
1

Parameter Self-Adaptation for Industrial Wireless
Sensor-Actuator Networks

JUNYANG SHI and MO SHA∗, State University of New York at Binghamton, USA

Wireless Sensor-Actuator Network (WSAN) technology is gaining rapid adoption by the industrial Internet
of Things (IoT) applications in recent years. A WSAN typically connects sensors, actuators, and controllers
in industrial facilities, such as steel mills, oil refineries, chemical plants, and infrastructures implementing
complex monitoring and control processes. IEEE 802.15.4-based WSANs operate at low-power and can be
manufactured inexpensively, which makes them ideal where battery lifetime and costs are important. Recent
studies have shown that the selection of network parameters has a significant effect on network performance.
However, the current practice of parameter selection is largely based on experience and rules of thumb
involving a coarse-grained analysis of expected network load and dynamics or measurements during a few
field trials, resulting in non-optimal decisions in many cases. In this work, we develop the Parameter Selection
and Adaptation FramEwork (P-SAFE) that optimally selects the network parameters based on the application
Quality of Service (QoS) demands and adapts the parameter configuration at runtime to consistently satisfy
the dynamic requirements. We implement P-SAFE and evaluate it on three physical testbeds. Experimental
results show that our solution can significantly better meet the application QoS demand compared to the state
of the art.
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1 INTRODUCTION
Wireless Sensor-Actuator Network (WSAN) technology is gaining rapid adoption in process in-
dustries in recent years. According to a McKinsey’s report, industrial IoT will contribute up to $47
trillion in added value globally by 2025 [41]. Emerson Process Management, one of the leading
process automation suppliers, has deployed more than 51,234 WSANs globally and gathered the
experience of 17.6 billion operating hours [19]. A WSAN typically connects sensors, actuators,
and controllers in industrial facilities, such as steel mills, oil refineries, chemical plants, and infras-
tructures implementing complex monitoring and control processes. IEEE 802.15.4-based WSANs
operate at low-power and can be manufactured inexpensively, which make them ideal where
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battery lifetime and costs are important. Battery-powered wireless modules easily and inexpen-
sively retrofit existing sensors and actuators in industrial facilities without running cabling for
communication and power. The stringent reliability and real-time requirements of industrial process
applications distinguish industrial WSANs from traditional Wireless Sensor Networks (WSNs)
designed for best-effort services. To meet the stringent requirements, industrial WSAN standards
such as WirelessHART [61] made a set of specific design choices. For instance, WirelessHART
adopts a centralized network architecture and employs the Time Slotted Channel Hopping (TSCH)
technology [57]: Time is divided into time slots, which are long enough for packet transmission and
its acknowledgment; All devices in a network are time synchronized and hop channels to exploit
frequency diversity; A centralized network manager computes the TSCH schedule and determines
how each device uses every time slot: transmit, receive, or sleep. Compared to the Carrier-Sense
Multiple Access with Collision Avoidance (CSMA/CA), the Time-Division Multiple Access (TDMA)
based TSCH offers time-deterministic packet deliveries, which makes it attractive for real-time
communication. With a decade of real-world deployments, industrial standards have demonstrated
the feasibility for the TSCH-based WSANs to achieve reliable low-power wireless communication
in industrial environments. Therefore, the TSCH technology was adopted by the leading industrial
WSAN standards (WirelessHART [61] and ISA100 [29]) and the one being standardized by IETF
(6TiSCH [27]) and amended into the IEEE 802.15.4 standard in 2012 [1].

Recent studies have shown that the selection of network parameters such as the Packet Reception
Ratio (PRR) threshold for link selection, the number of channels used in the network, and the
number of transmission attempts for each packet has a significant effect on the performance of
industrial WSANs [24, 25, 51]. However, the current practice of parameter selection is largely based
on experience and rules of thumb involving a coarse-grained analysis of expected network load and
dynamics or measurements during a few field trials. For instance, WirelessHART has specified the
use of all available channels after the human network operator manually blacklists noisy ones [61]
and Emerson Process Management suggests using a constant value (i.e., 60%) as the PRR threshold
to select links for routing [18]. Unfortunately, recent studies show that these specifications are
error prone [25, 51]. For example, using more channels is not always desirable in industrial WSANs,
since more channels mean more channel diversity but a large number of channels may reduce
route diversity with negative effects on routing and scheduling.
Thanks to some recent work [15, 16, 22, 47, 58, 68], we are confident that we are just seeing

the tip of the iceberg in terms of how much performance can be improved through enabling
parameter adaptation. However, to fully realize the benefits offered by the parameter adaptation,
two fundamental challenges must be overcome: (i) Conceptual gap: There exists a large conceptual
gap between the high-level application Quality of Service (QoS) requirements and the low-level
network parameters. It requires expert knowledge to find the parameters whose performance
satisfies given requirements. Although most network parameters have been studied individually in
the context of WSNs, there still exist phenomena that are unknown under an industrial WSAN
setting. For example, a recent study shows that the performance of WSANs does not improve
monotonically with more channels used because of the tradeoff between channel diversity and
route diversity [25]. Owing to the lack of understanding of the underlying functional form of the
relationships between high-level requirements and low-level parameters, the selection of suitable
parameters becomes challenging. (ii) Complex QoS demand: Most industrial process applications
today pose multiple (sometimes conflicting) QoS requirements on information exchange to their
underlying networks. Learning the QoS demand of process applications that truly reflects their
needs is particularly challenging, as multiple requirements must be met and tradeoffs have to be
made among conflicting ones. The traditional solutions, which require users to order their QoS
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requirements or rely on a coarse-grained weighted sum calculation, always result in non-optimal
decisions in practice.
To address the above-stated challenges, we develop the Parameter Selection and Adaptation

FramEwork (P-SAFE) that optimally selects the network parameters based on the application QoS
demand and adapts the parameter configuration at runtime to consistently satisfy the dynamic
requirements. Specifically, this paper makes the following contributions:

• We design a rigorous modeling method that relates the high-level application QoS require-
ments to the low-level network parameters;

• We formulate the parameter selection into a multi-objective optimization problem and
employs the NSGA-II algorithm to identify the best tradeoff decisions;

• We develop a novel approach that learns the QoS preferences from the control application
based on its specified ranges of desirability and translates the control metric into the network
metric. The translated preference ranges can be used by the linear physical programming
technique to identify the single (most attractive) best tradeoff decision;

• We implement P-SAFE and evaluate it on three physical testbeds under different application
demands, different network settings, and environmental dynamics. Experimental results
show our solution can significantly better meet the application demand compared to the
state of the art.

