
Self-Adapting MAC Layer for Wireless Sensor
Networks

Mo Sha1, Rahav Dor1, Gregory Hackmann1, Chenyang Lu1, Tae-Suk Kim2, Taerim Park2
1Department of Computer Science and Engineering, Washington University in St. Louis, USA

2Samsung Advanced Institute of Technology, Samsung Electronics, South Korea

Abstract—The integration of wireless sensors with mobile
phones is gaining momentum as an enabling platform for numer-
ous emerging applications. These mobile systems face dynamic
environments where both application requirements and ambient
wireless conditions change frequently. Despite the existence of
many MAC protocols, none can provide optimal characteris-
tics along multiple dimensions, especially when the conditions
are frequently changing. Instead of pursuing a one-MAC-fit-
all approach we present the Self-Adapting MAC Layer (SAML)
that dynamically selects and switches MAC protocols to gain
the desired characteristics in response to changes in ambient
conditions and application requirements. SAML comprises (1)
a Reconfigurable MAC Architecture (RMA) that can switch to
different MAC protocols at run time and (2) a learning-based
MAC Selection Engine that selects the protocol most suitable
for the current condition and requirements. To the application
SAML appears as a traditional MAC layer and realizes its
benefits through a simple API for the mobile applications.
We have implemented SAML in TinyOS 2.x and built three
prototypes containing up to five MACs. We evaluate the system in
controlled tests and real-world environments using a new gateway
device that integrates a 802.15.4 radio with Android phones.
Our experimental results show that SAML can effectively adapt
MAC layer behavior to meet varying application requirements in
dynamic environments through judicious selection and efficient
switching of MAC protocols.

I. INTRODUCTION

Research efforts in the last decade produced numerous
MAC protocols for wireless sensor networks (WSNs). Many
of the MACs were designed to achieve low latency, high
throughput, power consumption, or robustness to interference.
However, none of the existing protocols deliver optimal perfor-
mance in all desirable dimensions under varying environmental
conditions. For instance, sender-initiated low-power listening
(LPL) protocols [20] are power-efficient in absence of ambient
noise, but suffer high power consumption due to false wake
ups in noisy environments [26]. Receiver-initiated MACs are
resilient to interference, but incur higher overhead at low data
rates in a clean environment. TDMA protocols can deliver high
throughput for high data rate applications by avoiding channel
contentions, whereas CSMA/CA protocols can achieve low
latency for low data rate applications.

A fixed MAC protocol therefore cannot meet the demands
of varying workloads, diverse Quality of Service (QoS) re-
quirements, or changing environmental conditions. This prob-
lem is exacerbated with the increased interest in connecting
smart phones and wireless sensors placed on the user’s body
or in the surrounding environment. The fusion of a smart
phone and a network of motes opens up opportunities for
novel and exciting applications (e.g. fall detection, vital sign

monitoring, and fitness assessment), while also introducing
the fundamental challenge of maintaining optimal wireless
communication between mobile phones and sensors under
varying conditions and demands.

∙ Wireless Environment: The wireless environment
changes when the user moves around. At times WSN
will need to be able to deal with a highly noisy
environment; at other times it may enjoy a clean
environment. For example, Bluetooth devices, our
own and our neighbors’ Wi-Fi access points, and our
microwaves – all generate interference that interacts
with WSN. This interference is unruly in homes and
more orderly in office buildings [27]. A resilient
MAC protocol may be required in noisy environments,
while a different MAC be more efficient in clean
environments;

∙ Network Traffic: The network traffic is subject to
spontaneous changes. For example, in a wireless
health application the wireless sensors may produce
low amount of data during some hours of the day,
but sporadically, in response to a critical medical
condition, require rapid transmission of large volume
of data. Moreover, different sensors have different
traffic patterns and a system may turn ON or OFF
any one of the sensors at any given time. For instance
during stable periods, heart rate sensing may occur
every minute and the data being sent is typically a
single integer. But if the medical condition changes the
application may activate the pulse sensor continuously,
or decide to activate ECG sensors. The data rate can
increase from less than 1 to 750 bytes per second [6];

∙ QoS Requirement: The application QoS requirements
may also change. While it may be reasonable to lose
a packet sporadically during clinically-stable periods,
it may not be acceptable during imminent clinical
deterioration.

Given the dynamic nature of communication between
mobile phones and sensors, a traditional one-MAC-fit-all ap-
proach cannot meet the challenges under significant dynam-
ics in operating conditions, network traffic and application
requirements. To fill this need we design the Self-Adapting
MAC Layer (SAML) that makes available multiple MACs in
an efficient manner and selects the protocol most suitable for
the current conditions and requirements. SAML comprises two
key components.

∙ Reconfigurable MAC Architecture (RMA) that supports
dynamic switching among different MACs. RMA



Fig. 1. Overview of System Architecture.

holds multiple MACs without bloating its memory
footprint due to its modular design based on shared
components;

∙ MAC Selection Engine with a machine learnable
model that optimally selects MAC protocols in terms
of reliability, energy consumption, latency, and re-
siliency against ambient noise.

We have implemented SAML in TinyOS 2.x on the TelosB
platform and a gateway device that we developed to integrate
an Android smart phone with a 802.15.4 radio. We have
validated the efficacy of SAML and the efficiency of its
operation by measuring the memory footprint and the overhead
of key operations. We also perform a four-day real-world case
study in which SAML provides efficient and reliable MAC
switching, while saving 31.6% of energy compared with a
fixed MAC layer and meeting the QoS requirement of the
application.

The rest of the paper is organized as follows. Section II
presents the overview of our system architecture. Section III
describes the design of RMA and Section IV shows how
we realized RMA in TinyOS. Section V describes our MAC
Selection Engine and Section VI presents experimental re-
sults. Section VII reviews related work before Section VIII
concludes the paper.

II. OVERVIEW OF SYSTEM ARCHITECTURE

In this section, we present the overview of the system
architecture. Comparing with traditional architecture, we re-
place the MAC layer with the RMA and add the MAC
Selection Engine as shown in Figure 1. RMA stores multiple
MACs and supports switching between them at run time.
The MAC Selection Engine is the component responsible for
recommending the best MAC according to the specified QoS
requirements, monitoring the dynamic ambient conditions, and
automatically responding (without the need for the application
to manage this process) to changes in the environment. Once
a new MAC was determined by the engine, it will send the
MAC ID to the RMA.

