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Abstract

Recent years have witnessed the rapid deployments of
wireless mesh networks (WMNS5s) for industrial automation,
military operations, smart energy, etc. Although WMNs
work satisfactorily most of the time thanks to years of re-
search, they are often difficult to configure as configuring a
WMN is a complex process, which involves theoretical com-
putation, simulation, and field testing, among other tasks.
Simulating a WMN provides distinct advantages over ex-
perimenting on a physical network when it comes to iden-
tifying a good network configuration. Unfortunately, our
study shows that the models for network configuration pre-
diction learned from simulations cannot always help physi-
cal networks meet performance requirements because of the
simulation-to-reality gap. In this paper, we employ deep
learning based domain adaptation to close the gap and lever-
age a teacher-student neural network to transfer the network
configuration knowledge learned from a simulated network
to its corresponding physical network. Experimental results
show that our method effectively closes the gap and increases
the accuracy of predicting a good network configuration that
allows the network to meet performance requirements from
30.10% to 70.24% by learning robust machine learning mod-
els from a large amount of inexpensive simulation data and a
few costly field testing measurements.

1 Introduction

Recent years have witnessed rapid deployments of wireless
mesh networks (WMNs) for industrial automation [38, 95],
military operations [57], smart energy [80], etc. For instance,
IEEE 802.15.4-based industrial WMNSs, also known as wire-
less sensor-actuator networks (WSANSs), are gaining rapid
adoption in process industries over the past decade due to
their advantage in lowering operating costs [51]. Battery-
powered wireless modules easily and inexpensively retrofit
existing sensors and actuators in industrial facilities without
the need to run cables for communication and power. Indus-
trial standard organizations such as HART [31], ISA [38],

IEC [37], and ZigBee [104] are actively pushing the real-
world implementations of WSANS for industrial automation.
For example, more than 54,835 WSANSs that implement the
WirelessHART standard [95] have been deployed globally
by Emerson Process Management to monitor and control in-
dustrial processes [24].

Although WMNSs work satisfactorily most of the time
thanks to years of research, they are often difficult to config-
ure as configuring a WMN is a complex process, involving
theoretical computation, simulation, and field testing, among
other tasks. Simulating a WMN provides distinct advantages
than experimenting on a physical network when it comes to
identifying a good network configuration: a simulation can
be set up in less time, introduce less overhead, and allow for
different configurations to be tested under exactly the same
conditions. Significant efforts have been made to investigate
the characteristics of wireless communication in the litera-
ture. For instance, there has been a vast array of research
that empirically studied the low-power wireless links with
different platforms, under varying experimental conditions,
assumptions, and scenarios [6]. Decades of research have
gathered precious knowledge and produced a set of math-
ematical models that capture the characteristics of wireless
links, interference, etc, and enable the development of wire-
less simulators, such as TOSSIM [44, 84], Cooja [17, 65],
OMNeT++ [63,89], and NS-3 [61].

However, it is still very challenging to date to set up a
simulation that captures extensive uncertainties, variations,
and dynamics in real-world WMN deployments. Our study
shows that the models for network configuration predic-
tion learned from simulations cannot always help physi-
cal networks meet performance requirements because of the
simulation-to-reality gap; therefore the advantages of using
simulations to reduce experimental overhead, improve flexi-
bility, and enhance repeatability come at the expense of ques-
tionable credibility of the results. On the other hand, data
collection from many WMN deployments, which include the
ones in industrial facilities, is costly; therefore it is difficult
to obtain sufficient information to train a good model or iden-



tify an optimal policy for network configurations by relying
solely on field testing.

In this paper, we formulate the network configuration pre-
diction into a machine learning problem, use the configura-
tions of a WirelessHART network [95] as an example to il-
lustrate the simulation-to-reality gap, and then employ deep
learning based domain adaptation to close the gap. Specifi-
cally, this paper makes the following contributions:

e We present the simulation-to-reality gap in network
configurations and show that the models for network
configuration prediction learned from simulations can-
not always help physical networks meet performance
requirements;

e We develop a teacher-student neural network' that
learns robust machine learning models for network con-
figuration prediction from a large amount of inexpen-
sive simulation data and a few costly physical measure-
ments; to our knowledge, our work represents the first
systematic study of the effectiveness of domain adapta-
tion in closing the simulation-to-reality gap in network
configurations;

e We implement our method, evaluate it using four sim-
ulators and a physical testbed, and repeat our evalu-
ation with different network topologies under various
wireless conditions. Experimental results show that our
method can significantly improve the prediction accu-
racy and help physical networks meet performance re-
quirements.

The remainder of our paper is organized as the following
sections. Section 2 reviews the related work. Section 3 in-
troduces the background of WirelessHART networks. Sec-
tion 4 presents our problem formulation, our feature selec-
tion study, the simulation-to-reality gap, and our method that
closes the gap. Section 5 shows the design of our teacher-
student neural network. Section 6 evaluates our method.
Section 7 concludes the paper.

2 Related Works

The current practices in network configurations rely largely
on experience and rules of thumb that involve a coarse-
grained analysis of network loads or dynamics during a few
field trials. For example, the WirelessHART standard speci-
fies the use of all available channels after a human operator
manually blacklists noisy ones [95], and Emerson Process
Management [22] recommends using a constant value (60%
in general or 70% for control and high speed monitoring) as
the packet reception ratio (PRR) threshold to select links for

ITo eliminate ambiguity, we use the word “network” to denote a wireless
network and use the word “neural network™ to represent a deep learning
model in this paper.

routing [23]. Unfortunately, recent studies show that such
specifications are problematic, because using more channels
or a fixed PRR threshold is not always desirable in Wire-
lessHART networks [30,75,76]. In the literature, significant
research efforts have been made to model the characteris-
tics of wireless networks and optimize network configura-
tions through mathematical techniques such as convex op-
timization [52], game theory [2], and meta heuristics [73].
For instance, the characteristics of low-power wireless links
have been studied empirically with different platforms, un-
der varying experimental conditions, assumptions, and sce-
narios [6]. Runtime adaptation methods have been devel-
oped to improve the performance of wireless sensor net-
works (WSNs) by adapting a few parameters in the physical
and media access control (MAC) layers [20, 25,70, 90, 105].
Those methods are not directly applicable to configure a net-
work with many interplaying parameters.