The remainder of the paper is organized as follows. Section 2 reviews the related work. Section 3
introduces the background of WSANs. Section 4 presents the design of our P-SAFE. Section 5 and 6
describe our QoS learning approach and control system analysis engine, respectively. Section 7
evaluates P-SAFE and Section 8 concludes the paper.

2 RELATEDWORK
Recently, there has been significant research on real-time industrial WSANs spanning transmission
scheduling, routing algorithms, and network protocols. For instance, Watteyne et al. presented an
implementation of IP-based real-time communication over TSCH [59]. Duquennoy et al. proposed
autonomous scheduling for TSCH in RPL networks [17] and Accettura et al. developed distributed
traffic-aware scheduling in 6TiSCH networks [2]. Jocob et al. presented a distributed protocol that
considers the complete transmission chain including peripheral buses, memory accesses, network-
ing interfaces, and the wireless real-time protocol [30]. Saifullah et al. presented a schedulability
analysis under graph routing in WirelessHART Networks [49] and Gunatilaka et al. proposed
two channel selection approaches [24, 25]. Wu et al. and Shi et al. developed real-time routing
protocols [52, 62, 63]. Lu et al. provided a comprehensive survey of recent advances in this in-
creasingly important class of wireless networks [40]. Yet, a key missing piece in industrial WSANs
is a self-adaptation component, which allows WSANs to optimally configure themselves based
on specific QoS requirements and adapt the configurations at runtime to consistently satisfy the
dynamic requirements in uncertain environments. This paper aims to accomplish this and advance
the state of the art of real-time industrial WSANs through creating a new paradigm of parameter
adaptation.

The characteristics of IEEE 802.15.4 wireless links have been studied extensively in the context
of WSNs. There has been a vast array of research that empirically studied the link quality with
different platforms, under varying experimental conditions, assumptions, and scenarios [5]. For
instance, Zhao et al. [65] and Srinivasan et al. [55] investigated the packet delivery performance
in dense WSNs in indoor and outdoor environments. Zhou et al. studied the impact of radio
irregularity on the communication performance in WSNs and established the radio irregularity
model (RIM) [66]. Liang et al. proposed a Medium Access Control (MAC) layer solution that enables
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the IEEE 802.15.4 devices to coexist with WiFi devices by using multi-headers technique [38]. To
improve the wireless simulation, Lee et al. took a step forward in simulating packet delivery by
modeling different noise signatures [35]. There also has been extensive research investigating
the benefit of multi-channel communication in WSNs and mesh networks. For example, Zhou et
al. [67] and Kim et al. [31] developed multi-frequency MAC protocols for WSN applications. Control
theory has been applied to multi-channel WSNs to optimize the throughput [33, 34]. Alicherry et
al. optimized the throughput in wireless mesh networks by using joint channel assignment and
routing [3]. Doddavenkatapp et al. proposed the intermediate quality link transformation protocol
(ILTP) to exploit channel diversity in WSNs [14]. Kodialam et al. further characterized the capacity
region in multi-radio multi-channel wireless mesh networks [32]. The interference-aware channel
assignment algorithm has been designed for wireless mesh networks to address the interference
problem [48]. Lin et al. developed a distributed scheduling algorithm for the channel assignment
in wireless mesh networks [39]. The extensive studies produced valuable guidelines on selecting
parameters but also caused a perception that those parameters can be selected manually during the
deployment based on experience and rules of thumb involving a coarse-grained analysis of expected
network load and dynamics or measurements during a few field trials. As a result, WirelessHART
has specified the use of all available channels after the human network operator manually blacklists
noisy ones [61] and Emerson Process Management has specified to use 60% as a threshold to select
links [18]. Unfortunately, recent studies show that these specifications are error prone [25, 51].
Thanks to some recent works, we are confident that we are just seeing the tip of the iceberg in
terms of how much performance can be improved through enabling runtime parameter adaptation.
Leveraging the semantically-enriched models, Seeger et al. proposed a rule-based translation of
application-level QoS constraints into the software-defined network (SDN) configurations [50].
Zimmerling et al. developed the pTunes framework that reduces the packet loss when facing
network changes through enabling adaptation of radio on and off timings and demonstrated its
performance through applying it to X-MAC [8] and LPP [46] protocols [68]. Peng et al. [47] and
Wang et al. [58] developed methods to reduce energy consumption by adapting the sleep intervals in
duty-cycled MACs. Dong et al. proposed to adjust the packet length towards the same goal [15, 16].
Fu et al. highlighted the challenges of adapting multiple parameters simultaneously because of their
joint effect on performance [22]. Although these works have some fundamental limitations, such as
only adapting deployment-independent parameters, requiring precise knowledge of their effect on
performance, and optimizing towards a single requirement, they have shed light on the promising
opportunity for constructing a self-adaptive network. However, there is hardly any precedent for a
rigorous scientific method to model the effect of deployment-dependent parameters and generate a
robust set of strategies to support network parameter decisions. This motivates our work to enable
the parameter adaptation in WSANs.

Part of this article was published in Proceedings of the INFOCOM [51]. Compared to the confer-
ence version [51], this paper presents our new design of a control analysis engine that translates
the control performance requirements into the network QoS requirements. The control analysis
engine leverages accurate mathematical models and simulations of the real-world control system
to provide meaningful ranges of desirability for the network system. We use the control of an
interacting two-tank system consisting of two interacting liquid tanks as an example to demonstrate
the desirability range translation process. Besides, this paper also presents our experimental studies
on the impact of interference on the performance of P-SAFE and the overhead introduced by the
schedule updates.
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Fig. 1. System overview.

