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Research efforts over the last few decades produced multiple wireless technologies, which are readily avail-

able to support communication between devices in various dynamic Internet of Things (IoT) and robotics

applications. However, single radio technology can hardly deliver optimal performance across all critical

quality of service (QoS) dimensions under the typically varying environmental conditions or under varying

distance between communicating nodes. Using a single wireless technology therefore falls short of meeting the

demands of varying workloads or changing environmental conditions. Instead of pursuing a one-radio-fits-all

approach, we design ARTPoS, an Adaptive Radio and Transmission Power Selection system, which makes avail-

able at runtime multiple wireless technologies (e.g., WiFi and ZigBee) and selects the radio(s) and transmission

power(s) most suitable for the current conditions and requirements. The principal components of ARTPoS

include new empirical models of power consumption and packet reception ratio (the latter can also be refined

online) and online optimization schemes. We have implemented our system and evaluate it on the physical

testbed consisting of our new embedded platforms with heterogeneous radios. Experimental results show that

ARTPoS can significantly reduce the power consumption, while maintaining desired link reliability, compared

to standard baselines.
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1 INTRODUCTION
Diverse wireless technologies, produced by research over the years, are available to support com-

munication between devices in various Internet of Things (IoT) applications. However, each of

these technologies were originally designed with different goals, such as high throughput, low

power consumption, low latency, and robustness to interference, and thus offer very different char-

acteristics. Single radio technology can hardly deliver optimal performance in all desirable quality

of service (QoS) dimensions, especially under varying environmental conditions. For instance, WiFi
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can provide high throughput, but suffers from high power consumption. A considerable amount of

energy can be wasted if a WiFi radio experiences irregular data transmission at low data rate such

that it stays longer in a power-hungry active mode, rather than in the power save mode. On the

other hand, ZigBee is power-efficient, but cannot support high data rate applications.

Using a single wireless technology therefore cannot meet the demands of varying workloads

or changing environmental conditions. This issue becomes further pronounced with emerging

mobile IoT applications that involve placing embedded devices on the user’s body or other mobile

objects. Monitoring and controlling mobile objects open up opportunities for novel and exciting

IoT applications (e.g., assisted living, health monitoring, and multi-agent autonomous vehicular

and robotic systems), while also introducing the fundamental challenge of maintaining optimal

wireless communication between devices under the following uncertainties: Network Traffic
Uncertainties: The network traffic is subject to spontaneous changes. For instance, in a health

monitoring application, a wearable device may produce low amount of data during some hours of

the day, but sporadically require rapid transmission of large volume of data in response to a critical

medical condition. Moreover, devices may have multiple sensors, with diverse traffic patterns, and

the system may turn ON or OFF any of the sensors at any given time [32].Wireless Environment
Uncertainties: The wireless environment changes when the device moves around. At times, a

mobile device will need to be able to deal with a highly noisy environment; at other times it may

enjoy a clean environment [32]. A stationary device may also experience environment changes due

to changing ambient interference. Given the dynamic nature of communication in IoT applications,

a traditional one-radio-fits-all approach cannot meet the challenges associated with the dynamics

and uncertainties in network traffic and operating conditions.

Fortunately, embedded system hardware and radio technologies have been seeing appreciable

advancement. Heterogeneous radios, e.g., WiFi, LTE, Bluetooth, and ZigBee are becoming increas-

ingly available in modern embedded or mobile devices. Most smartphones nowadays support

WiFi, LTE, and Bluetooth. A majority of modern devices designed for IoT applications also support

heterogeneous radios. For instance, Firestorm platform [1] supports Bluetooth low energy (BLE) and

ZigBee and uses a 32 bit low-power microcontroller with the duty cycling capability. TI CC2650 [34]

integrates two radios (i.e., ZigBee and BLE) on a single chip. Raspberry Pi 3 model B [28] uses a

Broadcom single-chip radio supporting both WiFi and BLE. IOT-Gate-iMX7 [20] is an industrial

IoT gateway, which supports 4G/LTE, WiFi, Bluetooth, and Zigbee. The ZiFi device [39] support

both WiFi and ZigBee. Recent hardware advancement offers new opportunities to use multiple

wireless technologies efficiently.

