
Cracking the Channel Hopping Sequences in IEEE
802.15.4e-Based Industrial TSCH Networks

Xia Cheng

Department of Computer Science

State University of New York at

Binghamton

xcheng12@binghamton.edu

Junyang Shi

Department of Computer Science

State University of New York at

Binghamton

jshi28@binghamton.edu

Mo Sha

Department of Computer Science

State University of New York at

Binghamton

msha@binghamton.edu

ABSTRACT
Industrial networks typically connect hundreds or thousands of

sensors and actuators in industrial facilities, such as manufacturing

plants, steel mills, and oil refineries. Although the typical industrial

applications operate at low data rates, they pose unique challenges

because of their critical demands for reliable and real-time com-

munication in harsh industrial environments. IEEE 802.15.4 based

Wireless Sensor-Actuator Networks (WSANs) technology is ap-

pealing for use to construct industrial networks because it does

not require wired infrastructure and can be manufactured inexpen-

sively. Battery-powered wireless modules easily and inexpensively

retrofit existing sensors and actuators in industrial facilities with-

out running cables for communication and power. To address the

stringent real-time and reliability requirements, WSANs made a set

of unique design choices such as employing the Time-Synchronized

Channel Hopping (TSCH) technology that distinguish themselves

from traditional wireless sensor networks that require only best

effort services. The function-based channel hopping used in TSCH

simplifies the network operations at the cost of security. Our study

shows that an attacker can reverse engineer the channel hopping

sequences by silently observing the channel activities and put the

network in danger of selective jamming attacks. To our knowledge,

this paper represents the first systematic study that investigates the

security vulnerability of TSCH channel hopping in IEEE 802.15.4e

under realistic traffic. In this paper, we demonstrate the process of

cracking the TSCH channel sequences, present two case studies

using publicly accessible TSCH implementations (developed for

Orchestra and WirelessHART), and provide a set of insights.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Net-
works→ Link-layer protocols;

KEYWORDS
Time-Synchronized Channel Hopping, Selective Jamming Attack,

IEEE 802.15.4e, Industrial Wireless Sensor-Actuator Networks

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00

https://doi.org/10.1145/3302505.3310075

ACM Reference Format:
Xia Cheng, Junyang Shi, and Mo Sha. 2019. Cracking the Channel Hopping

Sequences in IEEE 802.15.4e-Based Industrial TSCH Networks. In IoTDI ’19:
Internet of Things Design and Implementation, April 15–18, 2019, Montreal,
QC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3302505.3310075

1 INTRODUCTION
The Internet of Things (IoT) refers to a broad vision whereby things,

such as everyday objects, places, and environments, are intercon-

nected with one another via the Internet [31]. Until recently, most

of the IoT infrastructures and applications developed by businesses

have focused on smart homes and wearables. However, it is the

“production and manufacturing” IoT, which underlies the Fourth

Industrial Revolution (or Industry 4.0), that promises to be one of

the largest potential economic effects of IoT [43] — up to $47 trillion

in added value globally by 2025, according to McKinsey’s report on

future disruptive technologies [24].

Industrial networks, the underlying support of industrial IoT,

typically connect hundreds or thousands of sensors and actuators

in industrial facilities, such as manufacturing plants, steel mills, oil

refineries, and infrastructures implementing complex monitoring

and control processes. Although the typical industrial applications

operate at low data rates, they pose unique challenges because of

their critical demands for reliable and real-time communication

in harsh industrial environments. Failure to achieve such perfor-

mance can lead to production inefficiency, safety threats, and fi-

nancial loss. These requirements have been traditionally met by

specifically chosen wired solutions, e.g., the Highway Addressable

Remote Transducer (HART) communication protocol [13], where

cables connect sensors and forward sensor readings to a control

room where a controller collects sensor readings and sends com-

mands to actuators. However, wired networks are often costly to

deploy and maintain in industrial environments and difficult to

reconfigure to accommodate new production requirements. IEEE

802.15.4-based Wireless Sensor-Actuator Networks (WSANs) tech-

nology is appealing for use in industrial applications because it does

not require wired infrastructure and can be manufactured inexpen-

sively. Battery-powered wireless modules easily and inexpensively

retrofit existing sensors and actuators in industrial facilities without

running cables for communication and power.

There have been two major technology breakthroughs in in-

dustrial WSANs. An initial breakthrough came in 1997 from the

UC Berkeley’s Smart Dust project [28], which demonstrated tiny,

low-power motes could sense, compute, and communicate through

wireless mesh networks. A second breakthrough came in 2006

with the time-synchronized mesh protocol (TSMP) [29] with a core

https://doi.org/10.1145/3302505.3310075
https://doi.org/10.1145/3302505.3310075
https://doi.org/10.1145/3302505.3310075

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

technology of Time-Synchronized Channel Hopping (TSCH): All

devices in a network are time synchronized and hop channels to

exploit frequency diversity. The TSCH technology was adopted by

the leading industrial WSAN standards (WirelessHART [49] and

ISA100 [15]) and the one being standardized by IETF (6TiSCH [14]).

A decade of real-world deployments of WirelessHART and ISA100

have demonstrated the feasibility of using TSCH-based WSANs to

achieve reliable low-power wireless communication in industrial

facilities. Therefore, TSCH was amended into the IEEE 802.15.4e

standard in 2012 [1] as a mode to support industrial or embedded

applications with critical performance requirements.

To address the stringent real-time and reliability requirements,

TSCH made a set of unique design choices that distinguish itself

from traditional Medium Access Control (MAC) protocols designed

for the Wireless Sensor Networks (WSNs) that require only best

effort services [22]. Specifically, TSCH divides time into slices of

fixed length that are grouped in a slotframe. Nodes are synchro-

nized and share the notion of a slotframe that repeats over time.

Frequency diversity is used to mitigate effects of multipath fading

and to improve the robustness and the network capacity. Channel

hopping is achieved by sending successive packets on different

frequencies. All devices in the network compute the channel hop-

ping sequences by following a function. TSCH’s function-based

channel hopping simplifies the network operations at the cost of

security. Our study shows that an attacker can reverse engineer

the channel hopping sequences by silently observing the channel

activities and put the network in danger of selective jamming at-

tacks, where the attacker jams only the transmission of interest on

its specific communication channel in its specific time slot, which

makes the attacks energy efficient and hardly detectable. The selec-

tive jamming attacks are more severe threats in WSANs compared

to the simple jamming attacks, because jamming a channel or the

whole spectrum continuously can be easily detected and located

by a wireless intrusion prevention system (WIPS) [34, 50, 51, 54].

Many countermeasures have been developed in the WSN litera-

ture to minimize the damage, such as adjusting routing [7, 16, 52].

However, the existing approaches may fail to detect more stealthy

attacks such as selective jamming attacks, because the transmission

failures caused by the attacks only happen occasionally and are

buried in the normal fluctuations of low-power links.

To our knowledge, this paper represents the first systematic

study that investigates the security vulnerability of TSCH channel

hopping in IEEE 802.15.4e under realistic settings. The contributions

of this work are three-fold:

• We present the security vulnerability of TSCH channel hop-

ping in IEEE 802.15.4e by demonstrating the process of crack-

ing the channel hopping sequences;

• We perform two case studies using publicly accessible TSCH

implementations
1
;

• We provide a set of insights distilled from our analysis and

case studies to secure the network by increasing the cracking

difficulty.

1
To avoid bias in our attack design and experiments, we use the implementations

provided by the third party researchers in our case studies and have different authors

to design the attacking program and configure the networks to collect data traces.

The remainder of the paper is organized as follows. Section 2 intro-

duces the background of TSCH channel hopping. Section 3 presents

the security vulnerability by demonstrating the cracking process.

Section 4 and Section 5 describe two case studies. Section 6 presents

our lessons learned. Section 7 reviews related work. Section 8 con-

cludes the paper.

2 BACKGROUND ON TSCH CHANNEL
HOPPING

To provide time-deterministic packet deliveries and combat narrow-

band interference and multi-path fading, TSCH combines time-

slotted MAC access, multi-channel communication, and channel

hopping. TSCH divides time into slices of fixed length that are

grouped in a slotframe. Each time slot is long enough to deliver a

data packet and an acknowledgement between a pair of devices.

Nodes are synchronized and share the notion of a slotframe that

repeats over time. Channel hopping is achieved by sending suc-

cessive packets on different frequencies. TSCH uses the channel

hopping sequences, which are fixed and known by all devices in

the network, instead of using the pseudo-random ones to minimize

the channel synchronization overhead. Initially, 16 different chan-

nels are available for communication. Each channel is identified

by ChannelO f f set . However, some of these frequencies could be

blacklisted due to low-quality communication and, hence, the total

number of channels Nchannel used for channel hopping may be

fewer than 16. In TSCH, a link is defined as the pairwise assignment

of directed communication between two nodes in a given time slot

on a given channel offset. Hence, a link between two communicat-

ing nodes can be represented by a pair of values that specifies the

time slot in the slotframe and the channel offset used by the nodes

in that time slot. Let [n,ChannelO f f set] denote a link between two
nodes. Then the communication frequency (channel) to be used for

communication in time slot n of the slotframe is derived as

f = F [(ASN +ChannelO f f set)%Slenдth] (1)

whereASN is the Absolute Slot Number, defined as the total number

of time slots elapsed since the start of the network, and “%” is the

modulo operator. F is a lookup table that contains a sequence of

available physical channels. Slenдth is the length of the sequence.

