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Abstract
Wireless Mesh Networks (WMNs) have become essential for a wide
range of applications, such as industrial automation, environmental
monitoring, and smart cities. Network operators encounter signifi-
cant challenges when selecting WMN parameters to ensure good
network performance under various ambient operating conditions.
Current domain adaptation methods designed for WMN configura-
tions transfer the network configuration knowledge learned from
simulations (source domain) to the physical deployment (target
domain) at the domain level and fail to consider the simulation-to-
reality gap variance under different network configurations, which
causes misalignment and overfitting issues. To address such issues,
we introduce the WMN Contrastive Domain Adaptation (WMN-
CDA) framework, which leverages contrastive learning to transfer
the network configuration knowledge learned from simulations to
the physical deployment in a discriminative way at a granular scale.
WMN-CDA employs the Network Configuration and Simulation-
to-Reality contrastive losses to align feature representations and
provide good network configuration predictions for physical de-
ployments. We have implemented WMN-CDA and evaluated it
with the data collected from a physical testbed with 50 devices
and four wireless simulators. Experimental results show significant
improvements over the baseline.

CCS Concepts
• Networks → Network management; Sensor networks; •
Computing methodologies→Machine learning approaches.
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1 Introduction
Wireless Mesh Networks (WMNs) have become essential for a wide
range of applications, such as industrial automation [1], environ-
mental monitoring [2], and smart cities [3]. Thanks to decades
of research, current WMNs provide flexible, scalable, and self-
healing communication infrastructures by dynamically routing
data through multiple wireless nodes [4]. However, WMN configu-
ration remains challenging due to the diverse network conditions
and stringent performance requirements on reliability, latency, and
energy efficiency. In addition, the strict real-time communication
demands in many applications, such as industrial automation, im-
pose additional constraints, making the configuration even more
challenging [5]. Over the past few years, simulations have been
widely used to identify good network configurations for WMNs,
because simulating a WMN provides distinct advantages over ex-
perimenting on a physical deployment when it comes to identifying
a good network configuration: a simulation can be set up in less
time, introduce less overhead, and allow for different configura-
tions to be tested under exactly the same conditions. However,
it is very challenging to set up a simulation that captures exten-
sive uncertainties, variations, and dynamics in real-world WMN
deployments. Recent studies show that the models for network
configuration prediction learned from simulations cannot always
help physical networks meet performance requirements because of
the simulation-to-reality gap and propose to use domain adaptation
to close the gap [6–8].

Domain adaptation has emerged as a promising approach when
we have labeled training data collected from a source domain (sim-
ulations) and aim to learn a classifier, that performs well on a
target domain (a physical deployment) with different distributions.
Many domain adaptation approaches have been developed in the
context of shallow learning, e.g. in the situation when data repre-
sentation and features are given and fixed [9]. To solve the WMN
configuration problem, current methods aim to train a prediction
model with a large amount of simulation data and a few physical
data by aligning simulation and physical representations. Research
shows that the simulation-to-reality gap varies under different net-
work configurations [6]. Current domain adaptation approaches
for WMN configurations fail to consider the simulation-reality gap
difference across different network configurations. This hinders the
model’s ability to transfer knowledge across domains due to two
reasons. First, samples under different network configurations may
be aligned incorrectly and the domain loss can be minimized even
when the source domain samples (simulation data) are misaligned
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with the target domain samples (physical data) of a different net-
work configuration. Second, the learned decision boundary may
generalize poorly for the target domain (physical data). There exist
many suboptimal solutions near the decision boundary. Such solu-
tions may overfit the source domain (simulation data) well but are
less discriminative for the target domain (physical data).

In this paper, we introduce WMN-CDA, a novel framework that
employs contrastive learning for domain adaptation in WMN con-
figurations. WMN-CDA enables the model to transfer the network
configuration knowledge from simulations to the physical deploy-
ment more effectively and discriminatively by bringing similar
samples closer together while pushing dissimilar samples apart. Fur-
thermore, it facilitates adaptation at a finer granularity, progressing
from domain-level (simulation and reality) to configuration-level
adaptation within network configurations. Specifically, WMN-CDA
introduces both Network Configuration and Simulation-to-Reality
contrastive losses to the existing teacher-student model, facilitating
the alignment of feature representations across different network
configurations in both simulation and reality. Those contrastive
losses enable WMN-CDA to maintain consistent representations
between domains, thereby preventing the misalignment of samples
under varying network configurations. The Simulation-to-Reality
contrastive loss, in particular, encourages the model to focus on
robust, Simulation-to-Reality-invariant features, rather than over-
fitting to specific details or noise within the simulation. Such an
approach reduces the model’s dependency on the nuances of source
domain data (simulation), thereby improving its prediction perfor-
mance to target domain data (reality).
• We introduce a novel contrastive domain adaptation frame-
work, WMN-CDA, which effectively bridges the network
configuration gap between simulations and real-world de-
ployments by learning discriminative feature representations
at a more granular level, specifically under varying network
configurations;
• To our knowledge, WMN-CDA is the first to use Network
Configuration and Simulation-to-Reality contrastive losses
to achieve robust feature alignment across different domains,
effectively addressing the domain shift challenge inherent
in WMN configurations;
• We have implementedWMN-CDA and showed its efficacy in
enhancing prediction accuracy with the data collected from
a physical WMN testbed and multiple wireless simulators.