As wireless deployments become increasingly hierarchi-
cal, heterogeneous, and complex, a breadth of recent re-
search has reported that resorting to advanced machine learn-
ing techniques for wireless networking presents significant
performance improvements compared to traditional meth-
ods. Deep learning has been used to handle a large num-
ber of network parameters and automatically uncover corre-
lations that would otherwise have been too complex to ex-
tract by human experts [5, 14,42,54,97,101] and reinforce-
ment learning has been employed to enable network self-
configurations [18,32,36,45,47,53,56,59,60,67,72,74,91,
93,96,98-100, 103]. The key behind the remarkable success
of those data-driven methods is the capability of optimizing a
huge number of free parameters [33,35] to capture extensive
uncertainties, variations, and dynamics in real-world wire-
less deployments, which not only yield complex features,
such as communication signal characteristics, channel qual-
ity, queuing state of each device, and path congestion situ-
ation, but also have many control targets, such as resource
allocation, queue management, and congestion control.

However, data collection from many wireless deployments
that are not easily accessible (e.g., the ones in industrial
facilities) is costly; therefore it is difficult to obtain suffi-
cient information to train a good model or identify an op-
timal policy for network configurations. In such scenar-
ios, the benefits of employing learning-based methods that
require much data are outweighed by the costs. Industry
has consequently shown a marked reluctance to adopt them.
To address this limitation, there has been increasing inter-
est in using simulations to identify good network configura-
tions [7,40,46,49,75,76,79, 82]. Unfortunately, our study
shows that a straightforward deployment of a model learned
from simulations results in poor performance in a physical
network due to the simulation-to-reality gap.

Domain adaptation aims to learn from one or multiple
source domains and produce a model that performs well on a
related target domain; the assumption is that the source and



target domains are associated with the same label space. It
has been successfully used in computer vision [69, 92], nat-
ural language processing [66], and building occupancy esti-
mation [3, 102]. Studies have shown that domain adaptation
can mitigate the harmful effects of domain discrepancy by
optimizing the representation to minimize some measures
of domain shift, such as maximum mean discrepancy [13]
or correlation distances [27]. Compared to fine-tuning the
deep learning model, which is pre-trained using simulation
data, employing domain adaptation is expected to close the
gap between the simulated network (source) domain and the
physical network (target) domain with fewer costly physi-
cal measurements. Recent work has focused on transferring
deep neural network (DNN) representations from a labeled
source dataset to a target domain where labeled data is sparse
or non-existent. The main strategy is to guide feature learn-
ing via minimizing the difference between the source and tar-
get feature distributions. The maximum mean discrepancy
(MMD) has been successfully used for domain adaptation,
which computes the norm of the difference between two do-
main means [29, 86]. Several methods employed an adver-
sarial loss to minimize domain shift and learned a represen-
tation that is simultaneously discriminative of source labels
while not being able to distinguish between domains [19,26].
Despite the extensive literature on domain adaptation, little
work has been done to investigate whether it can be applied
to close simulation-to-reality gap in network configurations.

3 Background of WirelessHART Networks

To meet the stringent reliability and real-time requirements
of industrial applications, WirelessHART networks [95]
made a set of specific design choices that distinguish them-
selves from traditional WSNs designed for best effort ser-
vices [51]. A WirelessHART network is managed by the
centralized network manager, a software module, which is
responsible for managing the entire network that includes
generating routes, scheduling all transmissions, and select-
ing network parameters. Network devices include a set of
field devices (sensors and actuators) and multiple access
points. Each network device is equipped with a half-duplex
omnidirectional radio transceiver compliant with the IEEE
802.15.4 standard [1].

WirelessHART networks adopt the time-slotted channel
hopping (TSCH) technique [85], which combines time-
slotted medium access, channel hopping, and multi-channel
communication to provide time-deterministic packet deliv-
eries”. Under TSCH, time is divided into 10ms time slots,
each of which can be used to transmit a packet and receive
an acknowledgment between a pair of devices. The net-
work uses up to 16 channels in the 2.4 GHz ISM band and

2Packets must be delivered along the data flow (from a sensor to an ac-
cess point and then to an actuator) by the specified time deadline.
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Figure 1: Device deployment on our testbed. The device ID
ranges from 100 to 149.

performs channel hopping in every time slot to combat nar-
row band interference. WirelessHART networks support two
types of routing: source routing and graph routing. Source
routing provides a single directed path from each data source
to its destination. Graph routing is designed to enhance net-
work reliability by providing redundant routes between field
devices and access points. A packet may be transmitted
through the backup routes if the links on the primary path
fail to deliver it.

4 Methodology

In this section, we first describe our experimental setup and
data collection method. Then we formulate the network
configuration prediction as a machine learning problem and
present our feature selection study and the simulation-to-
reality gap. Finally, we introduce our deep learning based
domain adaptation method, which closes the gap.

4.1 Experimental Setup and Data Collection

We adopt the open-source implementation of WirelessHART
networks provided by Li et al. [94] and configure six data
flows on our testbed, which consists of 50 TelosB motes [81].
Figure | shows the device deployment on our testbed and Ta-
ble 1 lists the source node (sensor), the destination node (ac-
tuator), the data generation interval (period), and the priority
of each data flow. We employ the rate monotonic schedul-
ing [48], an optimal fixed-priority policy, to generate the
transmission schedule, set the data delivery deadline of each
data flow to its period, and configure the devices with ID 111
and 138 to serve as two access points.

