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Abstract—Research efforts over the last few decades produced
multiple wireless technologies, which are readily available to
support communication between devices in various Internet
of Things (IoT) applications. However, none of the existing
technologies delivers optimal performance across all critical
quality of service (QoS) dimensions under varying environmental
conditions. Using a single wireless technology therefore cannot
meet the demands of varying workloads or changing environmen-
tal conditions. This problem is exacerbated with the increasing
interest in placing embedded devices on the user’s body or other
mobile objects in mobile IoT applications. Instead of pursuing
a one-radio-fits-all approach, we design ARTPoS, an adaptive
radio and transmission power selection system, which makes
available multiple wireless technologies at runtime and selects
the radio(s) and transmission power(s) most suitable for the
current conditions and requirements. Experimental results show
that ARTPoS can significantly reduce the power consumption,
while maintaining desired link reliability.

I. INTRODUCTION

Diverse wireless technologies, produced by research over
the years, are available to support communication between
devices in various Internet of Things (IoT) applications. How-
ever, each of these technologies were originally designed with
different goals, such as high throughput, low power consump-
tion, low latency, and robustness to interference, and thus offer
very different characteristics. None of the existing technologies
delivers optimal performance in all desirable quality of service
(QoS) dimensions, especially under varying environmental
conditions. For instance, WiFi can provide high throughput,
but suffers from high power consumption. A considerable
amount of energy can be wasted if a WiFi radio experiences
irregular data transmission at low data rate such that it stays
longer in a power-hungry active mode, rather than in the power
save mode. On the other hand, ZigBee is power-efficient, but
cannot support high data rate applications.

Using a single wireless technology therefore cannot meet
the demands of varying workloads or changing environmen-
tal conditions. This issue becomes further pronounced with
emerging mobile IoT applications that involve placing embed-
ded devices on the user’s body or other mobile objects. Mon-
itoring and controlling mobile objects open up opportunities
for novel and exciting IoT applications (e.g., assisted living,
health monitoring, and multi-agent autonomous vehicular and
robotic systems), while also introducing the fundamental chal-
lenge of maintaining optimal wireless communication between

devices under the following uncertainties: Network Traffic
Uncertainties: The network traffic is subject to spontaneous
changes. For instance, in a health monitoring application, a
wearable device may produce low amount of data during some
hours of the day, but sporadically require rapid transmission
of large volume of data in response to a critical medical
condition. Moreover, devices may have multiple sensors, with
diverse traffic patterns, and the system may turn ON or OFF
any of the sensors at any given time. Wireless Environment
Uncertainties: The wireless environment changes when the
device moves around. At times, a mobile device will need to
be able to deal with a highly noisy environment; at other times
it may enjoy a clean environment [1]. A stationary device may
also experience environment changes due to changing ambient
interference. Given the dynamic nature of communication
in IoT applications, a traditional one-radio-fits-all approach
cannot meet the challenges associated with the dynamics and
uncertainties in network traffic and operating conditions.

Fortunately, embedded system hardware and radio tech-
nologies have been seeing appreciable advancement. Het-
erogeneous radios, e.g., WiFi, LTE, Bluetooth, and ZigBee
are becoming increasingly available in modern embedded or
mobile devices. Most smartphones nowadays support WiFi,
LTE, and Bluetooth. A majority of modern devices designed
for IoT applications also support heterogeneous radios. For
instance, Firestorm platform [2] supports Bluetooth low energy
(BLE) and ZigBee and uses a 32 bit low-power microcontroller
with the duty cycling capability. TI CC2650 [3] integrates two
radios (i.e., ZigBee and BLE) on a single chip. Raspberry Pi
3 model B [4] uses a Broadcom single-chip radio supporting
both WiFi and BLE. Recent hardware advancement offers new
opportunities to use multiple wireless technologies efficiently.

This paper aims to address the previously stated networking
challenges, while leveraging the above-stated hardware ad-
vancements; specifically, it makes the following contributions:

• We design the Adaptive Radio and Transmission Power
Selection (ARTPoS) system that makes available multiple
wireless technologies at runtime and selects the radio(s)
and their transmission power(s) that are best suited for
the current network traffic and operating conditions.

• We develop new modeling approaches that allow the
selection system to adapt to large variance in power
consumption and link reliability measurements.



• We formulate the problem of radio and transmission
power selection as an optimization problem and develop
a practical (lightweight) online solution.

• We implement the ARTPoS in Raspbian Linux and Con-
tiki and evaluate it on a new embedded platform support-
ing WiFi, ZigBee, and BLE; these efforts demonstrate the
unique benefits of adaptive runtime selection of radios
and their transmission powers.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work and Section III introduces our
ARTPoS design. Section IV presents the power consumption
and link reliability modeling and Section V introduces our
problem formulation and solution strategy. Section VI presents
our experimental evaluation. Section VII concludes the paper.

II. RELATED WORKS

Bandwidth aggregation for a device with multiple network
interfaces has been studied extensively in the literature and
many techniques are readily available [5]. Those early efforts
are not directly applicable to embedded wireless devices with
power constraints since they were not designed to provide
energy-efficient wireless radio interfaces [6], [7]. There has
also been increasing interest in studying the energy-aware
bundling or switching between WiFi and 3G/4G radios on
smartphones [8], [9]. There exists software, e.g., VideoBee,
Super Download Lite-Booster, MPTCP in iOS, KT’s GiGA
LTE, that support concurrent use of WiFi and cellular radios.
More recently, research efforts have begun to pay more atten-
tion to energy efficiency in the context of smartphones. Exam-
ples include generating energy models for smartphones [10]–
[14] and WiFi/3G/LTE [15]–[17] and developing radio switch-
ing or bundling approaches [6], [7], [13], [18], [19].

