
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 1

Adapting Wireless Network Configuration from
Simulation to Reality via Deep Learning based

Domain Adaptation
Junyang Shi, Aitian Ma, Xia Cheng, Mo Sha∗, Xi Peng

Abstract—Today, wireless mesh networks (WMNs) are de-
ployed globally to support various applications, such as industrial
automation, military operations, and smart energy. Significant
efforts have been made in the literature to facilitate their de-
ployments and optimize their performance. However, configuring
a WMN well is challenging because the network configuration
is a complex process, which involves theoretical computation,
simulation, and field testing, among other tasks. Our study shows
that the models for network configuration prediction learned
from simulations may not work well in physical networks because
of the simulation-to-reality gap. In this paper, we employ deep
learning-based domain adaptation to close the gap and leverage a
teacher-student neural network and a physical sampling method
to transfer the network configuration knowledge learned from
a simulated network to its corresponding physical network.
Experimental results show that our method effectively closes the
gap and increases the accuracy of predicting a good network
configuration that allows the network to meet performance
requirements from 30.10% to 70.24% by learning robust machine
learning models from a large amount of inexpensive simulation
data and a few costly field testing measurements.

Index Terms—Network Configuration, Wireless Mesh Net-
works, Industrial Wireless Networks, Domain Adaptation.

I. INTRODUCTION

Recent years have witnessed the rapid deployments of
wireless mesh networks (WMNs) for industrial automation [2],
[3], military operations [4], and smart energy [5], etc. For
instance, IEEE 802.15.4-based industrial WMNs, also known
as wireless sensor-actuator networks (WSANs), are gaining
rapid adoption in process industries over the past decade due
to their advantage in lowering operating costs [6]. Battery-
powered wireless modules easily and inexpensively retrofit
existing sensors and actuators in industrial facilities without
the need to run cables for communication and power. Industrial
standard organizations such as HART [7], ISA [3], IEC [8],
and ZigBee [9] are actively pushing the real-world imple-
mentations of WSANs for industrial automation. For example,
more than 54,835 WSANs that implement the WirelessHART

Junyang Shi is with Google. He contributed to this work while he was
advised by Mo Sha in the Department of Computer Science at the State
University of New York at Binghamton, Binghamton, NY, 13902 USA. E-
mail: jshi28@binghamton.edu.

Aitian Ma, Xia Cheng, and Mo Sha are with the Knight Foundation School
of Computing and Information Sciences at Florida International University,
Miami, FL, 33199 USA. E-mail: {aima, xchen075, msha}@fiu.edu.

Xi Peng with the Department of Computer and Information Sciences at
University of Delaware, Newark, DE, 19716 USA. E-mail: xipeng@udel.edu.

∗Corresponding author.
Part of this article was published in Proceedings of the NSDI [1].
Manuscript received XX, 2022; revised XX, 2022.

standard [2] have been deployed globally by Emerson Process
Management to monitor and control industrial processes [10].

Although WMNs work satisfactorily most of the time thanks
to years of research, they are often difficult to configure as
configuring a WMN is a complex process, which involves
theoretical computation, simulation, and field testing, among
other tasks. Simulating a WMN provides distinct advantages
over experimenting on a physical network when it comes to
identifying a good network configuration: a simulation can be
set up in less time, introduce less overhead, and allow for
different configurations to be tested under exactly the same
conditions.

Significant efforts have been made in the literature to
investigate the characteristics of wireless communication. For
instance, there has been a vast array of research that empiri-
cally studied the low-power wireless links with different plat-
forms, under varying experimental conditions, assumptions,
and scenarios [11]. Decades of research have gathered precious
knowledge and produced a set of mathematical models that
capture the characteristics of wireless links, interference, etc,
and enable the development of wireless simulators, such as
TOSSIM [12], Cooja [13], OMNeT++ [14], and NS-3 [15].

However, it is still very challenging to set up a simu-
lation that captures extensive uncertainties, variations, and
dynamics in real-world WMN deployments. Our study shows
that the models for network configuration prediction learned
from simulations cannot always help physical networks meet
performance requirements because of the simulation-to-reality
gap; therefore the advantages of using simulations to reduce
experimental overhead, improve flexibility, and enhance re-
peatability come at the expense of questionable credibility of
the results. On the other hand, data collection from many
WMN deployments, which include the ones in industrial
facilities, is costly; therefore it is difficult to obtain sufficient
information to train a good model or identify an optimal policy
for network configurations by relying solely on field testing.

In this paper, we formulate the network configuration pre-
diction into a machine learning problem, use the configurations
of a WirelessHART network [2] as an example to illustrate the
simulation-to-reality gap, and then employ deep learning based
domain adaptation to close the gap.

Specifically, this paper makes the following contributions:
• This paper presents the simulation-to-reality gap in net-

work configurations and shows that the network config-
uration models learned from simulations cannot always
help physical networks meet performance requirements;

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 2

• This paper presents a teacher-student neural network1

that learns robust machine learning models for network
configuration prediction from a large amount of inex-
pensive simulation data and a few costly physical mea-
surements. To our knowledge, this work represents the
first experimental study of the effectiveness of domain
adaptation in closing the simulation-to-reality gap in
network configurations;

• This paper presents an experimental method for the
sampling of physical data, which measures the gap be-
tween simulation and reality in different networks. This
measurement is leveraged to identify samples that need
to be taken from physical networks;

• Our method has been implemented and evaluated using
four simulators and a physical testbed. The evaluation has
been repeated with different network topologies under
various wireless conditions. Experimental results show
that our method can significantly improve the prediction
accuracy and help physical networks meet performance
requirements.

Our paper is organized as the following sections. Section II
reviews the related work. Section III introduces the back-
ground of WirelessHART networks. Section IV presents our
problem formulation, the simulation-to-reality gap, and our
method that closes the gap. Section V shows the design of
our teacher-student neural network. Section VI discusses the
design of our physical data sampling method. Section VII
evaluates our method. Section VIII concludes the paper.

II. RELATED WORKS

The current practices in network configurations rely largely
on experience and rules of thumb that involve a coarse-grained
analysis of network loads or dynamics during a few field
trials. In the literature, significant research efforts have been
made to model the characteristics of wireless networks and
optimize network configurations through mathematical tech-
niques such as convex optimization [16], game theory [17],
and meta heuristics [18]. For instance, the characteristics of
low-power wireless links have been studied empirically with
different platforms, under varying experimental conditions,
assumptions, and scenarios [11]. Runtime adaptation methods
have been developed to improve the performance of wireless
sensor networks (WSNs) by adapting a few parameters in
the physical and media access control (MAC) layers [19],
[20]. Those methods are not directly applicable to configure a
network with many interplaying parameters.

As wireless deployments become increasingly hierarchical,
heterogeneous, and complex, a breadth of recent research
has reported that resorting to advanced machine learning
techniques for wireless networking presents significant per-
formance improvements compared to traditional methods.
Deep learning has been used to handle a large number of
network parameters and automatically uncover correlations
that would otherwise have been too complex to extract by

1To eliminate ambiguity, this paper uses the word “network” to denote
a wireless network and use the word “neural network” to represent a deep
learning model in this paper.

human experts [21], [22] and reinforcement learning has
been employed to enable network self-configurations [23].
The key behind the remarkable success of those data-driven
methods is the capability of optimizing a huge number of
free parameters [24], [25] to capture extensive uncertainties,
variations, and dynamics in real-world wireless deployments.
These methods do not only yield complex features, such as
communication signal characteristics, channel quality, queuing
state of each device, and the path congestion situation, but also
have many control targets, such as resource allocation, queue
management, and congestion control.

However, data collection from many wireless deployments
is costly and not easily accessible (e.g., the ones in industrial
facilities); therefore it is difficult to obtain sufficient infor-
mation to train a good model or identify an optimal policy
for network configurations. In such scenarios, the benefits of
employing learning-based methods that require much data are
outweighed by the costs. The industry has consequently shown
a marked reluctance to adopt them. To address this limitation,
there has been increasing interest in using simulations to
identify good network configurations [26]–[29]. Unfortunately,
our study shows that a straightforward deployment of a model
learned from simulations results in poor performance in a
physical network due to the simulation-to-reality gap [30].

Domain adaptation aims to learn from one or multiple
source domains and produce a model that performs well on
a related target domain; the assumption is that the source
and target domains are associated with the same label space.
It has been successfully used in computer vision [31], [32],
natural language processing [33], and building occupancy esti-
mation [34], [35]. Studies have shown that domain adaptation
can mitigate the harmful effects of domain discrepancy by
optimizing the representation to minimize some measures
of domain shift, such as maximum mean discrepancy [36]
or correlation distances [37]. Compared to fine-tuning the
deep learning model, which is pre-trained using simulation
data, employing domain adaptation is expected to close the
gap between the simulated network (source) domain and the
physical network (target) domain with fewer costly physical
measurements. Recent work has focused on transferring deep
neural network (DNN) representations from a labeled source
dataset to a target domain where labeled data is sparse or
non-existent. The main strategy is to guide feature learning
via minimizing the difference between the source and tar-
get feature distributions. The maximum mean discrepancy
(MMD) has been successfully used for domain adaptation,
which computes the norm of the difference between two
domain means (the expectations of the source and target
domain) [38], [39]. Several methods employed an adversarial
loss to minimize domain shift and learn a representation that
is simultaneously discriminative of source labels while not
being able to distinguish between domains [40], [41]. Despite
the extensive literature on domain adaptation, little work has
been done to investigate whether it can be applied to close
simulation-to-reality gap in network configurations.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 3

III. BACKGROUND OF WIRELESSHART NETWORKS

To meet the stringent reliability and real-time requirements
of industrial applications, WirelessHART networks [2] made
a set of specific design choices that distinguish themselves
from traditional WSNs designed for best effort services [6].
A WirelessHART network is managed by the centralized
network manager, a software module, which is responsible for
managing the entire network that includes generating routes,
scheduling all transmissions, and selecting network parame-
ters. Network devices include a set of field devices (sensors
and actuators) and multiple access points. Each network
device is equipped with a half-duplex omnidirectional radio
transceiver compliant with the IEEE 802.15.4 standard [42].

