
for packet transmission using its own device ID and the

(a) Network topology.

(b) Generated transmission schedule.

Fig. 4. An example of transmission schedule generated based on a given
network topology.

ones for packet receptions using its child devices’ IDs. The
direct messaging phase begins after the uplink phase. The
gateway groups the messages for all destination devices into
LCTC CTC transmission(s), where LCTC is the length of
the direct messaging phase. The time offset of the first CTC
transmission tCTC

o equals LUP because it immediately follows
the uplink phase. All destination devices listen to the CTC
transmission(s) in the direct messaging phase and decode the
CTC messages. In the downlink phase, each device on every
downlink path (the path from the gateway to the destination
device) listens during its RBD timeslot and forwards down-
link traffic to its child device along the downlink path until
reaching the destination device. The time offset of each RBD
timeslot tRBD

o is calculated by the receiver device’s ID rxID
(rxID ⩾ 1), LUP , LCTC , and the length of the downlink
phase LDP :

tRBD
o (rxID) = LUP + LCTC +mod(rxID − 1, LDP) (6)

Following Eq. 6, each device along the downlink path can
calculate the timeslot for packet reception using its own
device’s ID and the one for packet transmission using its
child device’s ID. The channel offset co of the application
slotframe is set to 2. To ensure contention-free transmissions
in both uplink and downlink phases, both LUP and LDP

must be no less than the number of field devices in the
network. We choose LUP = LDP = 50, LCTC = 1, and
Lapp
SF = LUP +LCTC +LDP = 101 as the default lengths in

our implementation for 40 field devices.
Figure 4(b) shows an example schedule generated based on

the network topology shown in Figure 4(a). In this network,
#0 is the gateway device, #2 is a source device, and #3 acts
as both source and destination device. In this example, the
lengths of synchronization, routing, and application slotframes
are 47, 5, and 7, respectively. The length of application
slotframe is the summation of LUP = 3, LCTC = 1, and

Fig. 5. Testbed deployment. Device 00 is the gateway marked as a star.

LDP = 3. The first application slotframe begins when ASN
is 0 and the second one begins when ASN is 7. However, the
timeslots are preempted by the synchronization and routing
slotframes when ASN is 0, 5, and 10 in the first two application
slotframes. When ASN is 0, all field devices (#1, #2, and #3)
listens to the CTC synchronization beacon broadcasted by the
gateway, because the synchronization slotframe has the highest
priority and is active in that timeslot. The uplink phase of the
application slotframe is active when ASN is 1 and 2, in which
#2 and #3 transmit uplink application packets to their parent
devices in the senders’ SBD timeslots. The direct messaging
phase of the application timeslot is active when ASN is 3, in
which #3 listens to the CTC direct message from the gateway.
The downlink phase of the application slotframe is active
when ASN is 4 and 6, in which #0 and #1 transmit downlink
application packets to their child devices on the downlink path
in the receivers’ RBD timeslots. When ASN is 5 and 10,
the routing slotframe is active and preempts the application
slotframe to allow all devices in the network exchange routing
messages. The second application slotframe begins when ASN
is 7 with uplink transmissions. The entire schedule repeats
every 47× 5× 7 = 1645 timeslots.

IV. EVALUATION

To evaluate the performance of DIME, we have imple-
mented DIME under Contiki OS [33], integrated it with RPL
under storing mode, and performed a series of experiments on
our testbed. We first perform microbenchmark experiments to
examine the network initialization process when the network
starts to operate with DIME and then test DIME’s resilience
to network changes. We then measure the performance of
DIME when it runs on the networks with various device
densities. Finally, we perform two 24-hour measurements to
evaluate the performance of DIME when the devices generate
data at a high rate and a low rate, respectively. We compare
DIME against Orchestra [32], [34], one of the state-of-the-
art networking solutions designed for TSCH based industrial
wireless networks.

Figure 5 shows the device deployment of our testbed, which
consists of one gateway and 40 field devices deployed through-
out 22 office and lab areas in an office environment [35].
The gateway is a TelosB mote [36] integrated with a WiMOD
iM282A LoRa module [37] and each field device is a TelosB

(a) Number of synchronized devices over time. (b) End-to-end PDR. (c) End-to-end latency.
Fig. 6. Network performance during network initialization.

TABLE I
THE SOURCE AND DESTINATION DEVICE IDS OF EACH DATA FLOW.