The remainder of this paper is structured as follows: Section 2
reviews the related work in WMN, domain adaptation, and con-
trastive learning. Section 3 introduces our design of WMN-CDA.
Section 4 presents our experimental results. Section 5 concludes
the paper.

2 Related Work
WMNs have become essential for reliable, scalable, and flexible
communication in industrial and commercial applications, but they
pose several technical challenges. Ensuring reliable communica-
tion in industrial settings, such as those using WirelessHART, is
difficult due to interference, multipath fading, and variable traffic
loads [10]. Current network configuration practices on industrial
WMNs often rely on manual, experience-based approaches, such

as blacklisting noisy channels [11] in WirelessHART networks or
using fixed Packet Reception Ratio (PRR) thresholds to select rout-
ing links. These methods have limitations, as recent studies suggest
that using more channels or fixed PRR thresholds is not always op-
timal [12, 13]. While mathematical models and runtime adaptation
techniques have been developed to optimize network configura-
tions, they are typically insufficient for handling the complexity of
modern, hierarchical wireless networks [14, 15]. Advanced machine
learning techniques, including deep learning and reinforcement
learning, have shown promise in optimizing network performance
by using a large number of parameters and addressing the uncer-
tainties inherent in real-world deployments [16–18]. However, the
difficulty and cost of collecting sufficient data, especially from in-
dustrial environments, have hindered their widespread adoption.
Simulations have been proposed as an alternative for training mod-
els, but significant performance gaps between simulation and real-
world deployment persist, highlighting the challenge of bridging
the simulation-to-reality gap [6].

Domain adaptation has become a crucial technique in machine
learning, enabling models trained on one domain (source) to gener-
alize to a new, unseen domain (target) with differing data distribu-
tions. Early methods focused on reweighting source samples to min-
imize the distribution gap between domains, but these approaches
struggled with large domain shifts [19]. More recent techniques
focus on learning domain-invariant representations by aligning
feature spaces, such as using Maximum Mean Discrepancy (MMD)
to bridge the gap between domains [20, 21]. Adversarial learning
approaches like Domain-Adversarial Neural Networks (DANN) [22]
train feature extractors to confuse a domain classifier, helping the
model generalize across domains. In unsupervised Domain adap-
tation, where the target domain lacks labeled data, methods like
self-training, pseudo-labeling, and contrastive learning have im-
proved generalization [23]. Integrating contrastive learning into
domain adaptation shows promise in further reducing the distri-
bution gap, and improving performance when labeled data in the
target domain is limited.

Contrastive learning has been widely used in representation
learning, achieving superior results across various domains [24, 25].
It has recently gained prominence for its effectiveness in self-
supervised learning, especially when labeled data is limited or
unavailable. The core idea is to learn representations by pulling
similar data points (positive pairs) closer in latent space while
pushing dissimilar points (negative pairs) apart [26], typically opti-
mized using loss functions like Noise Contrastive Estimation (NCE)
or InfoNCE [27]. A foundational work in this area, SimCLR [28],
demonstrated that contrastive learning could achieve state-of-the-
art performance in representation learning by augmenting data to
create positive pairs. This method has since been applied across
tasks such as image classification, NLP, and time series analysis.
Recent advancements, like MoCo [29], introduced a momentum
encoder to handle large numbers of negative samples, improving
scalability efficiently. BYOL [30] further innovated by eliminating
negative pairs while maintaining competitive performance.
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3 WMN-CDA
In this section, we first formulate the industrial MWN configuration
problem as a contrastive domain adaptation problem, followed by an
overview of WMN-CDA and a detailed description on the training
algorithm. We then provide an in-depth discussion of our Network
Configuration and Simulation-to-Reality contrastive losses.