These existing approaches are not directly applicable to
support various embedded and IoT applications in an energy-
efficient manner using heterogeneous radios since they are
tailored for smartphones to support high data rate applications,
limited to mainly WiFi and 3G/4G, and not integrated with
transmission power control. Generally speaking, it is largely
unknown how to energy-efficiently use radios with very dif-
ferent characteristics through runtime radio and transmission
power adaptation. To address this critical gap in the current
state of the art, this paper investigates the joint impact of radio
and transmission power selection on energy efficiency and link
reliability, and proposes a practical approach that intelligently
uses a high throughput radio (i.e., WiFi) and an energy-
efficient radio (i.e., ZigBee). To our knowledge, the ARTPoS
system presented in this paper is the first to support not only
runtime bundling and switching between WiFi and ZigBee
but also adaptive transmission power control, that proactively
minimizes power consumption subject to given network traffic
and operating conditions.

Transmission power control for a single radio has been
extensively investigated in the literature of wireless sensor
networks and wireless mesh networks. Indirect link quality
metrics such as received signal strength indication (RSSI) and
link quality indicator (LQI) [20], [21] or direct link quality

Fig. 1. System architecture.

metrics such as packet reception ratio (PRR) and packet
error rate (PER) [22], [23] have been used to measure the
link quality. Heuristics [22], [24], [25] and control-theoretic
approaches [20], [21], [23] have been applied to achieve the
desirable link quality by controlling the transmission power
at runtime. These existing approaches, designed to control a
single radio, are not directly applicable here, since the power
consumptions have to be compared between different radios
and the link quality and power consumption of multiple radios
have to be jointly considered. In contrast, this paper employs
a pragmatic integrated systems approach to optimize the
transmission power selection together with the radio selection.
The performance of our ARTPoS has been demonstrated via
implementation and experiments on real hardware.

III. ARTPOS SYSTEM ARCHITECTURE

This section presents the design of ARTPoS. Fig. 1 shows
the system architecture. The Modeling Engine generates the
power consumption and link reliability models needed for
the radio and transmission power selection (Section III-A).
The Radio/Transmission Power Selection Engine selects the
best-suited radio(s) and transmission power(s) based on the
application specified data rate and the throughput of each avail-
able link measured at runtime (Section III-B). Multiple Radio
Controller modules (e.g., WiFi, BLE, and ZigBee controllers)
exist in ARTPoS. Each radio controller controls the state (i.e.,
on or off) of a radio and sets its transmission power based on
the decision made by the Radio/Transmission Power Selection
Engine, while the User Interface supports the interactions
with system users (Section III-C).

To support the realization of ARTPoS, we have built a
new embedded platform with heterogeneous radios consisting
of WiFi, ZigBee, and BLE by instrumenting a Raspberry Pi
3 Model B [4] with a TI CC2650 development kit [3] as
shown in Fig. 1. CC2650 is connected to the Raspberry Pi
through a USB port. The integrated emulator (XDS100v3)
on CC2650 enables the communication between Raspberry
Pi and CC2650 through a UART. Raspberry Pi integrates a
Broadcom BCM43438 single chip radio processor supporting
WiFi and BLE, while CC2650 has a multi-standard wireless
MCU supporting ZigBee and BLE. (Currently, we use the
BLE radio on Raspberry Pi since the Contiki has not yet
implemented the BLE stack in its master branch). To power



(a) Boxplot at transmission powers
of 1 dBm to 21 dBm.

(b) A 5-second trace at minimum
transmission power (1 dBm).

Fig. 2. Power consumptions of our embedded platform when only WiFi
radio is on and transmits at maximum speed. The traces are measured by
a Monsoon power meter [26]. In boxplot, central red mark in box indicates
median; bottom and top of box represent the 25th percentile (q1) and 75th
percentile (q2); crosses indicate outliers (x > q2 + 1.5 · (q2 − q1) or x <
q1 − 1.5 · (q2 − q1)); whiskers indicate range excluding outliers.

the device, we use a USB battery to which a Monsoon power
meter [26] is connected to measure the power consumption.

We have realized ARTPoS in Raspbian Linux [27], a Debian
based Linux system for Raspberry Pi, and Contiki [28], an
operating system for low-power wireless IoT devices. To
support WiFi, our ARTPoS implementation adopts the 802.11
MAC and physical layer implementations provided by the
Linux kernel and employs the libpcap library for sending
and receiving packets to/from the MAC layer. Similarly, our
implementation adopts the Linux’s BLE implementations and
HCI tools to support BLE and uses the 802.15.4 physical layer
implementations in Contiki to support ZigBee. Our imple-
mentation also adopts the existing UART implementations in
Raspbian and Contiki to support the communication between
Raspberry Pi and CC2650. In Fig. 1, the existing implementa-
tions in Raspbian Linux and Contiki adopted by ARTPoS are
marked with dash lines, while our new designs are marked
with solid lines. WiFi controller, BLE controller, and ZigBee
controller are three radio controllers that control WiFi, BLE,
and ZigBee radios, respectively. We intentionally implement
all modules except the ZigBee Controller in Raspbian Linux,
since Raspberry Pi has richer hardware resources. The design
of the major modules in ARTPoS are discussed next.

A. Modeling Engine

The Modeling Engine generates the power consumption
model and link reliability model to support runtime radio
and transmission power selection. Most existing solutions for
transmission power control for a single radio use a simple
power model assuming that using a lower transmission power
level leads to lower power consumption. However, this simple
model no longer works for a device with multiple radios
since the power consumptions have to be compared between
different radios. Hence, our Modeling Engine is designed to
take real power consumption traces as input and generate
power models accordingly. As an example, Fig. 2 shows the
power consumptions of our embedded platform when its WiFi
radio transmits at maximum speed. As shown in Fig. 2(a),
the median power consumption increases from 2585mW to
3065mW when the WiFi transmission power increases from
1dBm to 21dBm. Large variances can be seen in the boxplot
in Fig. 2(a) as well as Fig. 2(b), which shows a 5-second power
measurement when the WiFi is transmitting at 1dBm. The

large variance is caused by the power consumption differences
when the WiFi radio hardware is at different states. We also
measure the power consumption of the platform when its
radios are under various modes (e.g., only ZigBee radio on and
transmits, only BLE radio on and transmits, and all radios off)
and observe large variance and non-normal distribution of the
measurements. Using the first statistical moments (e.g., mean
or median of the data) is deemed not suitable. Instead, we use
a more robust scalar measure of the power consumption in
ARTPoS, which will be discussed in Section IV-A in detail.