We consider three configurable network parameters,
which include (i) the PRR threshold for link selection R,
(ii) the number of channels used in the network C, and
(iii) the number of transmission attempts scheduled for each
packet A, and three network performance metrics, which
include (1) the end-to-end latency L, (2) the battery life-
time B, and (3) the end-to-end reliability E. We consider
R € {0.7,0.71,0.72,...,0.90}°, C € {1,2,3,4,5,6,7,8}, and

3Emerson Process Management [22] recommends using a constant value



Table 1: Data flows.

fll)ow Source | Destination F;I:)Od Priority
1 147 146 500 1
2 144 143 500 2
3 105 104 500 3
4 149 118 1000 4
5 136 135 1000 5
6 137 108 1000 6

A € {1,2,3} as the possible parameter values, and combine
them to create 744 (31 x 8 x 3) network configurations. Please
note that some network configurations make the network
manager generate the same routes and transmission sched-
ule. After removing all redundancy (the configurations lead-
ing to the same routes and transmission schedule), there are
88 distinct network configurations left under our experimen-
tal setup.

After deploying the data flows on the testbed, we imple-
ment the same network in the simulator?, feed the PRR and
noise traces, the routes, and the transmission schedule col-
lected from the physical network into the simulator, and then
run simulations to evaluate network performance under each
network configuration. Specifically, the simulator generates
simulated L, B, and E values under each network configura-
tion (R,C,A). The network performance (L, B, and E values)
is computed in every 50s. 75 network performance traces
are collected under each network configuration. In total, we
collect 6,600 (88 x75) data traces from simulations. Then,
we run experiments on our testbed and measure the network
performance under each network configuration. Similarly,
we collect 6,600 data traces from our testbed. The data gath-
ered from the simulated network and the physical network is
denoted as D* and D7, respectively.

4.2 Network Configuration Prediction

The primary task in network configurations is to select the
configuration (the selections of parameters R, C, and A),
which allows the network to meet the performance require-
ments (L, B, and E) specified by the application. The param-
eter selection should be as accurate as possible with minimal
data collection overhead. We formulate the network config-
uration prediction task as a machine learning problem. Let
x = concatenation(L, B, E) denote the given network perfor-
mance requirements and y = concatenation(R,C,A) denote
the configuration, which allows the network to meet perfor-
mance requirements. The goal is to learn a nonlinear map-

(0.6 in general or 0.7 for control and high speed monitoring) for R [23]. We
did not consider R lower than 0.7 because of the consistent low reliability
we observed.

4We repeat our experiments using four simulators: TOSSIM, Cooja,
OMNeT++, and NS-3.
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Figure 2: Importance factors of different features when using
tree-based feature selection method. Under the tree-based
method, the features that are selected at the top of the trees
are in general more important than the features that are se-
lected at the end nodes of the trees, as generally, the top splits
lead to bigger information gains. We use the normalized im-
portance factor generated by the tree-based method as a met-
ric for feature selection.

ping fg(-) : x — y. Based on the specific application, the user
can set the performance requirements (x). The input features
in x are selected by the feature selection study in Section 4.3.

We use 0 to denote the model parameters that are learned
from data in a data-driven manner. Given the fact that the
network configuration values (y) can be discretized without
losing the generality, we further restrict fy as a discrimi-
native model to solve a classification problem: an applica-
tion can set its performance requirements (x), and the clas-
sifier (fy) will predict the network configuration (y) to sat-
isfy the application requirements. This data-driven learning-
based model can take advantage of a large amount of data to
consistently improve its performance. Experimental results
(See Section 6.2) show that it significantly outperforms tradi-
tional optimization-based methods such as Response Surface
Methodology (RSM) [9] and Kriging surrogate modeling ap-
proach [78]. The latter usually suffers the issues that include
limited predictive power and being vulnerable to uneven data
distribution [15].

4.3 Feature Selection

In addition to the features (L, B, and E) that represent perfor-
mance requirements, we consider nine other features, which
include the received signal strength RSS [8], the link qual-
ity indicator LQI [6], the background noise G [6], the packet
delay variation O, the power consumption variation K, the
network reliability variation M, the received signal strength
variation V, the link quality indicator variation Q, and the
background noise variation N. Using all features that are rel-
evant to the network configuration prediction problem may
not necessarily achieve the best performance but rather in-
creases computational cost and data collection overhead. We
perform a study that employs three classic feature selection
methods (the tree-based method [50], the univariate feature
selection method [39], and the recursive feature elimination
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Figure 3: Modeling accuracy when model is trained and
tested on different data sets (2°: the simulation data pro-
duced by OMNeT++ and D?: the physical data). The dif-
ference between the grey bar and the blue bar indicates the
simulation-to-reality gap.

method [16]) to pick the most useful features. Figure 2 plots
the importance factors of different features when we use the
tree-based method. As Figure 2 shows, L, B, and E have
much higher importance factors (0.315, 0.262, and 0.258)
than the rest. Similar results are observed when we use other
methods. Therefore, we use L, B, and E as the input features
for WirelessHART networks. Please note that our method
can accept more features for other networks.

4.4 Simulation-to-reality Gap

Our goal is to learn a classifier to predict network configu-
rations on the physical data. However, it is a nontrivial task
to learn the model from either the physical data (D) or the
simulation data (2D°). Instead, we propose to use both D”
and 2 to learn the model as explained in the next section.

