IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

Distributed Graph Routing and Scheduling for
Industrial Wireless Sensor-Actuator Networks

Junyang Shi, Student Member, IEEE, Mo Sha, Member, IEEE, and Zhicheng Yang

Abstract—Wireless Sensor-Actuator Networks (WSANSs) tech-
nology is appealing for use in industrial Internet of Things
(IoT) applications because it does not require wired infrastruc-
ture. Battery-powered wireless modules easily and inexpensively
retrofit existing sensors and actuators in industrial facilities
without running cabling for communication and power. IEEE
802.15.4 based WSANs operate at low-power and can be man-
ufactured inexpensively, which makes them ideal where battery
lifetime and costs are important. Almost a decade of real-world
deployments of WirelessHART standard has demonstrated the
feasibility of using its core techniques including reliable graph
routing and Time Slotted Channel Hopping (TSCH) to achieve
reliable low-power wireless communication in industrial facilities.
Today we are facing the 4th Industrial Revolution as proclaimed
by political statements related to the Industry 4.0 Initiative of
the German Government. There exists an emerging demand
for deploying a large number of field devices in an industrial
facility and connecting them through a WSAN. However, a major
limitation of current WSAN standards is their limited scalability
due to their centralized routing and scheduling that enhance the
predictability and visibility of network operations at the cost of
scalability. This paper decentralizes the network management in
WirelessHART and presents the first Distributed Graph routing
and autonomous Scheduling (DiGS) solution that allows the field
devices to compute their own graph routes and transmission
schedules. Experimental results from two physical testbeds and
a simulation study show our approaches can significantly improve
the network reliability, latency, and energy efficiency under
dynamics.

Index Terms—Wireless Sensor-Actuator Networks, Industrial
Internet of Things, Graph Routing, Transmission Scheduling

I. INTRODUCTION

HE Internet of Things (IoT) refers to a broad vision

whereby things such as everyday objects, places, and
environments are interconnected with one another via the
Internet [1]. Until recently, most of the IoT infrastructure and
applications development work by businesses have focused
on smart homes and wearables. However, it is “production
and manufacturing” cyber-physical system (CPS), underlying
the 4th generation of industrial revolution (or Industry 4.0),
that presents one of the largest economic impact potential
of IoT [2] — up to $47 trillion in added value globally by
2025 (according to McKinsey’s report on future disruptive
technologies) [3].

Junyang Shi and Mo Sha are with the Department of Computer Science,
State University of New York at Binghamton, Binghamton, NY, 13902 USA
(e-mail: jshi28 @binghamton.edu; msha@binghamton.edu).

Zhicheng Yang are with the Department of Computer Science, University
of California, Davis, CA 95616, 13902 USA (e-mail: zcyang@ucdavis.edu).

Manuscript received XXX XX, 2018; revised XXX XX, 201X. This work
was supported by the U.S. National Science Foundation through grant CRII-
1657275 (NeTS).

Industrial networks, the underlying support of Industrial IoT
(IIoT), typically connect hundreds or thousands of sensors and
actuators in industrial facilities, such as steel mills, oil refiner-
ies, chemical plants, and infrastructures implementing complex
monitoring and control processes. Although the typical process
applications have low data rates, they pose unique challenges
because of their critical demands for reliable and real-time
communication in harsh industrial environments. Failing to
achieve such performance can lead to production inefficiency,
safety threats, and financial loss. These requirements have
been traditionally met by specifically chosen wired solutions,
e.g., Highway Addressable Remote Transducer (HART) [4],
where cables connect sensors and forward sensor readings to a
control room where a controller sends commands to actuators.
However, wired networks are often costly to deploy and
maintain in industrial environments and difficult to reconfigure
to accommodate new production process requirements.

Wireless Sensor-Actuator Networks (WSANs) technology
is appealing for use in industrial process applications because
it does not require wired infrastructure. Battery-powered wire-
less modules easily and inexpensively retrofit existing sensors
and actuators in industrial facilities without running cabling
for communication and power. IEEE 802.15.4 based WSANs
operate at low-power and can be manufactured inexpensively,
which makes them ideal where battery lifetime and costs
are important. Almost a decade of real-world deployments of
WirelessHART standard [5] has demonstrated the feasibility of
using its core techniques including reliable graph routing and
Time Slotted Channel Hopping (TSCH) to achieve reliable
low-power wireless communication in industrial facilities.
Under graph routing, a packet is scheduled to reach its desti-
nation through multiple redundant paths to enhanced end-to-
end reliability. TSCH requires that all devices in the network
are time synchronized and hop channels to exploit frequency
diversity.

Today we are facing the 4th Industrial Revolution as
proclaimed by political statements related to the Industry
4.0 Initiative of the German Government [6]. There exists
an emerging demand for deploying a large number of field
devices in an industrial facility, e.g., hundreds of devices over
an oil field, and connecting them through a WSAN. However,
a major limitation of current WSAN standards such as Wire-
lessHART is their limited scalability due to their centralized
routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. For
instance, when encountering network dynamics (e.g., node
or link failure, topology change), the centralized Network
Manager (a software module) in a WirelessHART network

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

has to regenerate the routes and transmission schedule and
then distribute them to all devices, introducing long delay and
large overhead.

Recently, there has been an increasing interest in developing
new distributed scheduling approaches, which run on top
of the distributed routing protocols developed for wireless
sensor networks (WSNs), such as the Collection Tree Protocol
(CTP) [7] and the IPv6 Routing Protocol for Low power and
Lossy Networks (RPL) [8], to replace the centralized routing
and scheduling in industrial WSANSs. For instance, the IETF
created the 6TiSCH working group to standardize how to
use an [Pv6-enabled upper stack on top of IEEE 802.15.4e
TSCH networks [9]. Duquennoy et al. developed the Orchestra
that allows nodes in the RPL networks to compute their
own schedules [10]. Unfortunately, the stringent reliability and
real-time requirements of industrial applications distinguish
traditional WSNs from industrial WSANSs, that packet lost
must become an exception and redundant routes between a
source and a destination are essential to meet with guaranteed
service. Our study shows that the networks relying on the tree-
based routing suffer long repair time and insufficient reliability
when encountering external interference and node failure.

This paper aims to address the abovementioned scalability
and reliability challenges; to our knowledge, it represents the
first Distributed Graph routing and autonomous Scheduling
(DiGS) solution that allows the field devices to compute their
own graph routes and transmission schedules in a distributed
fashion. Specifically, this paper makes the following contribu-
tions:

« We develop a distributed routing protocol that generates
and operates with graph routes by extending RPL, the
routing protocol for low-power IPv6 networks standard-
ized by the IETF ROLL working group, with minimal
changes;

« We design two autonomous scheduling approaches that
allow the field devices to compute their own transmission
schedule autonomously based on the graph routes; the
first approach provides shorter end-to-end latency, while
the later completely eliminates the scheduling conflicts
among different types of traffic;

« We implement our proposed solution and evaluate it on
two physical testbeds located in different cities as well as
a simulator. Experimental results show our approaches
can significantly improve the network reliability and
latency under dynamics.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work and Section III introduces the
background of WirelessHART networks. Section IV presents
our empirical study and Sections V and VI describe the
design of DiGS. Section VII introduces our conflict deferral
scheduling approach. Section VIII presents the evaluation and
Section IX concludes the paper.

II. RELATED WORKS

Routing for wireless mesh networks and WSNs have been
studied extensively in the literature. CTP is a routing protocol
that computes anycast routes to a single or a small number

of designated sinks in a wireless sensor networkt [7]. CTP
has been used in research, teaching, and in commercial prod-
ucts. Experiences with CTP has also informed the design of
RPL [8]. However, both CTP and RPL are tree-based routing
protocols and cannot generate graph routes which are specified
in WirelessHART to achieve high reliability. Thus, they are
not suitable for those mission-critical industrial applications,
where packet lost must become an exception. In contrast,
multipath routing protocols (e.g., [11]-[15]) are proposed to
enhance reliability by providing a few either node-disjoint
or link-disjoint paths between source and destination. There
also exist RPL based multipath routing protocols (e.g, [16]-
[20], which are designed to balance the traffic load and energy
consumption among nodes in the network. Comparing to these
protocols, the graph routing specified in WirelessHART is
designed to achieve high reliability by providing a high degree
of routing redundancy to the TSCH networks. Its real-world
deployments during the last decade have demonstrated the
feasibility of achieving reliable low-power wireless commu-
nication in industrial facilities. Han et al. [21] and Wu et
al. [22] developed two algorithms to generate graph routes
in a centralized fashion, while Modekurthy et al. proposed
to use the Bellman-Ford algorithm to generate the graph
routes [23] in a distributed fashion. Comparing to these efforts,
we developed the first RPL-based distributed routing protocol
that generates and operates with graph routes. More important,
we developed two transmission scheduling approaches, which
run on top of our proposed routing protocol, providing a
complete networking solution.