3 BACKGROUND OFWSANS
Recent studies show that the operating environments in industrial facilities are often harsh for low-
power wireless communication due to the existence of strong ambient noise and metal objects [40].
To ensure reliable and real-time data deliveries in such environments, industrial WSAN standards,
such as WirelessHART [61], made a set of unique design choices, such as employing a centralized
network architecture, TSCH, and reliable graph routing. Each field device periodically sends a health
report (e.g., in every 15 minutes), which includes information on link conditions and indications of
any problems the device is having with a neighbor, to the network manager. The network manager
uses the health reports collected from all field devices to determine the links which can be used for
routing. To configure the network and update the transmission schedule, the network manager
disseminates the network management messages by using the broadcast graph (a graph connecting
the gateway downward to all field devices) [26]. TSCH technology combines time-slotted medium
access, channel hopping, and multi-channel communication to provide time-deterministic packets
deliveries. Inheriting fromWirelessHART, TSCH has been implemented as a MAC protocol and was
introduced as part of the IEEE 802.15.4e standard for industrial automation and control processes.
Under TSCH, time is divided into fixed-length time slots which group into slotframes. Each time
slot can be used to transmit a data packet and receive an acknowledgment between a pair of devices.
To combat narrow band interference, TSCH requires each device to hop its operating channel in
every time slot. Graph routing is designed to enhance network reliability by providing redundant
routes between field devices and access points. A packet may be transmitted through the backup
routes if the links on the primary path fail to deliver it. Only the links whose PRRs are higher than
the PRR threshold on all channels used in the network can be selected for routing.

4 P-SAFE DESIGN
Figure 1 shows the design of our P-SAFE. After the engineers deploy a WSAN in the field, the Net-
work Analysis Engine in P-SAFE guides them to implement the deployed network in it and also
feed in the collected link (PRR) traces. The engine then simulates network performance under
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Table 1. Data flows set on the BU Testbed used in Section 4.1 (Illustration and Example) and Section 7.1

Flow ID Source Destination Period (ms) Priority
1 147 146 800 1
2 144 143 800 2
3 105 104 800 3
4 149 102 800 4
5 136 135 1600 5
6 137 108 1600 6

each parameter configuration and forwards the results to theModeling Engine. The Modeling
Engine generates the empirical models that relate the parameter configurations to the performance
of WSANs. The Optimization Engine stores the empirical models and selects the best-suited
network parameters based on the QoS preferences learned from the Control Analysis Engine.
The Control Analysis Engine guides the users to implement the target control application and
convert control performance requirements to network performance requirements. The engine
then forwards the network requirements preference to the Optimization Engine. The Adaptation
Engine allows the Network Manager (a software module specified by WirelessHART to manage
the network) and control application to update the network setting, link traces, and QoS preferences
at runtime and adapts the parameters accordingly.

4.1 Network Analysis Engine
The design goal of our Network Analysis Engine is to analyze the network performance under
each parameter configuration. It is impractical to perform test runs on a physical WSAN due
to the significant overhead. Fortunately, the state-of-the-art wireless control simulators such as
WCPS [60], Truetime [9], NCSWT [21], and Gisso [4] are capable of holistic studies of CPU sched-
uling, communication, and control algorithms [40]. Our Network Analysis Engine adopts WCPS
(wireless cyber-physical simulator), which employs a federated architecture that uses TOSSIM [37]
for simulating WSANs. TOSSIM has been widely used in the WSN community to simulate WSANs
based on wireless link models that have been validated in diverse real-world environments [36].
WCPS also provides a WirelessHART implementation in TOSSIM.

After the field engineers deploy a physicalWSAN, our Network Analysis Engine guides them to (i)
implement the deployed network in TOSSIM (specifying the data sources and destinations, sampling
rates, routing and scheduling algorithms), (ii) feed the link traces collected from the deployment
into TOSSIM. The Network Analysis Engine then performs simulations under each parameter
configuration. Three key network parameters, identified in the recent study [25], including (i) PRR
threshold for link selection P , (ii) number of channels used in the network C , and (iii) number of
transmission attempts scheduled for each packetA are considered simultaneously in the simulations.
Assuming the pool of candidate parameters contains nP for P , nC for C , nA for A, our Network
Analysis Engine measures the network performance including (1) end-to-end latency L, (2) battery
lifetime B, and (3) end-to-end reliability R, under all nP × nC × nA combinations among those three
parameters (i.e., P , C , and A). The simulated performance together with its associated parameter
configurations are forwarded to the Modeling Engine. We will next use an example to illustrate the
process.
Illustration and Example:

In the example, we configure six data flows on the Binghamton University (BU) Testbed consisting
of 50 TelosB motes [43] placed throughout several office areas including student offices, lounge,
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Fig. 2. Network setting on the BU Testbed used in Section 4.1 (Illustration and Example) and Section 7.1.

(a) Average latency with three attempts
per packet.

(b) Average battery lifetime with a 85%
PRR threshold.

(c) Average PDRs with 5 channels used.

Fig. 3. 3D-plot of network performance with different parameter configurations.

labs, and conference rooms [56]. The testbed consists of three tiers: wireless devices, switches,
and a centralized server. At the bottom tier, wireless devices are placed throughout the physical
environment to perform wireless experiments. Each wireless device is a Raspberry Pi 3 Model
B integrating with a TelosB mote and a Power over Ethernet (PoE) splitter. The TelosB mote is
connected to the Raspberry Pi through a USB cable. Messages can be exchanged between them
over this interface in both directions. The wireless devices are powered by PoE and connected
to the PoE switches in the middle tier through Ethernet cables. At the top tier exists a dedicated
server which connects to the PoE switches through an Ethernet cable. This server is used to
host, among other things, a database containing information about the different TelosB motes
and Raspberry Pis they are connected to. This database minimally contains information about
the connections that have been established between the TelosB motes and Raspberry Pis, as well
as their current locations. The server is also used to provide a workable interface between the
testbed and any end-users. Figure 2 shows the deployment of field devices and access points,
and Table 1 lists the period and priority of each data flow. The packet delivery deadline is equal
to the period. The graph routing and priority scheduling are employed in the simulations. We
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consider P ∈ {0.7, 0.75, 0.8, 0.85, 0.9}, C ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and A ∈ {1, 2, 3}. The performance is
simulated under 120 different parameter configurations.