One of the primary design goals of SAML is to be
transparent to its users. For this purpose SAML exposes a
set of unified interfaces to the applications using it and to the
lower radio layer. Application can treat SAML as a traditional
single MAC entity and don’t need to be manage any aspect
of the MAC switches occurring in SAML. Five interfaces are
available to applications: (1) Initialize and start/stop the MAC
layer; (2) Control the radio CCA and backoff policies; (3)
Send; (4) Receive; and (5) Specify the QoS requirements of
the application. Interfaces (1)-(4) were shown to be enough to
perform regular MAC operations [14] and (5) is provided for
application to specify the QoS requirements as an 3-tuple that

Fig. 2. RMA Architecture.

orders Reliability (R), Energy consumption (E), and Latency
(L) in terms of their relative importance to the application.
This is named the REL order of the application. The REL
order can be updated by the application during run time to
accommodate dynamic changes in its mode of operation. For
example a duty-cycled clinical monitoring application which
ranks energy consumption over reliability and reliability over
latency will simply specify E > R > L to achieve longer
battery life. However, during a clinical deterioration period
above REL should probably be changed to R > L > E when
the application becomes reliability-critical.

For the radio interfaces SAML adopts the same low-level
interfaces suggested by [14]. These interfaces are platform
independent, rather than specific to a particular radio or mi-
croprocessor, enabling portability between different hardware
platforms.

We will describe the general design of the RMA in
Section III and then present how we realize it in TinyOS in
Section IV. We will show the design of MAC Selection Engine
in Section V. We believe the architecture and design principles
of RMA and MAC Selection Engine are applicable to other OS
platforms. To enable the communication between an Android
smart phone to communicate with a 802.15.4 radio, we have
developed a Gateway device. The design of the Gateway can
be found at [25].

III. RMA ARCHITECTURE

In this section, we present the RMA architecture. Our de-
sign addresses the following goals: (1) The architecture needs
to present a unified set of interfaces to both its upper layer
application users and lower layer radio developers. (2) RMA
should reliably switch MACs while maintaining consistency
between different nodes in the network. (3) The incorporation
of multiple MACs should not significantly increase the mem-
ory footprint of the MAC layer. (4) Switching MACs should
incur only a small run time overhead in term of both CPU
cycles and communication bandwidth.

A. Overview of the Architecture

As Figure 2 shows RMA has four major modules. The
MAC Container stores the MACs which are available at
runtime. We leverage a component based architecture to reduce
the memory footprint by allowing multiple MACs to share
components (Section III-B). Upper Switch and Lower Switch
provide a unified set of interfaces to application and lower
radio core; abstracting away the details of the MAC layer
(Section III-C). MAC Control Engine controls the identifica-
tion of the active MAC, manages the neighborhood table, and



supervises protocol switching when it receives reconfiguration
request from the MAC Selection Engine (Section III-D).

B. MAC Container

The MAC Container stores the MACs which are available
at runtime. The design challenge we were facing is to enable
multiple MACs without incurring a prohibitive increase in the
code size. The naive approach would be to have the container
encapsulate multiple monolithic MACs, resulting in a code
size that is the sum of size of all individual MACs; but
this would exhaust the onboard memory very quickly. An
alternative approach is to distribute the new MAC wirelessly at
run time during switching; but this would incur long latency,
consume the network bandwidth, and spend precious energy on
radio communication. The problem is exacerbated for mobile
WSNs, such as a Body Sensor Network, since the MACs may
need to change in a time scale of minutes due to the frequent
changes in the environment or application needs.

MACs share many common functions and can be distilled
to a set of reusable components [14]. To support variety of
MACs with minimal penalty to code size our MAC Container
is designed to hold these reusable components, from which
MACs are built. The components inside the MAC Container
can be (re)wired in different ways to construct various MACs.
Our experimental results in Section VI-A show that this
component based approach only moderately increases the code
size when comparing RMA supporting multiple MACs even
code using only a single MAC.

C. Switches

The Upper Switch and Lower Switch are two important
design constructs of RMA. Their main purpose is to enable
efficient (and possibly frequent) dynamic routing between
components. All MACs within the MAC Container provide and
use a uniform set of interfaces to the layer above and below the
MAC layer. The switch is responsible for routing commands
and events through the interfaces provided by the currently
active MAC, using only a single variable to identify the active
MAC. This variable is used as a select signal, determining
which MAC is going to respond. This technique allows very
quick protocol changes relative to many other alternatives such
as dynamic loading of code functions, thread switching, and
so on.

D. MAC Control Engine

The MAC Control Engine implements RMA core logic.
It is designed to facilitate the identification of the active
MAC, manage the network topology, and supervise the MAC
changing process. It includes three major units:

1) Protocol Control: Protocol Control keeps track of the
active MAC and makes sure all the components in the MAC
Container are synchronized to the same MAC. The components
are shared between different MACs and can be (re)wired in
different ways to construct various MACs. The names of the
components are maintained in a list in Protocol Control to
address the components during MAC switching. When a MAC
change occurs, Protocol Control treats the change process as
a transaction. Either all of the updates occur and the protocol
is changed, or the transaction will be rolled back.

2) Network Control: The Network Control unit manages
the network topology. A node is specified by the application
as a coordinator, which is responsible for nodes joining and
leaving the network. In mobile WSNs, due to changing in-
terference levels for example, this can occur frequently. The
smart phone is usually a natural choice for the coordinator. To
indicate the current MAC used by the network the coordinator
disseminates an announcement packet, which includes the
active MAC’s identification (MAC ID) in each period T1. If
the current MAC uses beacons, RMA inserts a single byte
into existing beacons instead of generating new ones to reduce
communication overhead. For instance, RMA can use the time
synchronization beacon of TDMA-based MACs.

Before joining a new node does not know which MAC is
in use by the network and thus cannot join or talk with the rest
of the network. For this purpose, we design a baseline-MAC
which all nodes except the coordinator implement by default
as part of RMA. The coordinator doesn’t need this baseline-
MAC and can run any MAC it wants when it boots, since all
other nodes will synchronize their MAC to the coordinator.
The baseline-MAC is designed to allow the initial formation
of a network and to allow nodes to join or rejoin an already
running network. When a sensor node boots, it first runs the
baseline-MAC, which turns on the radio and overhears all
packets. After it catches a protocol announcement packet from
the coordinator it changes to this new protocol and sends a
join-network request to the coordinator. When the coordinator
receives the request it adds the new node to its neighborhood
table and allocates resources for this node.

