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In this paper, we study the critical sensor density for partial connectivity of a large area sensor
network. We assume that sensor deployment follows the Poisson distribution. For a given partial

connectivity requirement ρ, 0.5 < ρ < 1, we prove that there exists a critical sensor density λ0,

around which the probability that at least a fraction ρ% of sensors are connected in the network
increases sharply from ε to 1 − ε within a short interval of sensor density λ. The length of

this interval is in the order of O(− log ε/ logA), where A is the area of the sensor field, and the

location of λ0 is at the sensor density where the above probability is about 1/2. We prove the
above theoretical results in the hexagonal model. We also extend our results to the disk model

that models transmission range of sensors as disks. Simulation results have verified our theoretical

results and exhibited a close match of the results in the hexagon model and the disk model.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—network topology; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Theory
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1. INTRODUCTION

The problem of connectivity of sensors deployed randomly in a large area is a
central issue in the studies of such networks. Each sensor connects only locally to
the sensors within its communication range. The connections among the sensors
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across the field rely on intermediate relays. Extensive studies have been done on
connectivity of sensor networks. Some early works focused on how many neighbors
each node should connect to in order to maximize the network throughput, such
as [Kleinrock and Silvester 1978], [Takagi and Kleinrock 1984], [Hou and Li 1986].
More recent works studied how large the node transmission range is needed to
ensure the full connectivity of the network (with high probability), or equivalently
how many nodes are needed to ensure such connectivity given node transmission
range is fixed [Bettstetter 2002], [Wan and Yi 2004], [Santi and Blough 2003]. Some
other works investigated the relationship between network connectivity and sensor
coverage and studied the deployment of minimal number of sensors in a field such
that the network is connected and the field is fully covered [Xing et al. 2005], [Zhang
and Hou 2005], [Bai et al. 2006].

However, most of the above studies focus only on the full connectivity (or k-
connectivity) of the sensors in which every single sensor is connected to the entire
network. This is a rather stringent requirement. When the sensor deployment is
random, the requirement of full connectivity inevitably creates excessive redundant
sensors, in order to guarantee the connections of a few otherwise isolated sensors.
Although the price of sensor devices keeps decreasing in recent years, consider-
ing the large scale deployment, they can still be quite expensive (usually around
$100/piece). To address the issue, we investigate the problem of partial connectivity
of the sensors in this paper.

For a given percentage requirement ρ, we are interested in the events like ”the
percentage of the sensors that are connected is at least ρ”, or ”the percentage of
the area covered by some connected sensors exceeds ρ”. We want to find how, in
general, the probabilities of these events are related to the sensor density. It is clear
that a higher density will always increase the chance of occurrence of such an event,
and the question of our concern is, for a fixed sensor field, how fast such a chance
will increase when the sensor density increases. Through our analysis, we find that
there exists a critical value of the sensor density λ0 such that the probabilities of
the above events increase sharply from some small ε > 0 to 1− ε in a short interval
centered near λ0. Our analysis also reveals that, roughly speaking, the length of
this interval is of the order O(− log ε/ logA), where A is the area of the field. In
other words, if the probability for partial connectivity is ε when the sensor density
if λ′ and is 1 − ε when the sensor density is λ′′, then λ′′ − λ′ = O(− log ε/ logA)
for large A. We further find that λ0 is such a value at which the probability for
the event to occur is about 1/2 when A is large. More precise statements on these
results are given in later sections of this paper.

The results have the following implications. For random sensor deployment in
a large field, we can always determine a critical value of the sensor density for a
required percentage of node connectivity (or area coverage) such that when the
density is slightly smaller than this critical value, the probability of meeting the
connectivity percentage is very low, and when the density is increased to slightly
above this critical value, the probability of meeting the requirement will be very
high. Moreover, this transition of the probability from a very small value to a value
nearly equal to 1 occurs in an interval whose length goes to 0 as the area of the
sensor field goes to infinity. Note that, in this study we consider a more general
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requirement of connectivity (or coverage), i.e., partial connectivity, unlike most
of the existing works that assumed full (100%) connectivity requirement. As the
simulation study will show below, the full connectivity (or coverage) would require
much greater number of sensors in the field just to avoid the exclusion of a small
fraction of isolated sensors. The savings from reducing the number of sensors will
be significant if we are willing to give up a small portion of the sensor connectivity.

We will establish the results with the following approach. We first divide the
sensor field into a hexagonal lattice and obtain the analytical results of sensor
connectivity against sensor density in the hexagon model. Then, we extend our
discussion to the usual disk model for modeling both sensor communication and
sensing range. Finally, we verify the theoretical results by comparing the hexagonal
model with the disk model through extensive simulations, and we seek the match
between the two models by adjusting the hexagon size according to the sensor
transmission radius.

2. RELATED WORK

Connectivity of the network highly depends on node density. Node density can be
controlled by deploying more nodes in a field, or equivalently by increasing node
transmission radius. Early studies of network connectivity focused on achieving
high network throughput. This is because high connectivity would cause high
interference, and thus lead to poor throughput. Kleinrock and Silvester proposed in
[Kleinrock and Silvester 1978] that for maximizing the one-hop progress of packets
towards desired receivers under the slotted ALOHA protocol, every node on average
should connect itself to six nearest neighbors. This magic number ”six” was changed
to five and seven for some other transmission protocols in [Takagi and Kleinrock
1984]. Hou and Li presented a model in [Hou and Li 1986] to consider scenario
that each node can adjust its transmission radius individually and obtained the
result that each node should on average connect to 6∼8 neighbors in order to
maximize the network throughput. However, these works did not consider the
connectivity of the whole network. As pointed out by Ni and Chandler in [Ni
and Chandler 1994], by connecting 6∼8 nearest neighbors, a small size network
would have a high probability of being connected, but it is almost certain that a
large size network would be disconnected. In fact, Gilbert [Gilbert 1961] found
that there was a critical number N0, 1.64 < N0 < 17.9, such that if every node
connects to N0 nearest neighbors, the random plane network contains an infinite
connected component with nonzero probability. The range ofN0 was later tightened
to 2.195 < N0 < 10.526 by Philips et al. in [Philips et al. 1989]. Recently, Xue
and Kumar proved in [Xue and Kumar 2004] that if each node connects to less
than 0.074 log n nearest neighbors, the probability that the network is connected
converges to 0 as the increase of n (n is the number of nodes in the networks); and
if each node connects to greater than 5.1774 log n nearest neighbors, the network is
asymptotically connected.