Please note that Slenдth may be larger than Nchannel , implying

that some channels appear multiple times in the table F . The first
device in the network sets ASN to 1 and the newcomers learn ASN
from the existing devices. Each device in the network increments

ASN at every time slot and uses it as a global time slot counter.

Eq. 1 defines the TSCH channel hopping mechanism by returning

a different channel for the same link (ChannelO f f set) at different
time slots. Many links can transmit simultaneously in the same time

slot, provided that they are assigned with differentChannelO f f set .
Figure 1 shows an example where the network consists of four

links and uses three channels. Each link has been assigned with

a ChannelO f f set (0, 1, or 2) that represents channel 24, 25, or 26
in F and each node keeps tracking ASN . In each time slot, the

sender and receiver of an active link use Eq. 1 to compute their

communication channel. The table in Figure 1 lists the channel

hopping sequence for each link. For example, node b and node a
use the channel 25 ((ChannelO f f set + ASN)%3 = 1) to transmit

Cracking the Channel Hopping Sequences in TSCH Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Figure 1: Example channel hopping sequences with 3 chan-
nels used. The numbers beside each link indicate the
ChannelO f f set assigned to that link.

and receive data in time slot 1 if link b → a is active in that slot.

The transmission scheduler that runs on top of the MAC layer

is responsible for deciding which set of links should be active in

each time slot. The underlined numbers in Figure 1 describe an

example schedule of active links, which allows node a to collect

readings from the rest of the nodes in every four time slots. The

IEEE 802.15.4 standard specifies neither any scheduling algorithm

nor the way of generating physical channel sequence, but it defines

the abovementioned mechanism to execute a schedule provided by

the scheduler in the upper layer.

The function-based channel hopping used in TSCH simplifies the

network operations because there is no need for the network device

to synchronize the channel. In a conventional TSCH network, each

node learns the current ASN and the channels used in the network

from its neighbors upon joining the network, and then uses those

information to generate a channel hopping sequence, typically until

it leaves the network. However, the channel sequences generated

by TSCH present a strong pattern, which introduces a security vul-

nerability to the network. We will present how an attacker derives

the channel hopping sequences without knowing any parameter of

Eq. 1 in the following section.

3 VULNERABILITY ANALYSIS
We let ASN = Ns ∗ N + X and rewrite Eq. 1 as

f = F [(Ns ∗ N + X +ChannelO f f set)%Slenдth] (2)

where Ns is the number of time slots in the combined slotframe
2
, N

is the number of slotframes elapsed since the start of the network,

and X is the time slot offset in the combined slotframe. In this

section, we demonstrate how an attacker, without any prior knowl-

edge on the operating network (any parameter of Eq. 2), cracks

the channel hopping sequences by silently observing the channel

activities.

The attacker is assumed to be a device that is capable of mon-

itoring all transmission activities on all 16 channels in 2.4 GHz

ISM band in the network and has moderate computational capabil-

ity (e.g., a Raspberry Pi 3 Model B [26] integrating with a Wi-Spy

USB Spectrum Analyzer [47]). Today, many TSCH networks are

deployed in open fields to support wireless monitor and control

applications (e.g., in oil drilling plants). The attacker may be de-

ployed or airdropped into the field and powered by batteries or

energy harvesting. The intention of the attacker is to reverse en-

gineer the channel hopping sequences by silently observing the

2
TSCH allows the upper layer protocol to define more than one type of slotframes. All

slotframes are merged into a single combined slotframe for execution at runtime.

channel activities and then launch selective jamming attacks, where

the attacker jams only the transmission of interest on its specific

communication channel in its specific time slot. Please note that

the IEEE 802.15.4 standard leaves the upper layer protocol to decide

whether to encrypt the parameters in Eq. 1 during transmissions.

However, leaving it unprotected makes the problem trivial and the

networks vulnerable to attacks. Therefore, in this paper, we assume

that the parameters in Eq. 2 are encrypted and the attacker can

only get information from the unencrypted MAC message header
3

and cannot understand the encrypted payload that stores ASN ,

ChannelO f f set , and Slenдth .
TSCH allows a transmitter to skip some scheduled transmissions

at runtime (e.g., skipping the retransmission if the first attempt

succeeds, skipping the routing traffic if no update is needed), signif-

icantly increasing the difficulty of cracking. We start our analysis

from a basic case where transmitters transmit packets in all sched-

uled slots (ideal case) and then extend our analysis to a realistic

case where transmitters may skip some time slots with scheduled

transmissions (realistic traffic).

3.1 Cracking the Channel Hopping Sequences
in the Ideal Case

In this case, we assume that all devices transmit packets in their

scheduled time slots and the attacker begins to eavesdrop on the

channels in the time slot S1. The encrypted ASN of slot S1 is un-
known to the attacker. Here are the key steps on how an attacker

cracks the channel hopping sequences, identifies the slots with

scheduled transmissions in the slotframe, and predicts the future

channel usage:

(1) Grouping the eavesdroppedpackets: The attacker snoops
the channels and groups the eavesdropped packets based on

their source and destination addresses stored in the unen-

crypted MAC message headers. The attacker then identifies

the channel usage sequence of each network device.

(2) Identifying the least common multiple of Ns and
Slenдth (denoted as LCM(Ns , Slenдth)): According to Eq. 2,
each network device must use the same channel in the time

slot S1 and S
1+LCM (Ns ,Slenдth), S2 and S

2+LCM (Ns ,Slenдth),

· · · . In other words, the channel hopping sequence used

by each device repeats in every LCM(Ns , Slenдth) time

slots. Based on each network device’s channel usage se-

quence, the attacker identifies its usage repetition cycle

and measures its time duration Tr epetit ion . The attacker

can also derive the length of a time slot Tslot by mea-

suring the minimum time duration between the start of

two consecutive transmissions. Finally, the attacker gets

LCM(Ns , Slenдth) = Tr epetit ion/Tslot . Please note that the
measured Tr epetit ion of some network devices may be less

than LCM(Ns , Slenдth) ∗Tslot , thus the attacker should use

the largest value among all measured Tr epetit ion .
(3) Identifying the time slots with scheduled transmis-

sions: From the eavesdropped transmission activities, the

attacker identifies the time slots that are scheduled for trans-

missions in the slotframe.

3
Due to the overhead concern, IEEE 802.15.4e does not require any encryption to the

MAC message header.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

Figure 2: Section 3.1 example: four slots in the slotframe,
three channels (24, 25, and 26) used in the network, and four
transmissions scheduled in each slotframe.

Table 1: Channel Offset Table (P increases by 1 every 12
slots).

Link Slot No. Channel Link Slot No. Channel

b->a 12*P+3 26 c->a 12*P+2 26

b->a 12*P+7 24 c->a 12*P+6 24

b->a 12*P+11 25 c->a 12*P+10 25

d->c 12*P+4 26 e->c 12*P+1 24

d->c 12*P+8 24 e->c 12*P+5 25

d->c 12*P+12 25 e->c 12*P+9 26

(4) Creating a channel offset table: The goal of cracking the

channel hopping sequences by an attacker is to predict the

future channel usage and then perform selective jamming

attacks. Thus, there is no need for an attacker to obtain

the actual values of F , Slenдth , N , X , andChannelO f f set in
Eq. 2. The attacker can assume the time slot S1 is the first slot
in the slotframe and set N = 0, and then create a table that

pairs each time slot with scheduled transmission (between

slot S1 and SLCM (Ns ,Slenдth)) to a channel for each link.

After deriving LCM(Ns , Slenдth), the time slots with scheduled

transmissions in the slotframe, and the channel offset table, the

attacker knows the exact channel hopping sequence of each link in

future, and thus can perform precise strikes to any transmission of

interest. The channel hopping sequences can be cracked without

error within the bounded time 2 ∗ LCM(Ns , Slenдth) ∗Tslot
4
.

We use an example to illustrate the cracking process. We assume

that an attacker is placed in the network presented in Figure 1 and

begins to snoop the channels when ASN = 3. The attacker does

not know ASN and assumes P = 0. After snooping for a while,

the attacker observes some activities on three channels (channel

24, 25, and 26) and finds that the channel usage repeats in ev-

ery 12 time slots, as Figure 2 shows. The attacker then derives

LCM(Ns , Slenдth) = 12 and finds out that all four slots are sched-

uled with transmissions. Finally, the attacker generates Table 1 and

uses it to predict the channel usage for each link in future slots.