WirelessHART networks adopt the time-slotted channel
hopping (TSCH) technique [43], which combines time-slotted
medium access, channel hopping, and multi-channel com-
munication to provide time-deterministic packet deliveries2.
Under TSCH, time is divided into 10𝑚𝑠 time slots, each
of which can be used to transmit a packet and receive an
acknowledgment between a pair of devices. The network uses
up to 16 channels in the 2.4 GHz band and performs channel
hopping in every time slot to combat narrow band interference.
The WirelessHART standard specifies the use of all available
channels after a human operator manually blacklists noisy
ones [2].

WirelessHART networks support two types of routing:
source routing and graph routing. Source routing provides a
single directed path from each data source to its destination.
Graph routing is designed to enhance network reliability by
providing redundant routes between field devices and access
points. A packet may be transmitted through the backup routes
if the links on the primary path fail to deliver it. Emerson
Process Management [44] recommends using a constant value
(60% in general or 70% for control and high-speed monitor-
ing) as the packet reception ratio (PRR) threshold to select
links for routing [45].

IV. METHODOLOGY

In this section, we first describe our experimental setup
and data collection method. Then we formulate the network
configuration prediction as a machine learning problem and
present the simulation-to-reality gap. Finally, we introduce our
deep learning based domain adaptation method, which closes
the gap.

A. Experimental Setup and Data Collection

We adopt the open-source implementation of Wire-
lessHART networks provided by Li et al. [46] and configure
six data flows on our testbed, which consists of 50 TelosB
motes [47]. We employ the rate monotonic scheduling [48],
an optimal fixed-priority policy, to generate the transmission
schedule, set the data delivery deadline of each data flow to its
period, and configure two devices to serve as access points.
Figure 1 shows the device deployment on our testbed and

2Packets must be delivered along the data flow (from a sensor to an access
point and then to an actuator) by the specified time deadline.

Fig. 1. Device deployment on our testbed. The device ID ranges from 100
to 149.

TABLE I
DATA FLOWS.

Flow
ID Source Destination Period

(ms) Priority

1 147 146 500 1
2 144 143 500 2
3 105 104 500 3
4 149 118 1000 4
5 136 135 1000 5
6 137 108 1000 6

Table I lists the source, the destination, the data generation
interval (period), and the priority of each data flow. We
employ rate monotonic scheduling [48], an optimal fixed-
priority policy, to generate the transmission schedule, set the
data delivery deadline of each data flow to be equal to its data
generation period, and configure the devices with ID 111 and
138 to serve as two access points.

We consider three configurable network parameters [49],
which include (i) the PRR threshold for link selection 𝑅,
(ii) the number of channels used in the network 𝐶, and
(iii) the number of transmission attempts scheduled for each
packet 𝐴, and three network performance metrics, which
include (1) the end-to-end latency 𝐿, (2) the battery life-
time 𝐵, and (3) the end-to-end reliability 𝐸3. We consider
𝑅 ∈ {0.7, 0.71, 0.72, ..., 0.90}4, 𝐶 ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and
𝐴 ∈ {1, 2, 3} as the possible parameter values, and combine
them to create 744 (31 ∗ 8 ∗ 3) network configurations. Please
note that some network configurations make the network
manager generate the same routes and transmission schedule.
After removing all redundancy (the configurations leading
to the same routes and transmission schedule), there are 88
distinct network configurations left under our experimental
setup.

After deploying the data flows on the testbed, we implement
the same network in four simulators5, feed the PRR and
noise traces, the routes, and the transmission schedule col-
lected from the physical network into the simulator, and then

3PDR is used to quantify the end-to-end reliability. Packet delivery ratio
(PDR) is the ratio of the number of packets delivered in total to the total
number of packets sent from the source node to the destination node in the
network.

4Emerson Process Management [44] recommends using a constant value
(0.6 in general or 0.7 for control and high-speed monitoring) for 𝑅 [45]. We
did not consider 𝑅 lower than 0.7 because of the consistently low reliability
we observed.

5We repeat our experiments using four simulators: TOSSIM, Cooja, OM-
NeT++, and NS-3.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 4

run simulations to evaluate network performance under each
network configuration. Specifically, the simulator generates
simulated 𝐿, 𝐵, and 𝐸 values under each network configuration
(𝑅,𝐶, 𝐴). The network performance (𝐿, 𝐵, and 𝐸 values)
is computed in every 50𝑠. 75 network performance traces
are collected under each network configuration. In total, we
collect 6,600 (88 ∗ 75) data traces per simulation. Then, we
run experiments on our testbed and measure the network
performance under each network configuration. Similarly, we
collect 6,600 data traces from our testbed. The physical data
collection time for 6,600 data traces from our testbed is around
4 days and the energy consumption is around 23kJ. The data
gathered from the simulated network and the physical network
is denoted as D𝑠 and D 𝑝 , respectively.

B. Network Configuration Prediction

The primary task in network configurations is to select the
configuration (the selections of parameters 𝑅, 𝐶, 𝐴) [50],
which allows the network to meet the performance require-
ments (𝐿, 𝐵, 𝐸) specified by the application. The parameter
selection should be as accurate as possible with minimal
data collection overhead. We formulate the network con-
figuration prediction task as a machine learning problem.
Let x = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝐿, 𝐵, 𝐸) denote the given network
performance requirements and y = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝑅,𝐶, 𝐴)
denote the configuration, which allows the network to meet
performance requirements. The goal is to learn a nonlinear
mapping 𝑓𝜃 (·) : x → y. Based on the specific application, the
user can set the performance requirements (x).

We use 𝜃 to denote the model parameters that are learned
from data in a data-driven manner. Given the fact that the
network configuration values (y) can be discretized without
losing the generality, we further restrict 𝑓𝜃 as a discriminative
model to solve a classification problem: an application can set
its performance requirements (x), and the classifier (𝑓𝜃) will
predict the network configuration (y) to satisfy the application
requirements. This data-driven learning-based model can take
advantage of a large amount of data to consistently improve its
performance. Experimental results (See Section VII-B) show
that it significantly outperforms traditional optimization-based
methods such as Response Surface Methodology (RSM) [51]
and Kriging surrogate modeling approach [52]. The latter
usually suffers the issues that include limited predictive power
and being vulnerable to uneven data distribution [53].

C. Feature Selection

In addition to the features (𝐿, 𝐵, 𝐸) that represent perfor-
mance requirements, we consider nine other features, which
include the received signal strength 𝑅𝑆𝑆 [54], the link qual-
ity indicator 𝐿𝑄𝐼 [11], the background noise 𝐺 [11], the
packet delay variation 𝑂, the power consumption variation
𝐾 , the network reliability variation 𝑀 , the received signal
strength variation 𝑉 , the link quality indicator variation 𝑄,
and the background noise variation 𝑁 . Using all features that
are relevant to the network configuration prediction problem
may not necessarily achieve the best performance but rather
increases computational cost and data collection overhead. We

Fig. 2. Importance factors of different features when using tree-based feature
selection method. Under the tree-based method, the features that are selected
at the top of the trees are in general more important than the features that
are selected at the end nodes of the trees, as generally, the top splits lead to
bigger information gains. We use the normalized importance factor generated
by the tree-based method as a metric for feature selection.

perform a study that employs three classic feature selection
methods (the tree-based method [55], the univariate feature
selection method [56], and the recursive feature elimination
method [57]) to pick the most useful features. To validate
the correctness of network performance features (𝐿, 𝐵, 𝐸)
selected by Shi et al. [28], we perform a feature-selection
study by evaluating different network features which might
play a crucial role for the network configuration prediction.
Figure 2 plots the importance factors of different features when
we use the tree-based method. As Figure 2 shows, 𝐿, 𝐵, and 𝐸
have much higher importance factors (0.315, 0.262, and 0.258)
than the rest. Similar results are observed when we use other
methods. Therefore, we use 𝐿, 𝐵, and 𝐸 as the input features
for WirelessHART networks. Please note that our method can
accept more features for other networks.

Therefore, we confirm that (𝐿, 𝐵, 𝐸) are the
best combination among all the feature candidates
(𝐸, 𝐵, 𝐿, 𝑅𝑆𝑆, 𝐿𝑄𝐼, 𝐺,𝑂, 𝐾, 𝑀,𝑉, 𝑄, 𝑁). We use (𝐿, 𝐵, 𝐸)
as input features for the models of network configuration
prediction and several baselines in Section VII. Please note
that the three input features are performance requirements,
and our method can accept more features when needed.

D. Simulation-to-reality Gap

Our goal is to learn a classifier to predict network con-
figurations on the physical data. However, it is a nontrivial
task to learn the model from either the physical data (D 𝑝)
or the simulation data (D𝑠) because of the large physical data
collection overhead. Therefore we use a small physical dataset
D 𝑝 and a large simulation dataset D𝑠 to learn the model as
explained in the next section.
Using only physical data (D 𝑝): This would result in
significant time and energy consumption due to the costly
data collection process. We first leverage the physical data
(D 𝑝) collected from the physical network to train machine
learning models and explore its feasibility for our network
configuration prediction problem. We employ two machine
learning models, DNN and support vector machine (SVM), for
classification. The input to the models is network performance
requirements and the output is network configurations. We
normalize the collected data (D 𝑝) into the [0, 1] range and
split it into training and testing dataset with a ratio of 6:4.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 5

TABLE II
MODELING ACCURACY (%), DATA COLLECTION TIME (𝑠), AND DEVICE ENERGY CONSUMPTION (𝐽) WHEN USING THE PHYSICAL DATA (D𝑝) OR THE

SIMULATION DATA (D𝑠) PRODUCED BY OMNET++ FOR TRAINING. FOR COMPARISON, OUR SOLUTION ACHIEVES 70.24% ACCURACY WITH ONLY 440
DATA SAMPLES WHICH ARE COLLECTED IN 22,000𝑠 WITH 1,502.88𝐽 OF ENERGY (SEE SECTION VII-B).

of Data
Samples Used for
Training

From a Physical Network (Train: D𝑝 , Test: D𝑝) From Simulations (Train: D𝑠 , Test: D𝑝)

Accuracy (%) Collection Time (𝑠) Energy (𝐽) Accuracy(%) Collection Time (𝑠) Energy (𝐽)

88 19.39 4.40 ∗ 103 310.61 6.52 27.41 0
528 42.16 2.64 ∗ 104 1, 863.53 13.70 163.09 0
968 57.92 4.84 ∗ 104 3, 416.34 17.69 301.95 0
2,024 67.68 1.01 ∗ 105 7, 143.11 20.17 633.11 0
3,080 78.82 1.54 ∗ 105 10, 869.61 22.44 933.99 0
3,960 79.83 1.98 ∗ 105 13, 974.26 25.70 1, 231.40 0

Fig. 3. Modeling accuracy when model is trained and tested on different data
sets (D𝑠 : the simulation data produced by OMNeT++ and D𝑝 : the physical
data). The difference between the grey bar and the blue bar indicates the
simulation-to-reality gap.