There has been increasing interest in studying transmission
scheduling for time-critical process monitoring and control
applications over WirelessHART networks [24]-[27]. All these
scheduling solutions designed to work with graph routing
are centralized solutions which are designed to run on the
centralized Network Manager. There also exists research on
developing distributed scheduling for RPL networks [10],
[27]-[32]. For instance, Duquennoy et al. developed the Or-
chestra that allows nodes in the RPL networks to compute
their own schedules [10]. The IETF created the 6TiSCH
working group to standardize how to use an IPv6-enabled
upper stack on top of IEEE 802.15.4e TSCH networks [9].
However, our study shows that the network running RPL
suffers long repair time and unsatisfactory reliability when
encountering external interference and node failure. Another
recent research direction is synchronous transmissions [33]—
[37]. However, synchronous transmissions always require a
centralized node to manage the synchronous transmissions.
In contrast to the existing work, this paper presents the first
autonomous scheduling approach that allows the field devices
to compute their own schedule autonomously based on the
graph routes.

III. BACKGROUND OF WIRELESSHART NETWORKS

A WirelessHART network consists of a gateway, multiple
access points, and a set of field devices (i.e., sensors and
actuators) forming a multi-hop mesh network. The access
points and field devices are equipped with half-duplex omnidi-
rectional radio transceivers compatible with the IEEE 802.15.4

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

Fig. 1. A graph routing example. The solid lines represent the primary paths
and the dashed lines represent the backup paths.

physical layer [38]. The multiple access points are wired
to the gateway and provide redundant paths between the
wireless network and the gateway. A WirelessHART network
is managed by a centralized Network Manager. The Network
Manager, a software module running on the gateway, is
responsible for collecting the topology information from the
devices, determining the routes and transmission schedule of
the network, and disseminating them to all devices. Wire-
lessHART adopts the centralized routing and scheduling that
enhance the predictability and visibility of network operations
at the cost of scalability. When encountering dynamics (e.g.,
node or link failure, topology change), the Network Manager
must regenerate the routes and transmission schedule and then
distribute them to all devices, which introduce long delay and
large overhead. To address this problem, our work is to develop
a distributed graph routing and autonomous scheduling to
enhance the scalability of the network.

Graph Routing: WirelessHART adopts graph routing to
enhance end-to-end reliability by taking advantage of the route
diversity. Graph routing involves a routing graph consisting of
a directed list of paths between the field devices and access
points. Graph routing consists of a single primary path and
a backup path for each node. As illustrated in Figure 1, the
packet may take backup routes (through node C, D, or E)
to reach the access points (AP1 and AP2) if the links on
the primary path (through nodes A and B) fail to deliver a
packet. The graph routing specified by WirelessHART requires
each node to have at least two outgoing paths. Based on the
graph routes, the Network Manager allocates the time slots
and channels to the devices to assure the packet deliveries.

TSCH MAC and Transmission Scheduling: TSCH technol-
ogy inherits from WirelessHART and has been implemented
as a MAC protocol, and was introduced as part of the IEEE
802.15.4e standard in 2012 for the industrial process control
and automation [39]. WirelessHART employs the TSCH MAC
that offers deterministic and collision-free communication.
Based on TSCH MAC, all nodes need to be globally time
synchronized by exchanging the Enhanced Beacons (EBs) and
the time synchronization trickles from the access points to the
leaf nodes. Time is divided into 10 ms time slots, which are
long enough for packet transmission and its acknowledgement
(ACK); several time slots are grouped into one slotframe
which appears periodically in every node. A TSCH schedule
determines a node what to do in each time slot: transmit,
receive, or sleep, and a time slot can either be dedicated or
shared. In a dedicated slot, only one transmission is allowed in
each channel which is fully contention free, while in a shared
slot, two or more senders compete for a transmission in a
CSMA/CA fashion. According to the time slot offset in one

slotframe, the TSCH scheduling entity (Network Manager in
WirelessHART) can determine whether to transmit a packet,
receive a packet, or synchronize nodes to global time, etc.
With our solution, the network no longer needs a centralized
Network Manager to determine the functionality of every time
slot. Each node computes its own primary and backup paths
toward its destination based on its local topology information
and the transmission schedule is automatically determined and
updated once the network topology changes.

IV. EMPIRICAL STUDY

In this section, we present our empirical studies on the
impact of interference and node failure on the performance
of state of the art WSAN solutions (i.e., WirelessHART!
and Orchestra?). Our empirical studies are conducted on two
physical testbeds located in different cities: (1) Testbed A
consisting of 50 TelosB motes [42] deployed in the second
floor of a building in the campus of the State University
of New York at Binghamton and (2) 7estbed B featuring
44 TelosB motes spanning two floors of a building in the
campus of Washington University in St. Louis. To study the
impact at different scales, we perform the measurement using
four network topologies of different sizes and locations: (1)
Half Testbed A with 20 nodes; (2) Full Testbed A with 50
nodes; (3) Half Testbed B with 19 nodes in one floor; and
(4) Full Testbed B with 44 nodes spanning two floors. We
use graph routing and the rate monotonic scheduling [43] to
generate transmission schedules. We set up six data flows for
full Testbed A and B and three data flows for half Testbed
A and B with different sources, destinations, and data period.
The data period of each data flow is selected within the range
of 2°~7 seconds. Priorities are assigned inversely to the period
of each data flow, giving higher priority to data flows with
shorter periods.

Figure 2 shows the time consumed by the Network Manager
in WirelessHART to collect topology information, regenerate
the routes and transmission schedule, and disseminate them to
all devices triggered by the events such as network topology
changes and node/link failure. As showed in Figure 2, the
Network Manager, running on a Dell Linux laptop with a
2.8 GHz Intel Core E3-1505M, spends 203s and 506s for
Half Testbed A and Full Testbed A and 191s and 443s for
Half Testbed B and Full Testbed B on reacting to network
dynamics. These results illustrate the centralized routing and
scheduling adopted by WirelessHART are insufficient for fast
response to network dynamics since the network during the
update has to operate under compromised routes and schedule
leading to degraded performance.

Orchestra runs on top of RPL and schedules the transmis-
sions in a distributed fashion. Figure 3 shows the cumulative
distribution function (CDF) of the repair time used by Or-
chestra to update routes and transmission schedule when the
network encounters the controlled interference generated by

'We use the WirelessHART implementation provided by Li et al. in our
experiments. The implementation is publicly accessible [40].

2We use the Orchestra implementation provided by Duquennoy et al. The
implementation is publicly accessible [41]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

[
c

0 Full 1

= 3rd+4th Floor 1

o

2 400) I~ 0.8

£ 0.9}

2 \ u 0.8 ['4

2 Half ~~—__| 3rd Floor a a

8 200 ~ ©o.4 Y

] H

E I~ [0.2

= 0.7]

Testbed A Testbed B =

20 80 100 1 4

Fig. 2. Time consumed by the Network Manager in Fig, 3.
WirelessHART to update routes and transmission epcounters interference.
schedule.

1~4 jammers running JamLab [44]. We repeat the experiments
three times under each setting. The network repair time ranges
from 20s to 95s (median: 45s) when the jammers generate
signals emulating WiFi data streaming traffic’. We use the end-
to-end packet delivery rate (PDR) as the metric for network
reliability. The PDR of a data flow is defined as the percentage
of packets that are successfully delivered to their destination.
Figure 4 shows the PDRs of 8 data flows during the repair
when 1~4 jammers are present in the network. Low median
PDRs (0.9, 0.87, 0.845, and 0.825) and large variations are
observed in Figure 4. We observe similar results when using
JamLab to generate jamming signals emulating Bluetooth.
Orchestra requires much shorter repair time compared to
WirelessHART and achieves high averaged delivery rates
in clean environments [10], making it a good networking
solution for many real-time applications. However, the repair
time is still too long and its performance when encountering
interference needs to be enhanced for those reliability-critical
industrial WSANSs that packet lost must become an exception
to meet with guaranteed service. Our work is therefore an
alternative approach that is complementary to Orchestra for
reliability-critical industrial WSANs and further enhances the
network reliability under network dynamics by developing
new distributed graph routing and autonomous scheduling
approaches.

V. DISTRIBUTED GRAPH ROUTING

In this section, we first describe some terminologies and
then introduce our distributed graph routing protocol that
generates and operates with graph routes. Our protocol is
extended from RPL [8], which is an oriented distance-vector
routing protocol developed for low-power IPv6 networks and
standardized by the IETF ROLL working group. Under RPL,
nodes are organized in a Destination-Oriented DAG (DODAG)
structure and the DODAG is rooted at the border router node
(Internet access point). Each node is attached a rank, i.e., its
distance to the root using a cost function (e.g., the expected
transmission count (ETX) metric), and sends a packet towards
the root by forwarding it to a neighbor node with a smaller
rank. The routes generated by RPL are not graph routes since
each node only has a single preferred parent in the parent set to
which it sends packets. It is to be noted that RPL also allows to
use multiple parents if those parents are equally preferred and

3Co-existence of WSAN devices and WiFi is common in industrial deploy-
ments since WiFi is often used as backhauls to connect multiple WSANSs.