3.2 Cracking the Channel Hopping Sequences
under Realistic Traffic

In this case, the attacker cannot easily derive LCM(Ns , Slenдth)
by identifying the channel usage repetition, because a transmitter

may skip some scheduled time slots at runtime, which breaks the

repetition pattern. The realistic traffic poses a significant challenge

4
We assume that the attacker needs to snoop 2 ∗ LCM (Ns , Slenдth) slots to confirm
the channel usage repetition cycle.

Algorithm 1: Ns Identification Algorithm

Input :TSUR[]
Output :Ns

1 Initialize Density[] to 0 and Position[][] to 0;

2 for i = 1; i ≤ Nu ; i + + do
3 for j = 1; j ≤ Nr ; j + + do
4 if Position[i][TSUR[j]%i] == 0 then
5 Position[i][TSUR[j]%i] = 1;

6 Density[i] = Density[i] + 1/i;

7 end
8 end
9 end

10 Output k (Density[k] is the smallest value in Density[]);

Figure 3: Algorithm execution example (i = 4 and TSUR[] =
{1, 5, 10, 14, 17, ...}).

for the attacker to derive Ns , because it cannot easily pinpoint the

beginning and the end of a channel usage repetition cycle. However,

we find that the attacker is able to accomplish the cracking by

employing a “trial-and-error” learning method. Algorithm 1 shows

the method that derives Ns . Please note that the attacker does not

know ASN because it does not know when the network starts.

Instead of using ASN , the attacker defines OSN (Observation Slot

Number) and sets the first observed time slot S1 with OSN = 1.

If the attacker observes the actual transmission in a time slot, it

adds its OSN value into the array, named TSUR (Time Slot Usage

Record). The TSUR array is the input of Algorithm 1. Nr denotes

the number of usage records that the attacker collects (number of

elements in TSUR[]). Algorithm 1 first defines a one-dimensional

array Density and a two-dimensional array Position with initial

values (line 1). Each element Density[i] stores the weighting factor

and helps the attacker to identify the likelihood of i being Ns . Each

element Position[i][j] indicates whether the time slot with offset j
is scheduled for transmission by assuming i = Ns .

The two-level nested loop computes the Density value for

each possible value of Ns according to TSUR[] (line 2 – 9). The

outside loop traverses all possible values of Ns (from 1 to Nu),
where Nu is the upper bound of Ns . The inside loop traverses all

records in TSUR[] (from 1 to Nr). At each iteration, Algorithm 1

marks the time slots with scheduled transmissions with 1 in the

Position[i][] array by assuming i = Ns (line 4 – 7). TSUR[j]%i in-
dicates the corresponding slot offset for the record TSUR[j] when
applying it to a slotframe that consists of i slots. If the offset

(Position[i][TSUR[j]%i]) has not been previously labeled by any

record, Algorithm 1 marks it with 1 (line 5) and increasesDensity[i]
by 1/i (line 6). As an example, Figure 3 illustrates the first five it-

erations of the inside loop when i = 4 in Algorithm 1. In the first

Cracking the Channel Hopping Sequences in TSCH Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

iteration, TSUR[1] = 1, so the condition Position[4][1%4] == 0

is met. Position[4][1] is then set to 1 and Density[4] increases by
1/i = 1/4. In the second iteration, TSUR[2] = 5, so the condition

Position[4][5%4] == 0 is not met. Density[4] does not change. Sim-

ilarly, Density[4] increases by 1/4 in the third iteration and does

not change in the fourth and fifth iterations. After the outside loop

exits, Algorithm 1 outputs the array index with the smallest value

in Density array. The index is either Ns or a multiple of Ns
5
. In

other words, the output of Algorithm 1 ∈ {m ∗ Ns |m ∈ N+}. We

prove the statement by contradiction.

Proof. We assume that there exists n (n%Ns , 0) and

Density[n] < Density[m ∗ Ns] (∀m ∈ N+) and separate the proof

into two cases: (1) Ns and n do not share any common factor and

(2) Ns and n share at least one common factor.

Case 1: We assume that the first element in the Position[][] array
marked as 1 by Algorithm 1 when i = n is Position[n][p]. Since
Ns and n do not share any common factor, Algorithm 1 marks

Position[n][p], Position[n][(p + Ns)%n], ..., Position[n][(p + (n −

1)Ns)%n] as 1 after executing the line 3–8 if there are sufficient

observations in TSUR[]. After Algorithm 1 exits, the first n ele-

ments of Position[n][] are all marked as 1. So we have Density[n] =
100% ≥ Density[Ns], contradicting the assumption.

Case 2: We assume that there exists n that shares at least one

common factor with Ns and the largest common factor (LCF) of

Ns and n is LCF (Ns ,n). We divide the slotframe consisting of Ns
slots into

Ns
LCF (Ns ,n)

blocks, each of which has LCF (Ns ,n) slots.

We then divide the slotframe into
n

LCF (Ns ,n)
blocks, each of which

has LCF (Ns ,n) slots. We define the densities of the blocks in the

slotframe with Ns slots as: ρ1, ρ2, ρ3, ..., ρ Ns
LCF (Ns ,n)

. Similarly, we

define the densities of the blocks in the slotframe with n slots as:

ρ ′
1
, ρ ′

2
, ρ ′

3
, ..., ρ ′ n

LCF (Ns ,n)
. We now treat each block as a single unit.

Ns
LCF (Ns ,n)

and
n

LCF (Ns ,n)
do not share any common factor. So we

can convert Case 2 into Case 1. In the fourth line of Algorithm 1,

when i = n, it maps each element in TSUR[] to a block in the

slotframe consisting of n slots (TSUR[]%n). According to the proof

for Case 1, all
n

LCF (Ns ,n)
blocks are eventually marked by all blocks

in the slotframe consisting of Ns slots after Algorithm 1 finishes

executing the line 3–8 if there are sufficient observations inTSUR[].
So we have

ρ ′x ≥ max{ρ1, ρ2, ρ3, ..., ρ Ns
LCF (Ns ,n)

} (∀x ∈ [1, 2, 3, ...,
n

LCF (Ns ,n)
])

and then the density of the slotframe when assuming the slotframe

has n slots is

Density[n] =

ρ ′
1
+ ρ ′

2
+ ρ ′

3
+ ... + ρ ′ n

LCF (Ns ,n)
n

LCF (Ns ,n)

≥
n

LCF (Ns ,n)
×

max{ρ1, ρ2, ρ3, ..., ρ Ns
LCF (Ns ,n)

}

n
LCF (Ns ,n)

=max{ρ1, ρ2, ρ3, ..., ρ Ns
LCF (Ns ,n)

}

≥

ρ1 + ρ2 + ρ3 + ... + ρ Ns
LCF (Ns ,n)

Ns
LCF (Ns ,n)

= Density[Ns]

5
Using Ns or a multiple of Ns to generate the channel offset table are functionally

equivalent for the attacker. The only difference is the size of channel offset table.

Figure 4: Testbed consisting of 50 TelosB motes.

So we have Density[n] ≥ Density[Ns], contradicting the assump-

tion.

With the proof for both cases, we finish the proof by contradic-

tion. ■

The time complexity of Algorithm 1 to derive Ns is O(Nu ∗ Nr).

If the attacker uses a constant Nu , the time complexity becomes

O(Nr). Please note that there is no need to rerun Algorithm 1 when

the attacking program obtains new records. The attacking program

can only take the new records as input and process them (executing

line 2 – 9) based on the existing Density array and Position array.

After obtaining Ns (or its multiple), the attacker can identify

the repetition cycle LCM(Ns , Slenдth) by exploring all possible

Slenдth values. If every two transmissions with a time interval of

LCM(Ns ,M) slots always use the same channel, LCM(Ns ,M) can

be used as the repetition cycle. The attacker then follows the same

methods presented in Section 3.1 to identify the time slots with

scheduled transmissions, and generate the channel offset table.

4 CASE STUDY ON ORCHESTRA
In this section, we present our case study on cracking the chan-

nel hopping sequence of the TSCH implementation [9] in Contiki

operating system [8] developed for Orchestra [11] and 6TiSCH

networks [14]
6
. Orchestra proposes an autonomous transmission

scheduling method running on top of RPL [37] and TSCH networks.

Each node computes its transmission schedule locally based on its

routing state andMAC address. All nodes running Orchestra change

the channels together following the TSCH channel hopping method

(Eq. 2). Orchestra employs three types of slotframes for three differ-

ent kinds of traffic: application, routing, and time synchronization.

Different types of slotframes are assigned with different lengths.

Orchestra allows Slenдth to be larger than Nchannel .

4.1 Experimental Methodology
We run the experiments on a testbed that consists of 50 TelosB

motes [42] deployed on a single floor of an office building [38].