Data Flow Number Source Device ID Destination Device
ID

1 11 12
2 13 14
3 15 30
4 18 16
5 20 21
6 22 36
7 24 25
8 09 05

mote. We run a monitor-control application with eight data
flows, each of which has a source device and a destination
device. Table I lists the source and destination devices of
each data flow. The source device of a data flow generates
an uplink packet periodically based on the data rate specified
by the application. Each uplink packet is then forwarded
to the gateway where a controller generates and sends a
downlink packet to its corresponding destination device. We
precompute eight downlink paths and use them at runtime
due to the hardware limitation of TelosB motes. We configure
DIME and Orchestra with three slotframes: synchronization
slotframe (397 timeslots), routing slotframe (31 timeslots),
and application slotframe (101 timeslots). The length of each
timeslot is 15ms. To ensure a fair comparison, we use the
same slotframe lengths and settings in DIME and Orchestra.

A. Network Initialization

To examine the network initialization process, we record
the number of synchronized devices in each synchronization
slotframe and measure the end-to-end packet delivery ratio
(PDR) and the end-to-end latency after the network starts
to operate with DIME. We configure each source device
to generate an uplink packet every 10s. Figure 6(a) shows
the number of synchronized devices in each synchronization
slotframe after the network starts to operate. As Figure 6(a)
shows, DIME successfully synchronizes all 40 devices in
the first synchronization slotframe (5.96s) after the network
starts to operate, while Orchestra takes nine synchronization
slotframes (53.60s) to synchronize all devices due to the need
of flooding synchronization beacons across the entire network.
Figure 6(b) and 6(c) plot the network performance during the
network initialization process, where each data point shows the
averaged value in a 30s time window. As Figure 6(b) and 6(c)

(a) End-to-end PDR.

(b) End-to-end latency.

Fig. 7. Network performance of Data Flow 1 when we disable Device 8 for
five minutes (time between two red dashed lines).

show, DIME helps the network stabilize its performance
quickly and consistently provides PDRs higher than 91.7%
and latency less than 4.84s. As a comparison, Orchestra takes
more than five minutes to stabilize the network performance
and provide PDRs higher than 90%. More importantly, DIME
consistently provides higher network reliability and shorter
latency over Orchestra by employing the CTC links, which
will be evaluated more extensively in Section IV-C and IV-D.

B. Adaptation to Network Changes

To test DIME’s resilience to network changes, we mimic
devices failures by disabling different devices in the network
and measure network performance changes. For example,
Figure 7 plots the network performance of Data Flow 1
when we disable Device 8 after the network operates with
five minutes and enable it after another five minutes. As
Figure 7(a) shows, the network that runs either DIME or
Orchestra provides PDR larger than 83% before the failure
occurs and after the network recovers. When the failure occurs,
the network that runs DIME can still provide high PDRs

(a) End-to-end PDR at low device density. (b) End-to-end PDR at medium device density. (c) End-to-end PDR at high device density.

(d) End-to-end latency at low device density. (e) End-to-end latency at medium device density. (f) End-to-end latency at high device density.

Fig. 8. Performance of each data flow when the network with different device densities runs DIME and Orchestra.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 9. Averaged network performance of each data flow when source devices generate data at high rate.

thanks to its CTC links, while the PDRs of the network that
runs Orchestra drop to 0% due to the disconnection of the
downlink path. As Figure 7(b) shows, DIME helps the network
keep the end-to-end latency shorter than 7.3s even when the
network faces device failure. We observe similar results when
the failures occur at other devices. The results demonstrates
DIME’s resilience to network changes.

C. Network Performance under Various Device Densities

To evaluate the performance of DIME, we create three
networks by randomly disabling different numbers of devices
on our testbed and measure the performance of each network
for an hour. Specifically, we enable all 40 field devices on
our testbed to create the network with high device density
and use 34 field devices to create the network with medium
device density. We only enable 22 field devices to create the
network with low device density. Figure 8 plots the end-
to-end PDR and the end-to-end latency of each data flow
when the network runs DIME and Orchestra, respectively.
DIME consistently outperforms Orchestra. For example, as
Figure 8(a) and 8(d) plot, the network with low device density
achieves PDRs higher than 99.6% and latency shorter than
3.3s on all data flows when it runs DIME. As a comparison,

the network reaches the lowest PDR of 93.7% on Data Flow
5 and the longest latency of 6.7s on Data Flow 3 when it
runs Orchestra. In the network with medium device density,
DIME consistently helps the network achieve PDRs higher
than 99.4% and latency shorter than 4.0s on all data flows,
while Orchestra has the lowest PDR of 93.6% and the longest
latency of 9.6s, as Figure 8(b) and Figure 8(e) show. Similarly,
in the network with high device density, DIME consistently
helps the network achieve PDRs higher than 99.0% and latency
shorter than 4.4s on all data flows, while Orchestra has the
lowest PDR of 90.8% and the longest latency of 11.4s, as
Figure 8(c) and Figure 8(f) show.