Using only physical data (D”): This would result in signifi-
cant time and energy consumption due to the costly data col-
lection process. We first leverage the physical data (D?) col-
lected from the physical network to train machine learning
models and explore its feasibility for our network configura-
tion prediction problem. We employ two machine learning
models, DNN and support vector machine (SVM), for clas-
sification. The input to the models is network performance
requirements and the output is network configurations. We
normalize the collected data (DP) into the [0, 1] range and
split it randomly for training and testing. The yellow bars in
Figure 3 show the modeling accuracy’, when DNN and SVM
models are used for the network configuration prediction, re-
spectively. Both DNN and SVM models trained based on
the physical data can provide high modeling accuracy when
we test the models on the physical data (DNN: 79.83% and
SVM: 52.90%), as the yellow bars show. This justifies the
feasibility of our proposed machine learning method in Sec-
tion 4.2 for the network configuration prediction and we may
use the measurements collected from the physical network to

5The modeling accuracy is defined as, given a set of input network per-
formance requirements (L,B,E), the percentage of the testing set that a
model can select the network configuration (R,C,A), which allows the net-
work to meet performance requirements.

train a good model. Unfortunately, relying on running exper-
iments on a physical network to explore the configuration pa-
rameter space is impractical in many cases because running
experiments on a physical network is very costly and time-
consuming. The left side of Table 2 shows the modeling
accuracy, data collection time, and device energy consump-
tion when we train the DNN model with different sizes of
the physical data (collected from a physical network). The
modeling accuracy increases significantly from 19.39% to
79.83% with the size of the training set (D) that increases
from 88 traces to 3,960 traces. However, the time spent on
collecting the training data (D?) increases from 1.22hours
to 55.00hours. Moreover, the energy consumed by each
field device for data collections on average increases from
310.61J to 13,974.26J, which represents 0.73% and 32.73%
of its total energy capacity.

Using only simulation data (2°): This would result in low
modeling accuracy due to the simulation-to-reality gap. The
simulation data can be quickly and cheaply obtained from
a simulator. As the right column of Table 2 show, the time
spent on generating the simulation data varies from 27.41s to
1,231.40s and no energy is consumed by any field devices.
However, a classifier that is trained based on the simulation
data (D*) may suffer the following issue when applied on the
physical data. As the grey bars in Figure 3 show, both mod-
els provide high modeling accuracy when we train based on
the simulation data (D°) and test the models on the simula-
tion data (DNN: 88.92% and SVM: 69.12%). However, the
modeling accuracy drops rapidly when we test the models on
the physical data (D?) as shown in blue bars (DNN: 25.70%
and SVM: 20.25% ). The differences on the modeling ac-
curacy (DNN: 63.22% and SVM: 48.87%) clearly show the
effect of the simulation-to-reality gap, a subtle but important
discrepancy between reality and simulation that prevents the
simulated experience from directly enabling effective real-
world performance [12,77]. The simulation-to-reality gap
exists in network configurations because the theoretical mod-
els adopted by the simulator cannot capture all real-world
performance-related factors. For example, the prerecorded
noise traces and the probability-based prediction on packet
reception cannot precisely capture the effects of packet fail-
ures caused by extensive uncertainties, variations, and dy-
namics in real-world wireless deployments (see Section 6.5).
We observed similar discrepancy gaps when using Cooja,
TOSSIM, OMNeT++, and NS-3. Because of the simulation-
to-reality gap, the machine learning models trained based on
simulation data (2*) for network configurations, no matter
how large the data volume is, may not generalize well to a
physical network.

4.5 Close the Gap by Domain Adaptation

The observations presented in Section 4.4 motivate us to ex-
plore the feasibility of using a substantial amount of inexpen-



Table 2: Modeling accuracy (%), data collection time (s), and device energy consumption (J) when using the physical data
(DP) or the simulation data (D*) produced by OMNeT++ for training. For comparison, our solution achieves 70.24% accuracy
with only 440 data samples which are collected in 22,000s with 1,502.88J of energy (see Section 6.2).

# of Data Samples From a Physical Network (Train: D?, Test: DP) From Simulations (Train: D°, Test: D?)
Used for Training Accuracy (%) Collection Time (s) Energy (J) Accuracy(%) Collection Time (s) Energy (J)
88 19.39 4.40%10° 310.61 6.52 27.41 0
528 42.16 2.64% 107 1,863.53 13.70 163.09 0
968 57.92 4.84%10% 3,416.34 17.69 301.95 0
2,024 67.68 1.01%10° 7,143.11 20.17 633.11 0
3,080 78.82 1.54%10° 10,869.61 22.44 933.99 0
3,960 79.83 1.98%10° 13,974.26 25.70 1,231.40 0
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Figure 4: Our teacher-student neural network.
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sive simulation data together with a small amount of costly
physical data to train the model for network configuration
prediction. To this end, our objective narrows down from
solving a classification problem to using domain adaptation
to address the domain discrepancy issue. Specifically, we
first gather N° data tuples by running simulations (source
domain) and then acquire N? data tuples by conducting ex-
periments on the physical network (target domain). We as-
sume N >> N” due to the significant data collection overhead
on the physical network (See Section 4.4). We assume that
the source and target domains are characterized by different
probability distribution ¢; and ¢, respectively. Our goal is
to construct a deep learning model that can learn transferable
features that bridge the cross-domain discrepancy and build
a classifier y = fy(x), which can maximize the target domain
accuracy (fy — fp) by using a small amount of physical data
(NP). The detailed design of our teacher-student neural net-
work will be discussed in Section 5.

5 Teacher-Student Neural Network

In this section, we present our teacher-student neural net-
work for domain adaptation. Our goal is to build a classifier
that can maximize the target domain (physical network) ac-

curacy by using a small amount of physical data (N”) and
adequate simulation data (N*) where N* > N? due to the
significant data collection overhead (See Section 4.4) on the
physical network. The teacher and student use independent
parameters and the teacher generates the soft labels [4, 34]
to transfer its knowledge to the student. Figure 4 shows our
teacher-student neural network. The first stream (teacher)
operates on the simulation data and the second stream (stu-
dent) operates on the physical data. Classification loss, distil-
lation loss, and domain-consistent loss are used in the train-
ing process for the student.