3.1 Problem Formulation
3.1.1 Industrial WMN Configuration. The primary task in indus-
trial WMN configurations is to select the WMN configuration that
allows the network to meet the performance requirements. The
parameter selection should be as accurate as possible with minimal
physical data collection overhead.

The network configuration of an industrial WMN involves three
adjustable parameters, including [12]:

• PRR threshold for link selection (𝑅) – the Packet Recep-
tion Ratio threshold used for selecting links;
• Number of channels used in the network (𝐶) – the total
number of communication channels utilized;
• Number of transmission attempts per packet (𝐴) – the
number of times a packet is transmitted before being consid-
ered dropped.

The network performance consists of three key metrics, includ-
ing:

• End-to-end latency (𝐿): The total time taken for a packet
to traverse from the source to the destination.
• Battery lifetime (𝐵): The total energy consumption by net-
work devices.
• End-to-end reliability (𝐸): Measured using the Packet De-
livery Ratio (PDR), which represents the ratio of successfully
delivered packets to the total number of packets transmitted.

Industrial WMN configurations present two key challenges: (1)
training an effective Deep Neural Network (DNN) model that uti-
lizes network performance to predict network configurations, and
(2) improving the accuracy of the DNN model while minimizing
the reliance on physical data.

3.1.2 Industrial WMN Configuration from a Supervised Contrastive
Learning Perspective. The first challenge in configuring an industrial
WMN is selecting good configuration parameters y = {R,C,A}
that satisfy the network’s performance requirements x = {L,B, E},
as dictated by the application. Here, x represents the performance
requirements, which are the concatenation of metrics such as L,B, E.
Likewise, y denotes the network configuration parameters, which
are the concatenation of variables R,C,A. The objective is to learn a
nonlinearmapping 𝑓𝜃 (·) : x→ y, where𝜃 are themodel parameters
learned from labeled data.

From Supervised contrastive learning perspective, given a dataset
D = {x𝑖 , y𝑖 }𝑛𝑖=1, where each sample (network performance require-
ment) x𝑖 ∈ X is associated with a corresponding label (network
configuration) y𝑖 , we define:

• Positive samples {x+
𝑖
}, which share the same label y𝑖 as

the anchor sample x𝑖 and are considered similar.
• Negative samples {x−

𝑖
}, which have different labels from

x𝑖 and are considered dissimilar.

The goal of supervised contrastive learning is to learn a represen-
tation function 𝑓 (x;𝜃 ), parameterized by 𝜃 , that maps data samples
into a latent space where samples sharing the same label are close
together, while those with different labels are pushed farther apart.

This is achieved by minimizing the supervised contrastive loss.
Let z𝑖 = 𝑓 (x𝑖 ) represent the embedding of the sample x𝑖 in the latent
space, where 𝑓 (·) is the representation function. The supervised
contrastive loss for a single sample x𝑖 can be expressed as:

L𝑖 = −
1
|𝑃𝑖 |

∑︁
x+
𝑖
∈𝑃𝑖

log
exp

(
sim(z𝑖 , z+𝑖 )/𝜏

)∑
x𝑗 ∈𝑃𝑖∪𝑁𝑖

exp
(
sim(z𝑖 , z𝑗 )/𝜏

) , (1)

where:
• 𝑃 (𝑖) is the set of positive samples that share the same label
as x𝑖 ,
• 𝑁 (𝑖) is the set of negative samples with different labels from
x𝑖 ,
• sim(u, v) denotes the similarity between two representa-
tions, typically computed using cosine similarity:

sim(u, v) = u · v
∥u∥∥v∥ ,

• 𝜏 is a temperature hyperparameter controlling the concen-
tration of the distribution.

The overall objective of supervised contrastive learning is to
solve the following optimization problem:

min
𝜃

1
𝑛

𝑛∑︁
𝑖=1
L𝑖 ,

where the goal is to learn the model parameters 𝜃 that minimize the
supervised contrastive loss across the dataset. This process results
in a representation function 𝑓 (x;𝜃 ) that tightly clusters samples
with the same label in the latent space while distancing samples
with different labels. Such representations are more robust and
discriminative, enabling the model to better tackle the challenges
of network configuration.