The yellow bars in Figure 3 show the modeling accuracy6,
when DNN and SVM models are used for the network config-
uration prediction, respectively. Both DNN and SVM models
trained based on the physical data can provide high modeling
accuracy (with big overhead for physical data collection)
when we test the models on the physical data (DNN: 79.83%
and SVM: 52.90%), as the yellow bars show. This justifies
the feasibility of our proposed machine learning method in
Section IV-B for the network configuration prediction and
we may use the measurements collected from the physical
network to train a good model. Unfortunately, relying on
running experiments on a physical network to explore the
configuration parameter space is impractical in many cases
because running experiments on a physical network is very
costly and time-consuming. The left side of Table II shows
the modeling accuracy, data collection time, and device energy
consumption when we train the DNN model with different
sizes of the physical data (collected from a physical network).
The modeling accuracy increases significantly from 19.39% to
79.83% with the size of the training set (D 𝑝) that increases
from 88 traces to 3,960 traces. However, the time spent on
collecting the training data (D 𝑝) increases from 1.22ℎ𝑜𝑢𝑟𝑠
to 55.00ℎ𝑜𝑢𝑟𝑠. Moreover, the energy consumed by each field
device for data collections on average increases from 310.61𝐽
to 13,974.26𝐽, which represents 0.73% and 32.73% of its total
energy capacity.

6The modeling accuracy is defined as, given a set of input network
performance requirements (𝐿, 𝐵, 𝐸) , the percentage of the testing set that
a model can select a network configuration (𝑅, 𝐶, 𝐴) , which allows the
network to meet performance requirements. The accuracy is reported with
2,640 randomly chosen test data samples from the physical dataset.

Using only simulation data (D𝑠): This would result in
low modeling accuracy due to the simulation-to-reality gap.
The simulation data can be quickly and cheaply obtained
from a simulator. As the right column of Table II show,
the time spent on generating the simulation data varies from
27.41𝑠 to 1,231.40𝑠 and no energy is consumed by any field
devices. However, a classifier that is trained based on the
simulation data (D𝑠) may suffer the following issue when
applied on the physical data. As the grey bars in Figure 3
show, both models provide high modeling accuracy when we
train based on the simulation data (D𝑠) and test the models
on the simulation data (DNN: 88.92% and SVM: 69.12%).
However, the modeling accuracy drops rapidly when we test
the models on the physical data (D 𝑝) as shown in blue
bars (DNN: 25.70% and SVM: 20.25%). The differences on
the modeling accuracy (DNN: 63.22% and SVM: 48.87%)
clearly show the effect of the simulation-to-reality gap, a subtle
but important discrepancy between reality and simulation
that prevents the simulated experience from directly enabling
effective real-world performance [58], [59]. The simulation-
to-reality gap exists in network configurations because the
theoretical models adopted by the simulator cannot capture
all real-world performance-related factors. For example, the
prerecorded noise traces and the probability-based prediction
on packet reception cannot precisely capture the effects of
packet failures caused by extensive uncertainties, variations,
and dynamics in real-world wireless deployments (see Sec-
tion VII-E). We observed similar discrepancy gaps when
using Cooja, TOSSIM, OMNeT++, and NS-3. Because of the
simulation-to-reality gap, the machine learning models trained
based on simulation data (D𝑠) for network configurations, no
matter how large the data volume is, may not generalize well
to a physical network.

E. Close the Gap by Domain Adaptation
The observations presented in Section IV-D motivate us

to explore the feasibility of using a substantial amount of
inexpensive simulation data together with a small amount of
costly physical data to train the model for network configura-
tion prediction. To this end, our objective narrows down from
solving a classification problem to using domain adaptation
to address the domain discrepancy issue. Specifically, we first
gather 𝑁𝑠 data tuples by running simulations (source domain)
and then acquire 𝑁 𝑝 data tuples by conducting experiments on

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 6

Fig. 4. Our teacher-student neural network.

the physical network (target domain). We assume 𝑁𝑠 ≫ 𝑁 𝑝

due to the significant data collection overhead on the physical
network (See Section IV-D). We assume that the source
and target domains are characterized by different probability
distribution 𝑞1 and 𝑞2, respectively. Our goal is to construct
a deep learning model that can learn transferable features
that bridge the cross-domain discrepancy and build a classifier
y = 𝑓𝜃 (x), which can maximize the target domain accuracy
(𝑓𝑠 → 𝑓𝑝) by using a small amount of physical data (𝑁 𝑝). The
detailed design of our teacher-student neural network will be
discussed in Section V.

V. TEACHER-STUDENT NEURAL NETWORK

In this section, we present our teacher-student neural net-
work for domain adaptation. Our goal is to build a classi-
fier that can maximize the target domain (physical network)
accuracy by using a small amount of physical data (𝑁 𝑝)
and adequate simulation data (𝑁𝑠) where 𝑁𝑠 ≫ 𝑁 𝑝 due to
the significant data collection overhead (See Section IV-D)
on the physical network. The teacher and student use the
same architecture so that the knowledge can be transferred
from the teacher network to the student network. Figure 4
shows our teacher-student neural network. The first stream
(teacher) operates on the simulation data and the second stream
(student) operates on the physical data. Classification loss,
distillation loss, and domain-consistent loss are used in the
training process for the student.

A. Teacher Neural Network

The teacher takes advantage of the large amount of sim-
ulation data for training and the training data (D𝑠) consists
of a total number of 𝑁𝑠 data tuples. To keep our model
light-weight, we employ Multilayer Perceptron (MLP) [60]
with three layers: 120 and 84 neurons in the first two hidden
layers, and 88 neurons in the output layer to represent the
total 88 distinct configuration categories. Rectified linear unit
(ReLU) and softmax are used to activate the hidden and output
layers, respectively. The teacher’s parameters (𝜃1) are learned
by minimizing the cross-entropy loss:

L(𝜃1) = − E
x∼D𝑠

y𝑙𝑜𝑔(𝑓𝜃1 (x)), (1)

where D𝑠 denotes the training data generated from simu-
lations, 𝜃1 denotes the teacher’s parameters, 𝑦 denotes the
one-hot label corresponding to one of the 88 considered
network configurations, and 𝑓𝜃1 (x) is the prediction made by
the teacher. We use the Adam optimizer [61] with a learning
rate of 0.01 to optimize the parameters of the teacher. A total
number of 100 training epochs with a batch size of 128 have
been used to train the neural network.

B. Student Neural Network

We train the student based on the 𝑁 𝑝 physical data with the
help of the teacher. The student can be quickly taught using
only a few shots of physical data (𝑁 𝑝 ≪ 𝑁𝑠). To achieve
this, we leverage the teacher to facilitate the training of the
student where knowledge is transferred from the simulation
domain to the physical domain. The student shares the same
architecture with the teacher but uses independent parameters.
ReLU and softmax are employed to activate the hidden and
output layers, respectively. The student’s parameters (𝜃2) are
learned by minimizing the following loss:

L(𝜃2) = L𝑐𝑙𝑠 + 𝛼L𝑑𝑖𝑠 + 𝛽L𝑚𝑚𝑑 (2)

where 𝛼, and 𝛽 are weights. We empirically set 𝛼 = 1, and
𝛽 = 0.2, which provide good performance.

Classification loss L𝑐𝑙𝑠: This loss function allows the student
to learn from the limited (𝑁 𝑝) physical data through employ-
ing the cross-entropy loss:

L𝑐𝑙𝑠 = − E
x∼D𝑝

y𝑙𝑜𝑔(𝑓𝜃2 (x)), (3)

where y is the one-hot label and 𝑓𝜃2 (x) is the prediction made
by the student.

Distillation loss L𝑑𝑖𝑠: The Distillation loss is from Knowl-
edge distillation models. Knowledge distillation was originally
proposed for model compression. A big (or ensemble) model
that achieves high accuracy but requires massive computation
time is used as the teacher model, and a small feasible
model, called the student model, is trained to imitate the
behavior of the teacher model by using the output of the
teacher model, called the soft label, for computing the cross
entropy loss function. This loss function allows the teacher
to transfer its knowledge to the student. The soft label is a
smooth probability distribution, which contains the knowledge
of the teacher model, i.e. not only the correct class but also
the similarity/correlation between classes. The generalization
ability of the student can be enhanced by the loss generated
by the soft labels, which carry the information of probability
distribution for each class [62], [63]. To compute L𝑑𝑖𝑠 with
soft labels, we use the following formula:

L𝑑𝑖𝑠 = − E
x∼D𝑠

q𝑙𝑜𝑔(𝑓𝜃2 (x)), (4)

where 𝑓𝜃2 (x) is the prediction made by the student and q is
the tempered softmax probability generated by the teacher. q
is computed by:

q =
𝑒𝑥𝑝(𝑧𝑖/𝑇)∑𝑘
𝑗 𝑒𝑥𝑝(𝑧 𝑗/𝑇)

(5)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 7

where 𝑇 is the temperature [62] and 𝑧𝑖 is the pre-softmax
output of the teacher. When 𝑇 increases, the soft label 𝑞
approaches a uniform distribution and the probability distribu-
tion generated by the softmax function becomes softer, which
provides more information as to which class the teacher finds
more similar to the predicted class, instead of giving a hard
prediction that indicates which class is correct. We set 𝑇 = 10
to generate soft labels for the student.