Figure 4 plots the testbed topology. We configure the network

to have a single access point and 49 network devices operating

on four channels (the default value in Orchestra). The slotframe

lengths for application, routing, and time synchronization are 47,

31, and 61, respectively. The combined slotframe has 88,877 time

slots in total. Each network device generates a packet every 20s . The

6
The implementation is provided by Duquennoy et al. and is publicly accessible [10].

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

Figure 5: Cracking performance on Orchestra with different snooping periods.

attacking program runs on a Raspberry Pi equipped with a 1.2GHz

64-bit quad-core processor and 1.0 GB memory. We perform three

sets of experiments. We first measure the prediction performance

and cracking time when the attacker snoops different amount of

time before launching the attack. We then examine the impact of

slotframe length on the cracking performance. Finally, we study

the cracking performance when employing a tailored version of the

attacking program to Orchestra. We record all the channel activities

during the experiments and use them as the the ground truth.

4.2 Cracking Performance with Different
Snooping Periods

We configure the attacking program to start cracking after snoop-

ing the channel activities during a certain number of time slots

(snooping period). We vary the length of snooping period from

88,877 slots (1 combined slotframe) to 2,133,048 slots (24 combined

slotframes). The channel usage during the snooping period is used

as the training set and the channel usage of the next 1,599,786

slots (18 combined slotframes) is taken as the validation set. Our

cracking program provides predicted Ns and LCM(Ns , Slenдth),
identifies the future slots with scheduled transmissions, and pre-

dicts the channels used by future transmissions. We compare the

predicted transmission activities and their channels against the

ground truth in the validation set. If the predicted time slots with

transmissions (and corresponding channels) and the ones without

transmissions match the ground truth, they are labeled as True

Positive (TP) and True Negative (TN), respectively. The wrong pre-

dictions are marked as False Positive (FP) and False Negative (FN).

After labeling all predictions, we compute the True Positive Rate

(TPR = TP/(TP+FN)), True Negative Rate (TNR = TN /(TN+FP)),
Accuracy (Accuracy = (TP +TN)/(TP + FN + FP +TN)), and Pre-

cision (Precision = TP/(TP + FP)).
Figure 5 plots TPR, TNR, and Accuracy of the predictions with

different amount of training data (snooping period). As Figure 5

shows, TPR and Accuracy are small (9.65% and 15.55% for TPR,

29.03% and 33.22% for Accuracy) when the eavesdropped number of

slots are 88,877 and 177,754 (first two sets of bars). Without enough

observations, the cracking program provides a wrong Ns , making

the predictions very inaccurate. TPR and Accuracy increase sharply

to 60.91% and 90.65%, respectively, when there are 266,631 slots (3

combined slotframes) in the training set. Although the predicted

Ns provided by the cracking program is still incorrect, it shares

a common factor with the actual value, resulting in some correct

prediction on the future channel usage. TPR and Accuracy then

Figure 6: Cracking time with different length of snooping.

increase slowly when the training set is increasing from 266,631 to

711,016 eavesdropped time slots. TPR and Accuracy reach 85.15%

and 94.18% with 799,893 eavesdropped slots, providing accurate

prediction on the channel usage. This is because the training set

includes enough observations for the attacking program to produce

the correct Ns leading to accurate channel usage prediction. After

that, the increases of TPR and Accuracy become moderate when

the training set is larger than 1,777,540 slots (TPR ranging from

96.09% to 97.20% and Accuracy ranging from 97.03% to 97.31%). We

observe a similar trend on TNR.

Figure 6 shows the time consumed by the attacking program

to crack the channel hopping sequence
7
. The time consumption

increases linearly from 924s (88,877 slots) to 13430s (2,133,048 slots),
which accords with the O(Nr) time complexity of Algorithm 1.

Observation 1: An attacker can predict the TSCH channel hopping
sequences accurately under realistic traffic.

Observation 2: A sudden increase on prediction accuracy does not
warrant a correct predicted Ns .

Observation 3: The attacker can predict the channel usage accu-
rately when the observations are large enough to derive Ns . After
that, more observations are desired to further improve the prediction
accuracy with small additional value.

4.3 Impact of Slotframe Length
To explore the impact of slotframe length on the cracking difficulty,

we perform five sets of experiments and increase the length of the

combined slotframe roughly 10 times for each set (from 54 slots

to 578,429 slots). Table 2 lists the number of slots in each type of

slotframe as well as the product and LCM of them. In each set of

experiments, we run the experiments three times with different

7
The snooping period is not added into the result.

Cracking the Channel Hopping Sequences in TSCH Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

(a) TPR and Precision. (b) Time Consumption.

Figure 7: Cracking performance with different slotframe length.

Table 2: Slotframe Composition.

No. Syn Routing App Product LCM

1 27 9 18 4374 54

2 21 10 20 4200 420

3 23 11 17 4301 4301

4 53 23 37 45103 45103

5 397 31 47 578429 578429

amount of training data, namely eavesdropped with 5,000, 30,000,

and 150,000 time slots. We use the next 45,000 slots for validation.

Figure 7(a) plots TPR and Precision of the predictions with dif-

ferent combined slotframe lengths. As Figure 7(a) shows, TPR and

Precision decrease when the slotframe length becomes larger. For

example, with 5,000 eavesdropped time slots in the training data,

TPR and Precision are high (89.19% for TPR, 100% for Precision)

while the slotframe length is 54 slots. The slotframe length is so

short that such few observations are enough to identify the channel

usage repetition and provide a correct Ns . TPR decreases sharply to

40.16% when the slotframe length is 420 slots. Since the predicted

NS shares a common factor (210) with the correct one, Precision still

can reach 100%. With the slotframe length increasing from 4,301

to 578,429 slots, TPR and Precision decrease significantly (TPR

dropping from 35.75% to 13.12%, Precision dropping from 99.49%

to 89.04%), indicating that the eavesdropped slots are too short to

identify a complete channel usage repetition cycle. Similarly, with

30,000 eavesdropped slots in the training data, both TPR and Preci-

sion are 100% when the slotframe includes 54 or 420 slots. This is

because the eavesdropped activities are enough for Algorithm 1 to

produce the correct Ns and identify all scheduled slots. After the

slotframe length reaches 4,301 slots, TPR and Precision experience

a significant decrease (TPR ranging from 79.48% to 50.28%, Preci-

sion ranging from 83.69% to 61.13%), indicating the eavesdropped

slots are too short to identify a complete repetition cycle. A similar

trend is observed when there are 150,000 eavesdropped slots in the

training data.

Within each group of bars in Figure 7(a), TPR increases with

the training data size. For example, TPR increases from 35.75%

(5,000 eavesdropped slots) to 79.48% (30,000 eavesdropped slots),

and finally becomes 100% (150,000 eavesdropped slots), when the

slotframe length is 4,301 slots. 5,000 eavesdropped slots are too

short for Algorithm 1 to pinpoint a repetition cycle, while 30,000

eavesdropped slots are enough to provide the correct Ns . When

the training set includes 150,000 eavesdropped slots, it is large

enough to identify all slots with scheduled transmissions. Due to

insufficient observations, Precision decreases while TPR increases

for some group of bars. Precision drops from 89.04% (5,000 slots)

to 61.13% (30,000 slots), reaches 38.31% (150,000 slots) when the

slotframe length is 578,429 slots. The observations are insufficient

for the cracking program, so TPR increases at the cost of generating

more FP, making Precision decrease dramatically.

Figure 7(b) presents the time consumed by the attacking program

to crack the channel hopping sequences. In each set of experiments,

the time consumption increases approximately linearly with the

increase of eavesdropped time slots, confirming the time complexity

of Algorithm 1. For instance, the time consumption increases from

0.55s (5,000 slots) to 16.01s (30,000 slots), then to 122.20s (150,000
slots) when the slotframe length is 54 slots.

Observation 4: The combined slotframe length plays an important
role in keeping the channel hopping sequence unpredictable. A larger
slotframe significantly increases the cracking difficulty.

Observation 5: It is beneficial to use a prime number for each
slotframe length, which effectively enlarges the combined slotframe.

Observation 6: TPR may increase at the cost of decreasing Preci-
sion when the snooping period is smaller than the slotframe length.
A low precision caused by insufficient observations may expose the
attacker during jamming.

4.4 Impact of Strong Transmission Pattern
When performing the above experiments, we observe that there ex-

ist some time slots showing strong cyclic patterns of transmissions,

which help the attacking program to identify the repetition cycles.

The transmissions cyclic behavior is introduced by the scheduling

design in Orchestra. For example, a fixed and shared slot in the

routing slotframe is assigned for all network devices to exchange

routing related packets including the DODAG Information Object

(DIO) and Destination Advertisement Object (DAO) messages and

the device i uses the ith slot in the synchronization slotframe to

broadcast beacons and jth slot to receive beacons from its parent

(device j). After observing the patterns, the attacking program can

first extract the channel activities with these patterns from the

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

(a) TPR, Precision Comparison. (b) Time Consumption Comparison.

Figure 8: Cracking performance after removing the strong repetitions.

observations and then perform the cracking. We repeat the experi-

ments when applying this tailored attacking method. Figure 8(a)

compares TPR and Precision between the original attacking pro-

gram (Origin) and the tailored version (Acceleration) when the

length of the training set is 30,000 slots. TPR and Precision are 100%

for both methods when the slotframe length is 54 and 420 slots.