This paper aims to address the previously stated networking challenges, while leveraging the

above-stated hardware advancements; specifically, it makes the following contributions:

• We design the Adaptive Radio and Transmission Power Selection (ARTPoS) system that makes

available multiple wireless technologies at runtime and selects the radio(s) and their trans-

mission power(s) that are best suited for the current network traffic and operating conditions.

• We develop new offline modeling approaches that allow the selection system to adapt to
large variance in power consumption and link reliability measurements.

• We formulate the problem of radio and transmission power selection as an optimization

problem
1
and develop two practical (lightweight) online solutions; the latter solution uniquely

allows online updating of the link reliability models, to enable adapting to runtime environ-

ments that deviate from the offline settings that were used to train the models.

1
In this paper, we focus on minimizing the energy consumption on the link level and the sender side (IoT end devices),

since the IoT gateways are usually not or much less energy-constrained.
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• We implement the ARTPoS in Raspbian Linux and Contiki and evaluate it on a new embedded

platform supporting WiFi, ZigBee, and BLE; these efforts demonstrate the unique benefits of

adaptive runtime selection of radios and their transmission powers.

We show that our ARTPoS implementations clearly outperform two baselines (Fixed-power and

ART-WiFi) in terms of power consumption, while delivering similar link reliability. Expectedly,

ART-ZigBee registers the lowest power consumption, but fails to provide any meaningful link

reliability for all data rates above 1000 packets/period. Importantly, this advantage of the ARTPoS

implementations is shown to hold under various indoor and outdoor settings, and with and without

interference. Lastly, we show that the newer ARTPoS-irp version is able to exploit its special

(runtime) model adaptation capacity to provide, on average, a 3.7% better packet delivery rate and

13.5mW power savings, over the original ARTPoS implementation.

The remainder of the paper is organized as follows. Section 2 reviews related work and Section 3

introduces our ARTPoS design. Section 4 presents the power consumption and link reliability

modeling and Section 5 introduces our problem formulation and solution strategy. Section 6

presents our experimental evaluation. Section 7 concludes the paper.

2 RELATEDWORKS
Bandwidth aggregation for a device with multiple network interfaces has been studied extensively

in the literature and many techniques are readily available [12]. Those early efforts are not directly

applicable to embedded wireless devices with power constraints since they were not designed to

provide energy-efficient wireless radio interfaces [17, 24]. There has also been increasing interest

in studying the energy-aware bundling or switching between WiFi and 3G/4G radios on smart-

phones [4, 35]. There exists software, e.g., VideoBee, Super Download Lite-Booster, MPTCP in iOS,

KT’s GiGA LTE, that support concurrent use of WiFi and cellular radios. More recently, research

efforts have begun to pay more attention to energy efficiency in the context of smartphones. Exam-

ples include generating energy models for smartphones [7, 9, 23, 37, 38] andWiFi/3G/LTE [2, 14, 31]

and developing radio switching or bundling approaches [17, 23–25, 27]. These existing approaches

are either limited to mainly WiFi and 3G/4G on smartphone platforms or unaware of transmission

power control, thus they are not directly applicable to support energy-efficient data transfer using

heterogeneous radios in various IoT embedded platforms. Generally speaking, it is largely unknown

how to energy-efficiently use radios with very different characteristics through runtime radio and

transmission power adaptation. To address this critical gap in the current state of the art, this

paper investigates the joint impact of radio and transmission power selection on energy efficiency

and link reliability, and proposes a practical approach that intelligently uses a high throughput

radio (i.e., WiFi) and an energy-efficient radio (i.e., ZigBee). To our knowledge, the ARTPoS system

presented in this paper is the first to support not only runtime bundling and switching between

WiFi and ZigBee but also adaptive transmission power control, that proactively minimizes power

consumption subject to given network traffic and operating conditions.