Domain-consistent loss L𝑚𝑚𝑑: This loss function is em-
ployed to achieve domain-consistent representations between
the source and target domains. Matching the distributions in
the original input feature space is not suitable because some
features may have been distorted by the domain shift. The
key idea of domain-consistent regularization is to align two
domains, the target (physical data) and the source (simulation
data), in a latent embedding space. Our method uses the
MMD [64] to achieve this goal. MMD is a hypothesis test that
tests whether two samples are from the same distribution by
comparing the means of the features after mapping them to a
Reproducing Kernel Hilbert Space (RKHS) [65]. We calculate
the loss as:

L𝑚𝑚𝑑 = | | E
x∼D𝑠

𝑓𝜃1 (x) − E
x∼D𝑝

𝑓𝜃2 (x) | | (6)

where 𝑓𝜃1 (·) and 𝑓𝜃2 (·) denote the pre-softmax output of the
teacher and the student, respectively. We use a learning rate
of 0.01 with the stochastic gradient descent (SGD) optimizer
to train the student. The momentum is set to 0.05 and the
weight decay parameter is set to 0.003, which governs the
regularization term of the student. A maximum number of
500 epochs have been trained on the student.

VI. SAMPLING FROM PHYSICAL NETWORK

In this section, we first present our empirical study that
quantifies the simulation-to-reality gaps under different net-
work configurations and then introduce a physical data sam-
pling method that leverages the gaps to identify the samples
needed to be collected from the physical network. Our goal
is to reduce the data collection overhead without significantly
sacrificing the network configuration prediction accuracy.

A. Quantify the Simulation-to-reality Gap

Under each network configuration 𝑖, we first use the follow-
ing formula to compute the performance centroid C𝑖 [66] of
the simulation data D𝑠

𝑖
:

C𝑖 =
1

|D𝑠
𝑖
|
∑︁

x∼𝐷𝑠
𝑖

x, (7)

where |D𝑠 | is the number of the simulation data samples under
the network configuration 𝑖 and x is the simulated network
performance vector.

We then use the Mahalanobis distance [67] between each
physical sample 𝑝𝑖 𝑗

7 and the centroid of the simulation data

7𝑝𝑖 𝑗 is a 3-dimensional performance vector, which represents the j-th
sample under the i-th network configuration

C𝑖 under the same network configuration to represent the
simulation-to-reality gap:

𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖;𝑄) =
√︃
(𝑝𝑖 𝑗𝑘 − 𝐶𝑖𝑘)𝑆−1 (𝑝𝑖 𝑗𝑘 − 𝐶𝑖𝑘)𝑇 (8)

where Q is a probability distribution on 𝑅𝑁 with positive-
definite covariance matrix S. 𝐶𝑖 , 𝑝𝑖 𝑗 belongs to Q, and 𝑆−1 is
the inverse of the covariance matrix S.

Figure 5 shows the boxplot of the Mahalanobis distances
between five physical data samples and the centroid of the
simulation data under 88 network configurations. As Figure 5
shows, the Mahalanobis distances under different network con-
figurations differ a lot. There exist 29 network configurations
under which the median Mahalanobis distances are smaller
than 4, 26 network configurations under which the median
Mahalanobis distances range between 4 and 8.7, and 33
network configurations under which the median Mahalanobis
distances are larger than 8.7. For example, the Mahalanobis
distances between five physical data samples and the centroid
of simulation data under network configuration 15 range
between 0.37 and 2.34 (0.37, 0.75, 1.09, 1.72, and 2.34), the
Mahalanobis distances between five physical data samples and
the centroid of simulation data under network configuration
48 range between 8.61 and 8.69 (8.61, 8.61, 8.62, 8.67, and
8.69), while the Mahalanobis distances under the network
configuration 76 is 8.72.

Figure 6 provides a more detailed look at the distribution
of the simulation data samples and the physical data samples
under network configurations 15 and 76. As Figure 6(a) shows,
the simulated latency ranges between 160𝑚𝑠 and 162.5𝑚𝑠, the
simulated battery lifetime ranges between 23.9 𝑑𝑎𝑦𝑠 to 24.05
𝑑𝑎𝑦𝑠, and the simulated reliability ranges between 0.97 and
1. All five network performance samples collected from the
physical network fall into those ranges, which demonstrates a
small discrepancy between the simulation data and the physi-
cal data under the network configuration 15. As a comparison,
Figure 6(b) shows a larger discrepancy between the simulation
data and the physical data under the network configuration 76
when the simulated latency values that range from 200𝑚𝑠 to
500𝑚𝑠 fall outside of the simulated values. Therefore, it is
beneficial to collect more physical data samples where a larger
simulation-to-reality gap is observed.

B. Physical Data Sampling Algorithm

As discussed in Section IV-D, sampling from a physical
network consumes significant time and energy, making our
solution unaffordable for some deployments. Moreover, the
network must operate under all configurations to collect suffi-
cient data to train a network configuration model, which may
result in undesirable network performance. For example, the
end-to-end reliability of the network is 0.26 and the end-to-end
latency is 1.50𝑠, when it operates under Network Configuration
81. Therefore, it is important to reduce the number of physical
data samples needed to train a good network configuration
model. To address the issue, we develop a physical data
sampling method to reduce the physical data needed for train-
ing without significantly sacrificing the network configuration
prediction accuracy. Our key idea is to stop collecting physical

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 8

Fig. 5. Boxplot of the Mahalanobis distances between 75 simulated network performance samples and five measured network performance samples collected
from the physical network under 88 network configurations. Central mark in the box indicates the median; bottom and top of the box represent the 25th
percentile (𝑞1) and 75th percentile (𝑞2); crosses indicate outliers (𝑥 > 𝑞2 + 1.5 ∗ (𝑞2 − 𝑞1) or 𝑥 < 𝑞1 − 1.5 ∗ (𝑞2 − 𝑞1)); whiskers indicate range excluding
outliers.

(a) Under the network configuration 15. (b) Under the network configuration 76.
Fig. 6. Five simulated network performance samples and 75 measured network performance samples collected from physical network.

data samples under the network configurations where either the
discrepancy between the simulation data and the physical data
or the discrepancy among physical data samples is small.

Algorithm 1 shows the design of our algorithm. Algorithm 1
takes the simulation data D𝑠 and the maximum number
of shots of data 𝑁𝑃𝑀𝐴𝑋 , which can be collected from the
physical network, as input, and outputs the selected physical
samples D 𝑝 . Algorithm 1 first computes the centroid of
the simulation data using Eq. 7 (Line 2) and the maximum
Mahalanobis distance among all simulation data samples under
each network configuration (Line 3−6). Algorithm 1 decides to
collect a new physical data sample under the current network
configuration if either the collected samples under this config-
uration demonstrate a large simulation-to-reality gap or there
exists a large variation between collected samples (Line 7−13).
Specifically, Algorithm 1 compares the Mahalanobis distance
between each physical data sample and the centroid of the
simulation data against the maximum Mahalanobis distance
among simulation data samples (𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖) ≤ 𝑀𝐴𝑋 (𝐿𝑖)). It
also compares the minimum Mahalanobis distance between
the current data sample and the previous data samples against

the Mahalanobis distance between the current data sample
and the centroid of the simulation data (min𝐿 (𝑝𝑖0.. 𝑗−1, 𝑝𝑖 𝑗) <
| (𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖) − 𝑀𝐴𝑋 (𝐿𝑖)) |). The algorithm leverages those
comparisons to determine whether to collect more physical
data under the current configuration for training.

VII. EVALUATION

We perform a series of experiments to validate the efficiency
of our method to identify good network configurations. We
first evaluate the capability of our method to effectively im-
prove the modeling accuracy and compare our method against
seven baselines, which include five machine learning based
methods: (i) Using the physical data for both training and
testing (TPTP); (ii) Using the simulation data for training and
the physical data for testing (TSTP) [28], [29]; (iii) Fine-
tuning (FT) method [68]; (iv) CCSA: Unified deep supervised
domain adaptation and generalization [69]; and (v) Domain
adaptive neural network (DaNN) [70], and two non-machine
learning methods: (vi) RSM method [51], [71] and (vii)
Kriging method [52], [72]. All methods use 𝐿, 𝐵, and 𝐸 as

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 9

Algorithm 1: Physical Data Sampling Algorithm

Input : D𝑠 , 𝑁 𝑝

𝑀𝐴𝑋
the maximum number of shots

Output: D 𝑝

1 for each network configuration i do
2 Compute the centroid of the simulation data 𝐶𝑖

using Eq. 7;
3 for each simulation data sample 𝑠𝑖𝑘 under network

configuration i do
4 Compute 𝐿 (𝑠𝑖𝑘 , 𝐶𝑖) between 𝑠𝑖𝑘 and 𝐶𝑖 using

Eq. 8
5 Record maximum 𝐿 (𝑠𝑖𝑘 , 𝐶𝑖) and save it to

𝑀𝐴𝑋 (𝐿𝑖);
6 end
7 for 𝑗 = 1; 𝑗 ≤ 𝑁

𝑝

𝑀𝐴𝑋
; 𝑗 + + do

8 Measure network performance and add the
sample 𝑝𝑖 𝑗 to D 𝑝;

9 Compute 𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖) using Eq. 8
10 if 𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖) ≤ 𝑀𝐴𝑋 (𝐿𝑖) or

min𝐿 (𝑝𝑖0.. 𝑗−1, 𝑝𝑖 𝑗) <
| (𝐿 (𝑝𝑖 𝑗 , 𝐶𝑖) − 𝑀𝐴𝑋 (𝐿𝑖)) | then

11 Break;
12 end
13 end
14 end

their input features. We then apply the network configurations
selected by our method on our testbed and measure the net-
work performance. We repeat our experiments with different
network setups under various wireless conditions. Finally, we
evaluate the effects of our method on closing the gap when
employing different simulators and radio models.