5.1 Teacher Neural Network

The teacher takes advantage of the large amount of simula-
tion data for training and the training data (D*) consists of
a total number of N* data tuples. We follow Multilayer Per-
ceptron (MLP) [71] to design the architecture of three layers:
120 and 84 neurons in the first two hidden layers, and 88
neurons in the output layer to represent the totally 88 distinct
configuration categories. Rectified linear unit (ReLU) and
softmax are employed to activate the hidden and output lay-
ers, respectively. The teacher’s parameters (0;) are learned
by minimizing the cross-entropy loss:

L(®) =~ E ylog(fo (¥)), M

where D° denotes the training data generated from simula-
tions, 01 denotes the teacher’s parameters, y denotes the one-
hot label, and fp, (x) is the prediction made by the teacher.
We use the Adam optimizer [41] with a learning rate of 0.01
to optimize the parameters of the teacher. A total number of
100 training epochs with a batch size of 128 have been used
to train the neural network.

5.2 Student Neural Network

We train the student based on the N” physical data with the
help of the teacher. The student can be quickly learned us-
ing only a few shots of physical data (N” < N*). To achieve



this, we leverage the teacher to facilitate the training of the
student where knowledge is transferred from the simulation
domain to the physical domain. The student shares the same
architecture with the teacher but uses independent param-
eters. ReLU and softmax are employed to activate the hid-
den and output layers, respectively. The student’s parameters
(82) are learned by minimizing the following loss:

L(GZ) = Lcls + aLdiS + Bmed (2)

where a, and B are weights. We empirically set o = 1, and
B = 0.2 which can provide good performance.

Classification loss £.;: This loss function allows the stu-
dent to learn from the limited (N?) physical data through
employing the cross-entropy loss:

LCIS = - E yl()g(fez (X))v (3)

x~DP

where y is the one-hot label and fy, (x) is the prediction made
by the student.

Distillation loss £;;;: This loss function allows the teacher
to transfer its knowledge to the student. The generalization
ability of the student can be enhanced by the loss generated
by the soft labels, which carry the information of probability
distribution for each class [4,34]. To compute L ;; with soft
labels, we use the following formula:

Lic=— E_alog(fo,(x), @

where fg, (X) is the prediction made by the student and q is
the tempered softmax probability generated by the teacher.
q is computed by:

exp(zi/T)

L A 5
Yhexp(z;/T) ©

where T is the temperature [34] and z; is the pre-softmax
output of the teacher. When T increases, the soft label g
approaches a uniform distribution and the probability dis-
tribution generated by the softmax function becomes softer,
which provides more information as to which class the
teacher finds more similar to the predicted class, instead of
giving a hard prediction that indicates which class is correct.
We set T = 10 to generate soft labels for the student.

Domain-consistent loss £,,,;: This loss function is em-
ployed to achieve domain-consistent representations be-
tween the source and target domains. Matching the distri-
butions in the original input feature space is not suitable
because some features may have been distorted by the do-
main shift. The key idea of domain-consistent regularization
is to align two domains, the target (physical data) and the
source (simulation data), in a latent embedding space. Our
method uses the MMD [21] to achieve this goal. MMD is a

Table 3: Training and testing setups of different methods.

Method Training Testing

Physical Data ~ Simulation Data  Physical Data  Simulation Data

TPTP
TSTP
FT
CCSA
DaNN
RSM
Kriging
Ours

X
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S & X
S S

XXX |X[X|X]|X

hypothesis test that tests whether two samples are from the
same distribution by comparing the means of the features
after mapping them to a Reproducing Kernel Hilbert Space
(RKHS) [68]. We calculate the loss as:

med:H E fel(x)_ E fez(X)H (6)
x~ DS x~DP

where fp, (-) and fo, (-) denote the pre-softmax output of the
teacher and the student, respectively. We use a learning rate
of 0.01 with the stochastic gradient descent (SGD) optimizer
to train the student. The momentum is set to 0.05 and the
weight decay parameter is set to 0.003, which governs the
regularization term of the student. A total number of 500
epochs have been trained on the student.

6 Evaluation

We perform a series of experiments to validate the effi-
ciency of our method to identify good network configura-
tions. We first evaluate the capability of our method to ef-
fectively improve the modeling accuracy and compare our
method against seven baselines, which include five machine
learning based methods: (i) Using the physical data for both
training and testing (TPTP); (ii) Using the simulation data
for training and the physical data for testing (TSTP) [75,76];
(iii) Fine-tuning (FT) method [83]; (iv) CCSA: Unified deep
supervised domain adaptation and generalization [58]; and
(v) Domain adaptive neural network (DaNN) [28], and two
non-machine learning methods: (vi) RSM method [9,87] and
(vii) Kriging method [11,78]. Table 3 summarizes the train-
ing and testing data used by each method. All methods use
L, B, and E as their input features. We then apply the net-
work configurations selected by our method on our testbed
and measure the network performance. We repeat our exper-
iments with different network setups under various wireless
conditions. Finally, we evaluate the effects of our method
on closing the gap when employing different simulators and
radio models.