Some other works studied the problem of how large the node transmission ra-
dius is needed to ensure the connectivity of the networks (equivalently, given node
transmission radius, how many nodes are needed in a certain area to ensure the
connectivity). Bettstetter [Bettstetter 2002] derived an analytical expression, for a
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given network density and a random uniform distribution of nodes, to find out the
required transmission radius such that the induced network is almost surely (i.e.,
with very high probability) k-connected. Wan and Yi [Wan and Yi 2004] studied
the asymptotic critical transmission radius for nodes with uniform radius and the
asymptotic critical neighbor number for nodes that each of them can adjust their
transmission radius individually, to ensure the induced network is k-connected.
They provided a precise asymptotic distribution of transmission radius and an im-
proved asymptotic upper bound on the critical neighbor number for k-connectivity.
Santi et al. [Santi and Blough 2003] [Santi et al. 2001] studied the similar problem
that given a set of nodes randomly and uniformly distributed in a d-dimensional
region (d = 1, 2, and 3) with a fixed side length, to find the node transmission
radius to ensure the resulting network is connected with high probability. They
derived upper and lower bounds on the critical radius for one-dimensional net-
works, and non-tight bounds for two and three-dimensional networks. Through
the simulations, they also studied the minimum transmission radius that ensures a
large connected component of the network (not fully connected). The above works
all studied the asymptotic density to ensure the network connectivity with high
probability. There is no theoretical proof on the existence of a critical density λ0
at which there is a sharp increase of connectivity for the general case of partial
connectivity and no theoretical analysis for finding the exact value of such λ0. An
original contribution of this paper is to provide theoretical analysis on the critical
density for connectivity and to find the exact value of this critical density.

In wireless sensor networks, network connectivity problem is closely related to
the sensing coverage problem. This relationship between connectivity and coverage
was pointed out early by Piret in [Piret 1991] and he gave a conjecture stating that
the transmission radius of a set of nodes in an area must be at least twice as much
as their sensing radius to ensure the set of nodes connected while their sensing
range covers the whole area. More recently, Xing et al. [Xing et al. 2005] pre-
sented a geometric analysis of the relationship between connectivity and coverage,
and proposed a coverage configuration protocol that can provide different degrees
of coverage (i.e., k-coverage) for applications. Zhang and Hou also addressed this
problem in [Zhang and Hou 2005] and proposed a decentralized density control
protocol, which selects a minimum subset of densely deployed nodes that are con-
nected and can cover the entire area. Bai et al. [Bai et al. 2006] considered the
problem for placing the minimum number of sensors in a rectangular region such
that the sensor network is one or two-connected and the entire region is covered.
They proposed an optimal deployment pattern. Their work was later extended to
a more general case of finding the optimal deployment that achieves k-connectivity
(k=1, 4, 6) and full-coverage in [Bai et al. 2009].

Although most studies focus on full connectivity of the sensor networks, the
concept of partial connectivity is not new [Dousse et al. 2006]. Indeed, in the
context of continuum percolation [Meester and Roy 1996], the connectivity problem
of the sensor network can be formulated using a percolation model in Poisson
blobs. In this model, when the sensor density exceeds certain critical threshold, a
percolation occurs, meaning that with a non-zero probability θ(λ) > 0 there exists
an infinite network of connected sensors in an infinite sensor field. Furthermore,
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as it was shown in [Penrose and Pisztora 1996], for any given sensor density above
the percolation threshold, by restricting the sensor field to a sufficiently large but
finite sub-field, one can achieve a percentage of connectivity with a probability
approaching to 1 exponentially fast, as the area of the sub-field goes to infinity.
The percentage of the connectivity converges to θ(λ). This result is, however,
different from ours. The issue we are exploring here is how fast the probability
of a partial connectivity with a given connection percentage will increase, when
the sensor area is large but fixed, and the sensor density is allow to change. More
precisely, our problem is, given a sensor field with fixed area, where to locate and
how to estimate the range of the sensor density within which the probability will
change from nearly 0 to nearly 1. This later question can be more important in
a real sensor deployment situation where a sensor area is pre-fixed and one needs
to decide how many sensors to use. In this paper we provide an answer to the
later question by establishing a sharp-threshold property around a critical value of
the sensor density. Note that the critical value we introduce here for the partial
connectivity is different from the critical value for a percolation. Also see [Osher
2007] for other relevant discussions.

3. PROPERTIES OF CONNECTIVITY PROBABILITIES

We now formally describe our problems and the results. Let λ be the sensor density,
the number of sensors per unit area. Suppose NA sensors are deployed randomly
and independently in a square region of area A, where we assume NA is a Poisson
random variable NA ∼ Poisson(λA). Note that this is equivalent to assuming that
the sensors are located according to a Poisson point process. In sensor networks,
the communication range of a sensor is usually modeled as a disk with transmission
radius Rc. Two sensor nodes can communicate with each other if they are in each
other’s communication range. We are interested in the probability that certain
percentage of sensors are connected under a given density λ. A direct analysis of
this probability is difficult. We are, however, able to study the probability in a
slightly simplified model, i.e., the hexagon model. In what follows, we will first
formulate the hexagonal model and study the connectivity problem of the sensor
network in this model. We will then use the results from the hexagon model to
approximate the connectivity probability in the disk model.

3.1 The Hexagon Model

We partition the sensor field into hexagons using a regular honeycomb hexagon
lattice. Hexagons are arranged in such a way that each hexagon has two of its
six sides placed vertically. To have a fixed orientation, we assume hexagons with
adjacent vertical sides line up to form a row. Let M be a positive integer. Suppose
that in the lattice there are M rows and that in each row, there are M hexagons.
Let Hi,j denote the jth hexagon in the ith row, i, j = 1, 2, · · · ,M . Every off-
boundary hexagon Hi,j has six neighbors, including Hi,j−1 and Hi,j+1 on each side.
Let H = {Hi,j : i, j = 1, 2, · · · ,M}. Note that for large M , A = Θ(M2). Of
course, other regular lattices can also be considered for the modeling purpose. The
reason we choose hexagon lattice is that some of its properties will be needed in
the later proofs.

Let AH be the area of the hexagons. From the previous assumption, there is an
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equal probability for a sensor to fall into each Hi,j . The probability that a hexagon
will contain at least one sensor depends on λ. We denote this probability as p(λ).
Then

p(λ) = 1− e−λAH . (1)

We say a hexagon is occupied, if there is at least one sensor in it. Thus, p(λ) is
the probability that a hexagon is occupied when the sensor density is λ. We say
two neighboring hexagons are directly-connected if they are both occupied. Two
hexagons in the lattice are said to be connected, if there is a path of directly-
connected hexagons that connects them. Hexagons that are connected with each
other form a cluster (a maximal connected component) in the corresponding graph.
In this model, sensors are divided into a set of disconnected clusters.