Transmission power control for a single radio has been extensively investigated in the literature

of wireless sensor networks and wireless mesh networks. Indirect link quality metrics such as

received signal strength indication (RSSI) and link quality indicator (LQI) [18, 19] or direct link

quality metrics such as packet reception ratio (PRR) and packet error rate (PER) [10, 13] have been

used to measure the link quality. Heuristics [5, 11, 13] and control-theoretic approaches [10, 18, 19]

have been applied to achieve the desirable link quality by controlling the transmission power at

runtime. These existing approaches, designed to select the transmission power of a single radio,

are not directly applicable here, since the power consumptions have to be compared between

different radios and the link quality and power consumption of multiple radios have to be jointly
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Fig. 1. System architecture.

considered. In contrast, this paper employs a pragmatic integrated systems approach to optimize the

transmission power selection together with the radio selection. The performance of our ARTPoS

has been demonstrated via implementation and experiments on real hardware.

3 ARTPOS SYSTEM ARCHITECTURE
This section presents the design of ARTPoS. Fig. 1 shows the system architecture. The Modeling
Engine generates the power consumption and link reliability models needed for the radio and

transmission power selection (Section 3.1). The Radio/Transmission Power Selection Engine
selects the best-suited radio(s) and transmission power(s) based on the application specified data

rate and the throughput of each available link measured at runtime (Section 3.2). Multiple Radio
Controllermodules (e.g., WiFi, BLE, and ZigBee controllers) exist in ARTPoS. Each radio controller

controls the state (i.e., On or Off) of a radio and sets its transmission power based on the decision

made by the Radio/Transmission Power Selection Engine, while the User Interface supports the
interactions with system users (Section 3.3).

To support the realization of ARTPoS, we have built a new embedded platform (as shown in

Fig. 1) with heterogeneous radios consisting of WiFi, ZigBee, and BLE by instrumenting a Raspberry

Pi 3 Model B [28] with a TI CC2650 Development Kit [34], which is connected to the Raspberry Pi

through a USB port. Raspberry Pi integrates a Broadcom BCM43438 single chip radio processor

supporting WiFi and BLE, while CC2650 is the core wireless MCU supporting ZigBee and BLE

on CC2650 Development Kit (currently, we use the BLE radio on Raspberry Pi since the Contiki

has not yet implemented the BLE stack in its master branch). The integrated emulator (XDS100v3)

on the CC2650 Development Kit enables the communication between the Raspberry Pi and the

CC2650 MCU through UART. To power the device, we use a USB battery to which a Monsoon

power meter [33] is connected to measure the power consumption.

We have realized ARTPoS in Raspbian Linux [29], a Debian based Linux system for Raspberry

Pi, and Contiki [8], an operating system for low-power wireless IoT devices. To support WiFi, our
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(a) Boxplot of WiFi at 1 dBm to 21 dBm. (b) A 5-second trace of WiFi at 1 dBm.

(c) Boxplot of ZigBee at -21 dBm to 5 dBm. (d) A 5-second trace of ZigBee at 1 dBm.

Fig. 2. Radio power consumptions when WiFi and ZigBee turn on respectively and transmit at the maximum
speed. The traces are measured by a Monsoon power meter [33]. In boxplot, central red mark in box indicates
median; bottom and top of box represent the 25th percentile (q1) and 75th percentile (q2); crosses indicate
outliers (x > q2 + 1.5 · (q2 − q1) or x < q1 − 1.5 · (q2 − q1)); whiskers indicate range excluding outliers.