40 60
Repair Time (s)

2 3
Number of Jammers

CDF of repair time when the network Fig. 4. PDR during the repair when the network

encounters interference with different number of

jammers.
TABLE I
NOTATIONS USED IN ALGORITHM 1.
Symbol Description
ETX,, (i) Weighted ETX from node i to access points
ETX,(i,j) | Accumulated ETX from node i to access points
through node j
ETX(i, j) ETX between node i and j
ETXpmin(i) | Min accumulated ETX from node i to access points
Rank(i) Rank of node i

have identical rank, while our protocol assigns two preferred
parents to each node as default routes and builds the routing
graph following the specification of WirelessHART?.

Directed Acyclic Graph (DAG): In a DAG, all links are
oriented in such a way that no cycle exists. All links selected
for routing orient toward or terminate at the access points.
Basically the DAG begins at the leaf nodes and ends at
the access points which can ensure messages to be safely
delivered to the destination without any cycle. The graph
routes generated by our protocol form a DAG.

Best Parent and Second Best Parent: Each node has a best
parent and a second best parent. The best parent locates on
the primary path from the node to the access points with the
smallest accumulated ETX. The path through the second best
parent has the second smallest accumulated ETX and serves
as a backup route.

Rank: Each node has a rank. All access points set their ranks
to 1 and a field device sets its rank by increasing its best
parent’s rank by 1.

Weighted ETX: The weighted ETX (ETX,,) of a node is
a cost function quantifying the distance to the access points
through two routes:

ETXy, = w1 % ETXapp + 02 % ET X a5t (1)

where ET X,p, is the accumulated ETX to the access point
through the best parent and E7T X4, is the accumulated ETX
through the second best parent. w; and w; are two weighting
factors defined as:

wi =1-(1~-1/ETXp,))
wy = (1 = 1/ETXp,) 3)

4In this paper, we focus on illustrating the generation of the uplink graph
(from the field devices to the access points). Other graphs such as downlink
graph and broadcast graph can be generated following the same method.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

where ET X}, denotes the ETX between the node and its best
parent. According to WirelessHART, the transmission and first
retransmission of a packet are scheduled through the primary
route, while the second retransmission is scheduled through
the backup route. Therefore, w; represents the probability of
a successful packet delivery during the first two transmission
attempts and w;, represents the probability of the first two
attempts fail.

Join-in Message: All nodes in the network broadcast the
join-in messages periodically allowing new nodes to join the
network. The join-in message contains the rank and ETX,,
of the node.

Joined-callback Message: Once a node selects its best or
second best parent, it sends a joined-callback message to the
selected node to inform the selection.

Our distributed graph routing algorithm is presented in
Algorithm 1 which runs on the access points and field devices
to construct the routing graph towards the access points. When
a network starts, all access points initialize their rank to 1 and
ETX,, to 0 and then begin to broadcast the join-in messages.
The rest nodes set their rank and ETX,, to infinity. When
a node receives the join-in messages from other nodes, it
selects its best parent and second best parent based on the
accumulated ETX values and then sets its rank by increasing
its best parent’s rank by 1. After joining the network, the node
begins to broadcast the join-in messages.

The routing graph building procedure begins from the access
points until reaching all leaf nodes. Each node selects its
best and second best parents, as required by WirelessHART,
towards the access points according to the accumulated ETX
values. It is important to note that the initialized ETX between
two nodes are determined by the Received Signal Strength
(RSS). We empirically set RSS,,in = —90dBm and RSS;,q4x =
—60dBm. If the RSS value is larger than -60 dBm, the ETX is
set to 1. If the RSS value is smaller than -90 dBm, the ETX is
set to 3. The ETX in between is scaled proportionally between
1 and 3. The ETX value gets penalized if a transmission error
occurs (e.g., no ACK), as Eq. 4 shows.

ETX =ETX, g *xa+Px(1 —a) “)

where ETX,;4 is the ETX value before apply the penalty, P
is the penalty coefficient, and « is a weighting factor ranging
between 0 and 1. We use the values suggested by RPL for P
and a, where « equals to 10% and P equals to 16. A node
runs the Algorithm 1 when it receives a join-in message. The
Trickle algorithm [45] is used to control the generation of the
join-in messages. A timer varying from I,,,;, t0 ;4 is used to
control the internal between two consecutive join-in messages.
Specifically, the Trickle algorithm uses I,,;,, as the first interval
and then doubles the size of the interval until it reaches I,,,4.
If a node detects a change of its own best parent or second
best parent, it resets its Trickle timer to I,,;,, to quickly update
its ETX,, and rank to its neighbors. The Trickle algorithm
dynamically scales the interval length to enable fast yet low
cost updates on ETX, and rank.

Algorithm 1: Distributed Graph Routing Algorithm

//Table I shows the notations

Input : RootID, NodelD

Output: RouteTable

RouteTable «— NULL;
ETX,,(NodelD) = Rank(Nodel D) = oo;

if NodeID == RootID then
/laccess point

Set Rank =1 and ETX,, = 0;

Broadcast join-in messages;
end

if Rank(NodelD) == oo and NodelD! = RootID then
/Mfield device receives the first join-in message from i

Set ETX,(NodelD,i) = ETX(NodelD,i) + ETX,,(i);
Set message sender as its best parent;

Set ET Xynin = ETX,(NodelD, i),

Set Rank(NodelD) = Rank(i) + 1;

Send joined-callback messaget;
end

if Rank(NodelD)! = oo and NodelD! = RootID then
/Mfield device receives the non-first join-in message
from i
Set ETX,(NodelD,i) = ETX(NodelD,i) + ETX,,,(i);
if ETX,(NodelD,i) < ET X;,;,, then
Set its best parent as the second best parent;
Set message sender as its best parent;
Set ET Xynin = ETX,(NodelD, i)
Set Rank(NodelD) = Rank(i) + 1;
Send joined-callback message;
end
if ETX,(NodelD, secondbestparent) >
ETX,(NodelD,i) >= ET X,;, and
Rank(i) < Rank(NodelD) then
Set message sender as second best parent;
Send joined-callback message;
end
ETX,,(NodelD) = w*ETX,(NodelD, bestparent)+
wy * ETX,(NodelD, secondbestparent);
Broadcast join-in message;
end
if Receive joined-callback message then
Update RouteTable and add the message sender as a
child;

end

T |
2T) 2.7 —
. @ l Primary Rark 3
- . — —
CL2 Backip
~ Unselected
Rank 4

(a) Network Topology. (b) Graph Routes.

Fig. 5. Example of the route generation.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

A. Routing Example

Figure 5 shows an example with two access points and
four field devices. The dash lines in Figure 5(a) denotes the
links with the ETX values. When the network starts, API
and AP2 broadcast their rank and ETX,,. #5 selects AP1
as its best parent and AP2 as its second best parent since
ETX,(5,AP1) is smaller than ETX,(5, AP2). Similarly, #6
selects AP2 as its best parent and API as its second best
parent. Both #5 and #6 set their ranks to 2 and begin to
broadcast the join-in messages. The link between #5 and #6
is not selected for routing since #5 and #6 have the same
rank. This design is used to avoid loops. #4 selects #6 as
its best parent since ETX,(4,6) has the smallest value and
sets its rank to 3. #3 compares ETX,(3,4) with ETX,(3,5) to
determine the best and second best parents. Figure 5(b) shows
the generated graph routes. The solid lines represents the
primary paths (#3—#4—#6—AP2 and #5— AP1) and the dash
lines represents the backup routes (#3—#5, #4—#5, #5—AP2,
and #6—AP1).

VI. AUTONOMOUS SCHEDULING

In this section, we introduce our autonomous transmission
scheduling approach that allows the field devices to compute
their own transmission schedule autonomously based on the
graph routing presented in Sections V. Our scheduling ap-
proach has the salient feature that requires no schedule negoti-
ation or sharing among neighboring nodes, which significantly
reduces the communication overhead.

Following the suggestion in Orchestra, we separate the
network traffic into three types: synchronization traffic, routing
traffic, and application traffic. The EBs are used for time
synchronization thus belong to the synchronization traffic. The
join-in and joined-callback messages used to select parents are
part of the routing traffic. The packets containing application
data belong to the application traffic. Three slotframes with
different periods are designed to carry different types of traffic.
The synchronization slotframe period is determined by the
time drift of the device’s clock. The routing slotframe period
is determined by the intervals of routing updates which are
required by the routing protocol. The application slotframe
period is determined by the application traffic needs. Our
scheduling approach first assigns time slots in those three
slotframes for transmissions and then combines them into a
single one for runtime execution. Here are the key scheduling
rules of our approach:

Use of Dedicated and Shared Slots: To achieve determinis-
tic behavior, the synchronization and application traffic uses
the contention-free dedicated slots, while the routing traffic
employs the shared slots to accommodate network topology
changes.

Assigning Slots for Synchronization: When a node attempts
to join the network, it first snoops the channel to capture an
EB from its neighbors. A captured EB allows a joining node
to synchronize its clock by using its carried timestamp and
learn the transmission schedule currently used in the network.
The APs in the network are wired to the gateway and time

synchronized through the gateway. After the synchronization,
the node selects its best and second best parents as presented
in Sections V. Under our scheduling approach, the node i uses
the ith slot in the synchronization slotframe to broadcast EB
and jth slot to receive EB from its best parent (node j).