A. Experimental Setup

As presented in Section IV-A, we configure six data flows
on our testbed. On each data flow, sensor data is generated by
the source node and forwarded to the access points (uplink)
and then a corresponding control command is sent to the
destination node (downlink). We calculate the latency, energy
consumption, and reliability every 50𝑠. We employ the same
DNN architecture for the teacher and the student in our
method with independent weights (see Section V). Each neural
network has 120 and 84 neurons in the first two hidden layers,
and 88 neurons in the output layer. The weight 𝛼 is 1, 𝛽 of
MMD is 0.2 and the temperature 𝑇 is 10. The learning rate is
0.01 with the SGD optimizer for the student. CCSA uses the
cross-entropy loss and the semantic alignment loss between
the source and target domains with the Siamese architecture.
DaNN uses the standard classification loss and the MMD
regularization for classification and domain adaptation. FT first
uses the simulation data to train the initial model and then fine-
tunes the neural network parameters to fit the target domain
using a small amount of physical data. FT uses the learning
rate of 0.001 to tune the parameters of the last layer in the
DNN with the physical data. RSM and Kriging methods use
simulation data and different amount of physical data to build
RSM and Kriging models and use them to predict network

Fig. 7. Modeling accuracy of our method and baselines when different number
of shots of physical data are added into simulation data (3,960 data samples
in total) for training. One shot includes 88 data samples (one data sample
under each network configuration).

configurations. Specifically, RSM is a black-box modeling
technique and uses polynomial functions to approximate the
model functions between the inputs and the outputs [51],
while Kriging leverages spatial interpolation that uses complex
mathematical formulas to estimate values at unknown points
based on the values, which are already sampled [52]. We
implement our method and baselines using python3.6 with
PyTorch [73], NumPy [74], and scikit-learn [75] and run all
experiments with a Dell server, Raspberry Pis and TelosB
motes.

B. Performance of Our Method

We first evaluate the modeling accuracy of our method and
compare its performance against seven baselines using the data
traces presented in Section IV-A. 3,960 data samples from the
simulation data are used for training under all methods except
TPTP, which uses only the physical data for training. Figure 7
plots the modeling accuracy of all methods when different
number of shots of physical data are added into the simulation
data for training. As Figure 8 plots, collecting one shot of
physical data (one data sample under each of 88 network
configurations) takes 1.22 hours and consumes 310.61𝐽 of
energy. Please note that TSTP uses only the simulation data
for training and provides the lowest accuracy (30.10%) due to
the simulation-to-reality gap. The results clearly show that the
model trained with the simulation data does not work well on
the physical data. RSM and Kriging also provide poor perfor-
mance with the maximum accuracy of 35.06% and 46.87%,
respectively. Our method achieves the best performance. With
only one shot of physical data (88 data samples), our method
provides an accuracy of 50.12%. With four more shots of
physical data, our method hits 70.24% accuracy. Using a small
amount of physical data to provide a good model represents
an important feature of our method because the data collection
from a physical network is very time and energy consuming.
As a comparison, without using the simulation data, TPTP
provides only an accuracy of 19.39% and 41.21% at one shot
and five shots, respectively. This highlights the importance of
learning knowledge from simulations and transferring it to a
physical network for network configurations.

We also observe that the accuracy improves slowly from
70.24% to 78.25% when the number of shots increases from
5 to 15. However, collecting 10 more shots of physical data

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 10

TABLE III
FIVE EXAMPLE NETWORK CONFIGURATIONS SELECTED BY OUR METHOD AND TSTP. FIGURE 9 AND 10 SHOW THE NETWORK PERFORMANCE AFTER

APPLYING THE CONFIGURATIONS SELECTED BY OUR METHOD AND TSTP ON OUR TESTBED, RESPECTIVELY. OUR METHOD CAN MEET ALL
PERFORMANCE REQUIREMENTS. THE PERFORMANCE REQUIREMENTS THAT TSTP FAILS TO MEET ARE HIGHLIGHTED.

ID # Input Output (our method / TSTP)

Latency (𝑚𝑠) Battery lifetime (𝑑𝑎𝑦𝑠) Reliability (%) PRR threshold (%) # of Channel # of Tx Attempts

1 170 210 98 84 / 82 4 / 7 3 / 3
2 225 214 97 90 / 88 5 / 1 3 / 3
3 130 220 95 84 / 78 4 / 8 2 / 3
4 165 224 95 90 / 89 4 / 6 2 / 2
5 130 200 98 87 / 72 2 / 1 3 / 2

Fig. 8. Time and energy consumption to collect different number of shots of
data from a physical network. Using only physical data to train the model is
infeasible due to unacceptable time and energy overhead.

from a physical network takes a long time and consumes
much energy. As Figure 8 plots, the collection of five shots
of physical data takes 6.11ℎ𝑜𝑢𝑟𝑠 and consumes 1,502.88𝐽 of
energy, while collecting 15 shots take 18.33ℎ𝑜𝑢𝑟𝑠 and con-
sumes 4,758.70𝐽 of energy. The improvement on the modeling
accuracy is largely shadowed by the significantly increased
data collection overhead. Therefore, we use five shots in the
rest of our evaluation. Figure 7 and 8 also show that only
using physical data to train the model is inefficient. It takes
18.33ℎ𝑜𝑢𝑟𝑠 to collect enough data from a physical network,
which allows TPTP to provide an accuracy of 60.95%. By
comparing the accuracy provided by our method and TPTP,
we can clearly see the effectiveness of our method on reducing
the data collection time for training good models for network
configuration prediction. Our method consistently outperforms
those two existing domain adaptation methods (DaNN and
CCSA), which use the Siamese DNN model with different
distance loss functions. For example, our method provides an
accuracy of 70.24% when it uses five shots of physical data for
training, while CCSA and DaNN provide 47.46% and 61.07%
accuracy, respectively. The accuracy provided by FT increases
from 32.73%, to 33.42%, and then to 56.40% when the number
of shots increases from 1, to 2, and to 15 shots.

Our method can consistently outperform the baselines be-
cause it not only uses two different neural networks to learn
two specific models for different but highly related domains
with the soft labels but also employs the MMD regularization,
while both DaNN and CCSA use same weights between the
source and target domains for domain adaptation. Moreover,
the distillation loss L𝑑𝑖𝑠 of our method provides a set of
candidate network configurations for the student to choose
and the student can quickly adapt to the target domain. The
results also show that the domain-consistent loss, as a distri-

bution distance measure, is effective for eliminating domain
divergence between the source domain (simulated network)
and the target domain (physical network). Our method also
significantly outperforms FT. The low accuracy provided by
FT shows that changing only the weight of the last layer in
the DNN cannot produce a good adapted model.

We further validate the network configurations selected by
our method on our testbed by examining the actual net-
work performance. Specifically, we feed different network
performance requirements to our method, employ the selected
network configurations, and then measure the network per-
formance. We repeat the experiments under each network
configuration 108 times. Table III lists five example network
configurations selected by our method and TSTP when facing
different network performance requirements. Figure 9 plots
the boxplots of latency, battery lifetime8, and reliability when
employing five network configurations selected by our method.
As Figure 9 shows, our method always helps the network meet
the network performance requirements posed by the applica-
tion (listed in Table III). For instance, the latency, battery
lifetime, and reliability requirements are 170𝑚𝑠, 210𝑑𝑎𝑦𝑠,
and 98% in the first example (𝐼𝐷 = 1). When employing
the network configuration selected by our method (84% as
PRR threshold, four channels, three transmission attempts
for each packet), the network achieves a median latency of
161.00𝑚𝑠, a median battery lifetime of 213.76𝑑𝑎𝑦𝑠, and a
median reliability of 100%, which meet all given requirements.
Similarly, the latency, battery lifetime, and reliability require-
ments are 165𝑚𝑠, 224𝑑𝑎𝑦𝑠, and 95% in the fourth example
(𝐼𝐷 = 4). When employing the network configuration selected
by our method (90% as PRR threshold, four channels, two
transmission attempts for each packet), the network achieves
a median latency of 163.33𝑚𝑠, a median battery lifetime of
224.28𝑑𝑎𝑦𝑠, and a median reliability of 98%, which meet all
given requirements. Larger variations on latency are observed
when the number of transmission attempts for each packet
is small, which confirms the observations reported in our
previous study [28], [29]

As a comparison, we also employ the network config-
urations selected by TSTP when facing the same network
performance requirements. Table III lists the network config-

8To compute the battery lifetime, we assume that each field device is
powered by two Lithium Iron AA batteries with a total capacity of 42,700J.
We compute the radio energy consumption based on the timestamps of radio
activities and the radio’s power consumption in each state according to the
radio chip data sheet.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 11

(a) Boxplot of latency. (b) Boxplot of battery lifetime. (c) Boxplot of reliability.
Fig. 9. Network performance when employing the network configurations selected by our method (listed in Table III). Central mark in box indicates median;
bottom and top of box represent the 25th percentile (𝑞1) and 75th percentile (𝑞2); red dots indicate outliers (𝑥 > 𝑞2+1.5∗ (𝑞2−𝑞1) or 𝑥 < 𝑞1−1.5∗ (𝑞2−𝑞1));
whiskers indicate the range that excludes outliers.

(a) Boxplot of latency. (b) Boxplot of battery lifetime. (c) Boxplot of reliability.
Fig. 10. Network performance when employing the network configurations selected by TSTP (listed in Table III). The dotted boxes highlight the network
performance that fails to meet the requirements. Compared to Figure 9, our method always provides better network configurations than TSTR and help the
network meet the application performance requirements.