As discussed above new nodes, or nodes that lost connec-
tivity to the network, may not know what MAC the network
is currently running. Furthermore, at any given time the nodes
need to know if they are connected to the network or not.
We address these concerns by defining two time intervals:
The coordinator needs to announce that it is present every T1
seconds and nodes need to announce that they are connected
every T2 seconds. After joining the network, a regular node
(non-coordinator) transmits a dummy packet to report alive
each T2 seconds, unless it happen to send data packets during
this period. If the coordinator does not hear from a node (newly
joined or one that was already in the network) within 5× T2
seconds it treats it as a node that left the network. It is removed
from the neighboring table and all other resources assigned
to it are deallocated. A regular node in the network changes
back to the baseline-MAC and try to rejoin if it does not
hear from the coordinator within 5× T1 seconds. This simple
protocol maintains synchronization across the network, while
accounting for the highly dynamic nature of mobile networks.

It is worth noting that we choose the values, 5, empirically,
as they provided good balance between giving up too soon on
a network node and allowing for dynamic nodes to join and
leave as they wish. However the T1 and T2 factors do not need
to be equal and other values can be used.

3) Switching Control: When a coordinator receives a MAC
ID from its MAC Selection Engine, it verifies that the new
MAC is different from current one and checks whether the
requested MAC is stored in the MAC Container. If both
conditions hold, the Switching Control unit notifies all sensor
nodes in its neighborhood table and then performs the protocol
change. It firstly refuses new packet issued by application,



waits for all existing packets buffered in the MAC layer to
be transmitted, and then shuts down the current MAC orderly.
The variable holding the active MAC ID will be updated,
and then new MAC will be started. If the new MAC has
successfully started transmitting, then Switching Control unit
returns success to the requesting application. Otherwise, it rolls
back to the old MAC and retries the change. This process is
allowed to repeat 30 times before the protocol change request
is discarded. We choose the constant 30 empirically; Less
attempts will consume less energy, but will result in higher
chance of giving up.

IV. REALIZATION OF RMA IN TINYOS

In this section, we describe how we realize RMA in TinyOS
2.1.1. While RMA has been implemented in TinyOS, we
believe its design principles are applicable to other OS.

A. MAC Container

The MAC container stores various components from which
MACs are built. Our impetus in creating the abstraction of the
MAC Container is to minimize code size, which is essential
given the limited resources on motes. Notably, for TinyOS the
nesC compiler only creates one instance for each non-generic
component, no matter how many times it is used by different
code segments [1]. RMA reuses the components from the
MAC Layer Architecture (MLA) [14], which distill common
features of different MACs to a set of reusable components.
Note however MLA was designed to facilitate the implemen-
tation of MACs at development time and does not support
MAC layer reconfiguration at runtime. Our MAC Container
encapsulates MLA components and adds new mechanisms to
enable (re)wiring components such that they support runtime
reconfigurations.

In TinyOS allowing components sharing raises the typical
Fan-out issue of nesC, which is not a desirous effect for RMA.
Here we briefly describe this issue and detailed explanation can
be found in [15]. Fan-out: A single interface of a component
(caller) is wired to two interfaces belonging to different com-
ponents (callees). When the caller invokes a command on that
interface, both callees will be invoked in an undefined order
and may return different results.

When components are shared by different MACs they may
be configured to perform different operations at different times.
Only one MAC should run at a time and other MACs should
stay inactive. Invoked by an command that was not meant for
it, the code of inactive MACs may perform some unwanted
operations, such as polling the channel, turning off the radio
or starting an alarm, which may conflict with the active MAC.
Our solution is adding a very lightweight RMA Wrapper that
wraps each shared interface with a parameterized interface.
In TinyOS, we use nesC parameterized wiring feature using
the active MAC ID as the parameter. The code below shows
the nesC code for a parameterized interface in such a RMA
Wrapper.
module SharedComponent {

//uses interface A;
uses interface A[uint8_t id];

}
implementation {

uint8_t currentMac;
//call A.anycommand();

Fig. 3. Parameterized wiring based Switch design.

call A.anycommand[currentMac]();
}

In each RMA Wrapper, a parameter is added on each in-
terface declaration. A integer variable, “currentMac”, indicates
the active MAC ID. We use a local variable instead of a global
variable to avoid potential race conditions. When a component
calls a command through its parameterized interface, only the
code of the current active MAC will be called. The same idea
is applied when signaling an event. Each RMA Wrapper also
needs to expose a setMacid interface for Switching Control
unit to change the “currentMac” value. The MAC switching
logic will be discussed in Section IV-C3.

B. Switches

Similar to the design of RMA Wrapper, we use nesC
parameterized wiring to implement the Upper and Lower
Switches of RMA in TinyOS. Figure 3 shows the design of
Upper Switch which provides one single set of interfaces to the
MAC Selection Engine, while using multiple set of interfaces
provided by different MACs. Hence connecting many MACs
to a single consumer. The active MAC ID is used to select
between, or enable, only one of the MACs at runtime. The
code below shows the nesC code for a parameterized interface
that achieves this.
module UpperSwitch {
provides interface A;
uses interface A’[uint8_t id];

}
implementation {
uint8_t currentMac;
command void A’.command(){

call A’.command[currentMac]();
}

}

In the Upper Switch, a parameter is added on each interface
that the Upper Switch provides. At runtime the variable,
“currentMac”, indicates the current active MAC. As explained
before this parameterized interface declaration makes the upper
layer application calls invoke only the code of the current
active MAC. Upper Switch expose a setMacid interface
for Switching Control unit to change the “currentMac” value.
Upper Switch initializes the MAC switching through the
MacSwitch interface when a new decision is generated by
the MAC Selection Engine and its value is difference from
“currentMac”. The MAC switching logic will be discussed in
Section IV-C3.

The same idea is applied in the design of Lower Switch,
which allows many internal components of RMA to be con-
nected to the single interface provided by the radio core. In the
Lower Switch, a parameter is added on each interface that the
Lower Switch uses to avoid fan-out problem when signaling
an event.



C. MAC Control Engine
1) Protocol Control: An integer variable named “current-

Mac” is maintained in all RMA Wrappers and Switches,
indicating the active MAC ID. The Protocol Control unit uses
an array to store the list of RMA Wrappers and it uses this
list to treat a MAC switch as a transaction. Either all wrappers
and switches will change their “currentMac” value to indicate
the new protocol, or none of them will. In TinyOS, this is
achieved using an atomic block.