Assigning Slots for Routing: A fixed, shared slot in the
routing slotframe is assigned for all nodes to exchange rout-
ing related packets including the join-in and joined-callback
messages. All nodes in the network use the same time slot
offset for the routing traffic and compete the slot in a CSMA
fashion. In our implementation, we use the first time slot in
the routing slotframe to exchange routing packets.

Assigning Slots for Application: According to Wire-
lessHART, multiple transmission attempts are scheduled for
each packet through its primary and backup routes. The node’s
packet transmission and reception schedules are determined by
its unique node id (NodeID?.) and parent-child relationship.
Under our scheduling approach, a node uses the st/ time slot
in the application slotframe for the pth transmission attempt:

s =Ax(NodelD — Nap)—A+p 4)

where A denotes the total number of transmission attempts
for each packet and N4p denotes the number of access points.
Each node can learn its neighbors’ Nodel Ds from the routing
table and Nap and A are global information shared by all
nodes in the network and can be carried by EBs.

Algorithm 2 shows the pseudocode on how a node assigns
time slots for the synchronization, routing, and application
traffic. Based on the abovementioned policy, the node i uses
the dedicated ith slot in the synchronization slotframe to
exchange EB and uses the first time slot (shared) in the routing
slotframe to exchange routing information. The node i uses sth
slot (according to Eq. 5) in the application slotframe to send
or receive application traffic.

Algorithm 2: Algorithm that assigns time slots for the
synchronization, routing, and application traffic

Input : NodelD =i, Nap, A, p, transmission x
Output: Time slot assignments for three slotframes

if x belongs to synchronization traffic then
Assign ith slot in the synchronization slotframe to

send or receive x;
end

if x belongs to routing traffic then
Assign the first slot in the routing slotframe to send

or receive x;
end

if x belongs to application traffic then
Assign sth slot in the application slotframe to send or

receive x (s is computed by Eq.5);

end

5A lookup table is used to map the MAC address of a node to its node
id. We use one byte integer to store the node ID, which supports up to 255
devices in the network. More bytes can be used to store the node id if there
are more devices.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

~ -
/\./
~
—
- =
- ~ ~ Primary

- ~ —,

Backup

(a) Graph routes in the example.

1 2 3 45 6 7 8 9 10 61

#1

#2

#3 | Rx

#a Rx

Time Slot
(b) Synchronization Schedule.

1 2 3 4 5 6

#1 [TxRx|

7 8 9 10 11

#2 [TxRx|

#3 [TxRx|

#4 [TxRx|

Time Slot

(c) Routing Schedule.

#1 | Rx | Rx Rx

#2 Rx | Rx | Rx

#3

#4

Time Slot

(d) Application Schedule.

1 2 3 45 6 7 8 9 10 11 12 13 ... 4697
" Rx Re| | Re|Rx o] Rx
#2 x| T | R | Rx [Rx Rx | R [rxrx
3 [Rx 1
#4 [oxgx| Rx 1|

Time Slot

(e) Combined Schedule
Fig. 6. Three schedules for different traffic and combined schedule.

Schedule Combination: After assigning time slots in those
three slotframes, the node combines them to a single schedule
for runtime execution. To resolve slot assignment conflict dur-
ing the combination, we assign different priorities to different
types of traffic. The most critical synchronization traffic has
the highest priority, while the application traffic has the lowest
priority. The slotframe for traffic with lower priority gives
up its transmission in the slot in which a scheduling conflict
happens during the combination and the schedule for traffic
with higher priority occupies the slot. It is important to note
that no traffic is constantly blocked since the three slotframes
use different prime numbers as their lengths.

Section VI-A uses an example to illustrate the scheduling
process and Section VI-B analyzes the performance.

A. Scheduling Example

Figure 6 illustrates our scheduling approach. Figure 6(a)
shows the graph routes (primary paths: #3—#1, #4—#2;
backup paths: #3—#2, #4—#1). In the example, the periods
of the synchronization, routing, and application schedules
(slotframe lengths) are assumed to be 61, 11, and 7 time slots,
respectively. The combined schedule has 61 11 =7 = 4697
time slots in total. As Figure 6(b) showed, node #3 uses the

third time slot to transmit its EB and receive the EB from
its best parent in the first slot. Figure 6(c) shows the routing
schedule which assigns the first slot for routing and Figure 6(d)
shows the application schedule which deliveries a packet from
#3 and a packet from #4 to the access points in every 7
time slots. Figure 6(e) shows the combined schedule. There
exist conflicts during the combination. Each node resolves
the conflicts locally. For example, #1 and #3 use the first
slot for the synchronization traffic with highest priority in
their combined schedule, while #2 and #4 use the slot for
routing®. It is important to note that each node generates its
combined schedule only based on local information requiring
no schedule negotiation or sharing from its neighbors, which
represents an important feature of our approach.

B. Performance Analysis

Under our scheduling approach, each slotframe repeats at
a constant period and the transmission behavior is equivalent
to Orchestra. The synchronization and application traffic using
dedicated slots is by design contention-free, while the routing
traffic utilizing shared slots has a contention probability:

~T+L/N
1 — e T*L/IN,

-T
1—-e,

if L>N

otherwise

pe(routing) = 6)
where T, N, and L denotes the average traffic load on the
slot under a Poisson distribution, the number of nodes in the
network, and the slotframe length. Here, for simplicity, we
assume a simple network of N nodes, all connected to each
other, and a single slotframe.

Let us assume that the slotframe B has Bj,,, slots and By;,;
slots among them are scheduled for transmissions. Let con fa g
denote the event of a given slot in the slotframe A conflicting
with any slot scheduled for transmission in the slotframe B.
The probability for the slot in the slotframe A to conflict with
the slotframe B is:

1
p(COanB) = m (7)

When such a slot scheduling conflict occurs, the slotframe
with higher priority takes precedence and all other slotframes
give up its transmissions. So the probability of a slot in the
slotframe A to be skipped due to a conflict with any other
slotframe during the combination is:

Pskip(a) = 1 = ((1= p(confap)) (8)
VBESF.Bpyi>Apri

where SF denotes the set of all slotframes in the network
and B,,; denotes the priority of B. The multiplication of
(1 — p(confa,p)) denotes the probability of lower priority
traffic A without any conflict when it is combined with higher
priority traffic. Based on the multiplication of (1-p(confa g)),
we can calculate the pgiipca). As reported in Orchestra, the
probability of an application or routing slotframe to be skipped
is expected to be low in practice since the synchronization
period determined by the hardware clock drift is much longer

6 Although the slot is assigned for routing, whether using it or not at runtime
is controlled by the Trickle algorithm as discussed in Section V.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

Spics [JOrchestra
0.8

v 0.6
0.4
0.2

1 2 4 5
Data Flow

Fig. 7. Average PDR of eight data flows.

than the routing and application periods and the routing
traffic is actually controlled by the Trickle algorithm. Our
experimental results also confirm this and show high PDRs.

VII. CONFLICT DEFERRAL SCHEDULING

DiGS assigns different priorities to different types of traffic
and forces the traffic with lower priority to give up its
transmission when any scheduling conflict happens during the
combination of individual schedules. This design simplifies
the scheduling process at the cost of a potential risk of
performance deterioration caused by the scheduling conflicts
(as the probability analysis in Section VI-B shows).

The potential risk of performance deterioration is not ac-
ceptable to some mission-critical industrial applications, espe-
cially when operating in the presence of external interference
and node failure. We perform an empirical study using the
Cooja simulator to investigate the effect of scheduling conflicts
in a worst-case scenario. We place 50 TelosB motes in a
150mX150m area in Cooja [46] based on the deployment
of Testbed A and randomly deploy 4 jammers to generate
inconstant interference, causing frequent routing updates in
the network. We conduct two sets of experiments: one set
under DiGS and the other under Orchestra. In each set, we run
experiments with 300 flow sets, each of which contains 8 data
flows that have different sources and destinations. Figure 7
shows the average PDRs of 8 data flows when the network
runs DiGS and Orchestra. 87.5% and 100% of data flows have
average PDRs lower than 90% under DiGS and Orchestra,
respectively. While Figure 7 shows promising results (DiGS
significantly outperforming Orchestra), it also highlights the
significant performance deterioration caused by the scheduling
conflicts.

To address this issue, we enhance DiGS (reported in our
conference paper [47]) by introducing a conflict deferral
scheduling policy that defers the traffic with lower priority at
conflict instead of forcing it to give up its slot. The enhanced
DiGS is named DiGS-CD, where “CD” stands for conflict
deferral. The design goal of DiGS-CD is to equip the network
devices with the capability of detecting scheduling conflicts
and deriving available future time slots for conflicted traffic
rapidly and autonomously without performing any handshake.
DiGS-CD completely eliminates the three different conflicts
(routing traffic blocked by synchronization traffic, application
traffic blocked by synchronization traffic, and application traf-
fic blocked by routing traffic) at the cost of slightly increasing
the latency. A node running DiGS-CD computes the available

future time slot for a deferred transmission completely based
on its local information such as its node id (NodelD), the
number of nodes in the network (V,,4.), the number of access
points (Nap), the slotframe length of synchronization, routing
and application (Ly, L,, L,), and ASN. Those parameters
(Nuodes Nap, Ls, L,) are global information shared by all
nodes in the network and can be carried by the EBs.