This is because these observations are enough for both methods to

derive the correct Ns . TPR and Precision of Acceleration are much

higher than Origin (100% and 100% for Acceleration, 79.48% and

83.69% for Origin) when the slotframe includes 4,301 slots. TPR and

Precision of Acceleration are also much higher when the slotframe

lengths are 45,103 and 578,429 slots. Figure 8(b) compares the time

consumption used by each method with 30,000 eavesdropped slots.

For each slotframe length, the time spent for cracking decreases

by more than 60% (e.g., from 5.55s to 1.85s for 578,429 slots) after
acceleration. Benefiting from the extraction, the actual combined

slotframe length decreases dramatically. The attacking program

therefore produces better cracking performance with less time con-

sumption.

Observation 7: The strong cyclic behavior of packet transmissions
significantly reduces the cracking difficulty.

4.5 Suggestions to Orchestra
Here are some suggestions gathered from our case study:

• It is beneficial to set three different prime numbers as the

lengths of the three slotframes in Orchestra. So the length

of the combined slotframe is large (LCM of those numbers),

significantly increasing the cracking difficulty. The larger

a combined slotframe is, the more time an attacker have

to spend on snooping and cracking. Orchestra’s decision

on using prime numbers as the lengths of the slotframes

significantly enhances the network security.

• It is beneficial to use multiple slotframes for application

traffic. So the length of the combined slotframe is enlarged

(LCM of those numbers), which significantly increases the

cracking difficulty.

• It is beneficial to randomize the distribution of the slots with

transmissions in each slotframe for routing and time synchro-

nization. The strong cyclic behavior of packet transmissions

greatly reduces the difficulty of cracking.

Table 3: Six data flows configured in WirelessHart network.

Flow Sensor Actuator Period Priority

1 147 146 320ms 1

2 144 143 640ms 2

3 105 104 1280ms 3

4 149 102 2560ms 4

5 136 135 5120ms 5

6 137 108 10240ms 6

5 CASE STUDY ONWIRELESSHART
In this section, we present our case study on cracking the channel

hopping sequence of the TSCH implementation in TinyOS operat-

ing system [18] developed for WirelessHART networks
8
[19–21].

Typically, a WirelessHART network consists of a gateway, multi-

ple access points, and a set of field devices (sensors and actuators)

forming a multi-hop mesh network. The network is managed by

a centralized network manager, a software module running on

the gateway, which is responsible for generating routes and trans-

mission schedules and maintaining the operation of the network.

Different fromOrchestra, all devices in theWirelessHART networks

follow the channel hopping sequences generated by the network

manager. To enhance the network utilization, the network man-

ager assigns different ChannelO f f sets to different links, allowing

up to Nchannels packets to be transmitted simultaneously in each

time slot. WirelessHART supports both source and graph routing.

Source routing provides a single route for each data flow, whereas

graph routing generates a reliable routing graph in which each de-

vice should have at least two neighbors to which they can forward

packets.

5.1 Experiment Methodology
We run the experiments on the same testbed and configure the

network to have two access points and 48 field devices operating

on four channels. As Table 3 lists, we set up six data flows with dif-

ferent sources, destinations, data periods, and priorities and employ

graph routing as well as the rate monotonic policy for transmission

scheduling. The slotframe lengths are 32, 64, 128, 256, 512 and 1,024

as suggested in the WirelessHART standard [49]. Therefore, the

8
The implementation is provided by Li et al. and is publicly accessible [46].

Cracking the Channel Hopping Sequences in TSCH Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

(a) TPR, TNR, and Accuracy. (b) Time consumption.

Figure 9: Cracking performance on WirelessHART with different snooping periods.

combined slotframe includes 1,024 time slots in total. A maximum

of three transmission attempts are scheduled for each packet. The

first two attempts go through the main route and the final attempt

uses the backup route in the routing graph. WirelessHART [49]

specifies that Slenдth is equal to Nchannel and every channel ap-

pears one time in F . We perform two sets of experiments. First,

we measure the prediction performance and cracking time when

the attacker snoops different amount of time before launching the

attack. Second, we vary Slenдth and investigate its impact on the

cracking difficulty. We use the same device to execute the attacking

program.

5.2 Cracking Performance with Different
Snooping Periods

In this set of experiments, we vary the size of the training set

(number of eavesdropped time slots) from 171,008 slots (167 com-

bined slotframes) to 2,048,000 slots (2,000 combined slotframes)

and use the channel activities during the next 1,707,008 slots (1667

combined slotframes) as the validation set. Figure 9(a) plots TPR,

TNR, and Accuracy. As Figure 9(a) presents, TPR and Accuracy are

low (80.30% and 86.09% for TPR, 90.95% and 93.38% for Accuracy)

when 171,008 and 342,016 time slots are eavesdropped (167 and

334 combined slotframes as presented as the first two sets of bars).

Without enough observations, the cracking program fails to derive

the correct Ns . However, the Ns produced by the attacking pro-

gram shares a common factor with the actual value, resulting in

some correct predictions on the future channel usage (TPRs higher

than 80%). Comparing Figure 9(a) and Figure 5, we observe that

the attacking program achieves much higher TPR and Accuracy

on WirelessHART than those on Orchestra with a similar amount

of eavesdropped time slots which is insufficient for Algorithm 1

to derive the correct Ns . This is because the number of slots in

each slotframe is specified to be 2
n
in WirelessHART, resulting in

a smaller combined slotframe and a short repetition cycle. In con-

trast, the default slotframe lengths of Orchestra are prime numbers,

leading to a significant larger slotframe. Therefore, it is harder for

the attacker to capture the repetition cycle. As Figure 9(a) shows,

TPR and Accuracy experience a quick rise when 512,000 slots has

been eavesdropped. TPR and Accuracy reach 96.98% and 98.54%,

providing very accurate predictions on the channel usage. The

training set is large enough for the attacking program to derive

the correct Ns and predict the channel usage. TPR and Accuracy

then increase slowly when the training set becomes larger (TPR

ranging from 96.98% to 99.78% and Accuracy ranging from 98.54%

to 99.80%). We observe consistent high TNRs, since most time slots

in the slotframe are not scheduled with transmissions.

Figure 9(b) shows the time consumed by the attacking program

to crack the channel hopping sequence
9
. The time consumption

increases linearly from 83.18s (171,008 slots) to 1037.47s (2,048,000
slots), which accords with the O(Nr) time complexity of Algo-

rithm 1.

Observation 8: The cracking difficulty depends highly on the
length of combined slotframe (LCM of different slotframe lengths).
The attacking program consumes more time when cracking larger
combined slotframe but provides less accurate predictions.

5.3 Impact of the Length of Sequence Slenдth
In this set of experiments, we increase Slenдth from 1 to 16 and

repeat the experiments. For all experimental executions, we con-

figure the attacking program to crack after snooping the channel

activities for 1,366,016 time slots (1,334 combined slotframes) and

use the following 1,366,016 slots for validation. Figure 10(a) plots

False Positive Rate (FPR = FP/(FP +TN)). As Figure 10(a) shows,

FPRs are 5.88%, 4.08%, 6.49%, and 8.33% when 13∼16 channels are

available in the network, higher than the ones with less channels.

Figure 10(b) plots the time consumed by the attacking program to

crack the channel hopping sequences with different Slenдth . The
time consumption increases from 768.53s with 1 channel, to 973.15s
with 9 channels, and finally reaches 1465.03s with 16 channels. The

results present that the cracking becomes more difficult when more

channels are used in the network. This is because the data flows

involve more hops when more channels are available for use [12],

resulting in more transmissions in each slotframe.

Observation 9: It is difficult to crack the channel hopping se-
quences when a large Slenдth is used in WirelessHART networks.

5.4 Suggestions to WirelessHART
Here are some suggestions gathered from our case study:

• The specification on using slotframes with 2
n
slots in Wire-

lessHART makes the channel hopping sequences easier to

9
The snooping period is not added into the result.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

(a) FPR. (b) Time consumption.

Figure 10: Cracking performance with different Slenдth in the network.

be derived. It is beneficial to use a prime number as the

slotframe length.

• It is beneficial to use more channels (increasing Slenдth),
which increases the cracking difficulty.

6 LESSONS LEARNED
In this section, we provide a series of insights on how to secure the

TSCH channel hopping based on our analysis and case studies.