2) Network Control: Network Control, when running on
a coordinator node, maintains a neighborhood table to keep
track of the nodes in the network 1. We reserve the first
byte in payload packets for broadcasting the MAC ID. Nodes
that did not join the network run the baseline-MAC and use
this field to recognize the current MAC. RMA requires each
MAC to provide a method for new nodes to join the network.
For instance, we observed that some MACs cannot deal with
network topology changes since they do not support methods
for new nodes to join or leave the network. Pure TDMA
implemented by [14] is such a protocol. It initially accounts for
the nodes in the network and divides a fixed time window to
slots for the number of nodes currently in the network. With
all the time slots allocated to nodes, no new node can join.
We accounted for that in our own version of pure TDMA by
reserving one of the slots to an arbitrary new node. When more
than one node is trying to join the network they will compete
for this slot using a CSMA-style technique.

3) Switching Control: When the coordinator decides to
switch MACs it sends out the switching command to every
node in its neighborhood, and then reconfigures its MAC layer
to the new MAC. Similarly, every regular node switches to
the new MAC after receiving the switching command. Since
the delivery of a packet with switching command is critical
for protocol synchronization across the network, the Switching
Control unit on the coordinator node uses a single hop unicast
with Automatic Repeat reQuest (ARQ) to notify the new MAC
to each node in the network1. The coordinator treats a node as
a one that left the network and will release its resources after
30 failed attempts.

Switching Control exposes to the Upper Switch the
MacSwitch interface. When the changemac command is
invoked by the Upper Switch, Switching Control unit calls the
stop() command of the SplitControl interface to shut
down the current MAC whose MAC ID is “currentMac” value.
It then changes “currentMac” values through the setMacid
interface in each RMA Wrapper based on the list maintained
in Protocol Control as well as the values in the Switches. After
this is completed it invokes the start() command to turn
on the new MAC, whose MAC ID is the new “currentMac”
value.

The stop() command of the SplitControl interface
is critical for RMA for performing MAC change. stop()
command does not attract enough attentions by MAC de-
velopers since it is not commonly used in a single MAC
environment. When we reviewed the original implementations

1In principle, RMA can be extended to support multi-hop networks.
Dissemination protocols (e.g. [16]) can be used to broadcast the active MAC
ID or a switching command in a multi-hop network. Mechanisms to ensure
agreement on the MAC among sensors within the network will need to be
employed [3].

of MACs we found out that the start() command, which is
used to start the MAC, is carefully implemented; but often the
stop() command is vacuous or not carefully implemented.
Sometimes developers forget to stop the timer or alarm which
was started in the protocol’s start() command or during
the protocol execution. This may cause unreliable operation in
a multi MAC environment. Therefore, we emphasize that all
logic units started during protocol initialization and execution
must be stopped within the implementation block of the
stop() command.

D. Implementations

We obtained the source code of MLA, which works
with TinyOS 2.1.1 from [18]. The source code includes the
implementation of BoX-MAC [20] and pure TDMA. We
also obtained the implementation of RI-MAC [29] from its
authors 2. As an exercise, we implement an adaptive TDMA
based on pure TDMA (this protocol allows reconfiguration of
TDMA frames at run time) and a ZigBee MAC based on the
standard [33].

The naming we used in the TinyOS RMA are as fol-
lows: We implemented SwitchUpC component as Upper
Switch and SwitchLowC component as Lower Switch.
The MacC component is the MAC Container and all the
functionality in the MAC Control Engine are fulfilled by
ProtocolsControllerC. The baseline-MAC is imple-
mented in the BaseLineC component.

We have built three prototypes using our TinyOS im-
plementation of RMA: a CSMA/TDMA prototype, a SI/RI-
MAC prototype, and a 5-MAC prototype. The CSMA/TDMA
prototype includes a CSMA/CA MAC (BoX-MAC) and a
TDMA MAC (pure TDMA). The SI/RI-MAC prototype in-
cludes a sender-initiated MAC (BoX-MAC) and a receiver-
initiated protocol (RI-MAC). Lastly the 5-MAC prototype
includes all five MACs (BoX-MAC, pure TDMA, RI-MAC,
adaptive TDMA, and ZigBee MAC).

As a summary for future researchers we summarize the
procedure of creating a RMA prototype:

1) Implement the MACs you desire using the reusable
components provided by MLA; Make sure each MAC
provides a method for adding new nodes to the
network;

2) Identify the components which are shared by these
MACs and wrap each of them with a RMA Wrapper
(discussed in Section IV-A).

3) Assign each MAC a unique integer as its MAC ID;
4) Add the names of these shared components into the

RMA Wrapper list (discussed in Section IV-C1);
5) Wire the interfaces exposed by the individual

MACs to the parameterized interfaces exposed by
SwitchUpC component and SwitchLowC compo-
nent (discussed in Section IV-B) using MAC ID as
the parameter.

V. MAC SELECTION ENGINE

In this section we present the design of the MAC Selection
Engine.

2The authors’ implementation is based on TinyOS 2.0.2, which we port to
TinyOS 2.1.1



Fig. 4. MAC Selection Engine.

A. Overview of the Engine

The MAC Selection Engine decides based on a machine
learnable model which is the best MAC protocol for given
application QoS requirements (a REL order), current traffic
pattern, and ambient interference levels. As shown in Figure 4,
the engine includes three major modules: The Traffic Monitor
keeps track of the application traffic pattern by snooping the
send commands called by the application and calculating the
mean and variance of Inter-packet Interval (IPI) in a sliding
window of 100 seconds. The Noise Monitor measures the
external interference level in the environment by calculating
the mean and variance of the Received Signal Strength (RSS)
in a sliding window of 10 seconds. We choose RSS as an
indicator estimating the interference level since recent study
showed that 802.15.4 sensors can effectively detect external
interferers by polling Received Signal Strength Indicator [9].
The Classifier determines the best MAC according to the
current application specified REL order and the values emitted
from the Traffic and Noise Monitors. The Classifier then
issues its decision (MAC ID) as a request to the RMA to
switch MACs. The detailed design and implementation of the
classifier is described in Section V-B.

We emphasize that only the network coordinator node
needs to run the engine and the coordinator’s RMA is respon-
sible for propagating the MAC protocol switching across the
network (See Section III-D3). The other nodes need to have
only the RMA module.

B. Classifier

We choose to use a decision tree as the classifier for a
number of reasons: There are only a handful of MACs that can
practically be available in any container; and each protocol is
generally good at some characteristics (e.g. most efficient at
low data rates) and is not so good at others. So often the
classifier will only have limited, discrete choices to make.
When we consider the limited amount of memory available
on sensors, decision trees are compact to represent in a data
structure. And from computational point of view a decision
tree will consume marginal amount of resources and will be
fast at run-time.