We also observe that the improvements provided by DIME
increase with network density. For example, Orchestra expe-
riences decreased PDRs from 100% to 93.5% and increased
latency from 2.1s to 7.9s on Data Flow 4 when the device
density increases from low to high, while DIME only has
minor changes on PDRs from 100% to 99.4% and latency
from 1.8s to 2.2s. This is because the higher device density
increases network management complexity, resulting in more
packet losses and larger latency under Orchestra. On the
other hand, DIME can consistently provide good network
performance with the help of CTC links.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty Cycle.

Fig. 10. Network performance over 24 hours when source devices generate data at high rate. Each data point is calculated within a one-hour time window.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 11. Averaged network performance of each data flow when source devices generate data at low rate.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 12. Network performance over 24 hours when source devices generate data at low rate. Each data point is calculated within a one-hour time window.

D. 24-Hour Performance under Different Data Rates

Finally, we perform two 24-hour measurements to evaluate
DIME’s performance when the devices generate data at a
high rate and a low rate, respectively. To evaluate DIME’s
performance at high data rates, we configure each source
device to periodically generate an uplink packet every 10s.
Figure 9 plots the averaged network performance of each
data flow. As Figure 9(a) shows, the network that runs
DIME achieves PDRs higher than 99.5% on all data flows,
consistently outperforming the one that runs Orchestra with
the lowest PDR of 91.8%. Figure 9(b) plots the averaged
end-to-end latency of each data flow. As Figure 9(b) shows,
the network that runs DIME achieves latency always shorter
than 4.23s, which is significantly shorter the latency when the
network runs Orchestra. For instance, the averaged end-to-
end latency of Data Flow 3 is 3.36s under DIME and 11.58s
under Orchestra. We also measure the device duty cycle1 of
each device when it runs DIME and Orchestra. Figure 9(c)

1The device duty cycle is defined as the percentage of timeslots in which
the radio is active. This metric is an indicator of energy consumption.

plots the CDF of the device duty cycles of all field devices
under DIME and Orchestra, where the duty cycles are similar
between two solution. The device duty cycles range from
3.46% to 6.78% under DIME and vary from 3.26% to 6.75%
under Orchestra. The median device duty cycle is 4.61%
under DIME and 4.69% under Orchestra. These results show
that DIME improves network reliability and reduces latency
without consuming more energy.

Figure 10 shows the network performance over the 24-hour
period. DIME consistently outperforms Orchestra at the high
data rate. As Figure 10(a) shows, the end-to-end PDRs are
always higher than 99.3% under DIME and vary between
90.2% and 93.7% under Orchestra. As Figure 10(b) shows,
the end-to-end latency are always shorter than 3.61s under
DIME and varies between 8.23s and 10.54s under Orchestra.
As Figure 10(c) shows, the field devices experience similar
duty cycles under both solutions over 24 hours. On average,
DIME improves the end-to-end PDR from 92.6% to 99.8% and
reduces the end-to-end latency from 9.03s to 3.06s compared
to Orchestra. More importantly, the variations of PDRs under

DIME are much smaller than the ones under Orchestra, which
represents a significant advantage in industrial applications that
demand consistent high reliability in harsh industrial facilities.

To evaluate DIME’s performance when the network operates
at the low data rate, we increase the data generation period
from 10s to 60s and repeat our experiments. Figure 11 plots
our measurements. As Figure 11(a) shows, the network that
runs DIME has the averaged PDRs of all data flows higher
than 99.93% and the network that runs Orchestra achieves
comparable performance (higher than 99.52%). Figure 11(b)
shows the averaged end-to-end latency of each data flow. As
Figure 11(a) shows, DIME reduces the latency by 6.53s on
average compared to Orchestra. For instance, the averaged
end-to-end latency of Data Flow 6 is 1.57s under DIME
and 11.42s under Orchestra. Figure 11(c) plots the CDF of
the device duty cycles of all field devices under DIME and
Orchestra. Both solutions provide similar device duty cycles.
The median duty cycle is 4.44% under DIME and 4.48%
under Orchestra. The results confirms that DIME improves
network reliability and reduces latency without consuming
more energy.