In the hexagon model, we assume that two sensors communicate with each other
if and only if they are either in the same hexagon or in the neighboring hexagons.
By adjusting the hexagon size we can always obtain either a stronger or a weaker
connectivity assumption in the hexagon model. Such a flexibility will allow us to
obtain bounds for the probabilities of the disk model. For example, to obtain a
lower bound, we can assume a stronger connectivity hexagon model by setting the
hexagons size so that the farthest distance between two points inside two neigh-
boring hexagons is Rc, the communication range of the disk model. That is, the
hexagon edge should have a length Rc/

√
13 (see details in Figure 2(a)).

According to this definition of connectivity, two sensors are connected if and only
if they are in the same cluster of hexagons. We are interested in the percentage
of sensors which are connected within a given cluster. Let C be a cluster in the
network, and NC the total number of sensors in C. Let us consider the ratio

rN (C) =
NC
NA

. (2)

For a given ρ, 1/2 < ρ < 1, we defined the event

Bρ = {There is a cluster C such that rN (C) ≥ ρ} . (3)

Bρ is the event that at least a fraction ρ% of the sensors in the sensor field are
connected. Note that since ρ > 1/2, there can be at most one such cluster. This
is the largest cluster among all the clusters in the network. Let Pλ(Bρ) be the
probability of the event Bρ under sensor density λ. We are interested in how
Pλ(Bρ) changes as λ changes. To analyze this probability we first need to discuss
some general properties of clusters of hexagons.

3.2 The largest cluster in the hexagon network

Here we first focus on a more coarse problem. For each hexagon, instead of counting
how many sensors in it, we only ask if it is occupied. We then define an event similar
to Bρ as follows. Suppose C is a cluster of connected hexagons in the network. Let
HC be the total number of hexagons in cluster C. We define the relative size of C
in terms of the relative area in the network:

rH(C) =
HC

M2
,
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and define, for a given ρ, 1/2 < ρ < 1, the event

Dρ = {There is a cluster C such that rH(C) ≥ ρ} . (4)

Let Pλ(Dρ) be the probability of the event Dρ under sensor density λ. We can also
view Pλ(Dρ) as the probability that certain percentage of the whole sensor area is
covered by the largest cluster of connected hexagons which are occupied by at least
one sensor.

To analyze this probability, we introduce a set of binary random variables X =
{Xi,j : i, j = 1, · · · ,M} such that Xi,j = 1, if Hi,j is occupied and Xi,j = 0
otherwise. Then Xi,j , i, j = 1, · · · ,M , are independent random variables with
P (Xi,j = 1) = 1 − P (Xi,j = 0) = p(λ). Let Ω = {0, 1}{1,··· ,M}×{1,··· ,M}. A
realization x = {xi,j : i, j = 1, · · · ,M} ∈ Ω of X defines a network configuration.
Ω is the configuration space of the network.The event Dρ is completely determined
by the realizations x ∈ Ω of X.

If we use the center of each hexagon to represent that hexagon, and declare that a
center is “open” if the corresponding hexagon is occupied, and “close” if otherwise,
then it is not difficult to see that our problem here is actually a site percolation
problem in a triangular lattice. A well known result from the percolation theory
[Kesten 1982] asserts that there is a critical probability p0 = 1/2, such that to
have an infinite cluster in the lattice as M → ∞, it is necessary and sufficient to
have p(λ) > p0 = 1/2. Since p(log 2/AH) = 1/2, an immediate consequence of this
observation is the following proposition.

Proposition 3.2.1. If λ < log 2/AH then limM Pλ(Dρ) = 0.

Proof. Let D0 be the event that there is an infinite cluster of occupied hexagons
in the infinite hexagon lattice. Then Pλ(D0) = 0 when λ < log 2/AH . For every
integer M > 0, let DM

ρ be the event that Dρ occurs in a finite box of size M ×M
of hexagons in the infinite hexagon lattice. Then {DM

ρ i.o.} ⊂ D0 and therefore

lim supM→∞ Pλ(Dρ) ≤ Pλ(DM
ρ i.o.) ≤ Pλ(D0) = 0. The proposition follows.

Some other simple and useful properties of Pλ(Dρ) are given in the following
proposition.

Proposition 3.2.2. For every M < ∞, Pλ(Dρ) is a differentiable and strictly
increasing function of λ such that P0(Dρ) = 0 and P∞(Dρ) = 1.

Proof. Since Pλ(Dρ) can be written as a polynomial of p(λ), the smoothness
of this function in λ is trivial. To see that it is also increasing in λ, we note
that the event Dρ is an increasing event in the sense that if Dρ occurs under
some configuration x′ = {x′i,j}, then Dρ will also occur under any configuration
x′′ = {x′′i,j} satisfying x′′i,j ≥ x′i,j for all i and j. A simple coupling argument in
[Grimmett 1999] shows that the probability of the increasing event Dρ is a strictly
increasing function of p(λ) which, in turn, is a strictly increasing function of λ.

The following preliminary result is the key to the main theorems of this paper.

Theorem 3.2.3. There is a constant c > 0, independent of M , and a λ0 =
λ(AH ,M, ρ) > log 2/AH such that for all positive λ ≤ λ0,

Pλ(Dρ) ≤
1

2
M−c[p(λ0)−p(λ)] (5)
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and, for all λ ≥ λ0, any small δ > 0, and any small ε1 > 0, there is an M0(δ, ε1)
such that for all M > M0(δ, ε),

Pλ(Dρ−δ) ≥ 1−
(

1

2
+ ε1

)
M−c[p(λ)−p(λ0)]. (6)

Proof. See the proof in section IV.

We call λ0 in Theorem 3.2.3 the critical density. Note that λ0 depends on M , ρ
and, in particularly, AH .

Theorem 3.2.4. For a given ρ, the critical density λ0 = λ0(ρ,M) has the
property:

Pλ0
(Dρ) ≤

1

2
≤ lim inf

M→∞
Pλ0

(Dρ−δ), (7)

for any small δ > 0.

Proof. It follows immediately from Theorem 3.2.3.

Estimates similar to (5) and (6) can be obtained for the probability Pλ(Bλ).
They are given as the main theorems of this paper in the next subsection.