6.1 Experimental Setup

As presented in Section 4.1, we configure six data flows on
our testbed. On each data flow, sensor data is generated by
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Figure 5: Modeling accuracy of our method and baselines
when different number of shots of physical data are added
into simulation data (3,960 data samples in total) for training.
One shot includes 88 data samples (one data sample under
each network configuration).

the source node and forwarded to the access points (uplink)
and then a corresponding control command is sent to the
destination node (downlink). We calculate the latency, en-
ergy consumption, and reliability every 50s. We employ the
same DNN architecture for the teacher and the student in our
method with independent weights (see Section 5). Each neu-
ral network has 120 and 84 neurons in the first two hidden
layers, and 88 neurons in the output layer. The weight 3
of MMD is 0.2 and the temperature 7 is 10. The learning
rate is 0.01 with the SGD optimizer for the student. CCSA
uses the cross-entropy loss and the semantic alignment loss
between the source and target domains with the Siamese ar-
chitecture. DaNN uses the standard classification loss and
the MMD regularization for classification and domain adap-
tation. FT first uses the simulation data to train the initial
model and then fine-tunes the neural network parameters to
fit the target domain using a small amount of physical data.
FT uses the learning rate of 0.001 to tune the parameters of
the last layer in the DNN with the physical data. RSM and
Kriging methods use simulation data and different amount
of physical data to build RSM and Kriging models and use
them to predict network configurations. Specifically, RSM is
a black-box modeling technique and uses polynomial func-
tions to approximate the model functions between the inputs
and the outputs [9], while Kriging leverages spatial interpo-
lation that uses complex mathematical formulas to estimate
values at unknown points based on the values, which are al-
ready sampled [78].

6.2 Performance of Our Method

We first evaluate the modeling accuracy of our method and
compare its performance against seven baselines using the
data traces presented in Section 4.1. 3,960 data samples from
the simulation data are used for training under all methods
except TPTP, which uses only the physical data for training.
Figure 5 plots the modeling accuracy of all methods when
different number of shots of physical data are added into the
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Figure 6: Time and energy consumption to collect different
number of shots of data from a physical network. Using only
physical data to train the model is infeasible due to unaccept-
able time and energy overhead.

simulation data for training. As Figure 6 plots, collecting
one shot of physical data (one data sample under each of
88 network configurations) takes 1.22 hours and consumes
310.61J of energy. Please note that TSTP uses only the sim-
ulation data for training (see Table 3) and provides the lowest
accuracy (30.10%) due to the simulation-to-reality gap. The
results clearly show that the model trained with the simu-
lation data does not work well on the physical data. RSM
and Kriging also provide poor performance with the max-
imum accuracy of 35.06% and 46.87%, respectively. Our
method achieves the best performance. With only one shot
of physical data (88 data samples), our method provides an
accuracy of 50.12%. With four more shots of physical data,
our method hits 70.24% accuracy. Using a small amount of
physical data to provide a good model represents an impor-
tant feature of our method because the data collection from
a physical network is very time and energy consuming. As
a comparison, without using the simulation data, TPTP pro-
vides only an accuracy of 19.39% and 41.21% at one shot
and five shots, respectively. This highlights the importance
of learning knowledge from simulations and transferring it
to a physical network for network configurations.

We also observe that the accuracy improves slowly from
70.24% to 78.25% when the number of shots increases from
5 to 15. However, collecting 10 more shots of physical data
from a physical network takes a long time and consumes
much energy. As Figure 6 plots, the collection of five shots
of physical data takes 6.11hours and consumes 1,502.88J of
energy, while collecting 15 shots take 18.33hours and con-
sumes 4,758.70J of energy. The improvement on the mod-
eling accuracy is largely shadowed by the significantly in-
creased data collection overhead. Therefore, we use five
shots in the rest of our evaluation. Figure 5 and 6 also show
that only using physical data to train the model is inefficient.
It takes 18.33hours to collect enough data from a physi-
cal network, which allows TPTP to provide an accuracy of
60.95%. By comparing the accuracy provided by our method
and TPTP, we can clearly see the effectiveness of our method
on reducing the data collection time for training good mod-



Table 4: Six example network configurations selected by our method and TSTP. Figure 7 and 8 show the network performance
after applying the configurations selected by our method and TSTP on our testbed, respectively. Our method can meet all
performance requirements. The performance requirements that TSTP fails to meet are highlighted.

D # Input Output (our method / TSTP)
Latency (ms) Battery lifetime (days) Reliability (%) PRR threshold (%) # of Channel # of Tx Attempts
1 170 210 98 84 /82 4717 3/3
2 225 214 97 90/ 88 5/1 3/3
3 130 220 95 84 /78 4/8 2/3
4 165 224 95 90/ 89 4/6 2/2
5 130 200 98 87/72 2/1 3/2
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(a) Boxplot of latency.

(b) Boxplot of battery lifetime.

(c) Boxplot of reliability.

Figure 7: Network performance when employing the network configurations selected by our method (listed in Table 4). Central
mark in box indicates median; bottom and top of box represent the 25th percentile (g;) and 75th percentile (g»); red dots
indicate outliers (x > g2 + 1.5% (g2 —q1) or x < g1 — 1.5 (g2 — ¢1)); whiskers indicate the range that excludes outliers.

els for network configuration prediction. Our method con-
sistently outperforms those two existing domain adaptation
methods (DaNN and CCSA), which use the Siamese DNN
model with different distance loss functions. For example,
our method provides an accuracy of 70.24% when it uses five
shots of physical data for training, while CCSA and DaNN
provide 47.46% and 61.07% accuracy, respectively. The ac-
curacy provided by FT increases from 32.73%, to 33.42%,
and then to 56.40% when the number of shots increases from

1, to 2, and to 15 shots.

Our method can consistently outperform the baselines be-
cause it not only uses two different neural networks to learn
two specific models for different but highly related domains
with the soft labels but also employs the MMD regulariza-
tion, while both DaNN and CCSA use same weights between
the source and target domains for domain adaptation. More-
over, the distillation loss L;; of our method provides a set of
candidate network configurations for the student to choose
and the student can quickly adapt to the target domain. The
results also show that the domain-consistent loss, as a distri-
bution distance measure, is effective for eliminating domain
divergence between the source domain (simulated network)
and the target domain (physical network). Our method also
significantly outperforms FT. The low accuracy provided by
FT shows that changing only the weight of the last layer in
the DNN cannot produce a good adapted model.