ARTPoS implementation adopts the 802.11 MAC and physical layer implementations provided by

the Linux kernel and employs the libpcap library for sending and receiving packets to/from the

MAC layer. Similarly, our implementation adopts the Linux’s BLE implementations and HCI tools to

support BLE and uses the 802.15.4 physical layer implementations in Contiki to support ZigBee. Our

implementation also adopts the existing UART implementations in Raspbian and Contiki to support

the communication between Raspberry Pi and CC2650. In Fig. 1, the existing implementations in

Raspbian Linux and Contiki adopted by ARTPoS are marked with dash lines, while our new designs

are marked with solid lines. WiFi controller, BLE controller, and ZigBee controller are three radio

controllers that control WiFi, BLE, and ZigBee radios, respectively. We intentionally implement all

modules except the ZigBee Controller in Raspbian Linux, since Raspberry Pi has richer hardware

resources. The design of the major modules in ARTPoS are discussed next.

3.1 Modeling Engine
The Modeling Engine generates the power consumption model and link reliability model to support

runtime radio and transmission power selection. Most existing solutions for transmission power

control for a single radio use a simple power model assuming that using a lower transmission

power level leads to lower power consumption. However, this simple model no longer works

for a device with multiple radios since the power consumptions have to be compared between

different radios. Hence, our Modeling Engine is designed to take real power consumption traces

as input and generate power models accordingly. As an example, Fig. 2 shows the radio power

consumptions when the WiFi and ZigBee radios on our embedded platform turn on respectively

and transmit at the maximum speeds at all available transmission power settings. As shown in

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.
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Fig. 2(a), the median power consumption increases from 789mW to 905mW to 1269mW when WiFi

is on and the transmission power increases from 1dBm to 19dBm to 21dBm, while the median power

consumption increases from 11.9mW to 18.5mW to 30mW when ZigBee is on and the transmission

power increases from -21dBm to 0dBm to 5dBm as shown in Fig. 2(c). Large variances can be seen

in the boxplot in Fig. 2(b) and Fig. 2(d), which show the 5-second power measurements when WiFi

and ZigBee transmit at 1dBm, respectively. The large variance is caused by the power consumption

differences when the radio hardware is at different states, making the first statistical moments (e.g.,

mean or median) unsuitable to estimate the radio power consumption.

The Modeling Engine also generates the link reliability model based on the PRR measurements at

difference distances between the sender and the receiver, and when the sender transmits at different

transmission power. PRR can be defined as the fraction of transmitted packets successfully received

by the receiver. Our Modeling Engine provides a feature that controls each radio to transmit packets

using a single transmission power, then proceeds to the next power in a round robin fashion.

With this feature, the PRR measurements for all radios and transmission powers can be done

automatically at each distance. However, changing the distance between the sender and receiver

has to rely on human operators, introducing labor-intensive measurement overheads. Therefore, it

is important to use a frugal set of distance samples that will produce a training data set suitable for

effective (subsequent) model development.

Therefore, the Distance Sample Generator is designed to generate suitable distance samples

based on a feasible communication range and the desired number of distance samples. The desired

number of distance samples is decided by the total time allowed for PRR measurements divided by

the measurement execution time at each distance. A statistical design of experiments approach,

commonly used in Engineering optimization, is employed to generate the distance samples. For

instance, the communication range considered, 0− 200m (based on our observed maximum commu-

nication range of WiFi/ZigBee/BLE), is divided into three zones. Zone 1, 0 < x ≤ 30m, corresponds

to the spatial range in typical home or office-space IoT applications, where a low-power radio like

ZigBee is seeing increasing popularity; Zone 2, 30 < x ≤ 100m, corresponds to the spatial range

in typical commercial/residential buildings as well as factories and warehouses (i.e., industrial