Fig. 11. Time consumed to train the model when using different amount of
physical data.

urations selected by TSTP and Figure 10 plots the resulting
network performance. Due to the simulation-to-reality gap, the
network configurations selected by TSTP cannot always meet
all network performance requirements. The dotted boxes in
Figure 10 highlight the network performance that fails to meet
the application requirements listed in Table III. For instance,
the latency, battery lifetime, and reliability requirements are
130𝑚𝑠, 200𝑑𝑎𝑦𝑠, and 98% in the fifth example (𝐼𝐷 = 5).
When employing the network configuration selected by TSTP
(72% as PRR threshold, one channel, two transmission at-
tempts for each packet), the network achieves a median latency
of 191.40𝑚𝑠, a median battery lifetime of 204.74𝑑𝑎𝑦𝑠, and a
median reliability of 94.00%, which fail to meet the latency
and reliability requirements.

Finally, we measure the time consumed by our method to
train a network configuration model. Figure 11 plots the time
consumption when our method uses different numbers of shots
of physical data for training on the computer equipped with a
2.6GHz 64-bit hexa-core CPU and 16GB memory. The time
consumption increases from 49𝑠 to 1,496𝑠 when the physical
data increases from one shot to 15 shots. The results also
emphasis the importance of leveraging a small amount of
physical data to train the network configuration model.

Fig. 12. Accuracy comparison among different methods with different
network topologies. All methods use five shots of physical data. Topology
1 is used for Figure 7.

C. Performance with Different Network Topologies under Var-
ious Wireless Conditions

To examine the applicability of our method, we repeat our
experiments with different network topologies under various
wireless conditions. We first vary the number of data flows,
the number of devices in the network, and the locations
of source nodes, destination nodes, and access points and
measure the performance of our method. Figure 12 plots
the accuracy comparisons between our method and seven
baselines under four example network topologies. Our method
consistently provides the highest accuracy. For instance, our
method achieves an accuracy of 67.09% under the third
network topology, while CCSA and DaNN provide 44.23%
and 59.37% accuracy, respectively. TPTP, TSTP, FT, RSM,
and Kriging achieve 39.72%, 25.78%, 41.90%, 32.56%, and
34.26% accuracy, respectively. The results confirm the im-
provements presented in Section VII-B and show our method
can consistently outperform the state of the art.

We also examine the performance of our method under
different wireless conditions. We set up three jammers on our
testbed and run Jamlab [76] on them to generate controlled

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 12

Fig. 13. Accuracy comparison among different methods under different
wireless conditions.

WiFi interference with various strengths to formulate different
wireless conditions. We create three wireless conditions: a
clean environment without controlled interference, a noisy
environment with moderate controlled interference, and a
stress-testing environment with strong controlled interference.
We train the model again with different physical data under
different wireless conditions. Figure 13 plots the modeling
accuracy under three wireless conditions when employing our
method and seven baselines. As Figure 13 shows, the accuracy
provided by our method decreases from 68.89%, to 64.99%,
and then to 62.20% when stronger interference is introduced.
We observe similar trends when employing other methods.

This exposes a limitation of the current wireless simulators,
which cannot precisely simulate the effects of external inter-
ference and environmental dynamics. To better understand the
physical data distribution, we visualize the data distribution
of (𝐿, 𝐵, 𝐸) collected from the physical data (D 𝑝) using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm [77], a dimension reduction tool for data visualiza-
tion. Figure 14 shows the network performance visualization
provided by t-SNE where different colors stand for different
network configurations. Figure 14(a) and Figure 14(b) plot the
data distributions when the network operates with and without
the presence of strong controlled interference, respectively.
Please note that those two figures include the same amount
of data points. Many data points in Figure 14(b) overlap each
other. These larger variations, resulting from the interference,
significantly increase the difficulty of transferring knowledge
learned from simulations to a physical network. With the pres-
ence of interference, our method still consistently outperforms
all baselines. For instance, in the stress-testing environment,
our method provides an accuracy of 62.20%, while other
methods provide up to 53.21% accuracy.

To illustrate the differences between physical data and sim-
ulation data, Figure 15 plots the reliability measured from the
physical network and simulated by TOSSIM under four net-
work topologies. Because of the simulation-to-reality gap, the
measured reliability is different from the simulated one. More
importantly, the variations of the measured reliability values
are much larger than the simulated ones. Such differences
highlight the importance of our method, which effectively
closes the gap and increases the accuracy of predicting a
good network configuration that allows the network to meet
performance requirements.

(a) In the stress-testing environment. (b) In the clean environment.
Fig. 14. Data visualization provided by t-SNE [77]. Larger variations
are observed in stress-testing environment, which significantly increase the
difficulty on transferring knowledge learned from simulations to a physical
network.

D. Effects of Different Losses

To study the effects of different losses on the performance
of our method, we repeat the experiments by disabling one or
two losses among the classification loss L𝑐𝑙𝑠, the distillation
loss L𝑑𝑖𝑠 , and the domain-consistent loss L𝑚𝑚𝑑 . We conduct
our experiments using Topology 1 in Figure 1 in a clean
environment. Figure 16 plots the accuracy when our method
uses different combination of loss functions. As Figure 16
shows, our method with a single loss provides very low
classification accuracy (L𝑑𝑖𝑠: 28.22%, L𝑚𝑚𝑑: 26.81%, and
L𝑐𝑙𝑠:41.21%). The accuracy is also very low (36.84%) when
our method uses L𝑑𝑖𝑠 and L𝑚𝑚𝑑 due to the critical need
of the classification loss on the target domain. The accuracy
increases to 64.60% when our method combines L𝑐𝑙𝑠 with
L𝑑𝑖𝑠 , because the distillation loss L𝑑𝑖𝑠 provides a set of
candidate network configurations for the student to choose
and the student can quickly adapt to the target domain by
combining the knowledge distillation loss and classification
loss. The accuracy further increases to 70.24% when our
method uses all three losses. The results show that the domain-
consistent loss, as a distribution distance measure, is effective
for eliminating domain divergence between the source domain
(simulated network) and the target domain (physical network).

E. Effects of Simulators and Radio Models

We further study the effects of different simulators and
radio models on the performance of our method. Unit Disk
Graph Medium (UDGM) [78] and Directed Graph Radio
Medium (DGRM) [78] are the two most popular radio models
supported by Cooja [13]. UDGM in Cooja uses the disk
communication model and assumes that the receiver inside the
communication range of the sender can successfully receive its
packets with a constant PRR (i.e., 90%). DGRM in Cooja al-
lows its user to specify the PRR of each link and use it together
with a random number to determine whether each packet can
be delivered successfully. Closest-fit pattern matching (CPM)
in TOSSIM allows its user to input ambient noise traces and
specify the gain value (propagation strength) between each
pair of devices on every channel and then generates statistical
models based on the CPM algorithm to compute the packet

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 13

Fig. 15. Reliability measured from the physical
network and simulated by TOSSIM under four
network configurations.

Fig. 16. Accuracy when our method uses different
loss functions.

Fig. 17. Accuracy comparison when using differ-
ent simulators and radio models.

delivery ratio for each pair of devices [79]. We create DGRM-
E by extending DGRM by allowing an user to specify different
PRRs on different channels for each link, and then integrate it
with TOSSIM. DISTANCE in NS-3 allow its user to specify
the locations of all wireless devices and use the shadowing
model to determine packet receptions [80]. OMNET++ allows
its user to specify device locations and background noise levels
and uses the signal propagation model (path loss model) to
compute the RSS values for packet reception prediction [81].

Figure 17 plots the accuracy of our method and our
baselines when they use the simulation data generated from
different simulators with various radio models. As Figure 17
shows, all methods achieve better performance when they use
a more realistic model, which benefits from a smaller domain
discrepancy. For instance, our method achieves 70.24% and
68.32% accuracy when it employs CPM and DEGRM-E in
TOSSIM, respectively. The high accuracy results from the
use of real-world noise or PRR traces in simulations. Our
method provides a slightly lower accuracy (63.95%) when it
uses DGRM in Cooja, which makes an unrealistic assumption
that the PRRs of a link are the same on all channels. The worse
performance (60.83%) appears when our method uses the
simple disk model (UDGM) in Cooja. Similarly, the accuracy
provided by TSTP decreases from 30.10% to 19.13% when it
uses a less realistic radio model. More importantly, our method
consistently provides the best performance and makes better
use of more realistic simulations compared to other methods.
The accuracy increases from 60.83% to 70.24% (a 9.41%
increase) when our method uses CPM in TOSSIM instead of
UDGM in Cooja, while the accuracy improvement offered by
DaNN is 4.77% when making the same change.

The consistent low accuracy provided by TSTP shows that
the simulation-to-reality gap is not tie up with a particular
simulator or radio model. Although the theoretical models
adopted by those simulators work satisfactorily in general,
they cannot capture all real-world performance-related factors.
For instance, the CPM approach in TOSSIM allows its user
to input noise traces collected from a physical network and
specify the gain value (propagation strength) between each
pair of devices on every channel and then generates statistical
models to predict packet receptions during simulations based
on the CPM algorithm. Such an approach may introduce
simulation inaccuracies because it has to use prerecorded noise
traces and predefined gain values to simulate packet failures,
and the probability-based prediction cannot precisely capture
the effects of packet failures caused by extensive uncertainties,

(a) Number of physical data samples required for training

(b) Network configuration prediction accuracy.

Fig. 18. Performance with and without the physical data sampling algorithm

Fig. 19. Performance with different numbers of physical samples when using
the TOSSIM simulator. Each experiment is repeated for 10 times with different
random seeds. The physical data sampling algorithm selects 204 physical
samples (marked as the red dashed line).

variations, and dynamics in real-world wireless deployments.