3.1.3 Industrial WMN Configuration Domain Adpation at a Granu-
lar Scale. The second key challenge in industrial WMN configura-
tions is to improve the accuracy of theDNNmodel whileminimizing
the reliance on physical data, which can be formulated as a domain
adaptation problem. Domain adaptation aims to reduce the domain
discrepancy by learning domain-invariant features or by facilitating
knowledge transfer from the source domain to the target domain by
using a large amount of source domain (simulation) data and a few
target domain (physical) data. In the industrial WMN configuration
scenario, the source domain refers to the simulation and the target
domain refers to the reality. Let the source domain be defined as
D𝑆 = {(x𝑆

𝑖
, 𝑦𝑆

𝑖
)}𝑛𝑆

𝑖=1, where x
𝑆
𝑖
∈ X𝑆 are network performance re-

quirements and 𝑦𝑆
𝑖
∈ Y𝑆 are corresponding network configurations

in simulatioin, and let the target domain beD𝑇 = {x𝑇
𝑖
}𝑛𝑇
𝑖=1, where

x𝑇
𝑖
∈ X𝑇 are network performance requirements in reality.
In domain adaptation, the data distributions of the source and

target domains differ, i.e., 𝑃 (x𝑆 ) ≠ 𝑃 (x𝑇 ). The goal is to learn a
function 𝑓 (x) that performs well to the target domain D𝑇 despite
this domain shift. Specifically, we aim to minimize target domain
prediction uncertainty R𝑇 (𝑓 ), defined as:
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R𝑇 (𝑓 ) = E(x,𝑦)∼𝑃 (x𝑇 ,𝑦𝑇 ) [ℓ (𝑓 (x), 𝑦)] (2)
where ℓ is the loss function. Since the target domain lacks suf-

ficient physical data, the challenge is to leverage labeled source
domain (simulation) data and a small amount of target domain data
to reduce uncertainty in the target domain.

We reformulate the domain adaptation problem from a domain
scale to a granular network configuration scale. In the network
configuration level domain adaptation, the data distributions of
the source and target domains differ not only in their overall mar-
ginal distributions 𝑃 (x𝑆 ) and 𝑃 (x𝑇 ), but also in their configuration-
specific distributions. We reformulate the problem to learn a func-
tion 𝑓 (x) that performs well to the target domain D𝑇 by align-
ing the network configuration-level distributions across domains.
Specifically, we aim to minimize the prediction uncertainty for each
network configuration in the target domain, Rconfig

𝑇
(𝑓 ), defined as:

Rconfig
𝑇

(𝑓 ) = E(x,𝑦)∼𝑃 (x𝑇 ,𝑦𝑇 |𝑦=config) [ℓ (𝑓 (x), 𝑦)] (3)

where ℓ is a loss function, and 𝑓 (x) is the prediction function
for network configurations. This approach leverages both labeled
source domain data D𝑆 and a few labeled target domain samples
for each network configuration to reduce uncertainty and improve
adaptation at a more granular, configuration-specific level.

3.2 Overview
Recent advancements in domain adaptation for industrial WMNs
have concentrated on mitigating the effects of domain shift by
leveraging sophisticated feature alignment techniques. The core in-
novation of WMN-CDA lies in its dual application of Network Con-
figuration and Simulation-to-Reality contrastive learning, enabling
the model to efficiently adapt between domains with discriminative
latent space representations at a granular scale. This not only en-
hances feature alignment but also improves the prediction capacity
of the model by maximizing the mutual information between the
source and target domains. Figure 1 shows the overall design of
WMN-CDA. It has the teacher model trained on the source domain
(simulation) data and the student model trained on the target do-
main (physical deployment) data with the classification loss. Also,
a (Maximum Mean Discrepancy) MMD loss is applied to transfer
knowledge from the source domain to the target domain. The Net-
work Configuration Loss is used to learn the network requirement
representations under different network configurations within the
same domain and the Simulation-to-Reality Loss is used to learn the
the network requirement representations under different network
configurations across the different domains. The Network Con-
figuration loss can help the model to learn better representations
by contrasting network requirement differences under different
network configurations. The Simulation-to-Reality loss can help
the model to transfer knowledge from the source domain (simula-
tion) to the target domain (physical deployment) by considering
the simulation-to-reality gap difference under different network
configurations.

3.3 WMN-CDA Training
The training process for the proposed WMN-CDA model follows a
teacher-student framework, where knowledge is transferred from

Algorithm 1 Training Procedure for WMN-CDA
Require: Source domain dataset 𝐷𝑆 , target domain dataset 𝐷𝑇

Require: Teacher model 𝑇 , Student model 𝑆
Require: Hyperparameters: learning rate 𝜂, Network Configura-

tion loss factor 𝛼 , Simulation-to-Reality loss factor 𝛽 , MMD
loss factor 𝜆

Ensure: Optimized student model 𝑆∗
1: Step 1: Pre-train Teacher Model on Source Domain
2: Initialize the teacher model 𝑇 parameters randomly.
3: Train 𝑇 using source domain dataset 𝐷𝑆 by minimizing the

source domain classification loss L𝑆
class.