IoT or IIoT applications) where ZigBee becomes progressively less effective, and WiFi is expected

to become more dominant; and Zone 3, x > 100m, corresponds to the spatial range (typical of

emerging cloud robotic and multi-robot applications) where WiFi with greater range capacity will

typically dominate. In each of these ranges, we use the Latin hypercube sampling (LHS) method to

generate 10 distance samples. LHS is a popular approach to generate near-random samples that

can provide a relatively uniform coverage of an input space or a probability space [21]. Unlike

factorial design or simple Monte Carlo simulations, the size of the sample set yielded by LHS does

not scale exponentially with the number of input parameters, thereby making LHS more suitable

to design frugal set of experiments (as needed here). A LHS containing n sample points (between 0

and 1) overm dimensions is a matrix of n rows andm columns. Each row corresponds to a sample

point. The values of n points in each column are randomly selected, one from each of the intervals,

(0, 1/n), (1/n, 2/n), . . . , (1 − 1/n, 1). We use the optimal LHS implementation, which maximizes the

minimum Euclidean distance between the samples [26]. To demonstrate the PRR measurement

process, we collect a series of PRR traces by varying the distance between the sender and receiver

following the 30 distance samples generated by LHS. Section 4.2 will discuss the method that is

used to train models of PRR as functions of the respective radio transmission power settings based

on our collected PRR traces.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.
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3.2 Radio/Transmission Power Selection Engine
The Radio/Transmission Power Selection Engine implements ARTPoS core logic. It is designed

to facilitate the identification of the best-suited radio(s) and transmission power(s) at runtime.

TheModel Container stores the power consumption model and link reliability model generated

by the Modeling Engine. With these two models, the Optimizer selects the best radio (or a set of

radios) and their optimal transmission power(s) based on the application specified data rate and

the throughput of all available links measured by the radio controllers. Section 5 will discuss the

problem formulation and optimization in detail.

3.3 Radio Controllers and User Interface
The Radio Controllers are important design constructs of ARTPoS. Their main purpose is to forward

data packets between the application and the radio stacks. The Radio Controllers are responsible

for switching on the radio(s) selected by the Radio/Transmission Power Selection Engine, keeping
the unselected radio(s) off, applying the selected transmission power(s), and routing data packets

between the application and the radio stack(s) of the selected radio(s). The Link Monitor gathers
the runtime link statistics (i.e., throughput and PRR) and feeds them to the Optimizer. To support

WiFi, BLE, and ZigBee on our embedded platform, we have implemented three Radio Controllers

(i.e., WiFi Controller, BLE Controller, and ZigBee Controller as shown in Fig. 1).

The User Interface supports the interactions between our ARTPoS and its user. First, it allows

the system user to reveal the debugging and operation logs through a SSH connection. Second, it

notifies the user to move the device to the next distance when the Modeling Engine finishes the

PRR measurements at the current distance. Third, it allows the application to set its desired data

rate at runtime.

4 MODELING
This section presents the development of tailored regression models with specialized smoothing

characteristics, to represent the (uncertain) nodal power consumption and PRR variations as

functions of the radio transmission power settings. This modeling approach is aimed to facilitate

robust radio and transmission power selection decisions (failure to address these uncertainties

undermines radio selection processes, as demonstrated later in Section 5.2).

4.1 Power Consumption Modeling
The measurements from Section 3.1 are used to develop quantitative models of power consumption,

as functions of the transmission power setting (p) of the concerned radio. As evident from Fig. 2,

significant variations, which cannot be solely attributed to change in radio transmission power, are

inherent in the measurements. We therefore represent the platform base power consumption with

all radios Off (Ep (V )), and the respective platform power consumption with only Bluetooth on

(Eb (V ,pb )), only Zigbee on (Ez (V ,pz )), and only WiFi On (Ew (V ,pw )) as functions of uncertain
parameters V and the respective transmission power of the Bluetooth, ZigBee, and WiFi radios (pb ,
pz , and pw , respectively).