6.1 Slotframe Length
As Figure 7(a) shows, the length of combined slotframe makes a

significant effect on the cracking difficulty. The larger the combined

slotframe is, the more difficult the cracking is. It is beneficial to set

the number of slots in different slotframes to be co-prime integers,

maximizing the length of combined slotframe. As an example, the

individual slotframes in the first three settings (listed in Table 2)

have similar lengths, but the cracking difficulty under the third

setting is much higher than the others, as Figure 7(a) shows. The

default slotframe lengths in Orchestra are prime numbers, while

the slotframes in WirelessHART include 2
n
slots, sharing common

factors with each other. Comparing Figure 9(a) against Figure 5,

cracking the channel hopping sequences in WirelessHART is much

easier than cracking Orchestra. Therefore, we would suggest em-

ploying multiple slotframes for different types of traffic, and even

for different data flows belonging to the same type of traffic, and

configuring the number of slots in each slotframe to be a prime

number. For instance, if 31, 61, 127, 257, 509, and 1,021 are used

as the slotframe lengths for the six data flows in WirelessHART

(replacing the setup in Section 5.1), the combined slotframe includes

more than 3.20 × 10
13

time slots. The attacker has to spend more

than 15,256 years to snoop a complete combined slotframe.

6.2 Repetition Pattern
The network device running Orchestra makes scheduling decisions

based on its MAC address with a fixed offset in each slotframe,

significantly making the channel usage repetition cycle detectable.

As Figure 8(a) and Figure 8(b) show, the strong cyclic behavior

of packet transmissions significantly reduces the cracking diffi-

culty. As a comparison, there is no strong pattern observed in

WirelessHART, which can be used by the attacker to speed up the

cracking. Therefore, we would suggest the designer of transmis-

sion scheduler avoid strong repetition pattern and randomize the

transmissions. For example, Orchestra can employ pseudo-random

numbers to randomize the transmission slots in the routing and

time synchronization slotframes.

6.3 Channel Diversity
Using more channels not only improves the network performance

but also enhances the channel hopping security. As Figure 10(a)

shows, the cracking difficulty increases when using more channels.

Moreover, the channel hopping sequence used by each device re-

peats in every LCM(Ns , Slenдth) time slots (Section 3.1). Hence, a

large Slenдth without any common factor with Ns significantly ex-

tends the repetition cycle, making it hard for an attacker to identify

the channel repetition pattern. Therefore, we would suggest using

all available channels and choose Ns without having a common

factor with Slenдth .

6.4 Link Setting
Orchestra specifies that all links associating with the same slot-

frame uses a singleChannelO f f set . This design not only limits the

network capacity but also significantly reduces the size of channel

offset table which is created andmaintained by the attacker. Because

of the small number of ChannelO f f set (up to three), the attacker

can perform the cracking very memory-efficiently. Therefore, we

would suggest using available ChannelO f f set (Slenдth).

7 RELATEDWORKS
Jamming attacks have been extensively studied in the WSN and

wireless mesh network literature. Simply jamming a channel or

the whole spectrum continuously can be easily detected and lo-

cated by a WIPS [23, 34, 50, 51, 54]. Many countermeasures have

been developed in the literature to minimize the damage. For in-

stance, countermeasure strategies (e.g., adapting frequencies/codes

to enforce spread-spectrum techniques) can be implemented in

the physical layer to make jamming too complicated to carry

out [5, 30, 39, 41, 54, 55]. Adjusting routing [7, 16, 25, 52], adapting

transmission power [53], hopping channel [17, 52], adding redun-

dancy [52], increasing randomness on channel access [3, 6, 44] have

been shown effective against jamming attacks. Compared to contin-

uous jamming, selective (reactive) jamming has been shown to be

Cracking the Channel Hopping Sequences in TSCH Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

much harder to detect [32, 33, 36, 39, 41, 48]. Selective jammers jam

wireless channels only when their target devices are transmitting

or specific packets of “high” importance are being transmitted, thus

making them active for a short period of time and expending orders

of magnitude with less energy. Recent studies have shown that

the selective jammers can be implemented on inexpensive com-

mercial off-the-shelf (COTS) platforms, making it a realistic threat

to wireless communications [32, 33, 36, 48]. However, the existing

solutions may fail to distinguish the damage caused by attacks from

the normal signal fluctuations, because the transmission failures

caused by the attacks happen occasionally and are buried in the

normal fluctuations of low-power links. In this paper, we consider

a specific kind of selective jamming, tailored to attack TSCH based

wireless networks, where jamming is selectively performed against

specific communication channels in specific slots. In contrast to

the previous studies [40, 45] that only analyzes the ideal case and

assumes Slenдth to be equal to Nchannel , this paper represents

the first systematic study that investigates the security vulnera-

bility of TSCH channel hopping in IEEE 802.15.4e under realistic

traffic. More important, this paper details a step-by-step attacking

approach and presents two case studies with real-world TSCH im-

plementations running on a physical testbed. The experimental

results show that an attacker can reverse engineer the channel hop-

ping sequences by silently observing the channel activities, making

selective jamming attack a realistic threat to the TSCH networks.

The current industrial WSAN standards (e.g., WirelessHART

and ISA100) equip many security features to protect the network

against such attacks as denial of service (DoS), MAC spoofing,

man in the middle (MITM), and authentication and encryption

cracking. There has been an increasing interest in investigating

security issues in those standards. For instance, Raza et al. analyzed

the potential attacks to WSANs and proposed a series of security

enhancement mechanisms for WirelessHart [35]. Alcazar et al. pre-

sented a series of vulnerabilities on the routing of WirelessHart

and ISA100 and proposed some countermeasures [2]. Pietro et

al. developed a distributed self-healing protocol to enhance the

intrusion-resilience [27]. Chakrabarty et al. proposed a software

defined networking (SDN) architecture to mitigate traffic analysis

and data gathering attacks [4]. IEEE 802.15.4 also provides security

features such as data confidentiality, data authenticity, and replay

protection of MAC frames. For example, the standard includes a se-

curity suite based on the Advanced Encryption Standard (AES) 128

bits symmetric-key cryptography and supports three different secu-

rity modes: encryption only (CTR), authentication only (CBC MAC),

and both encryption and authentication (CCM). Unfortunately, the

above security features cannot prevent an attacker from cracking

the channel hopping sequences by silently observing the channel

activities. Our work is therefore orthogonal and complementary.

8 CONCLUSIONS
Industrial IoT, underlying the Fourth Industrial Revolution (or Indus-

try 4.0), promises to be one of the largest potential economic effects

of IoT. IEEE 802.15.4-based WSANs technology is appealing for

use in industrial IoT applications because it does not require wired

infrastructure and can be manufactured inexpensively. Battery-

powered wireless modules easily and inexpensively retrofit existing

sensors and actuators in industrial facilities without running cables

for communication and power. To address the stringent real-time

and reliability requirements posed by industrial IoT applications,

WSANs made a set of unique design choices such as employing

TSCH that distinguish themselves from traditional WSNs that re-

quire only best effort services. The function-based channel hopping

in TSCH simplifies the network operations at the cost of security.

Our study shows that an attacker can reverse engineer the channel

hopping sequences by silently observing the channel activities and

put the network in danger of selective jamming attacks, bringing se-

vere threats into WSANs. This paper represents the first systematic

study that investigates the security vulnerability of TSCH channel

hopping in IEEE 802.15.4e under realistic traffic, demonstrates the

cracking process, and presents two case studies using publicly ac-

cessible TSCH implementations. Finally, this paper provides a set

of insights gathered from our analysis and case studies to secure

the TSCH channel hopping by increasing the cracking difficulty.

For future work, we plan to study how an attacker identifies the

key messages delivering in the network and launches the selective

jamming attacks. Once we fully understand the problem from an

attacker’s point of view, then we can develop strategies to efficiently

detect the selective jamming attacks and defense solutions in future.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers and the shepherd Brad

Campbell for their insightful comments. This work was supported

by the NSF through grant CRII-1657275 (NeTS).

REFERENCES
[1] 802.15.4e. 2013. IEEE802.15.4e WPAN Task Group. Retrieved September 28,

2018 from http://www.ieee802.org/15/pub/TG4e.html

[2] Cristina Alcaraz and Javier Lopez. 2010. A Security Analysis for Wireless Sensor

Mesh Networks in Highly Critical Systems. IEEE Transactions on Systems, Man,
and Cybernetics 40, 4 (July 2010), 419–428. https://doi.org/10.1109/TSMCC.2010.

2045373

[3] Farhana Ashraf, Yih-Chun Hu, and Robin H. Kravets. 2012. Bankrupting the

jammer in WSN. In Proceedings of the 2012 IEEE 9th International Conference on
Mobile Ad-Hoc and Sensor Systems (MASS) (MASS ’12). IEEE, Washington, DC,

USA, 317–325. https://doi.org/10.1109/MASS.2012.6502531

[4] Shaibal Chakrabarty, Daniel W. Engels, and Selina Thathapudi. 2015. Black SDN

for the Internet of Things. In Proceedings of the 2015 IEEE 12th International Confer-
ence on Mobile Ad Hoc and Sensor Systems (MASS) (MASS ’15). IEEE, Washington,

DC, USA, 190–198. https://doi.org/10.1109/MASS.2015.100

[5] Jerry T. Chiang and Yih-Chun Hu. 2011. Cross-Layer Jamming Detection and Mit-

igation in Wireless Broadcast Networks. IEEE/ACM Transactions on Networking
19, 1 (Feb. 2011), 286–298. https://doi.org/10.1109/TNET.2010.2068576

[6] Roberta Daidone, Gianluca Dini, and Marco Tiloca. 2014. A Solution to the GTS-

based Selective Jamming Attack on IEEE 802.15.4 Networks. Wireless Networks
20, 5 (July 2014), 1223–1235. https://doi.org/10.1007/s11276-013-0673-y

[7] Jing Deng, Richard Han, and Shivakant Mishra. 2003. A Performance Evaluation

of Intrusion-Tolerant Routing in Wireless Sensor Networks. In Proceedings of
the 2nd international conference on Information processing in sensor networks
(IPSN’03). Springer-Verlag Berlin, Heidelberg, 349–364. https://doi.org/10.1007/

3-540-36978-3_23

[8] Adam Dunkels. 2002. Contiki: The Open Source OS for the Internet of Things.