The Modeling Engine also generates the link reliability
model based on the PRR measurements at difference distances
between the sender and the receiver, and when the sender
transmits at different transmission power. PRR can be defined
as the fraction of transmitted packets successfully received
by the receiver. Our Modeling Engine provides a feature that
controls each radio to transmit packets using a single transmis-
sion power, then proceeds to the next power in a round robin
fashion. With this feature, the PRR measurements for all radios
and transmission powers can be done automatically at each
distance. However, changing the distance between the sender
and receiver has to rely on human operators, introducing labor-
intensive measurement overheads. Therefore, it is important to
use a frugal set of distance samples that will produce a training
data set suitable for effective (subsequent) model development.

Therefore, the Distance Sample Generator is designed
to generate suitable distance samples based on a feasible
communication range and the desired number of distance
samples. The desired number of distance samples is decided
by the total time allowed for PRR measurements divided
by the measurement execution time at each distance. A de-
sign of experiments approach adopted from the Engineering
Design paradigm is used to generate the distance samples.
For instance, the communication range considered, 0− 200m
(based on our observed maximum communication range of
WiFi/ZigBee/BLE), is divided into three zones. Zone 1,
0 < x ≤ 30m, corresponds to the spatial range in typical
home or office-space IoT applications, where a low-power
radio like ZigBee is seeing increasing popularity; Zone 2,
30 < x ≤ 100m, corresponds to the spatial range in typical
commercial/residential buildings as well as factories and ware-
houses (i.e., industrial IoT or IIoT applications) where ZigBee
becomes progressively less effective, and WiFi is expected to
become more dominant; and Zone 3, x > 100m, corresponds
to the spatial range (typical of small autonomous ground/aerial
vehicle applications) where WiFi with greater range capacity
will typically dominate. In each of these ranges, we use
the Latin hypercube sampling (LHS) method to generate 10
distance samples. LHS is a popular approach to generate
near-random samples that can provide a relatively uniform
coverage of an input space or a probability space [29]. Unlike
factorial design or simple Monte Carlo simulations, the size of
the sample set yielded by LHS does not scale exponentially
with the number of input parameters, thereby making LHS
more suitable to design frugal set of experiments (as needed
here). A LHS containing n sample points (between 0 and 1)



over m dimensions is a matrix of n rows and m columns.
Each row corresponds to a sample point. The values of n
points in each column are randomly selected, one from each
of the intervals, (0, 1/n), (1/n, 2/n), . . . , (1 − 1/n, 1). We
use the optimal LHS implementation, which maximizes the
minimum Euclidean distance between the samples [30]. To
demonstrate the PRR measurement process, we collect a series
of PRR traces by varying the distance between the sender
and receiver following the 30 distance samples generated by
LHS. Section IV-B will discuss the method that is used to
train models of PRR as functions of the respective radio
transmission power settings based on our collected PRR traces.

B. Radio/Transmission Power Selection Engine
The Radio/Transmission Power Selection Engine imple-

ments ARTPoS core logic. It is designed to facilitate the identi-
fication of the best-suited radio(s) and transmission power(s) at
runtime. The Model Container stores the power consumption
model and link reliability model generated by the Modeling
Engine. With these two models, the Optimizer selects the
best radio (or a set of radios) and their optimal transmission
power(s) based on the application specified data rate and
the throughput of all available links measured by the radio
controllers. Section V will discuss the problem formulation
and optimization in detail.

C. Radio Controllers and User Interface
The Radio Controllers are important design constructs of

ARTPoS. Their main purpose is to forward data packets
between the application and the radio stacks. The Radio Con-
trollers are responsible for switching on the radio(s) selected
by the Radio/Transmission Power Selection Engine, keeping
the unselected radio(s) off, applying the selected transmission
power(s), and routing data packets between the application and
the radio stack(s) of the selected radio(s). The Link Monitor
gathers the runtime link statistics (i.e., throughput and PRR)
and feeds them to the Optimizer. To support WiFi, BLE, and
ZigBee on our embedded platform, we have implemented three
Radio Controllers (i.e., WiFi Controller, BLE Controller, and
ZigBee Controller as shown in Fig. 1).

The User Interface supports the interactions between our
ARTPoS and its user. First, it allows the system user to reveal
the debugging and operation logs through a SSH connection.
Second, it notifies the user to move the device to the next
distance when the Modeling Engine finishes the PRR measure-
ments at the current distance. Third, it allows the application
to set its desired data rate at runtime.

IV. MODELING

This section presents the development of tailored regression
models with specialized smoothing characteristics, to represent
the (uncertain) nodal power consumption and PRR variations
as functions of the radio transmission power settings. This
modeling approach is aimed to facilitate robust radio and
transmission power selection decisions (failure to address
these uncertainties undermines radio selection processes, as
demonstrated later in Section V-B).

A. Power Consumption Modeling

The measurements from Section III-A are used to develop
quantitative models of power consumption, as functions of
the transmission power setting (p) of the concerned radio.
As evident from Fig. 2, significant variations, which cannot
be solely attributed to change in radio transmission power,
are inherent in the measurements. We therefore represent the
platform base power consumption with all radios off (Ep (V )),
and the respective platform power consumptions with only
Bluetooth on (Eb (V, pb)), only Zigbee on (Ez (V, pz)), and
only WiFi on (Ew (V, pw)) as functions of uncertain parame-
ters V and the respective transmission power of the Bluetooth,
ZigBee, and WiFi radios (pb, pz , and pw, respectively).