4: Save the learned teacher model parameters 𝜃∗
𝑇
.

5: Step 2: Initialize and Transfer Knowledge to Student
Model

6: Initialize the student model 𝑆 parameters from the teacher
model 𝑇 .

7: Use the teacher model to generate labeled configuration repre-
sentations from 𝐷𝑆 , and transfer them to the target domain.

8: Step 3: Joint Training of Teacher-Student Model
9: while training not converged do
10: Sample mini-batch of source domain data 𝑥𝑆 ∈ 𝐷𝑆 and

target domain data 𝑥𝑇 ∈ 𝐷𝑇 .
11: Step 3.1: Compute Losses
12: Compute the source domain classification loss L𝑆

class for
teacher model 𝑇 .

13: Compute the target domain classification loss L𝑇class for
student model 𝑆 .

14: Compute the MMD loss LMMD to align the feature distri-
butions between the source and target domains.

15: Compute the Network Configuration contrastive loss LNC
for both domains to ensure consistency within the domains.

16: Compute the Simulation-to-Reality contrastive loss LSR to
align similar representations between the source and target
domains.

17: Step 3.2: Compute Total Loss
18: Compute the total loss:

Ltotal = L𝑆
class + L

𝑇
class + 𝜆LMMD + 𝛼LNC + 𝛽LSR

19: Step 3.3: Update Model Parameters
20: Update teacher model 𝑇 and student model 𝑆 parameters

using gradient descent:

𝜃𝑇 ← 𝜃𝑇 − 𝜂∇𝜃𝑇 Ltotal, 𝜃𝑆 ← 𝜃𝑆 − 𝜂∇𝜃𝑆Ltotal

21: end while
22: Step 4: Save the Optimized Student Model
23: Save the optimized student model 𝑆∗.

a teacher model trained in the source domain (simulation) to a
student model in the target domain (physical deployment). The
algorithm is designed to optimize the student model to predict
wireless network configurations in reality with minimal physical
data. As is shown in Algorithm 1, the training procedure consists
of the following steps:

The first step involves pre-training the teacher model on the
source domain dataset 𝐷𝑆 . The teacher model is trained by min-
imizing the classification loss L𝑆

class over the labeled data from
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Source Domain (Simulation) Target Domain (Physical deployment)

Data Data

Performance Requirements

Network Configuration
Contrastive Loss

Simulation-to-Reality
 Contrastive Loss

Teacher Model Student ModelKnowledge Transfer

MMD Loss Classification LossClassification Loss

Performance Requirements

Latent Space Representation

Figure 1: Architecture ofWMN-CDA. The star and circle in the figure represent different representations of network performance
requirements. The blue ones are the network requirements representations from the source domain (simulation) and The orange
ones are the network requirements representations from the target domain (reality). By pushing the network requirements
representations under similar network configurations closer and pushing away network requirements representations under
different network configurations, WMN-CDA can better capture the features under different network configurations and
transfer knowledge at the granular scale (network configuration scale instead of domain scale).

the source domain. Once trained, the parameters of the teacher
model 𝜃∗

𝑇
are saved for further use in transferring knowledge to

the student model.
After pre-training the teacher model, the student model is initial-

ized with the parameters of the teacher model. The teacher model
generates labeled configuration representations from the source do-
main data, which are then transferred to the student model for use
in the target domain. This knowledge transfer allows the student
model to perform well in the target domain with minimal labeled
data.

Then the teacher and student models are trained jointly by mini-
mizing a total loss function that incorporates multiple components.
During each iteration, mini-batches of data are sampled from both
the source domain 𝑥𝑆 ∈ 𝐷𝑆 and the target domain 𝑥𝑇 ∈ 𝐷𝑇 .

The following losses are computed:

• Source domain classification loss L𝑆
class for the teacher

model.
• Target domain classification loss L𝑇class for the student
model.
• MMD loss LMMD, which aligns the feature distributions
between the source and target domains.
• Network Configuration contrastive loss LNC, which
help the model to learn discriminative representations hat
capture relevant features and similarities within each do-
main.
• Simulation-to-Reality contrastive loss LSR, which dis-
criminative representations hat capture relevant features
and similarities across the source and target domains.

The total loss is computed as a weighted combination of these
components:

Ltotal = L𝑆
class + L

𝑇
class + 𝜆LMMD + 𝛼LNC + 𝛽LSR, (4)

where 𝜆, 𝛼 , and 𝛽 are hyperparameters controlling the contributions
of the MMD, Network Configuration, and Simulation-to-Reality
losses, respectively.

Both the teacher and student models are updated using gradient
descent to minimize the total loss and optimize their respective
parameters.