Here the quantity of interest (QoI), i.e., total power consumption, is a function of the design

variable (radio transmission power setting) and a vector of uncertain parameters V , where the
latter can be assumed to be outside the control of the designer and not practically measurable in

the current context (e.g., radio backOffs caused by failed clear channel assessment and inaccurate

power meter reading). Considering the availability of dedicated QoI data (Section 3.1), it can be

assumed that the uncertainty therein is quantifiable. However, given the observed large variance and

non-normal distribution of the platform power consumption data (Fig. 2), using the first statistical

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.
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moments (e.g., mean or median) is deemed not suitable. Secondly, since battery capacity is currently

a critical bottleneck in most wireless IoT and embedded system devices, and radios can be a major

contributor to power consumption in such devices, we argue that energy over-expenditure (and

the uncertainty associated with it) should be perceived as a risk − one that can lead to significantly

reduced device uptime and/or frequent switching to low performance modes for the concerned

device. Hence, we propose to use the notion of s-risk [36], to provide a robust or uncertainty-aware
scalar measure of the risk associated with this expense under any given radio setting.

The notion of s-risk, also known as “conditional-value-at-risk”, originated in the Finance do-

main [15, 30]. Among risk metrics, the s-risk model is well established as a more generalizable

model [15] (requires minimal assumptions w.r.t. the underlying process), and thus considered to be

a suitable choice in this nascent application setting. We use the example of the platform power

consumption with only WiFi On (Ew ), to further describe the s-risk concept. Assuming that Ew
follows a continuous probability distribution, for a given risk-aversive parameter γ (0 <= γ <= 1),

the s-risk of Ew can be defined as the average value of Ew over its worst 1 −γ outcomes. Therefore,

assuming N samples of Ew are available, s-risk can be expressed as:

Sγ (Ew (V ,pw )) =
1

(1 − γ )N

∑
∀k ∈Γ

[
Ew (V ,pw )k

]
Γ = set of the highest (1 − γ )100% values of Ew

(1)

It is readily evident from Eq. 1 that higher values of γ leads to greater aversion of (energy expen-

diture) risk or more conservative decisions, in determining the optimal radio settings (optimization

approach is described in the next section). From a practical perspective, this “risk-aversive parame-

ter" γ can be designed to be adaptive to the battery state − e.g., the system will use increasingly

greater value of γ when the device goes from normal to low and low to critical battery states. Such

heuristics could preserve operational feasibility albeit at the cost of reduced data transfer rates.

Owing to its ability to consider tails of probability distributions (with the help of higher values of

γ ) and ease of interpretation and computation, s-risk provides a tractable stochastic measure of the

worst-case scenarios. Based on the definition in Eq. 1, we compute the following:

• s-risk value of the platform baseline power consumption (Sp ) when all radios are Off;

• s-risk value of the platform power consumption with only BLE on (Sb ). (Raspberry Pi only

supports single transmission power for BLE.);

• s-risk values of the platform power consumption with only ZigBee On (Sz ) at the following
different transmission power settings: pz ∈ {−6,−3, 0, 1, 2, 3, 4, 5} dBm;

• s-risk values of the platform power consumption with only WiFi On (Sw ) at the following
different transmission power settings: pw ∈ {1, 2, . . . , 20, 21} dBm.

All s-risk values are computed at a prescribed γ = 0.8, which here calls for averaging over the

worst 50 values in each case.

The s-risk values of the platform power consumption with only WiFi On and only ZigBee On are

then separately modeled as linear regressions of their respective transmission settings. A piecewise

linear regression is used in the case of WiFi, and a single linear regression is used in the case of

ZigBee. The linear regressions provide a smoothing of the large variations in the power traces,

while also yielding a monotonically increasing (instead of oscillatory) trend w.r.t. transmission

power − which promotes a more robust template for selecting transmission settings (guided by

power savings). The trained regression functions can be expressed as:

Sz,0.8 = 2.05pz + 1.89e03, −6 ≤ pz ≤ 5

Sw,0.8 =

{
1.14e01pw + 2.64e03, 1 ≤ pw ≤ 19

2.18e02pw − 1.27e03, 20 ≤ pw ≤ 21

(2)

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 1:9

The s-risk models were fitted based on actual power data (collected in the offline experiments).