Here the quantity of interest (QoI), i.e., total power con-
sumption, is a function of the design variable (radio trans-
mission power setting) and a vector of uncertain parameters
V , where the latter can be assumed to be outside the control
of the designer and not practically measurable in the current
context (e.g., radio backoffs caused by failed clear channel
assessment and inaccurate power meter reading). Considering
the availability of dedicated QoI data (Section III-A), it can be
assumed that the uncertainty therein is quantifiable. However,
given the observed large variance and non-normal distribution
of the platform power consumption data (Fig. 2), using the
first statistical moments (e.g., mean or median) is deemed not
suitable. Instead, perceiving platform power consumption as an
“expense”, the notion of s-risk [31] is used here − to provide
a robust or uncertainty-aware scalar measure of this expense
under any given radio setting.

The notion of s-risk, also known as “conditional-value-
at-risk”, originated in the Finance domain [32]. We use the
example of the platform power consumption with only WiFi
on (Ew), to further describe the s-risk concept. Assuming
that Ew follows a continuous probability distribution, for a
given risk-aversive parameter γ (0 ≤ γ ≤ 1), the s-risk of
Ew can be defined as the average value of Ew over its worst
1 − γ outcomes. Therefore, assuming N samples of Ew are
available, s-risk can be expressed as:

Sγ (Ew (V, pw)) =
1

(1− γ)N

∑
∀k∈Γ

[Ew (V, pw)k]

Γ = set of the highest (1− γ)100% values of Ew

(1)

It is readily evident from Eq. 1 that higher values of γ
leads to greater risk aversion or more conservative decisions.
Owing to its ability to consider tails of probability distribution
and ease of interpretation and computation, s-risk provides a
tractable stochastic measure of the worst-case scenarios. Based
on the definition in Eq. 1, we compute the following:

• s-risk value of the platform baseline power consumption
(Sp) when all radios are off;

• s-risk value of the platform power consumption with
only BLE on (Sb). (Raspberry Pi only supports single
transmission power for BLE.);

• s-risk values of the platform power consumption with
only ZigBee on (Sz) at the following different transmis-
sion power settings: pz ∈ {−6,−3, 0, 1, 2, 3, 4, 5} dBm;



• s-risk values of the platform power consumption with
only WiFi on (Sw) at the following different transmission
power settings: pw ∈ {1, 2, . . . , 20, 21} dBm.

All s-risk values are computed at a prescribed γ = 0.8, which
here calls for averaging over the worst 50 values in each case.

(a) With ZigBee on (b) With WiFi on
Fig. 3. Regression plots of s-risk values of platform power consumption as
functions of radio transmission settings.

The s-risk values of the platform power consumption with
only WiFi on and only ZigBee on are then separately modeled
as linear regressions of their respective transmission settings.
A piecewise linear regression is used in the case of WiFi
(Fig. 3(a)), and a single linear regression is used in the case of
ZigBee (Fig. 3(a)). The linear regressions provide a smoothing
of the large variations in the power traces, while also yielding
a monotonically increasing (instead of oscillatory) trend w.r.t.
transmission power − which promotes a more robust template
for selecting transmission settings (guided by power savings).
The trained regression functions can be expressed as:

Sz,0.8 = 2.05pz + 1.89e03, − 6 ≤ pz ≤ 5

Sw,0.8 =

{
1.14e01pw + 2.64e03, 1 ≤ pw ≤ 19
2.18e02pw − 1.27e03, 20 ≤ pw ≤ 21

(2)

B. Link Reliability (PRR) Modeling

The PRR measurements from Section III-A are used to
train models of PRR as functions of the respective radio
transmission power settings. Here, we particularly develop the
PRR models for ZigBee and WiFi, since multiple transmission
power settings are available for these two radios on our
platform, and they are the ones also considered in the optimal
radio and transmission selection process (Section V).

We observe large variations in PRR measurements, espe-
cially when the links are in the transitional region. Specifically,
at many sample transmission power settings and sender-
receiver distances, significant variations in PRR are observed.
The radio control scheme in practice will usually be unaware
of the exact distance between the sender and receiver, as well
as of the other uncertain environmental factors affecting the
PRR. Instead, what is measurable at runtime are the PRR
values being experienced by the individual radios. With this
perspective, we propose the state of the system associated with
the PRR recordings to be segregated into different performance
categories. In this context, the PRR and throughput of an
individual radio can also be simultaneously considered, where
the categories will then represent the state of the goodput (i.e.,
PRR × throughput) in that case.

In the current implementation, four categories, namely
“poor”, “low”, “medium”, and “high” performing states, are
defined w.r.t. PRR. For every transmission power setting of
a radio (WiFi/ZigBee), the top 25% PRR measurements are
assigned to the “high” state, the next 25% are assigned to
“medium” state, the subsequent 25% are assigned to “low”
state, and the bottom 25% are assigned to the “poor” state.
Although the recorded (sample) distance between the sender
and receiver is not explicitly considered when making this
state-category assignments (i.e., all PRR measurements under
a given radio setting are pooled together), the assignments are
implicitly sensitive to the distance − this is because sender-
receiver distance has a strong adverse impact on PRR.The
mean of the PRR values categorized under each state for a
given transmission setting is then computed to serve as the
representative bounding value of the PRR for that state (to
be referred to as the PRR state or state-representative PRR
values in the remainder of this paper). Regression functions
are subsequently used to fit the high, medium, low, and poor
state PRR values of a radio as four separate functions of its
transmission settings.