Once the joint training process converges, i.e., when the total
loss reaches a minimum, the optimized student model 𝑆∗ is saved.
This model is now capable of making accurate predictions in the
target domain (reality) by leveraging the knowledge transferred
from the source domain (simulation).

The WMN-CDA training procedure effectively allows the model
to bridge the simulation-to-reality gap at a granular scale by en-
suring consistent feature representations under different network
configurations across different domains. The Network Configura-
tion and Simulation-to-Reality contrastive losses, along with the
MMD loss, ensure robust feature alignment within and across do-
mains. This training method enables the student model to learn
from the source domain and apply the learned configurations to the
target domain, making WMN-CDA highly practical for real-world
network configuration tasks with limited labeled physical data.

3.4 Network Configuration Contrastive Loss
The Network Configuration Contrastive Loss is designed to im-
prove the consistency of representations within each domain (either
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source or target), ensuring that samples under the same network
configuration within the same domain are grouped together in
the latent space. Given that both the source and target domains
may contain diverse data points with varied characteristics, it is
crucial to maintain the internal structure of each domain during
the knowledge transfer process.

For each anchor sample x𝑖 from either the source or target do-
main, we identify a positive sample x+

𝑖
are the network require-

ments representations under same network configuration from the
same domain. Simultaneously, we select negative samples x−

𝑖
from

dissimilar network configurations within the same domain. The
Network Configuration Contrastive Loss encourages the anchor
sample x𝑖 and its positive counterpart x+

𝑖
(network requirements

representations under same network configuration) to be closer in
the latent space while pushing the anchor away from the negative
samples(network requirements representations different network
configuration) x−

𝑖
.

The Network Configuration contrastive loss is used to align
representations within the same domain. It encourages similarity
between positive pairs (anchor and augmented views) and pushes
apart dissimilar pairs (anchor and negative samples). Let z𝑖 = 𝑓 (x𝑖 )
represent the embedding of sample x𝑖 . The loss function is formal-
ized as:

LNC = − log
exp

(
sim(z𝑖 , z+𝑖 )/𝜏

)
exp

(
sim(z𝑖 , z+𝑖 )/𝜏

)
+

𝑘∑
𝑗=1

exp
(
sim(z𝑖 , z−𝑗 )/𝜏

) , (5)

where 𝜏 is a temperature hyperparameter, and sim(·, ·) denotes
the cosine similarity. This alignment ensures consistency within the
domain, reducing Network Configuration variability and enhancing
the robustness of the knowledge transfer process.

3.5 Simulation-to-Reality Contrastive Loss
While Network Configuration contrastive loss handles internal
domain consistency, the Simulation-to-Reality Contrastive Loss
is designed to align representations between the source (simula-
tion) and target domains (reality). The key challenge in domain
adaptation is the discrepancy between the data distributions of the
source and target domains. The Simulation-to-Reality contrastive
loss aims to reduce this domain shift by ensuring that correspond-
ing configurations in the source and target domains are mapped to
similar representations in the latent space, promoting cross-domain
consistency.

For a given anchor sample x𝑆
𝑖
from the source domain and its

positive counterpart x𝑇
𝑖
from the target domain (network require-

ments representations that are from network configurations but
collected from different domains), the model is encouraged to bring
their representations closer together. Meanwhile, samples under
same network configuration that are dissimilar between the source
and target domains are pushed apart. This is achieved through a
contrastive loss function similar to the Network Configuration case
but applied between domains.

The Simulation-to-Reality Contrastive Loss is defined to align
the feature representations between the source and target domains.
For a given source sample x𝑆

𝑖
and its positive counterpart from the

target domain x𝑇
𝑖
, the loss encourages their similarity while pushing

away dissimilar samples. Let z𝑆
𝑖
= 𝑓 (x𝑆

𝑖
) and z𝑇

𝑖
= 𝑓 (x𝑇

𝑖
) represent

the embeddings of the source and target samples, respectively. The
loss is formulated as:

LSR = − log
exp

(
sim(z𝑆

𝑖
, z𝑇
𝑖
)/𝜏

)
exp

(
sim(z𝑆

𝑖
, z𝑇
𝑖
)/𝜏

)
+

𝑘∑
𝑗=1

exp
(
sim(z𝑆

𝑖
, z𝑇

𝑗
)/𝜏

) , (6)

where sim(·, ·) denotes the similarity function, and 𝜏 is a temper-
ature parameter that controls the scaling of similarities. The first
term aligns the positive source-target pair, and the second ensures
dissimilar pairs are separated.