Since it is not feasible to show the data in a four dimension view, we fix a dimension and present
three 3-D plots in Figure 3. Figure 3(a) shows the end-to-end latency under different PRR threshold
P and number of channels used C combinations. The results confirm the observation reported in
the early study that more number of channels used cannot always provide lower latency because
of the tradeoff between route diversity and channel diversity [25]. We also observe that the effect
of PRR threshold on latency gets stronger when more channels are used in the network. Figure 3(b)
shows that the battery lifetime decreases when either the number of channels usedC or the number
of attempts per packet A increases. The significance of the effects from two parameters is different.
Figure 3(c) shows the end-to-end reliability in terms of Packet Delivery Rate (PDR) that increases
slightly with PRR threshold P and significantly with the number of attempts per packet A. While
Figure 3 shows some interesting observations helping us understand the joint effect of those three
parameters, it also highlights an important challenge posed by the interplay among them, which
will be addressed by our Modeling Engine.

4.2 Modeling Engine
The design goal of our Modeling Engine is to generate the empirical models that relate the parameter
configurations to the performance of WSANs. It is a significant challenge to empirically model the
joint effect of three interplaying parameters without an understanding of the underlying functional
form of the relationships being modeled. Modeling the relations theoretically is not efficient since
the models can be deployment-dependent (e.g., depending on the particular network topology,
setting, and protocols). Therefore, our Modeling Engine takes a black-box modeling approach and
adopts the widely used Response Surface Methodology (RSM) [6] to construct the models. RSM is a
black-box modeling technique and uses polynomial functions to approximate the model functions
between the independent variables (inputs) and the response (outputs) without comprehending
the underlying physical meaning between inputs and outputs, thus it provides a tractable and
inexpensive approximation of the actual system behavior using polynomial functions.

OurModeling Engine takes a tuple of performancemetrics (L,B,R) and corresponding parameters
(P,C,A) to construct three performance functions:

L = fL(P,C,A) + ε1

B = fB (P,C,A) + ε2

R = fR (P,C,A) + ε3

(1)

where εi is a random experimental error assumed to have a zero mean. It is important to note that
our Modeling Engine allows a P-SAFE user to replace the default RSM with another modeling
technique. As an example, we replace RSM with a Kriging surrogate modeling approach [53] in the
following example and show the models constructed by RSM and Kriging, respectively. Kriging
is a type of spatial interpolation that uses complex mathematical formulas to estimate values at
unknown points based on the values which are already sampled. The estimation of the value
is denoted as Z0 and the observed values are {Z1, ...,ZN } = ZT , so the estimated value can be
expressed as:

Z0 =

N∑
i=1

wiZi (2)

wherewi denotes the influence weight. Kriging uses the minimum variance method to calculate
the weightswi .
Illustration and Example (continued):
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Fig. 4. The surface plot of latency when applying RSM. The number of transmission attempts per packet is
set to 3.

Fig. 5. The surface plot of latency when applying Kriging. The number of transmission attempts per packet is
set to 3.

We use the implementations provided by Design Expert10 [20] and Matlab SUMO toolbox [23]
for RSM and Kriging modeling, respectively. Figure 4 and Figure 5 show the surface plots of latency
(Eq. 1) when applying RSM and Kriging on the data trace plotted in Figure 3(a). The generation
of Kriging models consumes much more time compared to RSM but introduces no error between
the resulting mathematical functions and samples. For example, we run the modeling process on
a Dell Linux laptop with the 2.8GHz Intel Core E3-1505M with 40 samples plotted in Figure 3(a).
The modeling time when applying RSM and Kriging is 160ms and 4.27s, respectively. The average
modeling errors under RSM and Kriging are 3.19% and 0%.

With our open design, a P-SAFE user is free to choose any modeling technique based on the need
of target application. Please note that the modeling overfitting may happen, which motivates us to
design the Adaptation Engine (see Section 4.5) to overcome the modeling inaccuracy at runtime.

4.3 Optimization Engine
After obtaining the empirical models in Section 4.2, the next step is to generate a novel set of
decision-making strategies to select the best-suited network parameters based on the given QoS
requirements specified by the control application. Specifically, for each given (L,B,R), the parame-
ters can be obtained by solving an optimization problem based on Eq. 1. The challenge is that most
industrial process applications today pose multiple (sometimes even conflicting) QoS requirements
on information exchange to their underlying networks. The traditional solutions, which require
network users (e.g., a control engineer) to order their QoS requirements or rely on a coarse-grained
weighted sum calculation, simplify the problem but result in non-optimal decisions in many cases.
To address this problem, we develop a novel approach that learns the QoS demand of a given
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Fig. 6. Adaptation Engine’s responses to different changes.

process application that truly reflects its needs and simultaneously applies them to the parameter
selection process. The detailed design will be presented in Section 5. After the optimization engine
selects the best-suited network parameters, the network manager disseminates them to all field
devices by using network management messages.

4.4 Control Analysis Engine
The Control Analysis Engine is designed to analyze the control system performance under different
network conditions and translates the control performance requirements into the network QoS
requirements. The network QoS requirements learned from the control system are then provided
to the Optimization Engine (See Section 4.3). It is important to note that it is a significant challenge
to translate the control performance metrics to the network performance metrics without knowing
the underlying control system mathematical models. To address the challenge, our Control Analysis
Engine leverages WCPS (wireless cyber-physical simulator) [60] to analyze the control system and
translate the control performance metrics to the network performance metrics. The detailed design
will be presented in Section 6.

4.5 Adaptation Engine
The Adaptation Engine allows the Network Manager and control application to update the network
setting, link traces, and QoS preferences at runtime and adapts the parameters accordingly. Since
changing network parameter introduces significant communication and computation overhead, our
engine employs a hybrid approach that combines event-driven and time-driven adaptations and
responds differently when facing different changes. Figure 6 shows the actions of our Adaptation
Engine in response to different kinds of changes. For example, the engine invokes the Network
Analysis Engine and Modeling Engine to remodel the network and then reperform the optimization
if the network setting (e.g., data sources and destinations) changes. It skips the modeling process
and reruns the optimization if the application requirements change but the network setting stays
the same. The modeling and optimization processes are invoked to examine the network by a timer
if no event-driven adaptation is triggered during a long period. If the new optimized parameter
configuration is not significantly better than the current one (i.e., smaller than a threshold), it is
retained; else the network switches to a new configuration.
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5 QOS LEARNING APPROACH
As discussed in Section 4.3, most industrial process applications today pose multiple (sometimes
even conflicting) QoS requirements on information exchange to their underlying networks. Learning
the QoS demand of process applications that truly reflects their needs is particularly challenging,
as multiple requirements must be met and tradeoffs have to be made among conflicting ones. The
traditional weighted sum approach merging multiple QoS requirements into a single objective
function suffers from three significant limitations when applied in industrial WSANs:

• It is difficult to specify good weights that truly reflect the QoS preferences of a process
application;

• A change in the QoS preferences of a process application does not readily translate into a
change in specified weights;

• When a process application has non-linear QoS requirements, if the Pareto frontier [12] (i.e.,
the collection of non-dominated or best tradeoff solutions) is non-convex and/or disjointed,
it can fail to obtain the best tradeoff solutions, and even higher-order weighted combinations
(i.e.,

∑
wi f

n
i , where n is an even number such as 2, 4, ...) could face difficulty in leading to

the Pareto frontier [11].
The difficulty is pervasive in the context of conflicting QoS requirements, where blindly optimizing a
weighted aggregate of the multiple QoS requirements provides limited to no information regarding
the tradeoffs that exist among them. For example, is it beneficial to improve the reliability by A% in
exchange of degradations of B% latency and C% energy consumption?

To avoid using the rules of thumb QoS orders or weights, we formulate our optimization problem
into a multi-objective optimization problem and apply a widely used evolutionary algorithm to
identify the best tradeoff solutions. We then develop an approach using the physical programming
technique1 to identify the most attractive tradeoff decision. We also provide the entire set of best
tradeoff solutions to the P-SAFE users in case they want to see all available choices and tradeoffs.

5.1 Problem Formulation and Optimization
The objective of selecting the best parameter configuration is to (i) minimize the end-to-end latency
L, (ii) maximize the lifetime B, and (iii) maximize the network reliability R. Thus the problem can
be formulated as

min/max : fL(P,C,A), fB (P,C,A), fR (P,C,A)
subject to : P ∈ [Pmin, Pmax ]

C ∈ [Cmin,Cmax ]

A ∈ [Amin,Amax ]

(3)

where [Pmin, Pmax ], [Cmin,Cmax ], and [Amin,Amax ] denote the feasible ranges of the PRR thresh-
old P , the number of channels used C , and the number of attempts for each packet A, and
fL(P,C,A), fB (P,C,A), fR (P,C,A) represent the vector of objectives that should be minimized or
maximized subject to a number of bounds. We adopt the NSGA-II algorithm [13], one of the most
widely used multi-objective evolutionary algorithms, to solve the problem. Since Eq. 3 defines three
different objectives, there does not exist a single best solution which simultaneously optimizes
all objectives. NSGA-II gives a large number of best tradeoff solutions lying on or near the Pareto
frontier, which can serve as the parameter selection candidates. Our implementation of NSGA-II
1The physical programming technique was developed in the area of multidisciplinary design optimization to address
engineering design problems such as aircraft and automobile design. It provides a powerful methodical approach to obtain
the most attractive best tradeoff decision from the set of best tradeoff solutions [44, 45]. The physical programming approach
can be applied as a post-process if the set of Pareto solutions are obtained using a multi-objective optimization algorithm.
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(a) Class-1S. (b) Class-2S.

Fig. 7. Different class functions ith objective.

has the complexity of O(N 2), where N is the population size. To measure the time consumption,
we run the NSGA-II algorithm on a Dell Linux laptop with the 2.8GHz Intel Core E3-1505M. It
takes an average of 6.28s to solve our three objective functions with three constraints of P , C , and
A. The next step is to obtain the single (most attractive) best tradeoff decision based on the needs
of the target process application.

5.2 LPPA: A Linear Physical Programming based Approach
Instead of requesting the network users to specify the weights among different QoS requirements
(with which they are less familiar), our Linear Physical Programming [42] based Approach (LPPA)
allows the users to specify meaningful ranges of desirability on the network performance metrics
(with which they are familiar). For the decreasing preference metrics (e.g., latency), we use дi to
denote the ith generic criterion value, so the range of desirability can be defined as: (i) Highly
Desirable Range (дi ≤ t+i1): an acceptable range over which the improvement that results from
further reduction of the criterion is desired but is of minimal additional value; (ii) Desirable Range
(t+i1 ≤ дi ≤ t+i2): an acceptable range that is desirable; (iii) Tolerable Range (t+i2 ≤ дi ≤ t+i3): an
acceptable range that is tolerable; (iv) Undesirable Range (t+i3 ≤ дi ≤ t+i4): an acceptable range that
is undesirable; (v) Highly Undesirable Range (t+i4 ≤ дi ≤ t+i5): an acceptable range that is highly
undesirable; and (vi) Unacceptable Range (t+i5 ≤ дi ): the range of values that is not acceptable (can be
perceived as a hard constraint). Similar ranges of desirability, t−i j , can be defined for the increasing
preference metrics (e.g., reliability). Therefore, we define two different class-functions as follows:

• Class-1S: Smaller-Is-Better, i.e., minimization.
• Class-2S: Larger-Is-Better, i.e., maximization.

It is important to note that unlike weights in the weighted sum method, the parameters t+i j and t
−
i j

defined above are physically meaningful constants that are specified by control applications (See
Section 6) in light of user-supplied preferences associated with the ith metric (e.g., latency, battery
lifetime, or reliability.).
The ranges of all QoS metrics are then to be exploited by physical programming through an

inter-criteria rule called “One Versus Others (OVO),” where a full improvement of дi across a given
range of preference is over a full reduction of all the other criteria across the next better range
of preference. This is accomplished through a mapping of the preferences to a transformed class
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function space. Figure 7 shows the functions for Class-1S and Class-2S. The L, B, and R values are
mapped to the desirability values zi (called z-value). A lower zi is always more desirable. By using
the class functions, our approach converts three different criteria (i.e., L, B, and R) on the horizontal
axis to z-value on the vertical axis for comparison. Then the aggregated z is used as a metric for
desirability. The mathematical relations are as below:

zs ≡ zi (t
+
is ) ≡ zi (t

−
is ) ∀i; (2 ≤ s ≤ 5); z1 ≡ 0 (4)