3.3 Probability of connectivity

For the connectivity probability Pλ(Bρ) and the critical density λ0 we have:

Theorem 3.3.1. Let λ0 and constant c be as given in Theorem 3.2.3. For every
fixed small δ and small ε1, and for all sufficiently large M (depending on δ and ε1),

Pλ(Bρ+δ) ≤
(

1

2
+ ε1

)
M−c[p(λ0)−p(λ)], (8)

whenever λ ≤ λ0, and

Pλ(Bρ−δ) ≥ 1−
(

1

2
+ ε1

)
M−c[p(λ)−p(λ0)], (9)

whenever λ ≥ λ0.

Proof. See the proof in section IV.

Intuitively, since for small δ, Pλ(Bρ−δ) ≈ Pλ(Bρ+δ) ≈ Pλ(Bρ), Theorem 3.3.1
asserts basically that, for sufficiently large M and some small ε > 0, if λ′ and λ′′

are such that λ′ < λ0 < λ′′ and that Pλ′(Bρ) = ε and Pλ′′(Bρ) = 1 − ε, then the
distance between λ′′ and λ′ is

λ′′ − λ′ = O

(
− log ε

logM

)
.

In other words, if M is sufficiently large, a relatively small increment in sensor
density λ in a neighborhood of λ0 can result a significant increase of the probability
Pλ(Bρ). On the other hand, any change of values of λ outside this neighborhood
will have much less significant influence. This is called a sharp-threshold property.
While the existence of λ0 is established, its exact value is unknown. It should be
determined experimentally.

The following assertion provides some information about where the critical sensor
density is located.
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Theorem 3.3.2. For a given ρ, the critical density λ0 = λ0(ρ,M) has the
property:

lim sup
M→∞

Pλ0
(Bρ+δ) ≤

1

2
≤ lim inf

M→∞
Pλ0

(Bρ−δ), (10)

for any small δ > 0.

Proof. This is a direct consequence of (8) and(9).

A problem related to the connectivity problem is the coverage of sensor network.
Since we do not require 100% connectivity of sensors in our study, it is necessary
to consider only the coverage of sensors in an connected cluster. Let BSρ be the
event that at least ρ ∗ 100% area is covered by the sensors from the largest cluster.
The area covered by the sensors in a cluster depends on sensing radius Rs. As we
pointed out before, in order to let two sensor nodes in neighboring hexagons be
able to communicate with each other, the edge of hexagons should be no greater
than Rc/

√
13. In order to let a sensor inside a hexagon be able to cover the entire

hexagon area, Rs should be:

Rs ≥ 2Rc/
√

13. (11)

When the above inequality holds, we have Bρ ⊂ BSρ . In other words, good coverage
can always be achieved with high probability as long as the same percentage of
connectivity is achieved and (11) holds. We summarize this into the following
theorem.

Theorem 3.3.3. Pλ(BSρ ) ≥ Pλ(Bρ), whenever Rs ≥ 2Rc/
√

13.

Therefore (9) can also be used to estimate the lower bound of the coverage
probability. Due to Theorem 3.2.3, we have a good reason to expect that the
sensor coverage probability would have the similar sharp-threshold property. That
is, for a given percentage of area coverage ρ, Pλ(BSρ ) will have a sharp increase
around a critical density. This property is verified by the simulation results.

3.4 Connectivity in the disk model

Now we discuss how to extend above results to the disk model which should be
rather straightforward. The difference between the disk model and the hexagon
model is the communication assumption between two nodes. In the hexagon model
we assume two sensors are connected only if they are in the same hexagon or in
neighboring hexagons. The distribution of the locations of the sensors in both
cases are still the same. They both follow the same distribution of the Poisson
point process. We can approximate the connectivity problem of the disk model
with two hexagon models, H1 and H2 say, to obtain upper and lower bounds. This
can be done as follows.

Let BDρ be the event that at least a fraction ρ% of the sensors are connected in
a single cluster in the disk model. Suppose the transmission range for all sensors
is Rc. In the first hexagon model H1, we scale the size of the hexagons so that
the farthest distance between points of two neighboring hexagons equals Rc (see
Figure 2(a)). Then, a connection between any two hexagons in the lattice always
implies a connection between any pair of sensors inside these two hexagons in the
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disk model. Let BH1
ρ be the event in H1 as defined before. Then, BH1

ρ ⊂ BDρ
and P (BH1

ρ ) ≤ P (BDρ ). Similarly, we can scale the size of the hexagons so that
whenever the distance between two sensors is less or equal to Rc, these two sensors
are either in the same hexagon or in two neighboring hexagons (see Figure 2(b)).
We choose the smallest possible hexagon size for this to happen and define the
corresponding lattice as H2. Let BH2

ρ be the corresponding connectivity event.

Then P (BDρ ) ≤ P (BH2
ρ ).

Applying Theorem 3.3.1 to both BH1
ρ and BH2

ρ , we conclude that there are λH1
1

and λH2
2 such that (8) holds for BH1

ρ and λH1
1 , and (9) holds for BH2

ρ and λH2
2 .

Theorem 3.4.1. There is a constant c > 0, independent of M , and two sensor
densities λH1 and λH2 such that for every fixed small δ > 0 and small ε1, and for all
sufficiently M ,

Pλ(Bρ+δ) ≤
(

1

2
+ ε1

)
M−c[p(λ

H1
1 )−p(λ)], (12)

whenever λ ≤ λH1
1 , and

Pλ(Bρ−δ) ≥ 1−
(

1

2
+ ε1

)
M−c[p(λ)−p(λ

H2
2 )], (13)

whenever λ ≥ λH2
2 .

We do not have a theoretical upper bound for the distance between λH1
1 and

λH2
2 at this point, due to the techniques used in this paper. But simulation studies

suggest strongly that (12) and (13) hold with λH1
1 and λH2

2 being replaced by a
λ3 ∈ (λH1

1 , λH2
2 ). In other words, the critical sensor density should exist for the

disk model as well.

4. PROOFS OF THE MAIN THEOREMS

In this section we prove Theorem 3.2.3 and Theorem 3.3.1. For the sake of easy
reading, we restate the theorems before their proofs.