Retrieved September 28, 2018 from http://www.contiki-os.org/

[9] Simon Duquennoy, Atis Elstsz, Beshr Al Nahasx, and George Oikonomou. 2017.

TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation. In 2017 13th
International Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, Piscataway, NJ, USA. https://doi.org/10.1109/DCOSS.2017.29

[10] Simon Duquennoy, Beshr Al Nahas, and Atis Elsts. 2018. 6TiSCH Implementation.

Retrieved September 29, 2018 from https://github.com/contiki-ng/contiki-ng/

wiki/Documentation:-TSCH-and-6TiSCH

[11] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and ThomasWatteyne. 2015.

Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH. In

Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems

http://www.ieee802.org/15/pub/TG4e.html
https://doi.org/10.1109/TSMCC.2010.2045373
https://doi.org/10.1109/TSMCC.2010.2045373
https://doi.org/10.1109/MASS.2012.6502531
https://doi.org/10.1109/MASS.2015.100
https://doi.org/10.1109/TNET.2010.2068576
https://doi.org/10.1007/s11276-013-0673-y
https://doi.org/10.1007/3-540-36978-3_23
https://doi.org/10.1007/3-540-36978-3_23
http://www.contiki-os.org/
https://doi.org/10.1109/DCOSS.2017.29
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-TSCH-and-6TiSCH
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-TSCH-and-6TiSCH

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Xia Cheng, Junyang Shi, and Mo Sha

(SenSys ’15). ACM, New York, NY, USA, 337–350. https://doi.org/10.1145/2809695.

2809714

[12] Dolvara Gunatilaka, Mo Sha, and Chenyang Lu. 2017. Impacts of Channel

Selection on Industrial Wireless Sensor-Actuator Networks. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications. IEEE, Piscataway, NJ, USA.
https://doi.org/10.1109/INFOCOM.2017.8057049

[13] HART. 2019. HART Communication Protocol and Foundation (Now the Field-

Comm Group). https://fieldcommgroup.org/

[14] IETF. 2019. 6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e. Retrieved

September 28, 2018 from https://datatracker.ietf.org/wg/6tisch/documents/

[15] ISA100. 2018. ISA100. http://www.isa100wci.org/

[16] Chris Karlof, Naveen Sastry, and David Wagner. 2004. TinySec: a Link Layer

Security Architecture for Wireless Sensor Networks. In Proceedings of the 2nd
international conference on Embedded networked sensor systems (SenSys ’04). ACM,

New York, NY, USA, 162–175. https://doi.org/10.1145/1031495.1031515

[17] Loukas Lazos, Sisi Liu, and Marwan Krunz. 2009. Mitigating Control-channel

Jamming Attacks in Multi-channel Ad Hoc Networks. In Proceedings of the second
ACM conference on Wireless network security (WiSec ’09). ACM, New York, NY,

USA, 169–180. https://doi.org/10.1145/1514274.1514299

[18] Philip Levis. 2013. TinyOS Documentation Wiki. Retrieved September 28, 2018

from http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_

Wiki

[19] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu. 2016. Wireless

Routing and Control: a Cyber-Physical Case Study. In Proceedings of the 7th
International Conference on Cyber-Physical Systems (ICCPS ’16). IEEE, Piscataway,
NJ, USA. https://doi.org/10.1109/ICCPS.2016.7479131

[20] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu. 2015. Incorporating Emergency

Alarms in Reliable Wireless Process Control. In Proceedings of the ACM/IEEE
Sixth International Conference on Cyber-Physical Systems (ICCPS ’15). ACM, New

York, NY, USA, 218–227. https://doi.org/10.1145/2735960.2735983

[21] B. Li, Z. Sun, K. Mechitov, G. Hackmann, C. Lu, S. Dyke, G. Agha, and B. Spencer.

2013. Realistic Case Studies of Wireless Structural Control. In Proceedings of the
ACM/IEEE 4th International Conference on Cyber-Physical Systems (ICCPS ’13).
ACM, New York, NY, USA, 179–188. https://doi.org/10.1145/2502524.2502549

[22] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara

Gunatilaka, ChengjieWu, Lanshun Nie, and Yixin Chen. 2016. Real-TimeWireless

Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proceedings
of the IEEE, Special Issue on Industrial Cyber Physical Systems 104, 5 (May 2016),

1013–1024. https://doi.org/10.1109/JPROC.2015.2497161

[23] Zhuo Lu,WenyeWang, and CliffWang. 2014. Modeling, Evaluation and Detection

of Jamming Attacks in Time-Critical Wireless Applications. IEEE Transactions
on Mobile Computing 13, 8 (Aug. 2014), 1746–1759. https://doi.org/10.1109/TMC.

2013.146

[24] James Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter Bisson,

and Alex Marrs. 2013. Disruptive Technologies: Advances that will Trans-

form Life, Business, and the Global Economy. http://www.mckinsey.com/

business-functions/digital-mckinsey/our-insights/disruptive-technologies

[25] Hossen Mustafa, Xin Zhang, Zhenhua Liu, Wenyuan Xu, and Adrian Perrig. 2012.

Jamming-Resilient Multipath Routing. IEEE Transactions on Dependable and
Secure Computing 9, 6 (Nov. 2012), 852–864. https://doi.org/10.1109/TDSC.2012.

69

[26] Raspberry Pi. 2019. Raspberry Pi. https://www.raspberrypi.org/

[27] Roberto Di Pietro, Gabriele Oligeri, Claudio Soriente, and Gene Tsudik. 2010.

Intrusion-Resilience in Mobile Unattended WSNs. In Proceedings of the 29th
conference on Information communications (INFOCOM’10). IEEE, Piscataway, NJ,
USA, 2303–2311. https://doi.org/10.1109/INFCOM.2010.5462056

[28] Kris Pister. 2010. Smart Dust: Autonomous Sensing and Communication in a

Cubic Millimeter. https://people.eecs.berkeley.edu/~pister/SmartDust/

[29] Kristofer S. J. Pister and Lance Doherty. 2008. TSMP: Time Synchronized Mesh

Protocol. In IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, Piscataway, NJ, USA, 391–398.

[30] Christina Popper, Mario Strasser, and Srdjan Capkun. 2010. Anti-jamming

Broadcast Communication Using Uncoordinated Spread Spectrum Techniques.

IEEE Journal on Selected Areas in Communications 28, 5 (June 2010), 703–715.

https://doi.org/10.1109/JSAC.2010.100608

[31] Michael E Porter and James E Heppelmann. 2014. How Smart,

Connected Products are Transforming Competition. Harvard Busi-
ness Review 92, 11 (Nov. 2014), 64–88. https://hbr.org/2014/11/

how-smart-connected-products-are-transforming-competition

[32] Alejandro ProaÃśo and Loukas Lazos. 2010. Selective Jamming Attacks in Wire-

less Networks. In 2010 IEEE International Conference on Communications. IEEE,
Piscataway, NJ, USA, 1–6. https://doi.org/10.1109/ICC.2010.5502322

[33] Alejandro ProaÃśo and Loukas Lazos. 2012. Packet-hiding Methods for Pre-

venting Selective Jamming Attacks. IEEE Transactions on Dependable and Secure
Computing 9, 1 (Jan. 2012), 101–114. https://doi.org/10.1109/TDSC.2011.41

[34] David R. Raymond and Scott F. Midkiff. 2008. Denial-of-Service in Wireless

Sensor Networks: Attacks and Defenses. IEEE Pervasive Computing 7, 1 (Jan.

2008), 74–81. https://doi.org/10.1109/MPRV.2008.6

[35] Shahid Raza, Adriaan Slabbert, Thiemo Voigt, and Krister LandernÃďs. 2009.

Security considerations for the WirelessHART protocol. In Proceedings of the 14th
IEEE international conference on Emerging technologies and factory automation
(ETFA’09). IEEE, Piscataway, NJ, USA, 242–249. https://doi.org/10.1109/ETFA.

2009.5347043

[36] AndrÃľa Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2013. An

Efficient and Fair MAC Protocol Robust to Reactive Interference. IEEE/ACM
Transactions on Networking 21, 3 (June 2013), 760–771. https://doi.org/10.1109/

TNET.2012.2210241

[37] RPL. 2012. RFC 6550: RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks. Retrieved September 28, 2018 from https://tools.ietf.org/html/rfc6550

[38] Mo Sha. 2016. Testbed at the State University of New York at Binghamton.