where s denotes a generic junction and i denotes the criterion number, and zs means the z-value
in each junction point on the vertical axis as shown in Figure 7. Eq. 4 guarantees that different
metrics are treated equally when they are in the same desirability region.
The increasing value of zi for ith criterion between adjacent junction points can be calculated

by:

z̄s ≡ zs − zs−1; (2 ≤ s ≤ 5); z1 ≡ 0 (5)

showing that different criteria increase uniformly across the same desirability region.
Following the OVO rule, we apply the relationship:

z̄s = β(nc − 1)z̄s−1; (3 ≤ s ≤ 5);nc > 1; β > 1 (6)

where nc denotes the number of criteria which equals to 3 based on our design. β is used as a
convexity parameter. And z̄2 should be initialized manually with a small positive number. However,
it cannot guarantee the convexity of the class function only based on Eq. 6. The following functions
should be satisfied in order to meet with convexity property:

t̄+is = t+is − t+i(s−1); t̄
−
is = t−is − t−i(s−1); (2 ≤ s ≤ 5) (7)

where t̄+is and t̄
−
is denote the sth range of the ith criterion on the horizontal axis. So the magnitude

of the slopes of each line (w+is andw
−
is ) takes the following form:

w+is = z̄s/t̄+is ;w
−
is = z̄s/t̄−is ; (2 ≤ s ≤ 5) (8)

Based on Eq. 8, the difference between the slope of each line w̄+is and w̄
−
is is:

w̄+is = w
+
is −w+i(s−1); w̄

−
is = w

−
is −w−

i(s−1); (2 ≤ s ≤ 5) (9)

The convexity requirement can be achieved by the relationship:

w̄min =min
i ,s

{w̄+is , w̄
−
is } > 0; (2 ≤ s ≤ 5) (10)

indicating that the slope of lines should increase monotonically. An iteration of increasing β by a
step of 1 is needed until it satisfies Eq. 10 to meet with convexity.

We use the deviation value (d−is ,d
+
is ) to calculate the aggregated z and the final decision making

among the best tradeoff solutions is selected by calculating the below expression:

min
d−
is ,d

+
is

nc∑
i=1

5∑
s=2

(w̄−
isd

−
is + w̄

+
isd
+
is )

subject to :
дi − d+is ≤ t+i(s−1);d

+
is ≥ 0;дi ≤ t+i5 (i = 1, 2, 3, s = 2, ..., 5)

дi + d
−
is ≥ t−i(s−1);d

−
is ≥ 0;дi ≥ t−i5 (i = 1, 2, 3, s = 2, ..., 5)

(11)

All the best tradeoff solutions on the Pareto frontier computed by NSGA-II are fed into Expr. 11. The
final best-suited network parameter configuration results in the minimum aggregated z (Expr. 11).
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Fig. 8. Control performance metrics marked in a step response example.

6 CONTROL ANALYSIS
LPPA allows users to specify the desirability ranges of network performance metrics instead of
using meaningless weights. However, the relations between the network performance metrics
and control performance metrics are still unknown. After the engineers finish the deployment in
the field, our Control Analysis Engine guides them to implement the target control application
in it and then translates the desirability ranges of the control performance into the desirability
ranges of the network performance by performing control simulation. Our Control Analysis Engine
employs Simulink [54] to simulate the physical system dynamics in automation processes. Simulink
is widely used by control engineers to design and study control systems and it provides accurate
mathematical models and realistic simulation of various wireless control systems. Figure 8 illustrates
seven example control metrics: overshootO , settling timeTsettl inд , rise timeTr ise , peak timeTpeak ,
peak P , settling max Smax , and settling min Smin . There are three main steps to translate the above-
mentioned control requirements to network requirements: (i) identifying the control metrics of
interest, (ii) generating the system transfer function between input and output, and (iii) performing
simulation under different network conditions to obtain desirability ranges. The Control Analysis
Engine bridges the gap between control performance requirements and network QoS requirements.
The translated desirability ranges can be used for our LPPA to identify the appropriate network
parameters. Following an open design, our Control Analysis Engine can translate different control
performance metrics to various network performance metrics based on the optimization objectives.
Illustration and Example:
We use the control of an interacting two-tank system consisting of two interacting liquid

tanks [10] as an example to demonstrate how our Control Analysis Engine translates the desirability
ranges of a control metric (i.e., overshoot) to the desirability range of a network QoS metric (i.e.,
latency). Figure 8 shows the overshoot, O , in a step response, which can be defined as:

O =
vout_peak −vout (∞)

vout (∞)
(12)

where vout_peak denotes the highest peak of time response and vout (∞) denotes the magnitude of
its steady-state.

Figure 9 shows the diagram of an interacting two-tank control system. In the two-tank system,
sensors are deployed to monitor the liquid level of Tank 2 (h2), actuators are used to control
the velocity of flow Qin into Tank 1, and a controller is employed to generate control decisions.
A WSAN is formed to forward the sensor readings to the controller and then send the control
commands to the actuator. In Figure 9, A1 (m2) and A2 (m2) denote the base area of Tank 1 and
Tank 2, respectively. The h1(m) and h2(m) present the height of liquid level in Tank 1 and Tank 2.
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Fig. 9. Interacting two-tank system.

The velocity of liquid flow into Tank 1 is Qin (m3/min). The liquid flow velocity between Tank 1
and Tank 2 is q1 (m3/min). The velocity of flow leaving Tank 2 is q0 (m3/min). R1 and R2 are water
resistance factors maintaining constant values.

The control input is Qin and the controlled variable is the liquid level of Tank 2 h2. Here is how
to compute the system transfer function. For Tank 1, we have

A1
dh1

dt
= Qin − q1 (13)

Here we assume a linear resistance to a liquid flow:

q1 =
h1 − h2

R1
(14)

After simplifying Eq. 13 with Eq. 14, we have

A1R1
dh1

dt
= R1Qin − h1 + h2 (15)

We can get the time constant of Tank 1 T1 as

T1 = A1R1 (16)

After taking the Laplace transform on both sides on Eq. 15, we have

h1(s) =
R1Qin(s)

(T1s + 1)
+

h2(s)

(T1s + 1)
(17)

For Tank 2, we have

A2
dh2

dt
= q1 − q0 (18)

We again assume a linear flow resistance:

A2
dh2

dt
=
h1 − h2

R1
−
h2

R2
(19)

Similar to T1 of Tank 1, the time constant of Tank 2 T2 is:

T2 = A2R2 (20)

After taking the Laplace transform on both sides of Eq. 19, we have

(R1T2s + R2 + R1)h2(s) = h1(s)R2 (21)
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Fig. 10. Control performance with varying latency.