A naive way to defer conflicts is to generate three individual
schedules first and then detect the conflicts during combina-
tion. However, this method introduces significant computation
overhead and memory usage, since each node has to detect
conflicts from the first slot to the least common multiple
(LCM) of three slotframe lengths (L, L,, and L,) in order to
detect all potential conflicts and then defer the lower priority
traffic. Each node also has to store the ASN and the deferral
offset after capturing a conflict. To reduce the overhead, we de-
velop a fast proactive conflict detection and offset calculation
algorithm that automatically captures conflicts and computes
offsets when generating the individual schedules.

Algorithm 3: Conflict Detection and Offset Calculation
Algorithm
//Table II shows the notations
Input : Nyoge, ASNR, ASNa, ASNa,, Ls, Ly, Pivot
Olltpllt: SOsync_ruuting, SOsync_app’ SOr()uting_app

Sosync_rauting = SOSync_upp = SOrouting_app =0;
if 1 < ASNR % Ly && ASNR % Lg < Nyo4. then
SOsyncfrouting = Nnode - ASNR Yo Ls + 1;
/A Type 1 conflict detected
end
if ASNa, % Ly < Nuogell ASNa,% Ly >
Ly — 3 % (Nyode — Nap) + 1 then
SOsync_app = Nnode — Pivot % Ls + 1;
/A Type 2 conflict detected
end
if ASNA % L, == SOgyne routing + | then
SOruuting_app =1
/A Type 3 conflict detected
end

We define three types of slot usage conflicts: the conflict
between routing traffic and synchronization traffic (Type 1),
the conflict between application traffic and synchronization
traffic (Type 2), and the conflict between application traffic and
routing traffic (Type 3). Since the synchronization traffic has
the highest priority, the routing and application traffic needs to
yield to it when conflicting. Algorithm 3 presents our conflict
detection and offset calculation algorithm and Table II shows
the notations used in the algorithm. When a node is generating
the routing schedule at runtime, it checks whether there is any
(Type 1) conflict between routing traffic and synchronization
traffic. A Type 1 conflict occurs when the following condition
is satisfied:

1 < ASNg % Ls < Nyode 9)

All nodes in the network transmit synchronization beacons
using the first N,,4. slots in each synchronization slotframe
(see Section VI). When Condition 9 is satisfied, the routing

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

TABLE II
NOTATIONS USED IN ALGORITHM 3.

Symbol Description
ASNR ASN of the slot scheduled for routing in the
following slotframe
ASNy, ASN of the slot scheduled for application in the
following slotframe
ASNA ; ASN of the first slot scheduled for application
' in the following slotframe
Lg Length of synchronization traffic slotframe
L, Length of routing traffic slotframe
Nypode Number of nodes in the network
Pivot ASN of the first conflicted slot between application

and synchronization

Shift offset for routing traffic yielding to
synchronization traffic

Sosyncirouring

Shift offset for application traffic yielding to
synchronization traffic

Sosynr:_app

Shift Offset for application traffic yielding to
routing traffic

Soroutingfapp

traffic uses a slot conflicting with the synchronization traffic.
After capturing a Type 1 conflict, the node computes the shift
offset (SOsync_routing) as below:

node — ASNR % Lg +1 (10)

SOsync_r()uting =

The routing traffic is then deferred by SOgyuc_rouring slots,
outside the block of slots ([1, Nyoge]) scheduled for the
synchronization traffic. It also guarantees that the sender and
receiver will both move their schedule with the same offset
to prevent conflicts. Similarly, a Type 2 conflict occurs when
one of the following conditions is satisfied:

ASNAf 070 Ls < Nnode (11)

or

ASNa, % Ls > Ly = 3 * (Nnode — Nap) + 1 12)

When Condition 11 or 12 is satisfied, the application traffic
uses a slot conflicting with the synchronization traffic. Please
note that the access points do not transmit any application
packet, so we deduct N4p in Condition 12. After capturing a
Type 2 conflict, the node computes the SOgyne_app based on
the ASN of the first conflicted slot (Pivot) and the number of
nodes in the network:

node — Pivot %o Lg + 1 13)

SOsync_app =

The application traffic is then deferred by SOgync_app slots,
outside the block of slots ([1, Nyode]) scheduled for the
synchronization traffic. A Type 3 conflict occurs when the
following condition is satisfied:

ASNy,; % Ly = SOsyn_routing +1 (14)

Since the routing traffic may have already been deferred by the
synchronization traffic, we add SOy, rouring to Condition 14.
It should be noted that ASN 4, denotes one of the time slot i for
the application traffic in the following slotframe which collides
with routing traffic. After capturing a Type 3 conflict, the node
defers the application traffic by one slot. With SOsync_routing.
SOsync_app> and SOyrouting_app» €ach node continues to assign
slots.

Assigning Slots for Routing: A fixed, shared slot in the
routing slotframe is assigned for all nodes to exchange routing
related packets including the join-in and joined-callback mes-
sages. All nodes in the network use the same time slot offset
1 + SOgync_routing for the routing traffic.

Assigning Slots for Application: SOgy,c app and
SOrouting_app are added into Eq. 5. Under DiGS-CD,
a node uses the sth time slot in the application slotframe for
the pth transmission attempt:

s =A% (NOdeID - NAP) -A tp+ Sosync_app + SOr()uting_app
(15)

where A denotes the total number of transmission attempts for

each packet and N4p denotes the number of access points.

Schedule Combination: After assigning time slots in those
three slotframes, the node combines them to a single conflict-
free schedule for runtime execution.

A. Scheduling Example

We again use the network presented in Figure 6(a) as an
example. The periods of the synchronization, routing, and
application schedules (slotframe length) are assumed to be 61,
11, and 12 time slots, respectively. The combined schedule has
61%11%12 = 8052 time slots in total. Figure 8(a) shows the first
four slots scheduled for the synchronization traffic. A Type 1
conflict is detected (according to Condition 9), since 1 % 61 is
within the range of [1,4]. So SOsync_routing = 4—1 % 61+1 =
4. As Figure 8(b) showed, all four node defer their routing
schedule from the first slot to the fifth slot to resolve the Type
1 conflict. In the next routing cycle, there is no conflict in
the 12th slot, so the routing traffic is still scheduled on the
12th slot. Similarly, a Type 2 conflict is detected (according
to Condition 11), since 1 % 61 is within the range of [1,4]
and Pivot = 1. So SOsync app = 4-1% 61 +1 = 4. A
Type 3 conflict is also detected (according to Condition 14),
S0 SO;outing_app = 1. All four nodes defer their application
traffic by (SOsync_app + SOrouting_app = 35) slots. Figure 8(c)
shows the application schedule and Figure 8(d) shows the
combined conflict-free schedule.

B. Delay Analysis

Under DiGS-CD scheduling approach, each slotframe re-
peats at a constant period and defers its transmission whenever
it detects a scheduling conflict with a slotframe with higher
priority. Here, for simplicity, we assume that the packet can
be delivered from the source to the destination within a single
application slotframe. The synchronization and routing traffic
may block the application traffic. The maximum increase on
the end-to-end latency caused by the synchronization traffic

(Dsync_app) is:
Dsync_app = Tsior * Nnode (16)

where Ty;,; denotes the time duration of one time slot and
N,ode denotes the number of nodes in the network. The

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

1 2 3 4 5 6 7 8 9 10 61
| Tx
#2 Tx
#3 | Rx Tx
#4 Rx Tx

Time Slot

(a) Synchronization Schedule.

1 2 3 4 5 6 7 8 9 10 11
#1 ITXRX]
#2 ITXRX
#3 ITXRX]
#a ITXRX]

Time Slot

(b) Routing Schedule.

1 2 3 4 5 6 7 8 9 10 11 12
#1 Rx | Rx Rx
#2 Rx | Rx | Rx
#3 Tx | Tx | Tx
#4 Tx | Tx | Tx

Time Slot

(c) Application Schedule.

1 2 3 4 5 6 7 8 9 10 11 12 8052
#1 | Tx ITXRq Rx | Rx Rx [TxRx| ***
#2 Tx ITXRX Rx | Rx | Rx ITXRx| =« *
#3 | Rx Tx ITXRY Tx | Tx | Tx ITXRx| =« -«
#4 Rx Tx [TxRA Tx | Tx | T [TxRx| -« - -

Time Slot

(d) Combined Schedule
Fig. 8. Three schedules for different traffic and combined schedule.

maximum increase on the end-to-end latency caused by the
routing traffic (Drouring_app) 18:

3Nnode

r

] A7)

Drouting?app = Ts10r * |

where Lr is the length of the routing slotframe. So the
maximum increase on the end-to-end latency (Lp;gs-cp) is:

Lpigs-cp = LpiGs + Tsior * (Nnode + | (18)

3N£ode J)
-
where Lp;gs and Lp;gs-cp denote the end-to-end latency
under DiGS and DiGS-CD, respectively.