Illustration of the training data and resulting curve fits can be found in [], demonstrating the

predictability of the s-risk parameter that captures the energy expenditure risk.

4.2 Link Reliability (PRR) Modeling
The PRR measurements from Section 3.1 are used to train models of PRR as functions of the

respective radio transmission power settings. Here, we particularly develop the PRR models for

ZigBee and WiFi, since multiple transmission power settings are available for these two radios on

our platform, and they are the ones also considered in the optimal radio and transmission selection

process (Section 5).

We observe large variations in PRRmeasurements, especially when the links are in the transitional

region. The radio control scheme in practice will usually be unaware of the exact distance between

the sender and receiver, as well as of the other uncertain environmental factors affecting the PRR.

Instead, what is measurable at runtime are the PRR values being experienced by the individual

radios. With this perspective, we propose the state of the system associated with the PRR recordings

to be segregated into different performance categories. In this context, the PRR and throughput of

an individual radio can also be simultaneously considered, where the categories will then represent

the state of the goodput (i.e., PRR × throughput) in that case.

In the current implementation, four categories, namely “poor", “low", “medium", and “high" per-
forming states, are defined w.r.t. PRR. For every transmission power setting of a radio (WiFi/ZigBee),

the top 25% PRR measurements are assigned to the “high” state, the next 25% are assigned to

“medium” state, the subsequent 25% are assigned to “low” state, and the bottom 25% are assigned to

the “poor” state. Although the recorded (sample) distance between the sender and receiver is not

explicitly considered when making this state-category assignments (i.e., all PRR measurements

under a given radio setting are pooled together), the assignments are implicitly sensitive to the

distance − this is because sender-receiver distance has a strong adverse impact on PRR. The mean

of the PRR values categorized under each state for a given transmission setting is then computed

to serve as the representative bounding value of the PRR for that state (to be referred to as the

PRR state or state-representative PRR values in the remainder of this paper). Regression functions

are subsequently used to fit the high, medium, low, and poor state PRR values of a radio as four

separate functions of its transmission settings.

The PRR state values were observed to present S-shaped trends w.r.t. the corresponding radio

transmission power settings. This observation led to the choice of logistic regression to model the

“PRR-p” relationships between PRR values and transmission power settings. An implementation,

called L4P [6], of the four parameter logistic function is used, with the PRR expressed as a function

of the radio transmission power, p, as given by

PRR(p) = d + (a − d)/(1 + (p/c)b ) (3)

Here, the four parameters a, b, c , and d respectively represent the minimum asymptote, the stiffness

of the curve, the inflection point, and the maximum asymptote. The estimated values of the 8

sets of these four parameters are not listed here, since they are subjective to our recorded PRR

measurements, and do not add significant generalized value. Instead, the four logistic functions, that

are trained on the high/ medium/ low/ poor state PRR values of ZigBee and WiFi, are respectively

shown in Figs. 3(a) and 3(b). It is readily evident from Fig. 3 that while capturing the nonlinear

S-shaped “PRR-p” relationship, the logistic regression also provides monotonically increasing “PRR-

p” functions. Such a positive “PRR-p” correlation is imperative to promoting robust transmission

setting modulation − where an optimal scheme should seek to increase the radio transmission
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Fig. 3. Regression plots of PRR as functions of radio transmission settings; PRR data segregated into poor,
low, medium, and high states.

power, in response to the need to increase PRR, over the entire range of available transmission

power settings.

5 OPTIMIZATION
5.1 Problem Formulation
As stated before, the generalized objective of the radio and transmission selection is to adapt to the

current needs of the application (under the current environment) in a way that: restrict packet loss
to within a small/acceptable bound, while platform power consumption attributed to the
radios is minimized. These two criteria, packet loss and power consumption, can be perceived

as the state parameters; and the choice of the radio type (ZigBee, WiFi, BLE, or any of their

combinations) and their transmission power setting can be perceived as action variables. This
perspective lends to formulating the radio and transmission selection process as an optimization

problem, that given the current state of the radio performance chooses the optimum action. The

Raspberry Pi only supports single transmission power for BLE; we therefore only consider ZigBee

and WiFi in our problem formulation. (We plan to implement our own CC2650 BLE driver under

Contiki and include BLE into our optimization as our future work.)