F. Effects of Our Physical Data Sampling Algorithm

Finally, we study the effectiveness of our physical data
sampling algorithm on reducing data collection overhead. We
repeat the experiments with four different simulation data

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 14

sets. Figure 18 plots the network configuration prediction
accuracy and the number of samples collected from the
physical network when our method enables or disables our
physical data sampling algorithm. As Figure 18(a) shows, the
number of physical data samples needed for training is largely
reduced with the help of our physical data sampling algorithm.
Instead of using all 440 physical data samples, our solution
with the physical data sampling algorithm only needs 204,
262, 204, and 263 physical samples when it trains the net-
work configuration models with the simulation data generated
by the NS-3, Cooja, TOSSIM, and OMNeT++ simulators,
respectively, to provide comparable prediction accuracy. As
Figure 18(b) shows, the decreases on the prediction accuracy
are no more than 4.7%. The results show that our physical data
sampling algorithm slightly reduces the network configuration
prediction accuracy provided by our method in exchange for a
proportionally much larger reduction in the number of samples
needed to be collected from the physical network. By further
reducing the number of physical data samples needed for
training, our method can be applied to large networks where
collecting physical data is very time- and energy-consuming.
Therefore, it is beneficial to employ our method with the
physical data sampling algorithm in the deployments where
the communication overhead is a major concern.

To further examine the performance of our physical data
sampling algorithm, we randomly add or remove some phys-
ical samples to/from the physical sample set selected by our
physical data sampling algorithm, use the new set to train
the model, and then measure its prediction performance. We
repeat each experiment 10 times with different random seeds.
Figure 19 plots the performance when using the simulation
data generated by the TOSSIM simulator. As Figure 19 shows,
the median accuracy of our method is 67.88% when it uses the
204 physical samples selected by our physical data sampling
algorithm for training. The median accuracy increases to
69.13% when we randomly add 40 physical samples into the
target training set. The median accuracy further increases to
69.55% when we randomly add 200 physical samples into
the training set. The results show that the physical samples
selected by our physical data sampling algorithm is enough to
provide good prediction performance and using more samples
make only a marginal improvement. On the other hand, the
prediction accuracy drops sharply when we randomly remove
some physical samples from the selected set. For instance, the
median accuracy decreases from 67.61% to 61.33% when we
reduce the physical samples from 204 to 164. The median
accuracy further decreases to 51.36% when we remove 40
more samples from the training set. The results show that
our physical data sampling algorithm can effectively keep the
important knowledge on network configuration in the training
data and remove the redundancy.

VIII. CONCLUSIONS

Over the past two decades, WMNs have been widely used
for industrial automation, military operations, smart energy,
etc. Benefiting from years of research, WMNs work well most
of the time. However, they are often difficult to configure

as the WMN configuration is a complex process, involving
theoretical computation, simulation, and field testing, among
other tasks. Relying on field testing to identify good network
configurations is impractical in many cases because running
experiments on a physical network is often costly and time-
consuming. Simulating the network performance under differ-
ent network parameters provides distinct advantages when it
comes to identifying a good network configuration, because a
simulation can be set up in less time, introduce less overhead,
and allow for different configurations to be tested under
exactly the same conditions. Unfortunately, our study shows
that many network configurations identified in simulations do
not work well because of the simulation-to-reality gap. To
close the gap, We leverage a teacher-student deep neural net-
work for efficient domain adaptation, which transfers network
configuration knowledge learned from simulation to a physical
network. Our method first uses the simulation data to learn a
teacher neural network, which is then used to teach a student
neural network to learn from a few shots of the physical data
carefully selected from the physical network. Our experimental
results show that our method consistently outperforms seven
baselines and achieves high network configuration prediction
accuracy.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant CNS-2046538 and CNS-2150010.

REFERENCES

[1] J. Shi, M. Sha, and X. Peng, “Adapting Wireless Mesh Network
Configuration from Simulation to Reality via Deep Learning based
Domain Adaptation,” in NSDI, 2021.

[2] “WirelessHART for Industrial Automation,” HART Communica-
tion Foundation. [Online]. Available: https://fieldcommgroup.org/
technologies/hart

[3] “International Society of Automation (ISA),” ISA. [Online]. Available:
https://www.isa.org/

[4] “Meshdynamics,” Meshdynamics. [Online]. Available: https://www.
meshdynamics.com/index.html

[5] “Zigbee Smart Energy,” ZigBee Alliance. [Online]. Available: https:
//zigbeealliance.org/zigbee products/smart-energy-monitor-2/

[6] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,” in ICPSs, 2016.

[7] “HART Foundation (Now FieldComm Group),” FieldComm Group.
[Online]. Available: http://www.hartcomm.org/

[8] “International Electrotechnical Commission (IEC),” International
Electrotechnical Commission. [Online]. Available: https://www.iec.ch/

[9] “Zigbee Alliance,” ZigBee Alliance. [Online]. Available: https:
//zigbeealliance.org/

[10] “WirelessHART Networks Deployed by Emerson Process
Management,” Emerson. [Online]. Available: https://www.
emerson.com/en-us/expertise/automation/industrial-internet-things/
pervasive-sensing-solutions/wireless-technology

[11] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A.
Boano, and M. Alves, “Radio Link Quality Estimation in Wireless
Sensor Networks: A Survey,” ACM TOSN, vol. 8, no. 4, 2012.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications,” in Sensys, 2003.

[13] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with Cooja,” in LCN, 2006.

[14] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in ICST, 2008.

[15] “NS-3 Network Simulator,” NS-3. [Online]. Available: https://www.
nsnam.org/

https://fieldcommgroup.org/technologies/hart
https://fieldcommgroup.org/technologies/hart
https://www.isa.org/
https://www.meshdynamics.com/index.html
https://www.meshdynamics.com/index.html
https://zigbeealliance.org/zigbee_products/smart-energy-monitor-2/
https://zigbeealliance.org/zigbee_products/smart-energy-monitor-2/
http://www.hartcomm.org/
https://www.iec.ch/
https://zigbeealliance.org/
https://zigbeealliance.org/
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.nsnam.org/
https://www.nsnam.org/

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 15

[16] Z. Q. Luo and W. Yu, “An Introduction to Convex Optimization for
Communications and Signal Processing,” IEEE J. Sel. Areas Commun,
vol. 24, no. 8, pp. 1426–1438, 2006.

[17] E. Altman, T.Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynterc, “A
Survey on Networking Games in Telecommunications,” Computers and
Operations Research, vol. 33, no. 2, pp. 286–311, 2006.

[18] M. G. Resende and P. Pardalos, Handbook of Optimization in Telecom-
munications. Springer, 2006.

[19] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “PTunes:
Runtime Parameter Adaptation for Low-Power MAC Protocols,” in
IPSN, 2012.

[20] W. Dong, C. Chen, X. Liu, Y. He, Y. Liu, J. Bu, and X. Xu, “Dynamic
Packet Length Control in Wireless Sensor Networks,” IEEE TWC,
vol. 13, no. 3, pp. 1172–1181, 2014.

[21] Q. Mao, F. Hu, and Q. Hao, “Deep Learning for Intelligent Wireless
Networks: A Comprehensive Survey,” IEEE Commun. Surv. Tutor.,
vol. 20, no. 4, pp. 2595–2621, 2018.

[22] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Commun. Surv. Tutor., vol. 21,
no. 3, pp. 2224–2287, 2019.

[23] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of Deep Reinforcement Learning
in Communications and Networking: A Survey,” IEEE Commun. Surv.
Tutor., vol. 21, no. 4, pp. 3133–3174, 2019.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in CVPR, 2016.

[25] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
Connected Convolutional Networks,” in CVPR, 2017.

[26] S. Tobiyama, B. Hu, K. Kamiya, and K. Takahashi, “Large-Scale
Network-Traffic-Identification Method with Domain Adaptation,” in
ACM WWW, 2020.

[27] M. Bartulovic, J. Jiang, S. Balakrishnan, V. Sekar, and B. Sinopoli,
“Biases in Data-Driven Networking, and What to Do About Them,” in
HotNets, 2017.

[28] J. Shi and M. Sha, “Parameter Self-Configuration and Self-Adaptation
in Industrial Wireless Sensor-Actuator Networks,” in INFOCOM, 2019.

[29] ——, “Parameter Self-Adaptation for Industrial Wireless Sensor-
Actuator Networks,” ACM TOIT, vol. 20, no. 3, 2020.

[30] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), 2021, pp. 887–901.

[31] M. Wang and W. Deng, “Deep Visual Domain Adaptation: A Survey,”
Neurocomputing, vol. 312, no. 27, pp. 135–153, 2018.

[32] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual Domain
Adaptation: A Survey of Recent Advances,” IEEE Signal Processing
Magazine, vol. 32, no. 3, pp. 53–69, 2015.

[33] D. W. Otter, J. R. Medina, and J. K. Kalita, “A Survey of the Usages
of Deep Learning for Natural Language Processing,” IEEE TNNLS, vol.
Early Access, 2020.

[34] I. B. Arief-Ang, F. D. Salim, and M. Hamilton, “DA-HOC: Semi-
Supervised Domain Adaptation for Room Occupancy Prediction using
CO2 Sensor Data,” in ACM BuildSys, 2017.

[35] T. Zhang and O. Ardakanian, “A Domain Adaptation Technique for
Fine-Grained Occupancy Estimation in Commercial Buildings,” in
ACM/IEEE IoTDI, 2019.

[36] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain Separation Networks,” in NIPS. Curran Associates Inc., 2016.

[37] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. March, and V. Lempitsky, “Domain-Adversarial Training of
Neural Networks,” JMLR, vol. 17, no. 59, pp. 1–35, 2016.

[38] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and
B. Schölkopf, Covariate Shift and Local Learning by Distribution
Matching. MIT Press, 2009, pp. 131–160.

[39] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
Domain Confusion: Maximizing for Domain Invariance,” ArXiv, vol.
abs/1412.3474, 2014.

[40] Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by
Backpropagation,” in ICML, 2015.