DiGS-CD increases the end-to-end latency by [0, Ty *
(Npode + L3Nz—‘“’€J)] compared to DiGS. Please note that
the synchronizartion slotframe period is much longer than the
application slotframe period in practice. Thus, the probability
of introducing significant latency increases is low. The average
latency differences between DiGS and DiGS-CD which we
observed in our experiments range between 3ms and 33ms
(see Section VIII-D).

VIII. EVALUATION

We have implemented our solution (DiGS) in Contiki [48],
an open source operating system for IoT, and evaluated it in
three aspects: end-to-end reliability, end-to-end latency, and
the energy consumption per received packet. To demonstrate
the feasibility of our solution, we repeat the experiments

on two physical testbeds located in the campuses of the
State University of New York at Binghamton and Washington
University in St. Louis: (1) Testbed A consisting 50 TelosB
motes deployed in the 2th floor of a building [49]; and (2)
Testbed B featuring 44 TelosB motes spanning two floors
of a building [50]. We run experiments on Testbed A with
300 flow sets, each of which contains 8 data flows that have
different sources and destinations and repeats the experiments
on Testbed B with 220 flow sets, each of which contains 6
flows. Two access points are configured on each testbed. Each
source node generates a packet in every 5 seconds. We set the
length of synchronization, routing, and application slotframes
to 557, 47, and 151 time slots, respectively, for all experiments.

We observe that Orchestra significantly outperforms Wire-
lessHART under network dynamics (see Section IV), therefore
compare our solution against Orchestra’ instead of Wire-
lessHART and examine their performance under two scenar-
ios: one under interference (Section VIII-A) and the other
with node failure (Section VIII-B). JamLab is used to generate
controlled interference with different strength and pattern. We
also measure the efficiency of DiGS to initialize the network
(Section VIII-C), examine the effectiveness of conflict deferral
scheduling (Section VIII-D), and perform a simulation study
with 150 nodes in the Cooja simulator [46] (Section VIII-E).

A. Performance under Interference

We configure three nodes to run JamLab and generate
signals emulating WiFi data streaming traffic. To create a
larger interference range and emulate the higher transmission
power employed by 802.11, we configure the nodes running
JamLab to transmit at higher transmission powers. Figure 9
shows the performance under DiGS and Orchestra when the
network encounters interference. Figure 9(a) plots the CDF
of PDR. On average, DiGS achieves 8.3% higher PDR than
Orchestra. In addition, 75.0% of the flow sets under DiGS
achieve PDRs higher than 95.0%, while only 12.5% under
Orchestra provide that. More importantly, DiGS delivers a
significant improvement over Orchestra in the worst-case PDR
(from 76.0% to 90.3%), which represents a significant advan-
tage in industrial applications that demand high reliability in
harsh industrial facilities. The higher PDRs provided by DiGS
under interference benefit from the route diversity offered by
the graph routing.

As Figure 9(b) showed, DiGS reduces the median latency
from 917.5ms to 601.3ms and averaged latency from 1214.1ms
to 649.5ms compared to Orchestra. The reduced latency pro-
vided by DiGS represents a significant advantage in industrial
applications allowing it to employ control loops with tighter
deadlines. Moreover, as shown in boxplots Figure 9(c) and
Figure 9(d), DiGS achieves a smaller variation of latency than
Orchestra, which represents another significant advantage in
industrial applications that demand predictable performance.
This result shows that DiGS employing the distributed graph
routing is indeed more resilient to interference thanks to route
diversity. Figure 9(e) shows the CDF of power consumption

7We use the Orchestra implementation in Contiki provided by the authors
in [10].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

1

0.8l O Orchestra o

O Dics o

w 0.6} @
8 o

0.4} o

0.2 e

o
.75 0.8 0.85 0.9 0.95
PDR

(a) CDF of PDR.

-

O Orchestra
0.8
e
w 0.6
[=]
©o4

0.2

500 1000 1500 2000 2500
Latency (ms)

(b) CDF of latency.

1500

=
(=3
=1
=1

Latency (ms)
{
{

a
[=]
=1

=

0.8
w 0.6
a
©o4
O Orchestra
0.2 O Dpics

Latency (ms)
S
S
CH
-
1
1
1

1 2 4 5
Data Flow

(c) Boxplot of latency under Orchestra.

Success Rate
°

o g

oo

N o o O Orchestra
0.25] O DiGs

1 2 7

4 5 6
Data Flow

(d) Boxplot of latency under DiGS.

2.5 3 3.5
Power Consumption per Received Packet (mW)

4 84

76 78 80 82
Packet Sequence Number

(e) CDF of power consumption per received packet(f) A micro-benchmark measurement on the packet

delivery success rate among 8 data flows.

Fig. 9. Performance under DiGS and Orchestra when the network encounters interference on Testbed A.

1
1

0.8
W 0.6
[=]

© 0.4

02t o

0.85 0.9 0.95
PDR

(a) CDF of PDR.

1
1

? O Orchestra
o O DiGs
400 600 800 1000 1200

Latency (ms)

(b) CDF of latency.

0.8
w 0.6
o

© 0.4

0.2

2.5 3 3.
Power Consumption per Received Packet (mW)

(c) CDF of power consumption per received
packet.

Fig. 10. Performance under DiGS and Orchestra when the network encounters interference on Testbed B.

[orchestra[§ DiGS

0.8]
o
Q 0.6
a

0.4

0.2

N N

N
A
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N
NN

Déta Figw ©
(a) PDR of each data flow.

Sudden Off

Q
©
o
§0.75 o o
8
5 0.5 O Orchestra

0.25] p o | O bpies

1 32 37 38

33 34 35 36
Packet Sequence Number

' o
=}
0.8 4
o
w 0.6
8 8
0. o
O Orchestra
4 6 8 10 12
Power C ption per Received Packet (mW)

(b) A micro-benchmark measurement on the packet(c) CDF of power consumption per received packet.

delivery success rate among 8 flows on Testbed A.
Fig. 11. Performance under DiGS and Orchestra when the network encounters node failure on Testbed A.

per received packet under DiGS and Orchestra®. DiGS pro-
vides an average of 0.056mW decrease in power consumption
per received packet compared to Orchestra. Although the
idle listening overhead introduced by DiGs leads to moderate
increases in total energy consumption, the slight increases in
power consumption are in exchange for a significant improve-
ment on reliability, resulting in an overall reduction on power
consumption per received packet. Figure 9(f) plots a micro-
benchmark measurement on the packet delivery success rate
among 8 data flows between the 74th and 84th packets are
forwarded in the network. When encountering the controlled
interference, 3 flows lose the 75th, 76th, and 77th packets
when running Orchestra. Those flows recover from the packet
lost and successfully deliver the 78th, 80th, and 82th packets,
respectively. Orchestra consumes 35s to recover from inter-
ference by updating the routing and scheduling, while DiGS
provides seamlessly packet delivery during the process.

8We only consider the power consumed by the radio and estimate it based
on the timestamps of radio activities and the radio’s power consumption in
each state according to the CC2420 data sheet [S1]

Similar gains are seen for DiGS on Testbed B. As Fig-
ure 10(a) showed, under the configuration of 6 data flows,
DiGS achieves a worst-case PDR of 93.2%, a median PDR of
94.5%, and a 90th percentile PDR of 97.7%, outperforming
Orchestra by 7.6%, 5.2%, and 4.7%, respectively. As shown
in Figure 10(b), the improvements offered by DiGS in worst-
case latency and median latency are 213.0ms and 232.7ms,
respectively. As Figure 10(c) showed, DiGS also provides
higher energy efficiency when encountering interference over
Orchestra (i.e., 0.057mW decrease in the power consumption
per received packet), resulting from the significant improve-
ment on reliability.

B. Performance with Node Failure

We also explored DiGS’s performance with node failure
by randomly turning off four nodes located on the routing
graph one by one. We repeat the experiments for 34 times with
different set of failing nodes. Figure 11 shows the performance
comparison between DiGS and Orchestra when the network
encounters node failure on Testbed A. As Figure 11(a) showed,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

DiGS-CD

10 15
Node Joining Time (s)

(a) CDF of scheduling conflict ratio.

Fig. 12. Network initialization time comparison
between DiGS and Orchestra.

of nodes.

6 of the total 8 data flows becomes completely disconnected
under Orchestra after the nodes fail, while all flows still
achieve a 100% PDR under DiGS. Figure 11(b) plots a micro-
benchmark measurement on the packet delivery success rate
among 8 data flows when a node suddenly fails. 6 data
flows are affected and lose the 34¢h packet and then recover
after 10s when running Orchestra, while DiGS successfully
delivers all packets through backup routes. As Figure 11(c)
showed, DiGS survives node failure without losing any packet
and achieves a 9.01lmW decrease on power consumption per
received packet compared to Orchestra. As Figure 11 shows,
DiGS provides significant improvements on failure tolerance
and energy efficiency over Orchestra, which are critical prop-
erties for industrial applications.