To gather training data for the model we run experiments
that vary the features we were interested in, while recording
the operating characteristics and the MAC protocol in use
(the class). We determined the features by noting that some
protocols are good at high data rates, while others conserve
energy and are good at low rates; and some protocols stay
reliable at high interference levels, while others do not. With
that in mind the characteristics we use for classification are:

1) Application QoS requirements

Fig. 5. Decision tree.

2) Traffic pattern
3) Ambient interference level

To represent these characteristics we selected the following
features: (1) Application specified REL order; (2) Mean and
variance of the Inter-packet Interval (IPI) within a 100 seconds
sliding window; and (3) Mean and variance of the RSSI within
a 10 seconds sliding window. The protocol being used is
recorded and denotes the class.

The Energy that each MAC protocol consumes under
certain operating conditions is computed by the time duration
when radio is on/off. We define Latency is the time interval
between a packet being sent by one sensor and the time it is
received at another. We use Packet Delivery Rate (PDR) to
represent Reliability.

We have ran 224 sets of experiments, varying IPI and am-
bient interference by changing the distance from a pair 802.11
devices with controlled traffic. We measure each combination
of operating characteristics multiple times, and collected the
operating results of various MACs in terms of the features
described above. In total we collected 4624 training examples.
Each example is calculated within a sliding window of 10
seconds. We used Weka [31] to learn from the training data
and built a decision tree using the C4.5 [23] algorithm. The
resulting model (tree) is shown in Figure 5.

Referring to Figure 5 before decisions are made by the
decision tree, if compatibility with other ZigBee devices is
required, then at the root node the system instructs to use
the ZigBee MAC which was designed for compatibility across
different platforms. Otherwise, if the IPI variance is higher than
20 ms2, the classifier selects adaptive TDMA protocol. This
is an apt choice that the model learned, since adaptive TDMA
allows reconfiguration of TDMA frames to accommodate ape-
riodic traffic. The next level of the tree takes into account the
application’s highest REL order (the application’s 1st priority)
and provide a 3-way split. If the split was on Reliability, the
next level of the tree (IPI mean) takes into account the mean
IPI. If the Traffic Monitor observes small mean IPI (lower
than 140 ms) the system is instructed to use pure TDMA.
Otherwise the application 2nd priority is taken into account.
If the split was on Energy consumption, the next level of the
tree (Environment) takes into account the noise level.

To learn the mode and test its performance measures we
used the 10-fold cross validation of Weka. The model obtains
a true positive rate of 95.6% and a false positive rate of 7.1%.
These performance measures demonstrate that our features can
effectively select the best MAC for the specified application’s



ROM (bytes) RAM (bytes)
BoX-MAC 25308 1114
pure TDMA 25362 1202
RI-MAC 25132 1268
adaptive TDMA 25418 1126
ZigBee MAC 27168 1272

RMA CSMA/TDMA 28016 1254
RMA SI/RI-MAC 27752 1896
RMA 5-MAC 29990 1968

TABLE I. ROM AND RAM USAGE FOR EACH RMA PROTOTYPE OR
SINGLE MAC.

REL order, traffic pattern, and current ambient interference
level.

VI. EVALUATION
We validate the efficacy of SAML and the efficiency of its

operation in numerous ways. We start by measuring memory
footprint of the three prototypes discussed in Section IV-D. In
these prototypes RMA hosted between 2 to 5 MAC protocols
in its container. This is a typical range and should provide
a good representation of code size. We then measure the
overhead of key RMA operations such as new node joining
the network and MAC switching. We intentionally disable the
MAC Selection Engine and manually inject the MAC IDs to
support the experiments presented in Section VI-B. Finally,
we enable the MAC Selection Engine and perform a real-
world case study in which we demonstrate the effectiveness
and benefits of dynamic MAC switching in terms of reliability
and energy consumption.

A. Memory Footprint

RMA’s design had to balance two conflicting goals. On
one hand we want RMA to host as many MAC protocols as
any application may require to optimize its performance along
on some future, and possible unknown, dimension. On the
other hand, artlessly, more protocols will increase the OS code
size. We addressed this conflict by breaking MAC protocols
to reusable components, resulting code size that is a concave
down function of the number of protocols.

In Table I we compare the ROM and RAM usage as
reported by the TinyOS tool-chain for five single MACs as
well as three RMA prototypes discussed earlier.

Comparing the RMA CSMA/TDMA prototype containing
two MACs (BoX-MAC and pure TDMA), with the one con-
taining only BoX-MAC, we observe that the RMA consumes
only 2708 additional bytes of ROM and 140 additional bytes of
RAM 3. This is only 10.7% ROM and 12.6% RAM increase
from a single MAC. Compared to pure TDMA only, RMA
prototype consumes 2654 additional bytes of ROM (10.5%)
and 52 additional bytes of RAM (4.3%).

RMA SI/RI-MAC prototype with two MACs (BoX-MAC
and RI-MAC) adds only 2444 bytes of ROM (9.7%) and 782
bytes of RAM (70.2%) compared to BoX-MAC. RMA adds
2620 bytes of ROM (10.4%) and 628 bytes of RAM (49.5%)
compared to RI-MAC. We are not concerned with the high
RAM percentage because in terms of percentages from the
mote resources the percent increases are similar to the ones
reported in the next paragraph (less than 8% in the worse case
for all cases we have studied so far).

3For reference the MSP430F1611 MCU used by the TelosB and Tmote Sky
motes provides 48 Kilobytes of ROM and 10 Kilobytes of RAM.

Fig. 6. Time duration of a node joining a network running BoX-MAC.

Fig. 7. Time duration of protocol switching from BoX-MAC to pure TDMA.

Comparing the 5-MAC RMA with the ZigBee MAC which
consumes the most memory out of all single MACs shows
that the RMA version consumes 2822 additional bytes of
ROM (10.4%) and 696 additional bytes of RAM (54.7%). This
increase represents a 5.7 percent increases in the ROM and
6.8% increase in RAM of the mote’s memory resources.

In all cases we clearly see that RMA is highly effective
in avoiding memory bloat. This conclusion holds even when
supporting a large and diverse set of MACs, which makes
RMA practical to deploy on memory constrained sensors.