Figure 12 shows the network performance when the network
runs DIME and Orchestra, respectively, over the 24-hour
period. As Figure 12(a) shows, DIME achieves the PDR of
99.7% during the first hour and always delivers 100% PDR
after that, while Orchestra experiences the lowest PDR of
96.9% in the first hour and achieves the PDRs higher than
98.8% after that. As Figure 12(b) shows, DIME always keeps
the latency less than 2.82s, while Orchestra experiences the
latency up to 10.45s. As Figure 12(c) shows, the field devices
experience similar duty cycles under both solutions over 24
hours.These results show that DIME consistently outperforms
Orchestra at the low data rate.

V. RELATED WORK

In recent years, many centralized and decentralized trans-
mission scheduling methods have been developed for TSCH-
based wireless networks. The centralized method relies on a
global scheduler to determine the transmission schedule of
each device in the network. For instance, Jin et al. propose a
centralized multi-hop scheduling method that allocates more
resources to more vulnerable links [38] and Palattella et al.
develop a traffic-aware scheduling algorithm, which reduces
energy consumption of each device by allocating the minimum
number of active slots to it [39]. The centralized scheduling
methods suffer poor scalability and low flexibility once the
networks are deployed. The decentralized scheduling methods
have been proposed to overcome those drawbacks. Under a
decentralized scheduling method, each device generates its
own transmission schedules after exchanging information with
its neighboring devices at runtime. For example, Municio et al.
develop a decentralized broadcast-based scheduling algorithm
for dense multi-hop TSCH networks, which uses selective
broadcasting to exchange transmission schedules of neigh-
boring devices [40] and Aijaz et al. designs a decentralized
adaptive multi-hop scheduling protocol, which is traffic-aware

and adaptive to topology changes [41]. The decentralized
scheduling methods improve network scalability and flexibility
at the cost of introducing significant signaling overhead due
to the need of information exchange between neighboring
devices. To eliminate such overhead, research efforts in the
recent years have produced autonomous scheduling methods
including Orchestra, DiGS, ALICE, and ATRIA. Orches-
tra allows network devices to generate their transmission
schedules autonomously based on their local RPL routing
information [32]. DiGS is a distributed graph routing and
autonomous scheduling solution that allows network devices
to compute their own transmission schedules based on their
graph routes [42]. ALICE is an autonomous link-based cell
scheduling scheme, which allocates a unique cell for each
directional link by using the local information in the routing
layer [43]. ATRIA is an autonomous traffic-aware transmission
scheduling method, in which each device detects its traffic
load based on its local routing information and then schedules
its transmissions accordingly [44]. Although the autonomous
scheduling methods effectively eliminate the signaling over-
head, they still suffer long latency when delivering network
control messages (e.g., time synchronization) and time-critical
application messages (e.g., emergency alarms) because all
messages have to go through hop-by-hop transport.

Emerging LPWAN technologies, such as LoRa, offer new
opportunities to overcome the limitations of multi-hop wireless
networks by adding long-distance links. Recent studies have
combined LPWAN radios with IEEE 802.15.4 radios to form
hybrid wireless networks. For example, Gu et al. propose one-
hop out-of-band control planes that use LoRa links to deliver
control messages directly from gateway to field devices [12],
[13] and Singh et al. develop a hybrid network architecture
that integrates LoRa and IEEE 802.15.4 radios for oil pipeline
monitoring applications [45]. However, adding new radios
to all devices in a network requires significant effort and
cost because of the need of hardware modification. Industry
practitioners therefore have shown a marked reluctance to
embrace such solutions. To address this issue, our solution
leverages the CTC technique from LoRa to IEEE 802.15.4
devices to provide long-distance message deliveries and does
not require any hardware modification on field devices.

Recently, many techniques have been developed to enable
the CTC between heterogeneous wireless devices that operate
in the same frequency band. Significant efforts have been
made to enable the CTC between WiFi and IEEE 802.15.4
devices [17]–[25], between WiFi and Bluetooth devices [26],
[27], and between Bluetooth and IEEE 802.15.4 devices [28],
[29], and between LoRa and IEEE 802.15.4 devices [14], [15],
[30], [31]. Our solution adopts the CTC technique developed
by Shi et al. [14], [15] to enable long-distance communication
in the 2.4 GHz band.