(a) PRR of ZigBee (b) PRR of WiFi

Fig. 4. Regression plots of PRR as functions of radio transmission settings;
PRR data segregated into poor, low, medium, and high states.

The PRR state values were observed to present S-shaped
trends w.r.t. the corresponding radio transmission power set-
tings. This observation led to the choice of logistic regression
(and sigmoid fit, a special case of logistic) to model the
“PRR-p” relationships between PRR values and transmission
power settings. An implementation called L4P [33] of the four
parameter logistic function is used, with the PRR expressed
as a function of the radio transmission power, p, as given by

PRR(p) = d+ (a− d)/(1 + (p/c)b) (3)

Here, the four parameters a, b, c, and d respectively represent
the minimum asymptote, the stiffness of the curve, the inflec-
tion point, and the maximum asymptote. The estimated values
of the 8 sets of these four parameters are not listed here, since
they are subjective to our recorded PRR measurements, and do
not add significant generalized value. Instead, the four logistic
functions, that are trained on the high/ medium/ low/ poor
state PRR values of ZigBee and WiFi, are respectively shown
in Figs. 4(a) and 4(b). It is readily evident from Fig. 4 that
while adequately capturing the nonlinear S-shaped “PRR-p”
relationship, the logistic regression also provides monotoni-
cally increasing “PRR-p” functions. Such a positive “PRR-



p” correlation is imperative to promoting robust transmission
setting modulation − where an optimal scheme should seek to
increase the radio transmission power, in response to the need
to increase PRR, over the entire range of available transmission
power settings. Given the noisy PRR measurements, such a
trend would have been difficult to achieve using other models
such as polynomial regression or interpolating functions.

V. OPTIMIZATION

A. Problem Formulation

As stated before, the generalized objective of the radio and
transmission selection is to adapt to the current needs of the
application (under the current environment) in a way that: both
packet loss and platform power consumption attributed to
the radios are minimized. These two criteria, packet loss and
power consumption, can be perceived as the state parameters;
and the choice of the radio type (ZigBee, WiFi, BLE, or any
of their combinations) and their transmission power setting
can be perceived as action variables. This perspective lends
to formulating the radio and transmission selection process
as an optimization problem. The Raspberry Pi only supports
single transmission power for BLE; we therefore only consider
ZigBee and WiFi in our problem formulation. (We plan to
implement our own CC2650 BLE driver under Contiki and
include BLE into our optimization as our future work.)

In the remainder of the paper, the PRR of WiFi and ZigBee
will be respectively represented by rw and rz (where 0 ≤
rw, rz ≤ 1), and the throughput of WiFi and ZigBee will be
expressed in terms of the number of packets transmitted, and
represented by hw and hz , respectively. The packet size for
WiFi and ZigBee is considered to be 64 bytes. The aggregated
goodput (Gw,z) of the radios is then given by:

Gw,z = hwrw + hzrz (4)

If only one of the radios is on, the aggregated gootput reduces
to the individual goodput of that radio. The power consump-
tion of the transmitting platform can then be expressed as a
function of the data rate (D), the aggregated goodput Gw,z , the
platform baseline power consumption (Ep), and the estimated
platform power consumption when radios operate at the given
transmission settings (Ew and Ez). The time averaged power
consumption of the platform is thus given by:

fE = min (1, D/Gw,z) (Ew + Ez − 2Ep) + Ep (5)

where (Ew + Ez − 2Ep) gives a measure of the power
consumption attributable to the active radios. This measure
is multiplied by the fraction of the time when the radios need
to be active in a given interval; the latter is given by the “data
rate/goodput” ratio (min (1, D/Gw,z)). When the WiFi is off,
Ew(Off) = Ep and rw(Off) = 0; similarly, when the ZigBee
is off, Ez(Off) = Ep and rz(Off) = 0. It is also important
to note that Eq. 5 assumes that the data is split between the
two radios based on the ratio of their individual goodputs, and
retransmission of lost packets is implicit to the system.

The generalized optimization problem, with the WiFi and
ZigBee transmission settings (pw and pz , respectively) serving
as the decision variables, can therefore be defined as follows:

min
pw,pz

fE (pw, pz, hw, hz)

subject to 1− D

hwrw (pw) + hzrz (pz)
≥ ϵ

where
pw ∈ {Off, 1, 2, . . . , 20, 21} ;
pz ∈ {Off,−6,−3, 0, 1, 2, 3, 4, 5}

(6)

where the tolerance parameter ϵ represents a safety margin
in the “data rate/goodput” ratio; e.g., ϵ = 0.1 indicates a
safety margin of 10% in the “data rate/goodput” ratio. It
is important to note that both the objective function, fE
(Eq. 5), and the “data rate/goodput” (Eq. 6) constraint are
nonlinear, since the PRR is a nonlinear function of the radio
transmission power (as seen from Fig. 4). In addition, owing to
the uncertainties in the PRR and throughput of the radios, and
uncertainties in the power consumption of the platform, both
the objective and constraint functions are also uncertain. As
a result, we have an integer non-linear programming (INLP)
problem with uncertainties. Although the INLP problem is
NP-hard [34], the relatively limited number of transmission
power settings that the two radios can assume (WiFi: 22
and ZigBee: 9) alleviates the computational burden of solving
this optimization at runtime. On the other hand, uncertainties
are addressed using the combination of s-risk measures and
specific regression modeling of PRR and power consumption
(as presented in Section IV). The execution time of solving
this optimization problem is presented in Section VI-A.

An offline optimization study, illustrating the impact of
the PRR and power consumption uncertainties (when left
untreated) on the radio selection decisions, and the design
of our online optimization scheme for runtime radio and
transmission selection are discussed next.

B. Study on the Impact of Uncertainties

An offline optimization study is set up to investigate the im-
pact of environmental uncertainties (that cause PRR variations)
and systemic uncertainties (that cause power consumption
variations) on the radio selections. Therefore, in this study,
we neither employ any smoothing operation on the empirical
data nor use the regression models developed in Section IV.