C. Network Initialization

To study the efficiency of DiGS to initialize the network, we
measure the time duration of each node joining the network
(i.e., between the network start and each node synchronizing
with the network and setting its preferred parents). Figure 12
shows the CDF of joining time of 50 nodes on Testbed A under
DiGS and Orchestra. DiGS does result in a slight increase in
network initialization time (from 23.0s to 24.1s) compared to
Orchestra as a result of one more preferred parent selected by
each node to construct the network. The averaged joining times
of 50 nodes are 15.4s and 14.3s under DiGS and Orchestra,
respectively. The slight increases in network initialization
are in exchange for moderately enhancing the reliability and
latency when the network encounters interference and node
failure. This tradeoff makes DiGS well-suited for industrial
applications running in dynamic environments with critical
performance demands.

D. Conflict Deferral Scheduling

To examine the effectiveness of conflict deferral scheduling,
we run three sets of experiments to compare DiGS-CD against
DiGS under various operating conditions. We first evaluate
the performance of DiGS-CD and DiGS when operating in a
network with different size. Figure 13(a) shows the CDF of
scheduling conflict ratio of DiGS-CD and DiGS when the net-
work consists of 10, 20, 30, 40 and 50 nodes. The scheduling
conflict ratio under DiGS increases with the increasing number
of nodes in the network, while the ratio under DiGS-CD is
always zero. The median conflict ratios under DiGS are 0.44%,
0.49%, 0.54%, 0.59%, and 0.64% when the network has 10,
20, 30, 40, and 50 nodes. Figure 13(b) shows the histogram

1
p oo 0.8 - DIGS: 10 nodes. —
' v DIGS: 20 nodh [i
o DIGS: 30 nodes g6 Hbies
) w 0.6 DiGS: 40 nodes -
o 8 DiGS: 50 nodes ©400
0. c
8
O Orchestra 0.2 _‘2
O DpiGs o : : N
0 0.1 O.ZC g:3t R ?_.4 o 0.5 0.6 0.7 1 2 3 4 5 7 8
5 25 onflict Ratio (%) Data Flow

(b) Latency of each data flow with 50 nodes.

Fig. 13. Performance comparison between DiGS-CD and DiGS when the network has different number

of average latency with 95% confidence interval. DiGS-CD
increases the average latency by [3,33]ms among eight data
flows, each of which delivers 300 packets. The confidence
interval half-width values are 6.79, 9.62, 5.09, 11.30, 6.79,
3.39, 3.42, and 4.87 under DiGS-CD, and 1.70, 3.39, 3.85,
5.09, 3.67, 1.70, 2.15, and 2.42 under DiGS, respectively.
The conflict deferral scheduling successfully mitigates the
scheduling conflict at the cost of slightly increasing the latency.

We then investigate the effect of interference on the schedul-
ing conflict ratio of DiGS-CD and DiGS. Figure 14 shows the
CDF of scheduling conflict ratio of a 50-node network when
1~3 jammers exist in the network. The median conflict ratio
under DiGS increases from 1.01% to 1.39%, and then to 1.96%
when more jammers are introduced into the network. The
increase on the conflict ratio is caused by the more frequent
routing updates which aggravate the conflicts between rout-
ing traffic and application traffic. DiGS-CD always provides
conflict-free schedules.

Finally, we evaluate DiGS-CD and DiGS under different
data rates. Figure 15(a) shows the CDF of scheduling conflict
ratio of a 50-node network when the source nodes generate
packets with different intervals. The scheduling conflict ratio
under DiGS increases slowly when the data rates increase
(the packet interval decreases from 20s to S5s). The median
conflict ratios under DiGS are 0.59%, 0.62%, 0.63% and
0.64% when the data generation intervals are 20s, 15s, 10s, and
5s, respectively. This is because the conflicts mainly depend
on the frequency of routing updates. Figure 15(b) shows the
histogram of average latency with 95% confidence interval.
DiGS-CD increases the average latency by [7,24]ms among
eight data flows, each of which delivers 300 packets. The
confidence interval half-width values are 3.96, 4.52, 8.09, 8.92,
10.05, 5.87, 6.73, and 5.92 under DiGS-CD, and 3.32, 4.11,
4.88, 4.76, 34.42, 5.67, 4.12, and 3.13 under DiGS, respec-
tively. From the above results, we conclude that DiGS-CD is
more suitable to operate in dynamic and noisy environments,
while DiGS is a better choice for clean environments.

E. Simulation Study with 150 Nodes

To explore DiGS’s performance at a larger scale, we per-
form a simulation study using the Cooja simulator. In the
simulations, 150 nodes and two access points are placed in a
300mX300m area. We run simulations with 300 flow sets, each
of which contains 20 data flows that have different sources and
destinations. Each source node generates a packet in every 10
seconds. 5 Cooja disturber nodes are configured to turn on and
off in every 5 minutes to interfere nearby links.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018 13

) 1 1000 T y
' 0 DiGS: 20 Seconds| — 800 DiGS-CD
........ : DIiGS: 15 Second: » .
0.8 - g:ggé ;j:::z:s D;GS: 10 Seconds £ O DiGs
........ DiGS: 3 Jammers u 0. +wen DIGS: § Seconds : 600
w 0.6 —— DiGS-CD 8 —— DiGS-CD 3
a 0 £ 400
o
©o.4 i
- ©
0. 1 200
0.2 o i
M) 0.2 0.4 0.6 0.8
; : : Conflict Ratio (%) 12 3 4 5 6 7 8
0 0.5 1 1.5 2 Data Flow

™ Conflict Ratio (%)

Fig. 14. CDF of scheduling conflict ratio under
DiGS-CD and DiGS with different number of jam-
mers. The network consists of 50 nodes.

1

-

(a) CDF of scheduling conflict ratio.

(b) Latency of each data flow with a packet per
ten seconds.

Fig. 15. Performance comparison between DiGS-CD and DiGS when the data packets are generated at
different rates. The network consists of 50 nodes.

0.8 O Orchestra o 0.8]
O Dics o

w 0.6 d w 0.6}

[=] n° [=}

© 0.4 o° © 0.4
0.2 o 0.2

F 4 ° O Orchestra
S |o_oes 0.2

065 07 075 0.8 0.85 0.9 0.95 500 1000
PDR

(a) CDF of PDR.

Fig. 16. Simulation with 150 nodes in Cooja Simulator.

TABLE III
COMPARISON OF DIGS/D1GS-CD, WIRELESSHART AND ORCHESTRA.

Method Name Centralized | Distributed | Graph Routing
DiGS/DiGS-CD X Y v
WirelessHART Y X v
Orchestra X v X

Figure 16 shows the performance under DiGS and Orches-
tra when the network encounters interference. Figure 16(a)
presents the CDF of PDR. On average, DiGS achieves 16.3%
higher PDR than Orchestra. In addition, 53.0% of the flow
sets under DiGS achieve PDRs higher than 95.0%, while only
11.0% under Orchestra provide that. Moreover, DiGS delivers
a significant improvement over Orchestra in the worst-case
PDR (from 86.7% to 63.0%). As Figure 16(b) showed, DiGS
reduces the median latency from 1950.0ms to 1560.0ms and
averaged latency from 2068.6ms to 1565.7ms compared to
Orchestra. DiGS improves the reliability and latency under
interference at the cost of slight increases on the radio duty
cycle. As shown in Figure 16(c), DiGS suffers an average
of 0.056% increase on radio duty cycle per received packet
over Orchestra. The slight increases in duty cycle per received
packet are in exchange for a critical improvement on reliability
and latency.

IX. CONCLUSIONS

A major limitation of current WSAN standards is their
limited scalability due to their centralized routing and schedul-
ing that enhance the predictability and visibility of network
operations at the cost of scalability. This paper decentralizes
the network management in WirelessHART and presents the
first distributed graph routing and autonomous scheduling
solution that allows the field devices to compute their own
graph routes and transmission schedules. Experimental results
from two physical testbeds and a large-scale simulation show
our solution provides significant improvement on network
reliability, latency, energy efficiency, and failure tolerance
under dynamics, critical properties for industrial applications,

1500
Latency (ms)

(b) CDF of latency.

2000 2500 3000

0.5 1 15 2 25
Radio Duty Cycle per Received Packet (%)

(c) CDF of radio duty cycle per received packet.

over state of the art at the cost of slightly higher power
consumption and longer network initialization.

ACKNOWLEDGMENT

This work was supported by the NSF through grant CRII-
1657275 (NeTS).

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, “How smart, connected products are
transforming competition,” Harvard Business Review, vol. 92, no. 11,
pp. 64-88, 2014.