We then put the value of h1 in Eq. 17 to Eq. 21. We finally get the transfer function between the
input (Qin ) and output (h2) as:

h2(s)

Qin(s)
=

R2

T1T2s2 + s(T1 +T2 +A1R2) + 1
(22)

where T1 and T2 denote the time constant of Tank 1 and Tank 2 computed by Eq. 16 and Eq. 20.
We implement the above transfer function and a PID controller in WCPS. Figure 10 shows the
control response to a step input under different network latency. With the control simulations
in WCPS, the model that relates the overshoot and latency are constructed. We assume that
the desirability ranges of overshoot are defined as: highly desirable (0, 2%]; desirable (2%, 3%];
tolerable (3%, 4%]; undesirable (4%, 5%]; highly undesirable (5%, 6%]; and unacceptable (6%,∞).
The resulting desirability ranges of latency are: highly desirable (0, 188]ms; desirable (188, 263]ms;
tolerable (263, 325]ms; undesirable (325, 379]ms; highly undesirable (379, 430]ms; and unacceptable
(430,∞)ms. Please note that we only show an example here and a P-SAFE user should select his/her
own control metrics of interest and define the desirability ranges based on the actual application
needs in practice.

7 EVALUATION
To validate the efficiency of P-SAFE in optimally configuring the network parameters and adapt-
ing them at runtime to consistently satisfy the application QoS demand, we perform a series of
experiments. We first examine the capability of P-SAFE to effectively adapt the parameters to ac-
commodate QoS demand changes. We then evaluate P-SAFE’s performance under different network
settings. Finally, we study the effect of interference on the performance of P-SAFE. We compare
our P-SAFE against three baselines: (i) the method specified inWirelessHART, (ii) the CR+CP ap-
proach [25], and (iii) the optimal solution using a brute-force method2 and repeat the experiments
on three physical testbeds located in different cities: (1) the BU Testbed consisting of 50 TelosB
motes deployed on a single floor of a building [56]; (2) the CPSL Testbed with 60 motes spanning
three floors of a building [64]; and (3) the Indriya Testbed, an open access 105-node testbed deployed
in a 3-floor building at National University of Singapore [28]. In all experiments, we empirically
set β to 15 and z̄2 to 0.1 in P-SAFE to satisfy the convexity and OVO requirements in LPPA and
assume that two Lithium Ion AA batteries with a total capacity of 22,100J are used to power each
node for battery lifetime calculation.

2The brute-force method cannot be used in practice because of its heavy computation overhead. We run it offline and use it
only for the comparison purpose.
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Table 2. Parameters selected by P-SAFE.

Set # # of Channels PRR Threshold # of Attempts
1 2 89% 3
2 3 73% 3
3 3 71% 2
4 3 71% 2
5 3 71% 2
6 2 70% 2
7 3 72% 3
8 3 72% 3

Table 3. Parameters selected by optimal.

Set # # of Channels PRR Threshold # of Attempts
1 3 76% 3
2 3 76% 3
3 3 72% 2
4 3 85% 2
5 3 85% 2
6 2 88% 2
7 3 71% 3
8 3 71% 3

(a) Latency. (b) Battery lifetime. (c) PDR.−lд(1−PDR) is used for y-axis
for clarity.

Fig. 11. Resulting performance under P-SAFE, CR+CP, WirelessHART and optimal.

7.1 Adaptation to QoS Demand Changes
To test P-SAFE’s capability to consistently satisfy the application QoS demand, we perform a series
of controlled experiments where the control application specifies different ranges of desirability
on three QoS attributes: latency, battery lifetime, and PDR. We set up six data flows with periods
ranging from 800ms to 1600ms and two access points (node 121 and 124) on the BU Testbed. Figure 2
shows the network setting and Table 1 lists the source, destination, data period, and priority of each
data flow. We employ an interacting two-tank control system (see Section 5.2 and 6) running on
top of the network. The control application uses a timer to issue eight different sets of real-world
desirability ranges, provided by our industry partner, to P-SAFE one by one with a 1 hour time
interval. Only one QoS attribute is changed at a time. Table 2 and Table 3 show the parameters
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Fig. 12. Aggregated z under different methods.

selected by P-SAFE and optimal for each set of desirability ranges. The selections made by P-SAFE
and optimal are alike resulting in similar performance, as shown in Figure 11. P-SAFE effectively
selects the best tradeoffs among three QoS attributes and always keeps the latency, battery lifetime,
and PDR in the tolerable range or better. The performance of WirelessHART and CR+CP is marked
as two straight lines with “w” and “c” in Figure 11, respectively. WirelessHART and CR+CP do not
consider the desirability ranges, thus they select the same parameters for all eight sets. Specifically,
WirelessHART decides to use 8 channels, 60% as the PRR threshold, and 3 attempts per packet,
while CR+CP selects 4 channels, 85% as the PRR threshold, and 75% threshold for the backup route,
and 3 attempts per packet. Figure 12 shows the comparisons on the aggregated z-value z, the metric
indicating how well the performance meets the application QoS demand, among four approaches.
We use LPP to map the latency (L), battery lifetime (B), and reliability (R) to the desirability values
zi (z-value). A lower z-value means that the performance (L, B, R) is more desirable by the control
system. We sum up the z-value to get aggregated z as an objective for optimization. P-SAFE
significantly outperforms WirelessHART and CR+CP. The maximum aggregated z under P-SAFE
is no more than 5.78, very close to what optimal provides (4.22). WirelessHART has the worst
performance, with an average aggregated z of 225.55 and a worst-case value of 745.55. This is
because WirelessHART uses a predetermined PRR threshold and operates on all available channels.
CR+CR reduces the average aggregated z to 26.40 and the worst-case to 69.85, since it considers the
effect of PRR threshold and number of channels used on network performance. However, CR+CP
fails to make tradeoffs when facing conflicting QoS requirements resulting in substantially higher
aggregated z values compared to what P-SAFE and optimal offer.