Retrieved September 28, 2018 from http://www.cs.binghamton.edu/%7emsha/

testbed

[39] Michael Spuhler, Domenico Giustiniano, Vincent Lenders, Matthias Wilhelm,

and Jens B. Schmitt. 2014. Detection of Reactive Jamming in DSSS-basedWireless

Communications. IEEE Transactions on Wireless Communications 13, 3 (March

2014), 1593–1603. https://doi.org/10.1109/TWC.2013.013014.131037

[40] Spase Stojanovski and Andrea Kulakov. 2014. Efficient Attacks in Indus-

trial Wireless Sensor Networks. In International Conference on ICT Innovations
(ICT). Springer, Cham, Cham, Switzerland, 289–298. https://doi.org/10.1007/

978-3-319-09879-1_29

[41] Mario Strasser, Boris Danev, and Srdjan ÄŇapkun. 2010. Detection of Reactive

Jamming in Sensor Networks. ACM Transactions on Sensor Networks 7, 2 (Aug.
2010), 16:1–16:29. https://doi.org/10.1145/1824766.1824772

[42] TelosB. 2013. TelosB Datasheet provided by MEMSIC. Retrieved October 2, 2018

from http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.

pdf

[43] Adam Thierer and Andrea Castillo. 2015. Projecting the Growth and Economic

Impact of the Internet of Things. https://www.mercatus.org/publication/

projecting-growth-and-economic-impact-internet-things

[44] Marco Tiloca, Domenico De Guglielmo, Gianluca Dini, Giuseppe Anastasi, and

Sajal K. Das. 2017. JAMMY: a Distributed and Self-Adaptive Solution against

Selective Jamming Attack in TDMAWSNs. IEEE Transactions on Dependable and
Secure Computing 14, 4 (July 2017), 392–405. https://doi.org/10.1109/TDSC.2015.

2467391

[45] Marco Tiloca, Domenico De Guglielmo, Gianluca Dini, Giuseppe Anastasi, and

Sajal K. Das. 2019. DISH: DIstributed SHuffling against Selective Jamming Attack

in IEEE 802.15.4e TSCH Networks. ACM Transactions on Sensor Networks (TOSN)
15, 1 (Feb. 2019). https://doi.org/10.1145/3241052

[46] Wireless Cyber-Physical Simulator (WCPS). 2018. Wireless Cyber-Physical

Simulator (WCPS). Retrieved October 2, 2018 from http://wsn.cse.wustl.edu/

index.php/WCPS:_Wireless_Cyber-Physical_Simulator

[47] Wi-Spy. 2018. Wi-Spy USB Spectrum Analyzer. http://www.wi-spy.co.uk/index.

php/products

[48] Matthias Wilhelm, Ivan Martinovic, Jens B. Schmitt, and Vincent Lenders. 2011.

Short Paper: Reactive Jamming inWireless Networks How Realistic is the Threat?.

In Proceedings of the fourth ACM conference on Wireless network security (WiSec
’11). ACM, New York, NY, USA, 47–52. https://doi.org/10.1145/1998412.1998422

[49] WirelessHART. 2019. WirelessHART. https://fieldcommgroup.org/technologies/

hart/hart-technology

[50] A.D. Wood, J.A. Stankovic, and S.H. Son. 2003. JAM: a Jammed-area Mapping

Service for Sensor Networks. In Proceedings of the 24th IEEE International Real-
Time Systems Symposium (RTSS ’03). IEEE, Washington, DC, USA, 286–297. https:

//doi.org/10.1109/REAL.2003.1253275

[51] Anthony D. Wood and John A. Stankovic. 2002. Denial of Service in Sensor

Networks. Computer 35, 10 (Oct. 2002), 54–62. https://doi.org/10.1109/MC.2002.

1039518

[52] Anthony D. Wood, John A. Stankovic, and Gang Zhou. 2007. DEEJAM: Defeating

Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks. In 2007
4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks. IEEE, Piscataway, NJ, USA, 60–69. https:

//doi.org/10.1109/SAHCN.2007.4292818

[53] Wenyuan Xu, Ke Ma, W. Trappe, and Yanyong Zhang. 2006. Jamming Sensor

Networks: Attack and Defense Strategies. IEEE Network 20, 3 (May 2006), 41–47.

https://doi.org/10.1109/MNET.2006.1637931

[54] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. 2005. The

Feasibility of Launching and Detecting Jamming Attacks inWireless Networks. In

Proceedings of the 6th ACM international symposium on Mobile ad hoc networking
and computing (MobiHoc ’05). ACM, New York, NY, USA, 46–57. https://doi.org/

10.1145/1062689.1062697

[55] Wenyuan Xu, Timothy Wood, Wade Trappe, and Yanyong Zhang. 2004. Channel

Surfing and Spatial Retreats: Defenses Against Wireless Denial of Service. In

Proceedings of the 3rd ACM workshop on Wireless security (WiSe ’04). ACM, New

York, NY, USA, 80–89. https://doi.org/10.1145/1023646.1023661

https://doi.org/10.1145/2809695.2809714
https://doi.org/10.1145/2809695.2809714
https://doi.org/10.1109/INFOCOM.2017.8057049
https://fieldcommgroup.org/
https://datatracker.ietf.org/wg/6tisch/documents/
http://www.isa100wci.org/
https://doi.org/10.1145/1031495.1031515
https://doi.org/10.1145/1514274.1514299
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki
https://doi.org/10.1109/ICCPS.2016.7479131
https://doi.org/10.1145/2735960.2735983
https://doi.org/10.1145/2502524.2502549
https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/TMC.2013.146
https://doi.org/10.1109/TMC.2013.146
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/disruptive-technologies
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/disruptive-technologies
https://doi.org/10.1109/TDSC.2012.69
https://doi.org/10.1109/TDSC.2012.69
https://www.raspberrypi.org/
https://doi.org/10.1109/INFCOM.2010.5462056
https://people.eecs.berkeley.edu/~pister/SmartDust/
https://doi.org/10.1109/JSAC.2010.100608
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://doi.org/10.1109/ICC.2010.5502322
https://doi.org/10.1109/TDSC.2011.41
https://doi.org/10.1109/MPRV.2008.6
https://doi.org/10.1109/ETFA.2009.5347043
https://doi.org/10.1109/ETFA.2009.5347043
https://doi.org/10.1109/TNET.2012.2210241
https://doi.org/10.1109/TNET.2012.2210241
https://tools.ietf.org/html/rfc6550
http://www.cs.binghamton.edu/%7emsha/testbed
http://www.cs.binghamton.edu/%7emsha/testbed
https://doi.org/10.1109/TWC.2013.013014.131037
https://doi.org/10.1007/978-3-319-09879-1_29
https://doi.org/10.1007/978-3-319-09879-1_29
https://doi.org/10.1145/1824766.1824772
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
https://www.mercatus.org/publication/projecting-growth-and-economic-impact-internet-things
https://www.mercatus.org/publication/projecting-growth-and-economic-impact-internet-things
https://doi.org/10.1109/TDSC.2015.2467391
https://doi.org/10.1109/TDSC.2015.2467391
https://doi.org/10.1145/3241052
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
http://www.wi-spy.co.uk/index.php/products
http://www.wi-spy.co.uk/index.php/products
https://doi.org/10.1145/1998412.1998422
https://fieldcommgroup.org/technologies/hart/hart-technology
https://fieldcommgroup.org/technologies/hart/hart-technology
https://doi.org/10.1109/REAL.2003.1253275
https://doi.org/10.1109/REAL.2003.1253275
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1109/SAHCN.2007.4292818
https://doi.org/10.1109/SAHCN.2007.4292818
https://doi.org/10.1109/MNET.2006.1637931
https://doi.org/10.1145/1062689.1062697
https://doi.org/10.1145/1062689.1062697
https://doi.org/10.1145/1023646.1023661

	Abstract
	1 Introduction
	2 Background on TSCH Channel Hopping
	3 Vulnerability Analysis
	3.1 Cracking the Channel Hopping Sequences in the Ideal Case
	3.2 Cracking the Channel Hopping Sequences under Realistic Traffic

	4 Case Study on Orchestra
	4.1 Experimental Methodology
	4.2 Cracking Performance with Different Snooping Periods
	4.3 Impact of Slotframe Length
	4.4 Impact of Strong Transmission Pattern
	4.5 Suggestions to Orchestra

	5 Case Study on WirelessHART
	5.1 Experiment Methodology
	5.2 Cracking Performance with Different Snooping Periods
	5.3 Impact of the Length of Sequence Slength
	5.4 Suggestions to WirelessHART

	6 Lessons Learned
	6.1 Slotframe Length
	6.2 Repetition Pattern
	6.3 Channel Diversity
	6.4 Link Setting

	7 Related Works
	8 Conclusions
	References