B. Micro-benchmark Experiments

We evaluate the latency and power consumption when
new nodes join the network and switch between MACs. We
measure the consumption using a power meter from Monsoon
Solutions [19] whose probes are connected to the sensor
voltage pins. For this experiment, we use a Samsung Galaxy
Note with a gateway board [25] that works as the coordinator.
The coordinator is initialized to run BoX-MAC with a wakeup
interval of 150 ms and broadcasts the MAC ID every 5
seconds. A mote running the baseline protocol was added to
the network at T0 = 0. After 10 seconds, we issue a command
through the phone requesting a switch from BoX-MAC to pure
TDMA. The pure TDMA frame is configured to include 20
time slots with 10 ms for each slot. The 10th time slot is
configured to allow unknown node to perform CSMA-based
random access. A second mote running the baseline protocol
was added to the network after 5 seconds.

Figure 6 shows the time duration of the first mote joining
this network (running BoX-MAC). After booting, the new
mote begins to run the baseline-MAC, snooping the chan-
nel continuously. At T1 = 5590.7 ms, the node receives a
broadcasted packet with MAC ID of the current protocol
sent by the coordinator. At T2 = 5594.2 ms, the node starts
sending requests to join the network until it receives an
acknowledgement to do so at T3 = 5698.2 ms. This request
process takes T3 − T2 = 104 ms and consumes 7.29mJ of
energy (70.13 mW of power on average) 4. At T4 = 5703.4
ms, the new mote turns off the radio, switches the MAC from
baseline-MAC to BoX-MAC and then performs low power
listening. The switching process T5 − T4 takes 3.4 ms and
consumes 2.86�J of energy (0.84 mW of power on average).

Figure 7 shows the case where the mote receives a com-
mand requesting it to switch from BoX-MAC to pure TDMA.
At T6 = 10151.4 ms, the mote wakes up and receives the

4This duration depends on BoX-MAC wakeup interval.



Fig. 8. Time duration of a node joining the network running pure TDMA.

switching command. Then the mote sends back an acknowl-
edgement at T7 = 10169.5 ms, turns off the radio, and starts
switching the protocol. The radio is turned back on at T8
= 10173.0, now waiting for a TDMA time synchronization
beacon. The switching process T8 − T7 takes 3.5 ms and
consumes 2.87�J of energy (0.82 mW of power on average).

Figure 8 shows the time duration of a second mote,
also running baseline-MAC, joining the network running pure
TDMA. At T9 = 15628.4 ms, the mote receives a broadcasted
packet with MAC ID. With the frame information stored in the
beacon the node realizes that the 10th time slot can be used for
new node to randomly access the channel. At T10 = 15728.4 ms
the node performs a CCA check and then transmits a request
to join the network. After receiving an acknowledgement the
node turns off the radio at T11 = 15741.5 ms and switches
from the baseline-MAC to pure TDMA. It then waits for a
TDMA beacon at T12 = 15745.0 ms.

For each RMA prototype we randomly generate 100 MAC
switching commands through the phone with random intervals
ranging from 5 seconds to 10 minutes and obtain a result of
100% of MAC switching success rate. From the power meter
traces we observed that the switching process takes about
3.5 ms and consumes about 2.94�J of energy on average.
This short transiting time is achieved by the RMA’s fast
MAC switching design and this low switching power can be
explained by the radio chip being off during the switching.
These results demonstrate the efficiency of RMA in terms of
controlling nodes as they join the network or switch between
different MACs.

C. Case Study

To illustrate the potential benefits of dynamic MAC switch-
ing, we perform an empirical case study emulating a wireless
health scenario. In our hypothetical scenario the application
periodically (twice per second) samples the person’s pulse
and oxygen saturation in the blood by using a wireless pulse
oximeter. The application starts to collect a 1-hour continuous
ECG streaming when an abnormality in these vital signs is
detected. In this emulation we do not perform the sensing
because the actual values are irrelevant to the evaluation of
SAML. Instead, a corresponding (equivalent to the real appli-
cation) rate of packet generation is maintained by generating
packets following the traffic pattern of 1 packet/500 ms for
pulse and oxygen saturation sampling suggested by [5] and
adopt a packet rate as high as 1 packet/50 ms with a payload
of 15 bytes to accommodate the 500 Hz 12 bits ECG sampling
recommended by [6]. In our wireless health scenario, we set
(E > R > L) as the REL order during the clinically (periodic
pulse and oxygenation sampling) normal period and set (R > L
> E) during the clinically abnormal (ECG streaming) period.

For our case study a Ph.D. student volunteered to wear a

0

0.5

1

0

0.5

1

0

0.5

1

P
D

R
 (

%
)

10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM
0

0.5

1

Time

RI−MAC

pure TDMA

BoX−MAC

SAMLRI−MAC
pure TDMA

Fig. 9. PDR of BoX-MAC, pure TDMA, RI-MAC, and SAML during 10
hours.

0
40
80

120

0
40
80

120

0

40

80

120

P
o

w
e

r 
C

o
m

s
u

m
p

ti
o

n
 (

m
W

)

10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM
0

40
80

120

Time

pure TDMA

pure TDMA

RI−MAC

BoX−MAC

RI−MAC

SAML

Fig. 10. Power consumption of BoX-MAC, pure TDMA, RI-MAC, and
SAML during 10 hours.

TelosB mote on his wrist, a second TelosB mote on his chest 5,
and the TelosB gateway in his pocket. The volunteer carefully
repeated the same daily schedule over four days to provide
similar environments as we collected data for the different
protocols.

To compare the performance between single MACs and
SAML the volunteer wore the motes for 12 hours (from 10:00
to 22:00) during four consecutive weekdays and went about his
regular daily activities. The activities were repeated at about
the same time each day. The motes run our SAML with 5
MACs on the first day, and BoX-MAC, pure TDMA, RI-MAC,
one on each of the respective day afterwards. During these days
we intentionally emulate three clinically abnormal events to
trigger the ECG streaming at 2 hours, 4 hours, and 6 hours after
the experiment started each day. Since our volunteer was active
and mobile throughout this experiment we could not measure
the power consumption directly. Thus, we instrumented the
radio stack, measured the radio ON time Ton, and use the
actual duty cycle to estimate the energy consumption rather
than measure it directly by a power meter. We use the equation
Uon ∗ Ion ∗ Ton + Uoff ∗ Ioff ∗ Toff to estimate the power
consumption in each cycle (parameters Uon, Ion, Uoff , and
Ioff are from CC2420 data sheet).

Figure 9 and Figure 10 show the raw data of reliability in
term of Packet Delivery Rate (PDR) and power consumption
during the 10 hours case study. From the figures, we can
see that SAML uses BoX-MAC when performing the pulse
sampling during the first 2 hours. When an abnormal-vital
event is triggered at 12pm, SAML switches to pure TDMA to
accommodate the high data rate generated by ECG streaming.