4.1 Proof of Theorem 3.2.3

Theorem 3.2.3. There is a constant c > 0, independent of M , and a λ0 =
λ(AH ,M, ρ) > log 2/AH such that for all positive λ ≤ λ0,

Pλ(Dρ) ≤
1

2
M−c[p(λ0)−p(λ)] (14)

and, for all λ ≥ λ0, any small δ > 0, and any small ε1 > 0, there is an M0(δ, ε1)
such that for all M > M0(δ, ε),

Pλ(Dρ−δ) ≥ 1−
(

1

2
+ ε1

)
M−c[p(λ)−p(λ0)]. (15)

A key part of the proof is a result called sharp-threshold inequality ([Bourgain
et al. 1992], [Friedgut and Kalai 1996], and [Graham and Grimmett 2006]) for the
product probability measures. To apply the result we proceed as follows.
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We first make the hexagonal lattice H = {Hi,j , i, j = 1, · · · ,M} into a torus
H∗ = {Hi′,j′ , i

′, j′ ∈ Z} by identifying Hi′,j′ ∈ H∗ with Hi,j ∈ H whenever
i′ = i mod M and j′ = j mod M . In this torus we define for every k and l ∈ Z
a shift translations τk,l : Hi,j → Hi+k,j+l, i, j ∈ Z. Then τ = {τk,l, k, l ∈ Z}
forms a subgroup of automorphisms on the torus with the transitivity property:
any hexagon Hi,j can be shifted to any other hexagon Hi′,j′ with the translation
τi′−i,j′−j .

Next, we extend the definition of clusters of the hexagons in the torus in a
natural way. This means that the hexagons in the 1st row can be connected to the
hexagons in the Mth row, and the 1st column of the hexagons can be connected to
the Mth column of hexagons, depending on weather the corresponding hexagons
are occupied or not. We then extend the definition of connectivity of any two
hexagons into the torus accordingly. Of course, two hexagons joined in the torus
need not be connected in the original lattice H.

Let D∗ρ be the event that at least a fraction ρ% of the occupied hexagons are
connected in the torus. Clearly, Dρ ⊂ D∗ρ but Dρ 6= D∗ρ, that is, the occurrence of
D∗ρ does not necessary imply the occurrence of Dρ. This is because in the torus, the
connections between hexagons can go through the boundary edges of the original
lattice to reach the hexagons on the other side. If such connections are the only
ones making D∗ρ to occur, Dρ will not occur. The reason we introduce D∗ρ is that it
has some nice properties which are necessary for our proof. The connection between
D∗ρ and Dρ will become clear later.

It is not difficult to see that D∗ρ satisfies the following properties: (a) it is an
increasing event like Dρ (see the proof of Proposition 2) and (b) it is invariant
under the shift translations τk,l. The later property means if D∗ρ occurs under a
network configuration x′ ∈ Ω, and if x′′ ∈ Ω is any shift translation of x′, then D∗ρ
also occurs under the configuration x′′. We note that property (b) of D∗ρ can not
be defined for Dρ.

Let Pλ(D∗ρ) be the probability that D∗ρ will occur. In virtue of properties (a) and
(b) of D∗ρ, the sharp-threshold inequality in [Graham and Grimmett 2006] implies:

Lemma 4.1.1. There is a constant c > 0, independent of M and λ, such that

d

dλ
Pλ(D∗ρ) ≥ c∗(λ) min{Pλ(D∗ρ), 1− Pλ(D∗ρ)} logM (16)

with c∗(λ) = cAHe
−λAH .

Proof. Since this is a consequence of a more general result, we only outline the
main steps of the proof to show the connections among the key concepts. For more
details we refer the readers to [Graham and Grimmett 2006] and the references
therein.

Define the “conditional influence” of each hexagon Hi,j on the event D∗ρ as

ID∗ρ (i, j) = Pλ(D∗ρ|Xi,j = 1)− Pλ(D∗ρ|Xi,j = 0).

Then there is a constant c > 0, independent of M and λ, and a hexagon Hi,j , such
that

ID∗ρ (i, j) ≥ cmin{Pλ(D∗ρ), 1− Pλ(D∗ρ)} logM/M2.
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Since both the event D∗ρ and the product measure Pλ(·) are invariant under the
translation group τ , it is necessary that

ID∗ρ (i, j) = ID∗ρ (i′, j′) for all i, j, i′, j′ ∈ Z.

On the other hand, let p = p(λ) = 1 − e−λAH and treat the quantity Pλ(D∗ρ) as a
function of p, then we have, from formula (1.4) of [Graham and Grimmett 2006],
the identity

d

dp
Pλ(D∗ρ) =

∑
i,j

ID∗ρ (i, j).

Therefore

d

dλ
Pλ(D∗ρ) =

dp

dλ
× d

dp
Pλ(D∗ρ) = AHe

−λAH
∑
i,j

ID∗ρ (i, j).

The Lemma follows from these observations.

As a consequence of this lemma, we have

Lemma 4.1.2. There is a λ0 > 0 depending on M and ρ such that:

Pλ(D∗ρ) ≤ 1

2
M−c(p(λ0)−p(λ)), for 0 ≤ λ ≤ λ0 (17)

and

Pλ(D∗ρ) ≥ 1− 1

2
M−c(p(λ)−p(λ0)), for λ0 ≤ λ <∞, (18)

where c is the constant given in Lemma 4.1.1.

Proof. We can argue as in the proof of Proposition 3.2.2 that Pλ(D∗ρ) is con-
tinuous and increasing in λ with minimum 0 and maximum 1, and therefore there
is a λ0, 0 < λ0 <∞, such that

Pλ0
(D∗ρ) = 1/2. (19)

It also follows from the increasing property of λ → Pλ(D∗ρ) that for every λ ≤ λ0,
Pλ(D∗ρ) ≤ 1− Pλ(D∗ρ), and for every λ ≥ λ0,Pλ(D∗ρ) ≥ 1− Pλ(D∗ρ). Therefore (16)
takes the form:

d

dλ
Pλ(D∗ρ) ≥ c∗(λ)Pλ(D∗ρ) logM, if λ ≤ λ0

and
d

dλ
Pλ(D∗ρ) ≥ c∗(λ)[1− Pλ(D∗ρ)] logM, if λ ≥ λ0.

The inequalities can be further written as

d

dλ
logPλ(D∗ρ) ≥ c∗(λ) logM, if λ ≤ λ0

and

− d

dλ
log(1− Pλ(D∗ρ)) ≥ c∗(λ) logM if λ ≥ λ0.

Integrating both sides of these two inequalities from λ to λ0 and from λ0 to λ
respectively, and applying (19), we obtain (17) and (18)

ACM Journal Name, Vol. 0, No. 0, 00 2010.



Preparing Articles for the ACM Transactions · 13

Let λ0 in Theorem 3.2.3 be as given in Lemma 4.1.2. To show (14) of theorem
3.2.3 we note that since event Dρ implies event D∗ρ,

Pλ(Dρ) ≤ Pλ(D∗ρ). (20)

The estimate (14) now follows from (17) of Lemma 4.1.2.
We next show (15). As it was pointed out above, there are cases where the

occurrence of D∗ρ does not imply the occurrence of Dρ. To exclude such possibilities
we consider a slightly large event Dρ−δ for a small δ > 0, and restrict D∗ρ to some
subset of the configurations in the following so that the occurrence of D∗ρ in this
subset will imply the occurrence of Dρ−δ with a large probability.