[2] A. Thierer and A. Castillo, “Projecting the growth
and economic impact of the internet of things,” Jun
2015. [Online]. Available: https://www.mercatus.org/publication/
projecting-growth-and-economic-impact-internet-things

[3] J. Manyika, M. Chui, J. Bughin, R. Dobbs,
and A. Marrs, “Disruptive technologies: Advances that will
transform life, business, and the global economy,” May
2013. [Online]. Available: http://www.mckinsey.com/business-functions/
digital-mckinsey/our-insights/disruptive-technologies

[4] HART Communication Protocol and Foundation (Now FieldComm
Group). [Online]. Available: http://www.hartcomm.org/

[5] WirelessHART. [Online]. Available: https:/fieldcommgroup.org/
technologies/hart

[6] H. Kagermann, W. Wahlster,
2013) Recommendations for Implementing the Strategic
Initiative Industrie 4.0. [Online]. Available: http:
/Iwww.acatech.de/fileadmin/user%5fupload/Baumstruktur%5fnach%
S5fWebsite/Acatech/root/de/Material %5ffuer%5fSonderseiten/Industrie %
5f4.0/Final%5treport%5f%5flndustrie%5f4.0%5faccessible.pdf

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
Tree Protocol,” in Sensys, 2009.

[8] T. W. (Ed.), P. T. (Ed.), A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RFC 6550,” in RPL: IPv6
Routing Protocol for Low power and Lossy Networks, 2012.

[9]1 IETF 6TiSCH working group. [Online]. Available: https://datatracker.

ietf.org/wg/6tisch/

S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:

Robust Mesh Networks Through Autonomously Scheduled TSCH,” in

Sensys, 2015.

Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A Framework for

Reliable Routing in Mobile Ad Hoc Networks,” in INFOCOM, 2003.

D. Ganesan, R. Govindan, S. Shenker, and D. E. Highlyresilient,

“Energy-Efficient Multipath Routing in Wireless Sensor Networks,” in

ACM SIGMOBILE Mobile Computing and Communications Review,

vol. 5, no. 4, 2001.

P. Bisson,

and J. Helbig. (April

[10]

(11]
[12]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, SEPTEMBER 2018

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(311

(32]

(33]
[34]

[35]

[36]

[37]

M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, and T. Hwee-
Pink, “Im2pr: Interference-Minimized Multipath Routing Protocol for
Wireless Sensor Networks,” in Wireless Networks, vol. 20, no. 7, 2014.
K. X. J. Zhang and H. J. Chao, “Load Balancing in IP Networks
Using Generalized Destination-Based Multipath Routing,” in IEEE/ACM
Transactions on Networking, vol. 23, no. 6, 2015.

H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and
Algorithms for Efficient and Correct Multipath QoS Routing in Link
State Networks,” in IWQoS, 2015.

Q. Le, T. Ngo-Quynh, and T. Magedanz, “Rpl-based multipath routing
protocols for internet of things on wireless sensor networks,” in Interna-
tional Conference on Advanced Technologies for Communications, 2014,
pp. 424-429.

B. Pavkovi, F. Theoleyre, and A. Duda, “Multipath opportunistic rpl
routing over ieee 802.15.4,” in The 14th ACM international conference
on Modeling, analysis and simulation, 2011, pp. 179-186.

O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: Opportunistic routing meets duty cycling,” in
ACM/IEEE 1lth International Conference on Information Processing
in Sensor Networks, 2012, pp. 185-196.

O. Iova, F. Theoleyre, and T. Noel, “Exploiting multiple parents in
rpl to improve both the network lifetime and its stability,” in /EEE
International Conference on Communications, 2015, pp. 610-616.

Z. Wang, L. Zhang, Z. Zheng, and J. Wang, “An optimized rpl protocol
for wireless sensor networks,” in IEEE 22nd International Conference
on Parallel and Distributed Systems, 2016, pp. 294-299.

S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and
Real-Time Communication in Industrial Wireless Mesh Networks,” in
RTAS, 2011.

C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and
Y. Chen, “Maximizing Network Lifetime of WirelessHART Networks
under Graph Routing,” in IoTDI, 2016.

V. Modekurthy, A. Saifullah, and S. Madria, “Distributed graph routing
for wirelesshart networks,” in International Conference on Distributed
Computing and Networking (ICDCN), 2018.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end Communication
Delay Analysis in Industrial Wireless Networks,” in IEEE Transactions
on Computers, vol. 64, no. 5, 2014.

C.Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks,”
in IWQoS, 2014.

S. Zhang, G. Zhang, A. Yan, Z. Xiang, and T. Ma, “A Highly Reliable
Link Scheduling Strategy for WirelessHART Networks,” in ATC, 2013.
X. Zhu, P-C. Huang, S. Han, A. Mok, D. Chen, and M. Nixon, “Roam-
ingHART: A Collaborative Localization System on WirelessHART,” in
RTAS, 2012.

N. Burri, P. V. Rickenbach, and R. Wattenhofer, “Dozer: Ultra-Low
Power Data Gathering in Sensor Networks,” in IPSN, 2007.

A. Tinka, T. Watteyne, K. S. J. Pister, and A. M. Bayen, “A Decentral-
ized Scheduling Algorithm for Time Synchronized Channel Hopping,”
in EAI Endorsed Transactions on Mobile Communications and Appli-
cations, vol. 11, no. 1, 2011.

M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic Aware Scheduling Algorithm for Reliable Low-power Multi-hop
IEEE 802.15.4¢e Networks,” in PIMRC, 2012.

A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, “Label
Switching over IEEE 802.15.4e Networks,” in Transactions on Emerging
Telecommunications Technologies, vol. 24, no. 5, 2013.

P. Zand, A. Dilo, and P. Havinga, “D-MSR: A Distributed Network
Management Scheme for Real-Time Monitoring and Process Control
Applications in Wireless Industrial Automation,” in D-MSR: A Dis-
tributed Network Management Scheme for Real-Time Monitoring and
Process Control Applications in Wireless Industrial Automation, vol. 13,
no. 7, 2013.

F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-Power
Wireless Bus,” in SenSys, 2012.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in SenSys, 2013.

O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
Efficient All-to-All Data Sharing and In-Network Processing at Scale,”
in SenSys, 2013.

M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast Data
Dissemination with Constructive Interference in Wireless Sensor Net-
works,” in NSDI, 2013.

M. Doddavenkatappa and M. C. Chan, “P3: A Practical Packet Pipeline
using Synchronous Transmissions for Wireless Sensor Networks,” in
IPSN, 2014.

(38]

[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]

[48]
[49]

[50]

[51]

Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), IEEE, 2006.

“IEEE 802.15.4e WPAN Task Group.” [Online]. Available: http:
/Iwww.ieee802.org/15/pub/TG4e.html

WCPS Simulator. [Online]. Available: http://wsn.cse.wustl.edu/index.
php/WCPS:_Wireless_Cyber-Physical_Simulator

Orchestra. [Online]. Available: https://github.com/contiki-os/contiki/
tree/master/apps/orchestra

TelosB: Telosb Mote Platform, Datasheet Provided by MEMSIC Inc.
[Online]. Available: http://www.memsic.com/userfiles/files/Datasheets/
WSN/telosb%5fdatasheet.pdf

J. W. S. Liu, “Real-time systems,” 2000.

C. A. Boano, T. Voigt, C. Noda, K. Romer, and M. Zuniga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in IPSN, 2011.

P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “RFC 6206,” in The
Trickle Algorithm, 2011.
“Cooja Simulator.” [Online].
index.php/Cooja_Simulator

J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed Graph Routing
and Scheduling for Industrial Wireless Sensor-Actuator Networks,” in
ICDCS, 2018.

Contiki: The Open Source OS for the Internet of Things. [Online].
Available: http://www.contiki-os.org/

“Testbed at the State University of New York at Binghamton.” [Online].
Available: http://www.cs.binghamton.edu/\%7emsha/testbed
“Testbed at the Washington University in St. Louis.”
Available: http://cps.cse.wustl.edu/index.php/Testbed
CC2420: 2.4 GHz IEEE 802.15.4 ZigBee-ready RF Transceiver,
Datasheet Provided by TI Inc. [Online]. Available: http://www.ti.com/
lit/ds/symlink/cc2420.pdf

Available: http://anrg.usc.edu/contiki/

[Online].

Junyang Shi is a PhD student in the Department
of Computer Science at the State University of New
York at Binghamton. He received her B.S. degree
in Electrical and Electronic Engineering from the
Huazhong University of Science and Technology in
2016. His research focuses on industrial wireless
sensor-actuator networks and Internet of Things.

Mo Sha is an Assistant Professor in the Department
of Computer Science at the State University of New
York at Binghamton. He received his Ph.D. degree
in Computer Science from Washington University
in St. Louis in 2014. Prior to his PhD, he received
a M.Phil. degree from City University of Hong
Kong in 2009 and a B.Eng. degree from Beihang
University in 2007. His research interests include
wireless networks, Internet of Things, embedded and
real-time systems, and Cyber-Physical Systems.

Zhicheng Yang is a PhD student in the Department
of Computer Science at the University of California,
Davis. He received his M.S. degree in Computer
Science from the Washington University in St. Louis
in 2012. Prior to his Master degree, he received her
B.S. Degree from Beijing University of Posts and
Telecommunications in 2010. His research interests
include wireless networking and sensing, 60 GHz
WLANS, and mobile computing.