7.2 Performance under Different Network Settings
To explore the consistency of P-SAFE’s performance, we run the experiments under different
network settings on three testbeds. We create thirty different network settings by varying the
sources, destinations, data periods, and priorities of data flows on the BU Testbed. Figure 13 plots
the Cumulative Distribution Function (CDF) of aggregated z under WirelessHART, CR+CP, P-SAFE,
and optimal, respectively. As Figure 13 showed, the performance of P-SAFE is very close to the
one under optimal. The worst-case (maximum) values are 6.78 and 3.69 under P-SAFE and optimal,
while the maximum values under WirelessHART and CR+CP are 89.32 and 62.41. P-SAFE achieves
an average aggregated z of 2.76, representing 14.1X and 8.9X lower compared to WirelessHART
and CR+CP, respectively.
We also repeat the experiments on the other two testbeds. On each testbed, we perform the

experiments under 30 different network settings. Figure 14 shows the deployment of 60 TelosB
motes on the CPSL Testbed spanning three floors of a building. Figure 15 plots the CDF of aggregated
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Fig. 13. Aggregated z with 30 different network settings on the BU Testbed.

Fig. 14. The deployment of the CPSL Testbed. Blue circles denote sensors and actuators and red squares
represent two access points.

Fig. 15. Aggregated z with 30 different network settings on the CPSL Testbed.

z under different approaches. We observe similar performance. The maximum aggregated z values
are 5.61 and 4.67 under P-SAFE and optimal, while the worst-case values under WirelessHART
and CR+CP are 69.28 and 47.23, respectively. P-SAFE achieves an average aggregated z of 2.08,
representing 22.5X and 15.0X lower compared to WirelessHART and CR+CP, respectively.
Figure 16 shows the deployment of Indriya Testbed consisting of 105 nodes spanning three

floors. Figure 17 plots the CDF of aggregated z under different approaches. The maximum z under
P-SAFE is 6.24, while the one under optimal is 5.62. WirelessHART and CR+CP have substantially
higher aggregated z, with an average aggregated z of 41.13 under WirelessHART and 32.73 under
CR+CP. The consistent results collected from various network settings under all three testbeds
show that P-SAFE consistently better meets the application QoS demand, benefiting from our
modeling method, multi-objective optimization, and QoS learning approach discussed in Section 4.
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Fig. 16. The Indriya Testbed at National University of Singapore. Blue circles denote sensors and actuators
and red squares represent two access points.

Fig. 17. Aggregated z with 30 different network settings on the Indriya Testbed.

Fig. 18. Aggregated z under 30 different wireless conditions on the BU Testbed.
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Fig. 19. Time consumed by the network manager to collect link traces, generate routes and transmission
schedule, and disseminate the schedule to field devices.

Table 4. Comparison of P-SAFE, CR+CP and WirelessHART.

Method Name Adjustable Parameters QoS requirements Trade-off Decision
P-SAFE

√ √ √

CR+CP
√

× ×

WirelessHART × × ×

7.3 Performance under Interference
We also study the impact of interference on the performance of P-SAFE. We create 30 different
wireless operating conditions by using JamLab [7] to generate controlled interference and repeat
the experiments under each condition. Figure 18 plots the CDF of aggregated z under 30 different
wireless conditions on the BU Testbed. The maximum z under P-SAFE is 7.83, while the one under
optimal is 6.99. The average z under P-SAFE is 11.28X and 7.95X lower than WirelessHART and
CR+CP, respectively. We observe similar results on the other two testbeds and omit the results
here due to the page limit. The consistent low z values provided by P-SAFE demonstrate P-SAFE’s
capacity of adapting the network parameters to consistently satisfy the application demand under
various wireless ambient conditions.

7.4 Time Consumption on Schedule Updates
Finally, we measure the time consumed by the network manager to collect link traces, generate the
routes and transmission schedule, and disseminate the schedule to field devices on two testbeds.
We repeat the experiments by using half of the nodes on our testbed. We use a Dell Linux laptop
with a 2.8 GHz Intel Core E3-1505M to run the network manager. As Figure 19 shows, it takes 506s
and 443s for all nodes in the BU testbed and CPSL testbed to receive a new schedule, respectively.
After disabling several nodes, it takes 203s and 191s for the nodes to obtain the new schedule on
two testbeds. From the results, we can see that the time consumption of schedule updates largely
depends on the number of nodes in the network. The results also indicate that the schedule updates
should not happen frequently due to the considerable overhead.

8 CONCLUSIONS
Recent years have witnessed the rapid adoption of IEEE 802.15.4-based real-time WSANs in process
industries, since they operate at low-power and can be manufactured inexpensively, which makes
them ideal where battery lifetime and costs are important. Battery-powered wireless modules

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:22 J. Shi et al.

easily and inexpensively retrofit existing sensors and actuators in industrial facilities without
running cabling for communication and power. Recent studies have shown that the selection of
network parameters such as the PRR threshold for link selection, the number of channels used in
the network, and the number of transmission attempts for each packet has a significant effect on the
network performance. However, the current practice of parameter selection is based on experience
and rules of thumb involving a coarse-grained analysis of expected network load and dynamics
or measurements during a few field trials, resulting in non-optimal decisions in many cases. This
paper presents the P-SAFE, a framework that optimally configures the network parameters based
on the application QoS demand and adapts the configuration at runtime to consistently satisfy the
dynamic requirements. Table 4 summarizes the major differences between our approach and two
existing solutions. CR+CP has considered the effect of PRR threshold and the number of channels
used in the network to optimize the network performance, but it fails to make trade-off decisions to
fully consider the QoS requirements by the control system or user preferences. WirelessHART only
employs a predetermined PRR threshold and operates on all available channels which lead to the
worst performance under different QoS requirements, different network settings, and environmental
dynamics. Leveraging the empirical network models, NSGA-II, and LPPA, P-SAFE always provides
the best-suited network parameters based on the application requirements. P-SAFE has been
implemented and evaluated on three physical testbeds. Experimental results show our P-SAFE can
significantly better meet the application performance demand compared to the state of the art.
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