By minimizing this Simulation-to-Reality loss, the model effec-
tively reduces the domain shift between the source and target do-
mains, allowing for a more effective transfer of knowledge from the
well-labeled source domain (simulation) to the sparsely-labeled tar-
get domain (physical deployment). This combination of Simulation-
to-Reality and Network Configuration contrastive learning ensures
that the model is well-adapted to handle both local domain vari-
ability and cross-domain shifts, improving overall performance in
WMN domain adaptation tasks.

4 Evaluation
In this section, we first introduce our experimental setup and the
dataset used for our experiments. We then present the performance
of WMN-CDA when we use four different simulators as well as our
study on the effects of two key parameters on WMN-CDA’s perfor-
mance. Finally, we present the performance of WMN-CDA when
different amounts of physical data are used to train the network
configuration model.

4.1 Experimental Setup and Dataset
We implement WMN-CDA and our baseline TS-DA, the domain
adaptation method developed by Shi el al. [6], using PyTorch [31].
We train WMN-CDA with the Adam optimizer [32] and run all
experiments on a single NVIDIA A100 GPU with 80𝐺𝐵 of mem-
ory. The physical data used in our experiment is collected from
the WirelessHART network that runs on the testbed built by Shi
et al. [6]. The testbed consists of 50 TelosB motes [33]. The data
contains 88 distinct network configurations with three network
parameters: 𝑅 ∈ {0.7, 0.71, 0.72, . . . , 0.9}, 𝐶 ∈ {1, 2, 3, . . . , 8}, and
𝐴 ∈ {1, 2, 3}. Each network configuration corresponds to three
performance metrics end-to-end latency (𝐿), battery lifetime (𝐵),
and end-to-end reliability (𝐸), In total, we have 6,600 data traces (88
network configurations × 75 traces per configuration). We imple-
ment the same WirelessHART network in four wireless simulators
including NS3 [34], Cooja [35], Tossim [36], and OMNet [37]. In
total, we collect 6,600 data traces (88 network configurations × 75
traces per configuration) from each simulator.

4.2 Performance of WMN-CDA
We first measure the performance of WMN-CDA on selecting con-
figurations to achieve good network performance. The experiments
are performed with 75 shots (each shot has one data sample under
each of 88 network configurations) of simulation data and 5 shots of
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Table 1: Prediction performance when using different simu-
lators with various training methods. “Imp.” represents the
improvement of WMN-CDA compared to our baseline “TS-
DA”.

Simulator NS3 Cooja Tossim OMNet

TS-DA 70.1% 69.8% 71.1% 60.9%
WSN-CD 75.9% 74.1% 75.6% 68.0%

Imp. +5.8% +4.3% +4.5% +7.1%

physical data. We repeat the experiments with the simulation data
collected from different simulators. Table 1 presents the prediction
performance of WMN-CDA and our baseline TS-DAs. As Table 1
lists, WMN-CDA consistently outperforms TS-DA. For instance,
when we use the simulation data generated by the NS3 simulator,
WMN-CDA achieves a prediction accuracy of 75.9%, a notable im-
provement of +5.8% over TS-DA. When we use the Cooja simulator,
WMN-CDA achieves a prediction accuracy of 74.1%, a improve-
ment of +4.3% over TS-DA. The most significant improvement is
observed when we use OMNet, where WMN-CDA reaches 68.0%
accuracy, representing a substantial +7.1% increase over TS-DA.
The results highlight the effectiveness of WMN-CDA in selecting
good network configurations across various simulators. The per-
formance gains, particularly in simulators like NS3 and OMNet,
underscore the robustness of the WMN-CDA method in addressing
domain shifts and enhancing generalization across diverse network
settings. This is achieved by learning discriminative feature rep-
resentations at a more granular level, specifically under varying
network configurations.

4.3 Effects of Key Parameters

Table 2: Prediction performance when using different Net-
work Configuration contrastive loss factor 𝛼 (𝛽 = 1).

𝛼 NS3 Cooja Tossim OMNet

0.1 75.1% 71.9% 74.7% 52.5%
0.3 75.9% 71.6% 74.5% 68.0%
0.5 75.9% 71.9% 74.5% 60.1%
0.7 75.1% 71.9% 74.3% 56.7%
0.9 75.5% 71.4% 75.0% 60.0%