We further validate the network configurations selected by

our method on our testbed by examining the actual network
performance. Specifically, we feed different network per-
formance requirements to our method, employ the selected
network configurations, and then measure the network per-
formance. We repeat the experiments under each network
configuration 108 times. Table 4 lists six example network
configurations selected by our method and TSTP when fac-
ing different network performance requirements. Figure 7
plots the boxplots of latency, battery lifetime®, and reliabil-
ity when employing six network configurations selected by
our method. As Figure 7 shows, our method always helps
the network meet the network performance requirements
posed by the application (listed in Table 4). For instance,
the latency, battery lifetime, and reliability requirements are
170ms, 210days, and 98% in the first example (ID = 1).
When employing the network configuration selected by our
method (84% as PRR threshold, four channels, three trans-
mission attempts for each packet), the network achieves a
median latency of 161.00ms, a median battery lifetime of
213.76days, and a median reliability of 100%, which meet
all given requirements. Similarly, the latency, battery life-
time, and reliability requirements are 165ms, 224days, and
95% in the fourth example (/D = 4). When employing the

To compute the battery lifetime, we assume that each field device is
powered by two Lithium Iron AA batteries with a total capacity of 42,700].
We compute the radio energy consumption based on the timestamps of radio
activities and the radio’s power consumption in each state according to the
radio chip data sheet.
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Figure 8: Network performance when employing the network configurations selected by TSTP (listed in Table 4). The dotted
boxes highlight the network performance that fails to meet the requirements. Compared to Figure 7, our method always provides
better network configurations than TSTR and help the network meet the application performance requirements.

network configuration selected by our method (90% as PRR
threshold, four channels, two transmission attempts for each
packet), the network achieves a median latency of 163.33ms,
a median battery lifetime of 224.28days, and a median re-
liability of 98%, which meet all given requirements. Larger
variations on latency are observed when the number of trans-
mission attempts for each packet is small, which confirms the
observations reported in our previous study [75,76]

As a comparison, we also employ the network config-
urations selected by TSTP when facing the same network
performance requirements. Table 4 lists the network con-
figurations selected by TSTP and Figure 8 plots the result-
ing network performance. Due to the simulation-to-reality
gap, the network configurations selected by TSTP cannot al-
ways meet all network performance requirements. The dot-
ted boxes in Figure 8 highlight the network performance that
fails to meet the application requirements listed in Table 4.
For instance, the latency, battery lifetime, and reliability re-
quirements are 130ms, 200days, and 98% in the fifth exam-
ple (/D =5). When employing the network configuration
selected by TSTP (72% as PRR threshold, one channel, two
transmission attempts for each packet), the network achieves
a median latency of 191.40ms, a median battery lifetime of
204.74days, and a median reliability of 94.00%, which fail
to meet the latency and reliability requirements.

6.3 Performance with Different Network
Topologies under Various Wireless Con-
ditions

To examine the applicability of our method, we repeat our
experiments with different network topologies under various
wireless conditions. We first vary the number of data flows,
the number of devices in the network, and the locations of
source nodes, destination nodes, and access points and mea-
sure the performance of our method. Figure 9 plots the ac-
curacy comparisons between our method and seven base-
lines under four example network topologies. Our method
consistently provides the highest accuracy. For instance,
our method achieves an accuracy of 67.09% under the third
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Figure 10: Accuracy comparison among different methods
under different wireless conditions.

Stress-Testing

network topology, while CCSA and DaNN provide 44.23%
and 59.37% accuracy, respectively. TPTP, TSTP, FT, RSM,
and Kriging achieve 39.72%, 25.78%, 41.90%, 32.56%, and
34.26% accuracy, respectively. The results confirm the im-
provements presented in Section 6.2 and show our method
can consistently outperform the state of the art.

We also examine the performance of our method under
different wireless conditions. We set up three jammers on
our testbed (ID 116, 131, and 134 in Figure 1) and run
Jamlab [10] on them to generate controlled WiFi interfer-
ence with various strengths. We create three wireless condi-
tions: a clean environment without controlled interference,
a noisy environment with moderate controlled interference,
and a stress-testing environment with strong controlled in-



terference. We train the model again with different physi-
cal data under different wireless conditions. Figure 10 plots
the modeling accuracy under three wireless conditions when
employing our method and seven baselines. As Figure 10
shows, the accuracy provided by our method decreases from
68.89%, to 64.99%, and then to 62.20% when stronger in-
terference is introduced. We observe similar trends when
employing other methods.

This exposes a limitation of current wireless simulators,
which cannot precisely simulate the effects of external inter-
ference and environmental dynamics. To better understand
the physical data distribution, we visualize the data distri-
bution of (L,B,E) collected from the physical data (DP)
using the t-Distributed Stochastic Neighbor Embedding (t-
SNE) algorithm [88], a dimension reduction tool for data vi-
sualization. Figure 11 shows the network performance vi-
sualization provided by t-SNE where different colors stand
for different network configurations. Figure 11(a) and Fig-
ure 11(b) plot the data distributions when the network oper-
ates with and without the presence of strong controlled in-
terference, respectively. Please note that those two figures
include the same amount of data points. Many data points
in Figure 11(b) overlap each other. These larger variations,
result from the interference, significantly increases the dif-
ficulty on transferring knowledge learned from simulations
to a physical network. With the presence of interference,
our method still consistently outperforms all baselines. For
instance, in the stress-testing environment, our method pro-
vides an accuracy of 62.20%, while other methods provide
up to 53.21% accuracy.

To illustrate the differences between physical data and
simulation data, Figure 12 plots the reliability measured
from the physical network and simulated by TOSSIM under
four network configurations. Because of the simulation-to-
reality gap, the measured reliability is different from the sim-
ulated one. More importantly, the variations of the measured
reliability values are much larger than the simulated ones.
Such differences highlight the important of our method,
which effectively closes the gap and increases the accuracy
of predicting a good network configuration that allows the
network to meet performance requirements.