5These two places are where the typical commercial heart rate and ECG
sensors would be placed (e.g. Polar Heart Rate Monitor [22], Shimmer ECG
mote [28]).



Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2
0

0.2

0.4

0.6

0.8

1

P
D

R
 (

%
)

BoX−MAC SAMLpure TDMA RI−MAC

Fig. 11. Box-plot comparison on PDR of two links during three ECG stream-
ing between BoX-MAC, pure TDMA, RI-MAC, and SAML. Central mark in
box indicates median; bottom and top of box represent the 25th percentile (q1)
and 75th percentile (q2); crosses indicate outliers (x > q2 + 1.5 ⋅ (q2 − q1)
or x < q1 − 1.5 ⋅ (q2 − q1)); whiskers indicate range excluding outliers.

Sink Node Sensor Node 1 Sensor Node 2
0

5000

10000

15000

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

 

 SAML
pure TDMA

Fig. 12. Comparison on total energy consumption over three nodes during
vital signs sampling between pure TDMA and SAML.

SAML switches back to BoX-MAC at 1pm when ECG stream-
ing is stopped. Same pattern repeated at both 2pm and 4pm
when two other abnormal-vital event are triggered. Around
5:30pm, SAML switches to RI-MAC when it detects a noisy
environment at volunteer’s home.

Figure 11 shows box-plot of PDR between two links during
the three ECG streaming. The plot compares BoX-MAC, pure
TDMA, RI-MAC, and SAML in terms of maintaining the
link reliability. Only pure TDMA and SAML achieved a
PDR higher than 99.6% and met the application reliability
requirement (the application specified that as the top priority
during ECG streaming). BoX-MAC and RI-MAC fails to
provide reliable link and yielded a median PDR of 12.7%
and 52.9% respectively. Pure TDMA however, suffers from
very high energy consumption due to its fixed time frame
and periodic beaconing. From Figure 10 we see that during
clinically normal period (when data rate is low) pure TDMA
(106.4 mW) consumes 77.3% and 60.5% more power than
BoX-MAC (60.0 mW) and RI-MAC (66.3mW), respectively.
A system with a single MAC, in this case pure TDMA, would
not be able to switch during this period to conserve energy.
From Figure 12, we can see SAML saves 66.2% of energy
on the sink node (SAML: 388.6 J and pure TDMA: 1148.2 J)
and 30.1% of energy on the sensor node (SAML: 803.6 J and
pure TDMA: 1150.0 J) by switching to BoX-MAC on campus
(where the interference level is not overly high) and outdoor
and switching to RI-MAC at home (high interference due to
many WiFi networks). Overall, SAML saves 31.6% of energy
(1451.7 J) comparing with pure TDMA but still achieves the
QoS reliability requirement of the application throughout the
10-hour case study.

VII. RELATED WORK

Many approaches have been proposed to reconfigure a
WSN by disseminating code to the nodes. Hui et al. [11]

proposes a reliable dissemination protocol that distributes an
entire TinyOS image compiled with a new MAC protocol,
across the network and replaces the current running image
on the nodes across the network by reprogramming them. By
distributing an image nodes benefit from having only the pieces
of software that they require at a given time, but the network
pays a large communication overhead during the distribution
and the nodes incur a large shut down and load times.
Many efforts have been made to reduce the communication
overhead. Marron et al. [17] proposes an adaptive cross-layer
framework that selects and disseminates only new fragments
of code instead of an entire image. Mottola et al. [21] uses
a reconfiguration programming model to identify a subset of
nodes that should be reconfigured, avoiding flooding to the
entire network for each image distribution. Tavakoli et al. [30]
designs an interval-cover graph to minimize communication
redundancies between multiple applications on shared sensors,
while Gauger et al. [8] designs an approach to exchange
and relink nesC components by defining an uniform external
interface for all changeable nesC components. In contrast to
these dissemination approaches our research investigates the
efficiency and effectiveness of hosting multiple MACs and
enabling much more dynamically switching between them at
runtime. Our measurements of code size increase of TinyOS
resulting from making available numerous MACs shows that it
is only marginally larger than an OS image containing a single
protocol. Our measurements also suggest that the resulting
code size is a non-linear, decreasing function of the number
of MACs included in RMA.

Recently, Zhang et al. [32] designs a toolchain to enable
the MAC reconfiguration by relinking MAC components at
runtime. This design takes a different approach than our RMA:
a computer is used to compute a MAC description, and a parser
processes the description and generates a new MAC based on
preloaded MAC components of the sensors participating in
the network. The MAC is then sent to the sensors through
radio communication. MAC switching therefore requires more
bandwidth than RMA. Furthermore, the user is responsible for
initiating the work on the computer side to issue the MAC
switching command, while RMA autonomously determines
which protocol is optimal for a given scenario at run time
and performs the switch automatically.

The research community has a growing interest in de-
signing hybrid MACs to combine some of the advantages
of different MAC protocols. Z-MAC [24] allows nodes to
compete for the channel within unassigned TDMA slots.
Funneling-MAC [2] allows nodes close to the sink to run
TDMA schedules while all other nodes follow a scheduled
contention or polling based duty cycle. However, these hybrid
MACs provide a limited set of features that are decided
at design time, and more features lead to higher degrees
complexity in the protocol design. There are also growing
interest in adding adaptation to a single protocol at run time.
IDEA [4] and MaxMAC [12] proposed to extend battery
lifetime and accommodate bursty traffic demand by adjusting
the wakeup interval of LPL BoX-MAC. pTunes [34] allows for
runtime adaptation of MAC parameters of a single protocol. In
contrast to the hybrid MACs, which provide limited number
of features, and parameter tuning approaches, which optimizes
the parameters of a single MAC – our work supports switching
between various entire MAC protocols , while enjoying the full



benefit of a specific protocol to given conditions. Our approach
therefore offers applications a richer optimization space and
complements existing optimization techniques designed for
individual protocols.

Adaptive MACs were also research in relation to IEEE
802.11 networks. Huang et al. [10] develops an adaptive MAC
protocol which can select between multiple MACs. Farago
et al. [7] proposed to dynamically combine a set of existing
MACs into a single layer. The major difference between these
802.11 dynamic MAC frameworks is that our work is designed
to minimize run time overhead and memory footprint. Factors
which are critical in low power and resource constrained sensor
networks. Our measurements and empirical results suggest
that our approach of component reuse and design of MAC
switching protocols effectively reduce static code size and
runtime overhead. To the best our knowledge, RMA is the first
reconfigurable MAC architecture that allows dynamic MAC
switching for low power wireless sensors.