Let φ(M) be any integer depending on M such that φ(M) → ∞, as M → ∞,
and

φ(M) = o (min{c(p(λ)− p(λ0)), 1} logM) . (21)

Let Hi, i = 1, 2, 3, 4, be the sub-lattices of H which are, respectively, the top,
bottom, left and right boundary strips of the sizes φ(M)×M , φ(M)×M , M×φ(M)
and M × φ(M). More specifically, we let

H1 = {Hi,j : i = M − φ(M) + 1, · · ·M, j = 1, · · ·M},

H2 = {Hi,j : i = 1, · · ·φ(M), j = 1, · · ·M},

H3 = {Hi,j : i = 1, · · · ,M, j = 1, · · · , φ(M)},

H4 = {Hi,j : i = 1, · · ·M, j = M − φ(M) + 1, · · ·M}.
We are going to show that for each strip, if λ > λ0 and if M is sufficiently large, then
with a large probability there will be a path of occupied hexagons which connects
one shorter side of the strip to the other shorter side of the strip (traversed long-
way) within that strip. More precisely, if we let Ei be the event that there is a
connected path of occupied hexagons inside Hi which crosses the strip Hi long-way,
then we have

Lemma 4.1.3. For i = 1, 2, 3, 4, there are constants ci > 0 such that for all large
M and λ ≥ λ0,

Pλ(Ei) ≥ 1− e−ciφ(M). (22)

Proof. The duality property of hexagon lattice and its consequences in the
percolation problem is important in our proof, and this is why we specifically choose
hexagon lattice for our model. We only need to point out the following key facts.

First, according to the duality property of hexagon lattice, the existence of a long-
way crossing of a path of occupied hexagons in a rectangular region is equivalent
to the non-existence of a short-way crossing of a path of non-occupied hexagons.

Second, for sufficiently large M , it is necessary that p(λ0) is larger than pc = 1/2,
the critical probability for the existence of an infinite cluster of occupied hexagons
in the lattice. Therefore the probability for a hexagon to be non-occupied must be
less pc, which is also the critical probability for the existence of an infinite cluster
of non-occupied hexagons.

The Lemma now can be proved with the standard arguments from the percolation
theory in [Grimmett 1999] (the proof of Theorem 6.1 in page 118 and the comments
between Lemma 11.21 and 11.22 in page 294).
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We are ready to estimate Pλ(Dρ−δ) for λ > λ0 and any given small δ > 0. Let
E = E1 ∩ E2 ∩ E3 ∩ E4, and consider the event F = D∗ρ ∩ E. Since Pλ(F ) =
Pλ(F ∩Dρ−δ) + Pλ(F −Dρ−δ), we have

Pλ(Dρ−δ) ≥ Pλ(F )− Pλ(F −Dρ−δ). (23)

Since D∗ρ and E are both increasing events, a standard application of the Fortuin
- Kasteleyn - Ginibre inequality in [Grimmett 1999] yields:

Pλ(F ) ≥ Pλ(D∗ρ)P 2
λ(E1)P 2

λ(E3) (24)

(since Pλ(E1) = Pλ(E2) and Pλ(E3) = Pλ(E4)). Therefore it follows from Lemma
4.1.3 that there is a b > 0 such that for all sufficiently large M ,

Pλ(F ) ≥ 1− 1

2
M−c(p(λ)−p(λ0)) −O(e−bφ(M)). (25)

Because of (21), this implies that for any given ε1 > 0 and sufficiently large M ,
depending on ε1,

Pλ(F ) ≥ 1−
(

1

2
+ ε1

)
M−c(p(λ)−p(λ0)). (26)

We now claim that F −Dρ−δ = ∅, and therefore P (F −Dρ−δ) = 0 in (23), for
all large M . Indeed, the occurrence of F implies that there is a close circuit of the
path of occupied hexagons surrounding the hexagons in the sub-lattice H −H1 ∪
H2 ∪H3 ∪H4. It follows that there must be a cluster connected within the original
lattice (without the torus structure) containing at least ρM2 − 4φ(M)(M − φ(M))
hexagons, where 4φ(M)(M − φ(M)) is the total number of hexagons in the strips
Hi, i = 1, 2, 3, 4. In other words, F ⊂ Dρ−δ1 with δ1 = 4φ(M)(M − φ(M))/M2.
Therefore when M is so large that δ1 < δ, F ⊂ Dρ−δ. We obtain (15) from (23)
and (26).

This completes the proof of Theorem 3.2.3.

4.2 Proof of Theorem 3.3.1

Theorem 3.3.1. Let λ0 and constant c be as given in Theorem 3.2.3. For every
fixed small δ and small ε1, and for all sufficiently large M (depending on δ and ε1),

Pλ(Bρ+δ) ≤
(

1

2
+ ε1

)
M−c[p(λ0)−p(λ)], (27)

whenever λ ≤ λ0, and

Pλ(Bρ−δ) ≥ 1−
(

1

2
+ ε1

)
M−c[p(λ)−p(λ0)], (28)

whenever λ ≥ λ0.
The proof is based on a simple application of a large deviation argument. Let us

first consider the case when λ ≤ λ0. Since Pλ(Bρ+δ) = Pλ(Bρ+δ ∩Dρ)+Pλ(Bρ+δ−
Dρ), we have

Pλ(Bρ+δ) ≤ Pλ(Dρ) + Pλ(Bρ+δ −Dρ).
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To show (27) we only need to show, in virtue of Theorem 3.2.3, that Pλ(Bρ+δ−Dρ)
is of the order o

(
M−c[p(λ0)−p(λ)]

)
. In fact, it is not difficult to show that when δ is

fixed, this quantity decays to 0 at a much faster rate.
For every configuration x ∈ Ω, let C(x) = {C1, · · · , CK} be the set of clusters in

x. Suppose C(x) and NA ∼ Poisson(λA) are given. Then, for i = 1, · · · ,K, the
conditional distribution of NCi , the number of sensors in Ci, given C(x) and NA,
the number of sensors in the field, is the binomial distribution:

NCi | C(x), NA ∼ B(rA(Ci), NA).

Let Ci0 be a cluster in C(x) such that rN (Ci0) = NCi0/NA ≥ ρ+ δ. Since the event
Dc
ρ implies that rA(Ci) < ρ for all i, we have

Bρ+δ −Dρ ⊂ {rN (Ci0) ≥ ρ+ δ, rA(Ci0) < ρ}.