[41] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learn-
ing,” CoRR, vol. abs/1605.09782, 2017.

[42] “IEEE 802.15.4e WPAN Task Group.” [Online]. Available: http:
//www.ieee802.org/15/pub/TG4e.html

[43] “IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH),” IEEE.
[Online]. Available: https://tools.ietf.org/html/rfc7554

[44] “Emerson Process Management.” [Online]. Available: https://www.
emerson.com/en-us/automation-solutions

[45] “System Engineering Guidelines IEC 62591 WirelessHART by
Emerson Process Management,” Emerson. [Online]. Available:
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%
20Web%20Documents/EMR%5fWirelessHART%5fSysEngGuide.pdf

[46] “WCPS Simulator,” Washington University in St. Louis. [On-
line]. Available: http://wsn.cse.wustl.edu/index.php/WCPS: Wireless
Cyber-Physical Simulator

[47] “TelosB Datasheet Provided by Memsic Incorporation.” [Online].
Available: https://www.willow.co.uk/TelosB Datasheet.pdf

[48] J. Liu, Real-Time Systems, 1st ed. USA: Prentice Hall PTR, 2000.
[49] J. Shi and M. Sha, “ParameterSelf-Configuration and Self-Adaptation in

Industrial WirelessSensor-Actuator Networks,” in INFOCOM, 2019.
[50] D. Gunatilaka, M. Sha, and C. Lu, “Impacts of channel selection on

industrial wireless sensor-actuator networks,” in IEEE INFOCOM 2017-
IEEE Conference on Computer Communications. IEEE, 2017, pp. 1–9.

[51] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A.
Escaleira, “Response Surface Methodology (RSM) as a Tool for Opti-
mization in Analytical Chemistry,” Talanta, vol. 76, no. 5, pp. 965 –
977, 2008.

[52] T. Simpson, T. Mauery, J. Korte, and F. Mistree, “Kriging Models for
Global Approximation in Simulation-Based Multidisciplinary Design
Optimization,” in AIAA Journal, 2001.

[53] C. Caruso and F. Quarta, “Interpolation Methods Comparison,” Comput.
Math. with Appl., vol. 35, no. 12, pp. 109 – 126, 1998.

[54] K. Benkic, M. Malajner, P. Planinsic, and Z. Cucej, “Using RSSI value
for distance estimation in wireless sensor networks based on ZigBee,”
in IWSSIP, 2008.

[55] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
Variable Importances in Forests of Randomized Trees,” in NeurIPS,
2013.

[56] A. Jovic, K. Brkić, and N. Bogunović, “A Review of Feature Selection
Methods with Applications,” in MIPRO, 2015.

[57] X. Chen and J. cheol Jeong, “Enhanced recursive feature elimination,”
in Sixth ICMLA, 2007.

[58] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. P. Sampedro, K. Konolige, S. Levine, and
V. Vanhoucke, “Using Simulation and Domain Adaptation to Improve
Efficiency of Deep Robotic Grasping,” in ICRA, 2018.

[59] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from Simulated and Unsupervised Images through Adversar-
ial Training,” in CVPR, 2017.

[60] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer Perceptron and Neural Networks,” WSEAS Transactions on
Circuits and Systems, vol. 8, no. 7, p. 579–588, 2009.

[61] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR, 2014.

[62] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” in NIPS, 2015.

[63] T. Asami, R. Masumura, Y. Yamaguchi, H. Masataki, and Y. Aono,
“Domain Adaptation of DNN Acoustic Models Using Knowledge Dis-
tillation,” in ICASSP, 2017.

[64] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, “Training Generative
Neural Networks via Maximum Mean Discrepancy Optimization,” in
UAI, 2015.

[65] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain Adaptation via
Transfer Component Analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2011.

[66] E.-H. S. Han and G. Karypis, “Centroid-based document classification:
Analysis and experimental results,” in ECML PKDD. Springer, 2000,
pp. 424–431.

[67] Wikipedia, “Mahalanobis distance.” [Online]. Available: https://en.
wikipedia.org/wiki/Euclidean distance

[68] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A Comparative Study
of Fine-tuning Deep Learning Models for Plant Disease Identification,”
Comput Electron Agric, vol. 161, pp. 272 – 279, 2019.

[69] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified Deep
Supervised Domain Adaptation and Generalization,” in ICCV, 2017.

[70] M. Ghifary, W. B. Kleijn, and M. Zhang, “Domain Adaptive Neural
Networks for Object Recognition,” in PRICAI, 2014.

[71] K. K. Vadde, V. R. Syrotiuk, and D. C. Montgomery, “Optimizing
Protocol Interaction Using Response Surface Methodology,” IEEE TMC,
vol. 5, no. 6, pp. 627–639, 2006.

[72] G. Boccolini, G. Hernández-Peñaloza, and B. Beferull-Lozano, “Wire-
less Sensor Network for Spectrum Cartography based on Kriging
Interpolation,” in PIMRC, 2012.

[73] “PyTorch: An Open Source Machine Learning Framework.” [Online].
Available: https://pytorch.org

http://www.ieee802.org/15/pub/TG4e.html
http://www.ieee802.org/15/pub/TG4e.html
https://tools.ietf.org/html/rfc7554
https://www.emerson.com/en-us/automation-solutions
https://www.emerson.com/en-us/automation-solutions
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/EMR%5fWirelessHART%5fSysEngGuide.pdf
http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/EMR%5fWirelessHART%5fSysEngGuide.pdf
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
https://www.willow.co.uk/TelosB_Datasheet.pdf
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://pytorch.org

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XX 2023 16

[74] “NumPy: The Fundamental Package for Scientific Computing with
Python.” [Online]. Available: https://numpy.org/

[75] “Scikit-learn: Simple and Efficient Tools for Predictive Data Analysis
with Python.” [Online]. Available: https://scikit-learn.org

[76] C. A. Boano, T. Voigt, C. Noda, K. Romer, and M. Zuniga, “JamLab:
Augmenting Sensornet Testbeds with Realistic and Controlled Interfer-
ence Generation,” in IPSN, 2011.

[77] L. Van der Maaten and G. Hinton, “Visualizing Data using t-SNE ,”
JMLR, vol. 9, pp. 2579–2605, 2008.

[78] T. Mehmood, “Cooja Network Simulator: Exploring the Infinite Possible
Ways to Compute the Performance Metrics of IoT Based Smart Devices
to Understand the Working of IoT Based Compression & Routing
Protocols,” 2017.

[79] H. Lee, A. Cerpa, and P. Levis, “Improving Wireless Simulation through
Noise Modeling,” in IPSN, 2007.

[80] “NS-3 Shadowing Model.” [Online]. Available: https://www.nsnam.org/
docs/release/3.10/doxygen/classns3 1 1 shadowing loss model.html

[81] “OMNeT++ INET Framework and Transmission Medium,” OMNeT++
INET. [Online]. Available: https://inet.omnetpp.org/docs/users-guide/
ch-transmission-medium.html

Junyang Shi is a software engineer at Google. He
received his Ph.D. in Computer Science from State
University of New York at Binghamton in 2021 and
his B.S. degree in Electrical and Electronic Engi-
neering from the Huazhong University of Science
and Technology in 2016. His research focuses on
industrial wireless networks and Internet of Things.

Aitian Ma is a Ph.D. student in the Knight Founda-
tion School of Computing and Information Sciences
at Florida International University. His research fo-
cuses on industrial wireless networks.

Xia Cheng is a Ph.D. student in the Knight Founda-
tion School of Computing and Information Sciences
at Florida International University. He received a
M.Eng. degree from Tsinghua University in 2011
and a B.Eng. degree in Automation Engineering
from Tsinghua University in 2006. His research
focuses on industrial wireless networks and network
security.

Mo Sha is an Associate Professor in the Knight
Foundation School of Computing and Information
Sciences at Florida International University (FIU).
Before joining FIU, he was an Assistant Professor
in the Department of Computer Science at State
University of New York at Binghamton. His research
interests include wireless networking, Internet of
Things, applied machine learning, network security,
and cyber-physical systems. He published more than
60 research papers, served on the technical program
committees of 21 premier conferences, and reviewed

paper for 26 journals. He received the NSF CAREER award in 2021 and the
NSF CRII award in 2017. He received his Ph.D. degree in Computer Science
from Washington University in St. Louis in 2014, his M.Phil. degree from
City University of Hong Kong in 2009, and his B.Eng. degree from Beihang
University in 2007. He is a senior and lifetime member of ACM and a member
of Sigma Xi.

Xi Peng is an Assistant Professor in Department
of Computer & Information Sciences at University
of Delaware. His research interests include Machine
Learning, Deep Learning, and Computer Vision.

https://numpy.org/
https://scikit-learn.org
https://www.nsnam.org/docs/release/3.10/doxygen/classns3_1_1_shadowing_loss_model.html
https://www.nsnam.org/docs/release/3.10/doxygen/classns3_1_1_shadowing_loss_model.html
https://inet.omnetpp.org/docs/users-guide/ch-transmission-medium.html
https://inet.omnetpp.org/docs/users-guide/ch-transmission-medium.html

	Introduction
	Related Works
	Background of WirelessHART Networks
	Methodology
	Experimental Setup and Data Collection
	Network Configuration Prediction
	Feature Selection
	Simulation-to-reality Gap
	Close the Gap by Domain Adaptation

	Teacher-Student Neural Network
	Teacher Neural Network
	Student Neural Network

	Sampling from Physical Network
	Quantify the Simulation-to-reality Gap
	Physical Data Sampling Algorithm

	Evaluation
	Experimental Setup
	Performance of Our Method
	Performance with Different Network Topologies under Various Wireless Conditions
	Effects of Different Losses
	Effects of Simulators and Radio Models
	Effects of Our Physical Data Sampling Algorithm

	Conclusions
	References
	Biographies
	Junyang Shi
	Aitian Ma
	Xia Cheng
	Mo Sha
	Xi Peng