Optimization is performed for different sample combina-
tions of distance between sender and receiver (X) and data
rate (D), where X ∈ {10, 20, 30, . . . , 150}m and D ∈
{25, 50, 75 . . . , 150}packets/s. A conservative safety margin
of 20% (ϵ = 0.2) is imposed on the data rate/goodput ratio.
For a given distance, data rate, and radio transmission settings
(pw, pz), the objective function is evaluated by directly com-
puting the s-risk value of fE (Eq. 5) from the platform power
measurements data pertaining to the stated radio transmission
settings and the PRR measurements data pertaining to given
distance and radio transmission settings (Section III); a risk-
aversive parameter of β = 0.8 is used here. Considering



the comparatively smaller variance in the throughput mea-
surements and the focus of the paper on dynamic systems
(where distance variation mainly affects PRR), the throughput
of ZigBee and WiFi is fixed at their respective measured
median values (hw = 800 packets/s and hz = 225 packets/s).

Since a small number of radio settings are available – 22×9
possible combinations of (pw, pz) – those violating the data
rate/goodput ratio constraint are first filtered out; then a simple
min-search is employed to identify the optimal feasible setting,
p∗w, p

∗
z , that yields the minimum power consumption. This pro-

cess is performed for all the sample combinations of sender-
receiver distance and data rate. The radio transmission setting
decisions yielded by this uncertainty-sensitive optimization
is shown in Fig. 5. For illustration purposes, the results for
three data rates (150, 175, and 200 packets/s) are shown. In
Fig. 5, the X-axis and Y-axis respectively represent the sender-
receiver distance and the data rate; in the top two plots, the
color of the circles represent the optimal WiFi and ZigBee
transmission settings in dBm; and a missing circle indicates
that particular radio was set to “OFF” (for the given data
rate/distance sample). The last plot in Fig. 5 indicates whether
the optimal radio setting succeeded (= 1) or failed (= 0) to
satisfy the data rate/goodput ratio constraint.

Fig. 5. Offline study: Optimal transmission power settings of ZigBee/WiFi
(operating together) and success (= 1) or failure (= 0) in meeting the “data
rate/goodput” ratio constraint for different distance and data rate combinations

The impact of noise/uncertainty of the empirical data (driv-
ing the nominal decisions) is apparent in the offline optimiza-
tion results as shown in Fig. 5. For example, it can be seen
that when increasing the sender-receiver distance, the radios
often switch back and forth between higher and lower settings
(instead of a more robust monotonic variation); secondly,
no feasible/successful radio setting combination is found for
distances of 90m and 110m, although feasible/successful
settings were found for higher distances of 120−140m. These
observations highlight the detrimental impact that directly
using recorded data (with their associated uncertainties)
can have on any empirical decision-making strategy. This
directly motivates 1) the uncertainty-aware power consump-
tion and PRR models developed in Section IV, and 2) the
new online algorithm that uses these models to offer robust
solutions, which will be described in the next section.

C. Online Optimization

The online optimization approach is developed to serve as a
first foray into training a light-weight solution for runtime se-
lection of radio and transmission power under an energy-scarce

and uncertain/dynamic environment − typical of application
domains such as home/commercial area networks or highly
mobile networks. The online scheme should be able to process,
interpret, and optimally respond to the uncertainties, without
resorting to expensive uncertainty quantification/resolution and
typical robust optimization techniques − these techniques are
generally not suited to be executed at runtime on embedded
systems with humble computing capacities.

Our approach aims to construct a novel runtime scheme
with the following desirable characteristics: (i) lightweight
execution, (ii) uncertainty-awareness, and (iii) promotion
of a power-saving radio/transmission selection policy. It
is important to reiterate that the unique models of power
consumption (s-risk models) and PRR (logistic regressions),
presented in Section IV, are particularly aimed at enabling
this light-weight runtime scheme. Drawing parallels to robust
control and Markov Decision Processes, the overall objective
of the online scheme can be stated as: to maintain/accomplish
desirable values of the state parameters (e.g., goodput and
platform power consumption) under a dynamic and uncertain
environment, by optimally modulating the action variables
(i.e., selection of radio(s) and transmission setting(s)).

A look-up table system (radio-settings-table) is first gen-
erated. Each row (i) and each column (j) of this table
respectively corresponds to a WiFi and a ZigBee transmission
setting (pjz, p

i
w); the table thus comprises a total of 22×9 cells

(See Eq. 6), where each cell Cij contains one scalar value and
two 4-tuples, as shown below:

Cij = {E(pz,j , pw,i), R(pz,j), R(pw,i)}

E(pjz, p
i
w) = Sz,0.8

(
pjz
)
+ Sw,0.8

(
piw
)
− 2Sp,0.8

R(pz,j) =
(
rhighz,j , rmedium

z,j , rlowz,j , r
poor
z,j

)
R(pw,i) =

(
rhighw,i , rmedium

w,i , rloww,i , r
poor
w,i

)
where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(7)

In Eq. 7, the scalar E(pz,j , pw,i) represents the power con-
sumption attributed to the active radios, when operating at
the associated transmission setting combination (i, j); it is
derived from the s-risk measures of power consumption (Sec-
tion IV-A), where the s-risk value of the platform baseline
power consumption with radios off (Sp,0.8) is estimated to be
1831mW ; the s-risk values of the platform power consumption
with ZigBee on (Sz,0.8) and that with WiFi on (Sw,0.8) are
estimated from the linear regressions in Eq. 2.

The two 4-tuples in Eq. 7, R(pz,j) and R(pw,i), represent
the four PRR values corresponding to the high, medium, low,
and poor operational (or performance) states of ZigBee and
WiFi, respectively. These state values are given by the logistic
PRR functions developed in Section IV-B (Figs. 4(a) and 4(b)).