The standard large deviation result in [Durrett 1991] implies that there is an
α(ρ, δ) > 0 such that

P (rN (Ci0) ≥ ρ+ δ|rA(Ci0) < ρ,NA) ≤ e−α(ρ,δ)NA .

It follows that

Pλ(Bρ+δ −Dρ)

≤ P (rN (Ci0) ≥ ρ+ δ, rA(Ci0) < ρ)

= E[P (rN (Ci0) ≥ ρ+ δ|C(x), NA), rA(Ci0) < ρ]

≤ E
(
e−α(ρ,δ)NA

)
= exp

(
−λA(1− e−α(ρ,δ))

)
.

Recall that A = O(M2). Therefore for every fixed δ > 0, Pλ(Bρ+δ −Dρ) decays to
0 at a far more faster rate than M−d for any finite d > 0. This shows (27).

The case of λ ≥ λ0 can be proved with basically the same arguments and therefore
(28) holds.

5. SIMULATIONS

The results above are obtained mainly for the hexagon model where nodes are
assumed to have communication links with other nodes in the same hexagon or
neighboring hexagons. A more commonly used communication model for sensor
networks is the disk model where two nodes within each other’s transmission range
have a communication link. The purpose of the current simulations is two-fold.
First, we study the connectivity probability in both the hexagon model and the
disk model, in order to verify the theoretical results for the disk model. Second, we
study how the connectivity probability, under various connectivity percentage ρ, is
affected by the sensor density λ and the average number of neighbor nodes Nb.

5.1 Methodology and Simulation Settings

The simulation code is written in Matlab. The sensor field is a square region with
an area of 50×50 units. We would like to remark that this is actually an appropriate
size for the area. We do not use any larger sensor field in our simulations, since this
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Input: ρ.

Output: Sequence of pairs (λ,Pλ(Bρ)).
λ = Min V alue;

REPEAT

cnt = 0;
FOR i = 1 to n

Generate a Poisson number NA with mean λ;

Place NA nodes randomly in the area;
Obtain a network by connecting nodes using hexagon model (or disk model);

IF exist a cluster larger than 100ρ%

cnt++;
ENDIF

ENDFOR

Pλ(Bρ)=cnt/n;
Output (λ, Pλ(Bρ));

λ+ = h; // h is a small increment of λ
UNTIL λ > Max V alue

Fig. 1. Algorithm

study is not about a limiting property of sensor connectivity in which the area of
the sensor field goes to infinity, but rather, we are interested in sensor fields of any
reasonable size (preferably, smaller sizes) at which the sharp-threshold phenomenon
emerges. The sharp-threshold property can only get more and more sharper as the
size of the sensor field gets larger and larger. The number NA of sensors follows
the Poisson distribution with given density λ. The NA sensor nodes are randomly
placed in the sensor field. All sensor nodes have a fixed transmission range Rc,
which is set to 1 throughout the simulations. In disk model, we assume two nodes
can communicate with each other if and only if the distance between them is smaller
than Rc; The connectivity of sensors within the hexagon model is defined as before.
The size of the hexagons will be scaled according to Rc (see the next subsection).

The algorithm, as shown in Figure 1, takes the connectivity percentage ρ as
input and outputs a sequence of pairs of λ and Pλ(Bρ) (the probability of meeting
ρ at density λ). To compute Pλ(Bρ), we generate a sufficiently large number n of
network samples to obtain a stable estimate of Pλ(Bρ) which is the total number
of network samples that meet the percentage ρ divided by n. The plots in all
simulation figures are the average of 100 runs.

5.2 Hexagon Size in the Hexagon Model

In this set of simulations, we compare the connectivity probability of the disk model
to those of several hexagon models.

In the first hexagon model, we set the size of hexagons to be as large as possible
as long as any connected nodes in the hexagon model remains connected in the
disk model. In this case, the maximum distance between two nodes in neighboring
hexagons should be smaller than the transmission range Rc in disk model. Thus,
the length of the hexagon edge l should be equal to Rc/

√
13. This gives the lower

bound for the hexagon size. See Figure 2(a). In the second hexagon model, we set
the size of hexagons to be as small as possible, as long as any connected nodes in
the disk model remain connected in the hexagon model. It is easy to see that this
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(a) Lower bound

(b) Upper bound (c) Equal-area

Fig. 2. Lower bound, upper bound and equal-area of hexagon sizes
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Fig. 3. Pλ(Bρ) versus λ with different hexagon sizes

Fig. 4. Pλ(Bρ) versus λ with different M

requires the length of hexagons l = Rc. This gives the upper bound for the hexagon
size. See Figure 2(b). We also study a third hexagon model, called an equal-area
model, in which the size of the hexagon is such that the total area of any hexagon
along with its 6 neighbors equals the area covered by a disk with radius Rc. Figure

2(c) illustrates the case. The length of hexagon edge l is equal to
√

2π
21
√
3
Rc in this

case.
Figure 3 shows the probability Pλ(Bρ) versus λ for the disk model and three

cases of the hexagon model. From Figure 3 we observe the following. 1) The
hexagon model with various hexagon sizes exhibits the same pattern as the disk
model. There is always a sharp increase of Pλ(Bρ) from 0 to 1 near some critical
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(a) h = 0.1

(b) h = 0.01

Fig. 5. Pλ(Bρ) versus λ for equal-area hexagon model when ρ = 0.95

density λ0. 2) The values of λ0 for different size of hexagons have a large variance.
As the hexagon size increases, λ0 decreases from 3.5 (for lower bound of hexagon
size) to 0.2 (for upper bound of hexagon size). This is because for a larger hexagon
size, there is a higher chance for nodes to fall into the same hexagon or neighboring
hexagons resulting a higher probability of network connection. That is, to reach
the same Pλ(Bρ), the hexagon model with a larger hexagon size requires less node
density, leading to a smaller λ0. 3) The critical density value of the equal-area
hexagon model is very close to the disk model. For the rest of simulation, we use
the hexagon size of equal-area for the hexagon model.
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(a) ρ = 0.65

(b) ρ = 0.95

Fig. 6. Pλ(Dρ) versus λ

5.3 Sharp-Threshold Phenomenon Near Critical Density

Figure 4 shows the probability Pλ(Bρ) versus node density λ in the hexagon model
with ρ = .95 and M =32, 64, 128, and 256. We notice that the threshold width
of the probability from the simulation doubles as logM doubles. This is consistent
with our theoretical finding which implies that the threshold width is of order logM .