VI. CONCLUSION

A decade of real-world deployments of industrial standards
has demonstrated the feasibility to achieve reliable wireless
communication in industrial environments. Although wireless

mesh networks work satisfactorily in industrial facilities most
of the time thanks to years of research, they are often complex
and difficult to manage once the networks are deployed.
Moreover, the deliveries of time-critical messages, especially
those carrying urgent information such as emergency alarms,
suffer long delay, because all messages have to go through
the hop-by-hop transport. To address the issue, we develop
DIME, which consists of a new TSCH slotframe structure for
direct message dissemination and time synchronization using
CTC and a new autonomous transmission scheduling method
that schedules transmissions without the need to handshake
with neighboring devices. We implement DIME and evaluate
it on a physical testbed with 40 devices. Experimental results
show that DIME significantly improves end-to-end reliability
and reduces end-to-end latency compared to a state-of-the-art
baseline.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant CNS-1657275 and CNS-2150010.

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, “How Smart, Connected Products
are Transforming Competition,” Harvard Business Review, vol. 92,
no. 11, 2014.

[2] H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for
Implementing the Strategic Initiative Industrie 4.0. [Online]. Available:
http://alvarestech.com/temp/tcn/CyberPhysicalSystems-Industrial4-0.pdf

[3] A. Thierer and A. Castillo. Projecting the Growth
and Economic Impact of the Internet of Things. [On-
line]. Available: https://www.mercatus.org/publications/technology-and-
innovation/projecting-growth-and-economic-impact-internet-things

[4] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson,
and A. Marrs. Disruptive Technologies: Advances that will
Transform Life, Business, and the Global Economy. [On-
line]. Available: http://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/disruptive-technologies

[5] HART Communication Protocol and Foundation (Now the FieldComm
Group). [Online]. Available: https://fieldcommgroup.org/

[6] WirelessHART. [Online]. Available:
https://fieldcommgroup.org/technologies/hart/hart-technology

[7] ISA 100. [Online]. Available: http://www.isa100wci.org/
[8] WIA-FA. [Online]. Available: https://webstore.iec.ch/publication/32718
[9] IETF, “6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e,” 2020.

[Online]. Available: https://datatracker.ietf.org/wg/6tisch/documents/
[10] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,

L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,” Proceedings of the IEEE, vol.
104, no. 5, 2016.

[11] LoRa. [Online]. Available: https://lora-alliance.org
[12] C. Gu, R. Tan, X. Lou, and D. Niyato, “One-Hop Out-of-Band Control

Planes for Low-Power Multi-Hop Wireless Networks,” in INFOCOM,
2018.

[13] C. Gu, R. Tan, and X. Lou, “One-Hop Out-of-Band Control Planes for
Multi-Hop Wireless Sensor Networks,” ACM Transactions on Sensor
Networks, vol. 15, no. 4, 2019.

[14] J. Shi, X. Chen, and M. Sha, “Enabling Direct Messaging from LoRa
to ZigBee in the 2.4 GHz Band for Industrial Wireless Networks,” in
ICII, 2019.

[15] ——, “Enabling Cross-Technology Communication from LoRa to Zig-
Bee in the 2.4 GHz Band,” ACM Transactions on Sensor Networks,
vol. 18, no. 2, 2021.

[16] IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH). [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7554

[17] W. Wang, X. Liu, Y. Yao, and T. Zhu, “Exploiting WiFi AP for
Simultaneous Data Dissemination among WiFi and ZigBee Devices,”
in ICNP, 2021.

[18] X. Guo, Y. He, X. Zheng, L. Yu, and O. Gnawali, “ZigFi: Harness-
ing Channel State Information for Cross-Technology Communication,”
IEEE/ACM Transactions on Networking, vol. 28, no. 1, 2020.

[19] X. Guo, Y. He, and X. Zheng, “WiZig: Cross-Technology Energy
Communication Over a Noisy Channel,” IEEE/ACM Transactions on
Networking, vol. 28, no. 6, 2020.

[20] S. Wang, S. M. Kim, and T. He, “Symbol-Level Cross-Technology
Communication via Payload Encoding,” in ICDCS, 2018.

[21] S. Wang, Z. Yin, Z. Li, and T. He, “Networking Support for Physical-
Layer Cross-Technology Communication,” in ICNP, 2018.