It is important to note that in practice, the look-up table is
stored/loaded in a more compact form, instead of the 22 × 9
table (described here for ease of illustration). Since the WiFi
and ZigBee settings (i, j) are essentially independent of each
other, the look-up table can be stored in the actual test bed in a
form that yields a frugal set of “1+(5×(22+9))” floating point



values, making it highly effective for fast runtime decision-
making on embedded devices.

The runtime radio and transmission selection,
that uses this lookup table, is designed as a
sense→classify→predict→search process.

• Sense: The online process measures PRR (reported by the
receiver) and throughput of each radio at a desired sampling
frequency; it computes the data rate/goodput ratio (Dt/Gt)
based on the time averaged values of PRR and throughput over
the last time window t. If the constraint, 1 − Dt/Gt ≥ ϵ, is
violated, it invokes the succeeding steps; otherwise, no change
is made. In addition, the process computes and checks if the
relative change in the D/G ratio is greater than 10%, i.e.,
|Dt/Gt − Dt−1/Gt−1| > 0.1. If this criteria is met, the
succeeding steps are again invoked; otherwise no changes
are made. The frequency of the constraint computation and
the D/G change computation depends on the designer’s
preferences. More risk aversive strategies will call for higher
frequency of the former, and more energy-conscious strategies
will demand higher frequency of the latter. Too frequent
changes however may not be recommended, as it might entail
unnecessary computing overhead on the system.

• Classify: If the sense process invokes the succeeding steps,
first, the current state of each radio’s performance, (ptw, r

t
w)

and (ptz, r
t
z), is classified into the high, medium, low, and poor

(or in-between) state categories. This is accomplished by the
following rule: Classify the current state of the WiFi into lying
at one or between the two categories, whose associated PRR
values immediately bound the measured PRR. For example
(using Fig. 4(b)), if the PRR of WiFi transmitting at 14dBm is
70%, then its performance/operation is classified to currently
lie between the “medium” and “low” states; or if the PRR
of WiFi transmitting at 4dBm is 90%, then its operation is
classified into purely “high” state. A similar rule applies to
ZigBee as well. More sophisticated classification schemes,
such as using Bayes rule, can also be readily implemented
within this process. This being the first implementation of this
novel online scheme, the simpler interval based classification
is instead employed here.

• Predict: After the classification step, the D/G constraint
(where G = ht

wr
t
w,ij + ht

zr
t
z,ij) and the energy objective

function (fE) are evaluated for each cell of the radio-settings
table, where the latter is given by:

f t
E,ij = min

(
1,

Dt

ht
wr

t
w,i + ht

zr
t
z,j

)
E(pjz, p

i
w) + Sp,0.8

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9
(8)

where the PRR values of ZigBee and WiFi for each cell of the
lookup table (rtw,ij , r

t
z,ij) correspond to the classified category.

More specifically, a linear interpolation is used. Taking the
previous example of PRR of WiFi transmitting at 14dBm to be
70% − where its operational state is estimated to lie between
the “medium” and “low” categories, the expected PRR of WiFi
(at that time point) for say 12dBm will be given by:

rtw,12 = rloww,12 +
rtw,14 − rloww,14

rmedium
w,14 − rloww,14

(
rmedium
w,12 − rloww,12

)
.

For purely high or purely poor states, 100 and 0 are used as
the respective upper and lower bounds for the interpolation.
• Search: Once the expected power consumption (fE,ij)

and the D/G constraint has been computed for all 22 × 9
ZigBee/WiFi settings, those violating the D/G constraint are
first filtered out. A min-search is then executed to identify the
optimal ZigBee/WiFi setting, (i, j)∗, as the one that yields the
smallest value of fE,ij . The system immediately switches to
this new setting. This step can be expressed as:

min
i,j

f t
E,ij

subject to 1− Dt

ht
wr

t
w,ij + ht

zr
t
z,ij

≥ ϵ

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(9)

In practice, the filtering of feasible solutions and searching
for the optimal solution are both performed in computational
efficient ways − e.g., the filtering is initiated by searching
from the highest setting, (pjz, p

i
w) = (5, 21)dBm, and moving

somewhat diagonally, until a setting (k, l) is reached where
the constraint is violated; all other lower settings (i.e., ∀(i ≤
k, j ≤ l)) are filtered out without computing the constraint.

The median execution time of our online optimization is
49ms on an ARM processor. Section VI-A will present our
micro-benchmark evaluations in detail.

VI. EVALUATION

To examine the efficiency of ARTPoS, we perform a series
of experiments on our embedded platform presented in Sec-
tion III. We first measure the overhead of the key ARTPoS
operations such as the time duration of the optimizer selecting
the best radio(s) and needed transmission power(s) and the
radio turning on and off overhead. We then evaluate ARTPoS’s
impact on power consumption and link reliability, and compare
its performance against three baselines.

In all experiments, we deploy a benchmark application on
top of the ARTPoS by generating data packets periodically.
The ARTPoS is configured to perform the radio and transmis-
sion power selection in each period (i.e., 10s) based on the
measured PRR and throughput of the ZigBee and WiFi links. If
the then-active radio and transmission power setting is found to
be the best-suited, it is retained; else the ARTPoS switches to
a new best-suited setting. Non-overlapping channels are used
for ZigBee and WiFi to avoid interference. A power meter
from Monsoon Solutions [26] is connected to the sender to
measure the power consumption. Radios are turned off after
the last transmission in each period and the unselected one is
kept off to reduce power consumption for both our approach
and baselines. If both radios are selected for use, packets
are partitioned based on their throughput ratio, allowing the
platform to sleep earlier and save energy. Due to the lack of
a baseline that jointly optimizes the selection of both radio
and transmission power, we extend the ART [22], a practical
state-of-the-art transmission power control approach designed
for ZigBee, and create three baselines: one with only ZigBee
radio on running ART (ART-ZigBee), one with only WiFi radio



Fig. 6. CDF of the time duration for the online scheme to determine the
optimal radio and transmission power.