Figure 5 shows the Pλ(Bρ) versus node density λ in the hexagon and the disk
models, where ρ is fixed at 0.95. In Figure 5(a), the increment of λ is set to be 0.1.
To have a closer look at the interval of λ that has the sharp increase of Pλ(Bρ),
we set the increment to 0.01 and obtain Figure 5(b). From Figure 5(b), we see
that the two curves (for the hexagon and disk models) are similar with each other.
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(a) ρ = 0.5 (b) ρ = 0.65

(c) ρ = 0.75 (d) ρ = 0.85

Fig. 7. Pλ(Bρ) versus λ with different ρ.

According to the previous analysis,λ0 appears at a point where Pλ(Bρ) is nearly
1/2, and the interval of λ that causes the sharp increase of Pλ(Bρ) is C/ logM
for some constant. In our simulations, we place about 80 hexagons in each row
to cover the 50×50 area, thus 1/ log 80 is equal to 0.53. From Figure 5(b) we see
that the interval for Pλ(Bρ) to increase from 0 to 1 is less than 0.53 for both the
hexagon model and the disk model, suggesting C < 1. In terms of the number of
sensor nodes deployed in the network, for the disk model, it has around 4127 sensors
(λ = 1.61) when Pλ(Bρ) is still almost 0; but with 4914 sensors (λ = 1.95), Pλ(Bρ)
is increased to almost 1. Similarly for the hexagon model, with the increase of
number of sensors from 4409 (λ = 1.75) to 5408 (λ = 2.14), Pλ(Bρ) increases from
0 to 1. That is, with less than 20% of additional sensors, Pλ(Bρ) can be increased
from 0 (no chance of connected) to 1 (highly sure of connected). From this result
we see that it is important to find this critical density for large scale deployment of
sensor networks. With a slight increase of node density over this critical point, the
connectivity probability can be improved significantly.

In the theoretical analysis, we also proved the existence of critical density for
sensor coverage and the sharp increase of probability for meeting the required per-
centage of sensor coverage. We use Pλ(Dρ) to denote the probability that the
percentage of sensor area covered by connected sensors is greater than ρ under
density λ. For the hexagon model, Pλ(Dρ) is simply calculated as the number of
connected hexagons divided by the total number of hexagons, because all hexagons
have the same size. The sensing range is assumed to be the outside diameter of
hexagons. That is, a hexagon is fully covered whenever there is a sensor falling into
the hexagon. For the disk model, we use Monte Carlo method with 100,000 ran-
dom samples to compute the percentage of area covered by the connected sensors.

ACM Journal Name, Vol. 0, No. 0, 00 2010.



22 · Haiyan Cai et al.

Fig. 8. ρ versus λ when Pλ(Bρ) ≥ 0.99

Figure 6(a) shows Pλ(Dρ) versus λ, where ρ is fixed at 0.65 (i.e., at least 65% of
the area is covered by connected sensors). Figure 6(b) shows the case where ρ is
fixed at 0.95. From Figure 6 we see that Pλ(Dρ) exhibits the same trend as Pλ(Bρ)
at critical density points.

5.4 Impact of Parameter ρ

In this set of simulations, we investigate the impact of the parameter ρ. Figure 7
shows a group of charts of Pλ(Bρ) versus λ where ρ varies from 0.5 to 0.85 (Figure
5 shows the case where ρ is 0.95). All charts for different ρ exhibit the same pattern
of the increase of Pλ(Bρ) as the increase of λ.

Figure 8 shows the correlation between ρ and λ when Pλ(Bρ) ≥ 0.99 (i.e., highly
sure that 100ρ% of nodes are connected). In general, we can see that the increase of
λ with ρ is slow for small ρ. But, the increase of λ becomes sharper for large ρ. This
is particularly true when ρ reaches 95% or even higher. Figure 8 also translates
the density λ into the number of sensor nodes (the right hand side vertical bar).
We can see when ρ is increased from 0.95 to 0.99, the number of sensors required
to meet the connectivity percentages increases from 4828 to 6006, which is much
higher than the increase of ρ. Therefore, in this case it is much more economic to
sacrifice a small percentage of node connection to save a large number of sensor
nodes.

5.5 The Number of Neighbors and Connectivity

As it was pointed out in related work, a number of works studied the relationship
between the probability of full-connectivity and the average number of neighbors
of nodes. In this set of simulations, we study the impact of the average number
of connected neighbors Nb to the connectivity percentage of the network ρ and
the connectivity probability Pλ(Bρ) in the hexagon model. Figure 9 shows Pλ(Bρ)
versus Nb, where ρ is set to be 0.99 in the set of simulations. From Figure 9, we
can see the same trend of the sharp increase of Pλ(Bρ) at some critical interval of
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Fig. 9. Pλ(Bρ) versus Nb when ρ = 0.99

Fig. 10. ρ versus Nb when Pλ(Bρ) ≥ 0.99

Nb. Pλ(Bρ) increases sharply from 0 to 1 during a small interval of Nb between 5.8
and 7.4 for disk model and between 6.4 and 8.0 for hexagon model. This result is
consistent with results obtained in [Ni and Chandler 1994] [Gilbert 1961] [Philips
et al. 1989].

Figure 10 plots the correlation between ρ and Nb when Pλ(Bρ) is set to be greater
than 0.99. The curves in this figure are surprisingly similar to those in Figure 8.
This tells us the average number of neighbors of nodes is another metric that can
describe the node density of a network accurately (which is equivalent to the metric
λ). From Figure 10, we can also see that the increasing rate of Nb is faster when ρ is
becoming larger, which confirms our conclusion that achieving a high ρ, it requires
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a much larger number of sensors. This is not economic for many sensor network
applications.

6. CONCLUSION

In this paper, we present results on how the connectivity (or coverage) probability
changes as the sensor density increases for the case of partial connectivity (or partial
coverage). Through theoretical analysis and simulation study we made the following
discoveries: 1) For a partial connectivity requirement ρ, 0.5 < ρ < 1, there is a
critical sensor density around which there is a sharp increase of the probability
that at least a fraction ρ% of sensors are connected in the network. This sharp
increase is from almost 0 to almost 1 within a short interval of sensor density. 2)
The interval for this sharp increase is in the order of O(1/ logA), where A is the
sensor area, and the location of the critical density is the density at which the above
probability is about 1/2. This result allows us to accurately determine the sensor
density in order to meet the connectivity requirement with high probability. 3) We
obtained the similar results of sharp increase of probability for partial sensor area
coverage as the increase of sensor density.
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