[22] X. Zheng, Y. He, and X. Guo, “StripComm: Interference-Resilient
Cross-Technology Communication in Coexisting Environments,” in IN-
FOCOM, 2018.

[23] Z. Yin, W. Jiang, S. M. Kim, and T. He, “C-Morse: Cross-Technology
Communication with Transparent Morse Coding,” in INFOCOM, 2017.

[24] Z. Li and T. He, “WEBee: Physical-Layer Cross-Technology Commu-
nication via Emulation,” in MobiCom, 2017.

[25] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, “B2W2: N-Way
Concurrent Communication for IoT Devices,” in ACM Conference on
Embedded Network Sensor Systems, 2016.

[26] X. Guo, Y. He, X. Zheng, Z. Yu, and Y. Liu, “LEGO-Fi: Transmitter-
Transparent CTC with Cross-Demapping,” IEEE Internet of Things
Journal, vol. 8, no. 8, 2021.

[27] Z. Li and Y. Chen, “BlueFi: Physical-Layer Cross-Technology Commu-
nication from Bluetooth to WiFi,” in ICDCS, 2020.

[28] W. Jiang, Z. Yin, R. Liu, Z. Li, S. M. Kim, and T. He, “Boosting
the Bitrate of Cross-Technology Communication on Commodity IoT
Devices,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, 2019.

[29] W. Jiang, S. M. Kim, Z. Li, and T. He, “Achieving Receiver-Side Cross-
Technology Communication with Cross-Decoding,” in International
Conference on Mobile Computing and Networking, 2018.

[30] J. Shi, D. Mu, and M. Sha, “Enabling Cross-technology Communication
from LoRa to ZigBee via Payload Encoding in Sub-1 GHz Bands,” ACM
Transactions on Sensor Networks, vol. 18, no. 1, 2021.

[31] ——, “LoRaBee: Cross-Technology Communication from LoRa to
ZigBee via Payload Encoding,” in ICNP, 2019.

[32] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks through Autonomously Scheduled TSCH,” in
SenSys, 2015.

[33] Contiki OS. [Online]. Available: https://github.com/contiki-os/contiki
[34] Orchestra Source Code. [Online]. Available:

https://github.com/simonduq/orchestra
[35] “Wireless Embedded System Testbed at the State Univer-

sity of New York at Binghamton.” [Online]. Available:
https://users.cs.fiu.edu/˜msha/testbed.htm

[36] TelosB Mote Platform. [Online]. Available:
https://www.cs.albany.edu/˜jhh/Resources/TelosB Datasheet.pdf

[37] WiMOD iM282A Datasheet. [Online]. Available: https://wireless-
solutions.de/wp-content/uploads/2019/02/iM282A Datasheet V1 0.pdf

[38] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A Centralized
Scheduling Algorithm for IEEE 802.15.4e TSCH Based Industrial Low
Power Wireless Networks,” in WCNC, 2016.

[39] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On Optimal Scheduling in Duty-Cycled Industrial IoT
Applications Using IEEE 802.15.4e TSCH,” IEEE Sensors Journal,
vol. 13, no. 10, 2013.

[40] E. Municio and S. Latré, “Decentralized Broadcast-Based Scheduling
for Dense Multi-Hop TSCH Networks,” in MobiArch, 2016.

[41] A. Aijaz and U. Raza, “DeAMON: A Decentralized Adaptive Multi-
Hop Scheduling Protocol for 6TiSCH Wireless Networks,” IEEE Sensors
Journal, vol. 17, no. 20, 2017.

[42] J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed Graph Routing
and Scheduling for Industrial Wireless Sensor-Actuator Networks,” in
ICDCS, 2018.

[43] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous Link-based Cell
Scheduling for TSCH,” in IPSN, 2019.

[44] X. Cheng and M. Sha, “ATRIA: Autonomous Traffic-Aware Scheduling
for Industrial Wireless Sensor-Actuator Networks,” in ICNP, 2021.

[45] R. Singh, M. Baz, C. Narayana, M. Rashid, A. Gehlot, S. V. Akram, S. S.
Alshamrani, D. Prashar, and A. S. AlGhamdi, “Zigbee and Long-Range
Architecture Based Monitoring System for Oil Pipeline Monitoring with
the Internet of Things,” Sustainability, vol. 13, no. 18, 2021.