Fig. 7. Radio activities when the WiFi controller manages packet transmission
in a 10s period.

on running ART (ART-WiFi), and one with both radios on
operating at their default powers (Fixed-power).

A. Micro-Benchmark Experiments

We first evaluate the time duration taken by the designed
optimal online scheme to select the best radio(s) and minimum
needed transmission power(s). We record the time of the
events when the input is fed into the optimizer and the output
(i.e., radio and transmission power selection) is generated.
For this experiment, we repeat the measurement 10,000 times,
using randomly generated inputs, on our 1.2GHz 64-bit quad-
core ARMv8 CPU platform. Fig. 6 shows the cumulative
probability density (CDF) of the time duration of the 10,000
runs. As shown in Fig. 6, the median execution time is 49ms
(consuming 13.5mJ more energy than CPU idling), while
90% and 99% of the experimental runs finish within less than
225ms and 456ms, respectively.

We also measure the time duration and energy consumption
of other key operations in ARTPoS. Fig. 7 shows an example
power consumption trace where the WiFi controller switches
on the WiFi radio, transmits 1000 packets, and then switches
off the radio. The platform takes T2 − T1 = 0.44s and
consumes 0.92J of energy to turn on the radio and set its
transmission power. Transmitting 1000 packets takes T3−T2 =
1.38s, while turning off the radios takes T4−T3 = 1.02s. The
platform consumes 3.60J and 2.07J of energy to transmit
the data and turn off the radio, respectively. The radios are
kept off for the rest of the period T5 − T4 = 7.16s. These
results demonstrate the efficiency of the optimizer and the
radio controllers, as well as the advantage of turning the radios
off after transmissions in each period, and also illustrate the
significant need of developing new low-power platforms for
IoT applications to achieve lower baseline power consumption.

(a) Power consumption improvement over baselines

(b) PDR improvement over baselines

Fig. 8. Power consumption and PDR differences between ARTPoS and three
baselines (Fixed-power, ART-WiFi, and ART-ZigBee) at different data rates.

B. Impact on Power Consumption and Link Reliability

To understand the effectiveness of our ARTPoS and its im-
pact on power consumption and link reliability, we performed
a set of experiments comparing ARTPoS’s performance with
three baselines. We performed the four experimental runs,
respectively with ARTPoS, Fixed-power, ART-WiFi, and ART-
ZigBee, in a round robin fashion to minimize the temporal
effects of the dynamic wireless environment (for fair compar-
ison). Fig. 8 shows the power consumption and packet delivery
rate (PDR) comparisons between our ARTPoS and the three
baselines. To explore ARTPoS’s performance under different
traffic demands, we repeated the experiments by controlling
the application to generate data at different rates. Under each
data rate and approach, we repeat the experiments five times
and present the confidence intervals in Fig. 8.

As shown in Fig. 8(a), ARTPoS reduces the average
power consumption by 98.2mW and 86.3mW over Fixed-
power and ART-WiFi, respectively, when the data rate is
1000 packets/period. Similarly, ARTPoS achieves significant
power savings over Fixed-power and ART-WiFi at higher
data rates (51.4mW and 57.5mW at 3000 packets/period,
73.7mW and 91.2mW at 5000 packets/period, 111.9mW
and 112.7mW at 7000 packets/period). As a comparison for
power saving values, the CC2650 radio consumes 27.3mW
power when transmitting at 5dBm [3]. ARTPoS consumes
23.9mW more power than ART-ZigBee at the lowest data
rate since it needs to occasionally turn on the WiFi radio
to measure its channel condition. It is to be noted that
ARTPoS consumes more power than ART-ZigBee but ART-
ZigBee is not able to to deliver satisfactory PDRs at high
data rates because of the ZigBee’s limited bandwidth (i.e., the



median PDRs under ART-ZigBee are 68.7%, 44.6%, 31.0%,
and 25.0% when the data rate is 3000, 5000, 7000, and
9000 packets/period, respectively, i.e., significantly inferior
to ARTPoS (as seen from Fig. 8(b)). Neither WiFi nor ZigBee
alone can support the data rate of 9000 packets/period,
while our ARTPoS provides satisfactory PDRs by bundling
the WiFi and ZigBee radios. The experimental results show
that ARTPoS can effectively reduce the energy consumption,
while maintaining satisfactory link reliability.

VII. CONCLUSION AND FUTURE WORK
Given the dynamic nature of communication in IoT (e.g.,

mobile/vehicular and industrial wireless sensor networks), a
traditional one-radio-fits-all approach cannot meet the chal-
lenges under typically varying operating conditions and traffic.
This paper presents the ARTPoS system that makes avail-
able multiple wireless technologies at runtime and selects
the radio(s) and transmission power(s) most suitable for the
current conditions. New power and PRR modeling approaches
are presented, which allow the system to proactively adapt
to large variations in power consumption and link reliability
measurements. This is followed by the development of a light-
weight online optimization scheme, based on a sense-classify-
predict-search process. Experimental evaluations of the thus
formulated online optimization scheme, and its comparison
with different baselines, show that ARTPoS can remarkably
reduce the power consumption, while maintaining satisfactory
link reliability. We plan to integrate ARTPoS with the low
power listening technique to support efficient duty cycling and
enable model updating at runtime as our future works. In addi-
tion, we are also currently investigating approaches to extend
this fundamental radio/transmission selection technique from a
one-to-one communication to a many-to-many/network-scale
communication framework involving gateways. Decomposed
problem formulations and decentralized decision-making are
expected to serve as two other core elements in facilitating
this important next step in this research.
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