We then evaluate the effects of two key parameters (i.e., Network
Configuration contrastive loss factor 𝛼 and Simulation-to-Reality
contrastive loss 𝛽) on WMN-CDA’s performance. Table 2 presents
the prediction performance of WMN-CDA under different simu-
lators when we vary the Network Configuration contrastive loss
factor (𝛼) and keep using the same Simulation-to-Reality loss factor
(𝛽 = 1). For instance, under NS3, the best performance is achieved
at 𝛼 = 0.3 and 𝛼 = 0.5 with an accuracy of 75.9%. Under Cooja, the
model performs best at 𝛼 = 0.1, 𝛼 = 0.5, and 𝛼 = 0.7 with 71.9%
accuracy. Under Tossim, the highest accuracy of 75.0% is observed
at 𝛼 = 0.9. Under OMNet, the performance peaks at 𝛼 = 0.3 with
68.0% accuracy. The results suggest that a moderate value of 𝛼 = 0.3

Table 3: Prediction performance when using different
Simulation-to-Reality contrastive loss factor 𝛽 (𝛼 = 0.3).

𝛽 NS3 Cooja Tossim OMNet

0.03 74.7% 70.9% 72.9% 67.2%
0.3 74.9% 74.1% 74.5% 61.1%
1 75.9% 71.6% 74.5% 68.0%
3 75.0% 71.5% 74.9% 64.8%
30 73.9% 70.4% 75.0% 62.9%
300 74.8% 71.1% 75.6% 61.3%

tends to yield better performance. As 𝛼 goes beyond this range,
the performance decreases in general, particularly under OMNet,
where a 𝛼 = 0.1 results in the lowest accuracy of 52.5%. Table 3
shows the prediction performance of WMN-CDA under different
simulators when we vary the Simulation-to-Reality contrastive loss
factor (𝛽) and keep using the same Network Configuration loss
factor (𝛼 = 0.3) constant. For example, under NS3, the best perfor-
mance is achieved at 𝛽 = 1, with an accuracy of 75.9%. Under Cooja,
the model performs best at 𝛽 = 0.3 with 74.1% accuracy. Under
Tossim, the highest accuracy of 75.6% is observed at 𝛽 = 300. Under
OMNet, the performance peaks at 𝛽 = 1 with 68.0% accuracy. The
results suggest that a moderate value of 𝛽 = 1 tends to yield better
performance. As 𝛽 goes beyond this range, performance generally
decreases, particularly in OMNet, where a high 𝛽 = 0.3 results in
the lowest accuracy of 61.1%.

4.4 Performance When Using Different
Amounts of Physical Training Data

Table 4: Prediction performance across different simulators
with different shots of physical data.

Shot NS3 Cooja Tossim OMNet

1 55.6% 62.7% 56.7% 47.7%
2 64.1% 64.1% 63.8% 47.3%
3 70.1% 67.9% 69.9% 51.4%
4 71.3% 70.2% 71.7% 53.5%
5 75.9% 74.1% 75.6% 68.0%

Finally, we examine the performance of WMN-CDA when we
use different amounts of physical data to train the network con-
figuration model. To investigate the effects of the training data.
Table 4 lists the prediction performance of WMN-CDA when we
vary the amount of physical data used for training (ranging from
one shot to five shots). The results show that the performance of
WMN-CDA improves as more physical data is used for training.
For example, under NS3, the prediction accuracy starts at 55.6%
with 1 shot and gradually increases to 75.9% with five shots. Simi-
larly, in Cooja, the model’s accuracy improves from 62.7% with one
shot to 74.1% with five shots. Tossim shows a comparable trend,
starting at 56.7% with one shot and reaching 75.6% with five shots.
The most significant improvement is observed in OMNet, where
the accuracy increases from 47.7% with one shot to 68.3% with
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five shots. For most simulators, it is notable that the performance
gain diminishes after using three shots of physical data, indicating
the strong adaptation capability of WMN-CDA in transferring the
network configuration knowledge under few-shot scenarios. This
effectiveness can be attributed to the contrastive loss employed
in WMN-CDA, which effectively addresses the issue of domain
misalignment. However, in cases such as OMNet, where the source
domain (simulation) data contains fewer domain-invariant features,
additional physical data is required to achieve better domain adap-
tation performance. WMN-CDA demonstrates its adaptability by
rapidly improving accuracy from 53.5% to 68.0%, with the addition
of a single shot of data.

5 Conclusions
In this paper, we introduce WMN-CDA, a novel framework that
enables effective and efficient domain adaptation for WMN configu-
rations. By employing contrastive learning, WMN-CDA efficiently
transfers the network configuration knowledge from simulations
to a physical deployment, reduces the dependence on the labeled
data, and leverages the Network Configuration and Simulation-
to-Reality contrastive losses to ensure robust feature alignment.
Experimental results show that WMN-CDA improves prediction
accuracy when using the simulation data generated by various
simulators compared to the baseline.
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