6.4 Effects of Different Losses

To study the effects of different losses on the performance of
our method, we repeat the experiments by disabling one or
two losses among the classification loss L, the distillation
loss £;is, and the domain-consistent loss £,,,,s. We conduct
our experiments using Topology 1 in Figure 9 in a clean envi-
ronment. Figure 13 plots the accuracy when our method uses
different combination of loss functions. As Figure 13 shows,
our method with a single loss provides very low classification
accuracy (Lygis: 28.22%, Lyma: 26.81%, and L5:41.21%).
The accuracy is also very low (36.84%) when our method
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Figure 11: Data visualization provided by t-SNE [88].
Larger variations are observed in stress-testing environment,
which significantly increase the difficulty on transferring
knowledge learned from simulations to a physical network.

uses Ly and L4 due to the critical need of the classifi-
cation loss on the target domain. The accuracy increases to
64.60% when our method combines £, with £;;,, because
the distillation loss Ly provides a set of candidate network
configurations for the student to choose and the student can
quickly adapt to the target domain by combining the knowl-
edge distillation loss and classification loss. The accuracy
further increases to 70.24% when our method uses all three
losses. The results show that the domain-consistent loss, as
a distribution distance measure, is effective for eliminating
domain divergence between the source domain (simulated
network) and the target domain (physical network).

6.5 Effects of Simulators and Radio Models

Finally, we study the effects of different simulators and radio
models on the performance of our method. Unit Disk Graph
Medium (UDGM) [55] and Directed Graph Radio Medium
(DGRM) [55] are the two most popular radio models sup-
ported by Cooja [17,65]. UDGM in Cooja uses the disk
communication model and assumes that the receiver inside
the communication range of the sender can successfully re-
ceive its packets with a constant PRR (i.e., 90%). DGRM
in Cooja allows its user to specify the PRR of each link and
use it together with a random number to determine whether
each packet can be delivered successfully. Closest-fit pat-
tern matching (CPM) in TOSSIM allows its user to input
ambient noise traces and specify the gain value (propaga-
tion strength) between each pair of devices on every channel
and then generates statistical models based on the CPM al-
gorithm to compute the packet delivery ratio for each pair
of devices [43]. We create DGRM-E by extending DGRM
by allowing an user to specify different PRRs on different
channels for each link, and then integrate it with TOSSIM.
DISTANCE in NS-3 allow its user to specify the locations
of all wireless devices and use the shadowing model to de-
termine packet receptions [62]. OMNET++ allows its user
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the physical network and simulated by uses different loss functions.

TOSSIM under four network configu-
rations.

to specify device locations and background noise levels and
uses the signal propagation model (path loss model) to com-
pute the RSS values for packet reception prediction [64].

Figure 14 plots the accuracy of our method and our base-
lines when they use the simulation data generated from dif-
ferent simulators with various radio models. As Figure 14
shows, all methods achieve better performance when they
use a more realistic model, which benefits from a smaller
domain discrepancy. For instance, our method achieves
70.24% and 68.32% accuracy when it employs CPM and
DEGRM-E in TOSSIM, respectively. The high accuracy
results from the use of real-world noise or PRR traces in
simulations. Our method provides a slightly lower accuracy
(63.95%) when it uses DGRM in Cooja, which makes an
unrealistic assumption that the PRRs of a link are the same
on all channels. The worse performance (60.83%) appears
when our method uses the simple disk model (UDGM) in
Cooja. Similarly, the accuracy provided by TSTP decreases
from 30.10% to 19.13% when it uses a less realistic radio
model. More importantly, our method consistently provides
the best performance and makes better use of more realistic
simulations compared to other methods. The accuracy in-
creases from 60.83% to 70.24% (a 9.41% increase) when our
method uses CPM in TOSSIM instead of UDGM in Cooja,
while the accuracy improvement offered by DaNN is 4.77%
when making the same change.

The consistent low accuracy provided by TSTP shows that
the simulation-to-reality gap is not tie up with a particular
simulator or radio model. Although the theoretical models
adopted by those simulators work satisfactorily in general,
they cannot capture all real-world performance-related fac-
tors. For instance, the CPM approach in TOSSIM allows its
user to input noise traces collected from a physical network
and specify the gain value (propagation strength) between
each pair of devices on every channel and then generates
statistical models to predict packet receptions during simu-
lations based on the CPM algorithm. Such an approach may
introduce simulation inaccuracies because it has to use pre-
recorded noise traces and predefined gain values to simulate
packet failures, and the probability-based prediction cannot
precisely capture the effects of packet failures caused by ex-

12

using different simulators and radio
models.

tensive uncertainties, variations, and dynamics in real-world
wireless deployments.

7 Conclusions

Over the past decade, WMNs have been widely used for in-
dustrial automation, military operations, smart energy, etc.
Due to years of research, WMNs work satisfactorily most of
the time. However, they are often difficult to configure as
configuring a WMN is a complex process, involving theoret-
ical computation, simulation, and field testing, among other
tasks. Relying on field testing to identify good network con-
figurations is impractical in many cases because running ex-
periments on a physical network is often costly and time-
consuming. Simulating the network performance under dif-
ferent network parameters provides distinct advantages when
it comes to identifying a good network configuration, be-
cause a simulation can be set up in less time, introduce less
overhead, and allow for different configurations to be tested
under exactly the same condition. Unfortunately, out study
shows that many network configurations identified in simula-
tions cannot help physical networks achieve desirable perfor-
mance because of the simulation-to-reality gap. To close the
gap, We leverage a teacher-student deep neural network for
efficient domain adaptation, which transfers network config-
uration knowledge learned from simulation to a physical net-
work. Our method first uses the simulation data to learn a
teacher neural network, which is then used to teach a student
neural network to learn from a few shots of the physical data.
Our experimental results show that our method consistently
outperforms seven baselines and achieves a modeling accu-
racy of 70.24% with only 440 data samples collected from
the physical network.
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