We introduced the high-level concepts of SAML and
a proof-of-concept integration of two basic MACs in [13].
Comparing with [13], this paper presents the complete design
of our Self-Adapting MAC Layer comprising Reconfigurable
MAC Architecture, introduces the new MAC Selection Engine,
and provides a systemic experimental evaluation.

VIII. CONCLUSION

The convergence of mobile phones and wireless sensors
exposes the MAC layer to varying applications and dynamic
environments where a fixed MAC protocol cannot always
deliver satisfactory performance. In contrast to the traditional
one-MAC-fit-all approach, we develop SAML, a Self-Adapting
MAC Layer that autonomously changes the MAC protocol at
run time. SAML comprises a learning-based MAC Selection
Engine and the Reconfigurable MAC Architecture (RMA).
We have realized SAML on Android-based mobile phones
and TinyOS-based sensors. Experimental results and real-
world case studies show that SAML can select optimal MAC
protocols to meet current application demands and switches
MAC protocols online in an efficient and reliable fashion.

ACKNOWLEDGMENT

This work is supported by Samsung Advanced Institute
of Technology (SAIT) and by NSF through grants 1144552
(NeTS), 1035773 (CPS) and 1017701 (NeTS).

REFERENCES

[1] http://www.tinyos.net/.
[2] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo.

Funneling-mac: a localized, sink-oriented mac for boosting fidelity in
sensor networks. In SenSys, 2006.

[3] C. A. Boano, M. A. Zuniga, K. Roemer, and T. Voigt. Jag: Reliable
and predictable wireless agreement under external radio interference.
In RTSS, 2012.

[4] G. W. Challen, J. Waterman, and J. Waterman. Idea: Integrated
distributed energy awareness for wireless sensor networks. In MobiSys,
2010.

[5] O. Chipara, C. Lu, T. Bailey, and G.-C. Roman. Reliable clinical
monitoring using wireless sensor networks: Experience in a step-down
hospital unit. In SenSys, 2010.

[6] C. E. K. et al. Recommendations for Standardization of Leads and of
Specifications for Instruments in Electrocardiography and Vectorcardio-
graphy. XXXV:583–602, March 1967.

[7] A. Farago, A. D. Myers, V. R. Syrotiuk, and G. V. Zaruba. Meta-
mac protocols: Automatic combination of mac protocols to optimize
performance for unknown conditions. In IEEE Journal on Selected
Areas in Comunication, 2000.

[8] M. Gauger, P. J. Marron, and C. Niedermeier. Tinymodules: Code
module exchange in tinyos. In INSS, 2009.

[9] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-A. Norden, and P. Gun-
ningberg. Sonic: Classifying interference in 802.15.4 sensor networks.
In IPSN, 2013.

[10] K.-C. Huang, X. Jing, and D. Raychaudhuri. Mac protocol adaptation
in cognitive radio networks: An experimental study. In ICCCN, 2009.

[11] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In SenSys, 2004.

[12] P. Hurni and T. Braun. Maxmac: a maximally traffic-adaptive mac
protocol for wireless sensor networks. In EWSN, 2010.

[13] T.-S. Kim, T. Park, M. Sha, and C. Lu. Toward mac protocol service
over the air. In GLOBECOM, 2012.

[14] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A component-based
architecture for power-efficient media access control in wireless sensor
networks. In SenSys, 2007.

[15] P. Levis and D. Gay. Tinyos programming. April 13, 2009.
[16] K. Lin and P. Levis. Data discovery and dissemination with dip. In

IPSN, 2008.
[17] P. J. Marron, D. Minder, A. Lachenmann, and K. Rothermel. Tinycubus:

An adaptive cross-layer framework for sensor networks. In Information
Technology, volume 47, pages 87–97, 2005.

[18] MLA Source Code. http://tinyos.cvs.sourceforge.net/viewvc/tinyos/
tinyos-2.x-contrib/wustl/.

[19] Monsoon Solutions. http://www.msoon.com/LabEquipment/
PowerMonitor/.

[20] D. Moss and P. Levis. Box-macs: Exploiting physical and link layer
boundaries in low-power networking. Technical Report SING-08-00,
Stanford University, 2008.

[21] L. Mottola, G. P. Picco, and A. Amjad. Figaro: Fine-grained software
reconfiguration for wireless sensor networks. In EWSN, 2008.

[22] Polar Heart Rate Monitor. http://www.polarusa.com/.
[23] J. R. Quinlan. C4.5: Programs for machine learning. In Morgan

Kaufmann Publishers, 1993.
[24] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-mac: a hybrid mac for

wireless sensor networks. In SenSys, San Diego, California, USA, 2005.
[25] M. Sha, R. Dor, G. Hackmann, C. Lu, T.-S. Kim, and T. Park. Self-

adapting mac layer for wireless sensor networks. Technical Report
WUCSE-2013-75, Washington University in St. Louis, 2013.

[26] M. Sha, G. Hackmann, and C. Lu. Energy-efficient low power listening
for wireless sensor networks in noisy environments. In IPSN, 2013.

[27] M. Sha, G. Hackmann, and C. Lu. Real-world empirical studies
on multi-channel reliability and spectrum usage for home-area sensor
networks. IEEE Transactions on Network and Service Management,
10(1):56–69, 2013.

[28] Shimmer Wireless ECG sensor. http://www.shimmer-research.com/.
[29] Y. Sun, O. Gurewitz, and D. B. Johnson. Ri-mac: A receiver-initiated

asynchronous duty cycle mac protocol for dynamic traffic loads in
wireless sensor networks. In Sensys, 2008.

[30] A. Tavakoli, A. Kansal, and S. Nath. On-line sensing task optimization
for shared sensors. In IPSN, 2010.

[31] Weka. http://www.cs.waikato.ac.nz/ml/weka/.
[32] X. Zhang, J. Ansari, L. M. A. Martinez, N. A. Linio, and P. Mahonen.

Enabling rapid prototyping of reconfigurable mac protocols for wireless
sensor networks. In WCNC, 2013.

[33] ZigBee 2007 specfification, 2007. http://www.zigbee.org/Standards.
[34] M. Zimmerling, F. Ferrari, L. Mottolay, T. Voigty, and L. Thiele. ptunes:

Runtime parameter adaptation for low-power mac protocols. In IPSN,
2012.