In the remainder of the paper, the PRR of WiFi and ZigBee, at given transmission settings (pw
and pz ), will be respectively represented by rw (pw ) and rz (pz ) or simply as rw and rz , where
0 ≤ rw , rz ≤ 1; the throughput of WiFi and ZigBee will be expressed in terms of the number of

packets transmitted, and represented by hw and hz , respectively. The packet size for WiFi and

ZigBee is considered to be 64 bytes. The aggregated goodput (Gw,z ) of the radios is then given by:

Gw,z (pw ,pz ) = hwrw (pw ) + hzrz (pz ) (4)

If only one of the radios is on, the aggregated gootput reduces to the individual goodput of that

radio. The power consumption of the transmitting platform can then be expressed as a function of

the data rate (D), the aggregated goodputGw,z , the platform baseline power consumption (Ep ), and
the estimated platform power consumption when radios operate at the given transmission settings

(Ew and Ez ). The time averaged power consumption of the platform is approximated by:

fE = min

(
1,D/Gw,z

) (
Ew + Ez − 2Ep

)
+ Ep (5)
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where (Ew + Ez − 2Ep ) gives a measure of the power consumption attributable to the active radios.

This measure is multiplied by the fraction of the time when the radios need to be active in a given

interval; the latter is given by the “data rate/goodput” ratio (min

(
1,D/Gw,z

)
). When the WiFi is off,

Ew (Off) = Ep and rw (Off) = 0; similarly, when the ZigBee is off, Ez (Off) = Ep and rz (Off) = 0. It is

also important to note that Eq. 5 assumes that the data is split between the two radios based on the

ratio of their individual goodputs, and retransmission of lost packets is enabled in the system.

The generalized optimization problem, with the WiFi and ZigBee transmission settings (pw and

pz , respectively) serving as the decision variables, can therefore be defined as follows:

min

pw ,pz
fE (pw ,pz ,hw ,hz )

s.t.

1 −min

(
1,

D

Gw,z (pw ,pz )

)
≥ ϵ

where

pw ∈ {Off, 1, 2, . . . , 20, 21}

pz ∈ {Off,−6,−3, 0, 1, 2, 3, 4, 5}

(6)

where the tolerance parameter ϵ represents a safety margin in the “data rate/goodput" ratio;
e.g., ϵ = 0.1 indicates a safety margin of 10% in the “data rate/goodput" ratio. It is important to

note that both the objective function, fE (Eq. 5), and the “data rate/goodput" (Eq. 6) constraint
are nonlinear, since the PRR is a nonlinear function of the radio transmission power (as seen

from Fig. 3). In addition, owing to the uncertainties in the PRR and throughput of the radios,

and uncertainties in the power consumption of the platform, both the objective and constraint

functions are also uncertain. As a result, we have an integer non-linear programming (INLP) problem

with uncertainties. Although the INLP problem is NP-hard [16], the relatively limited number of

transmission power settings that the two radios can assume (WiFi: 22 and ZigBee: 9) alleviates

the computational burden of solving this optimization at runtime. Instead of formulating the

optimization under uncertainty as a classical (computationally costly) reliability based optimization

problem, uncertainties are addressed apriori using the combination of s-risk measures of power

consumption and regression modeling of PRR and s-risk measures (as presented in Section 4). The

online execution time of solving this optimization problem is presented in Section 6.1.

An offline optimization study illustrating the impact of the PRR and power consumption un-

certainties (when left untreated) on the radio selection decisions, and the design of our online

optimization scheme for runtime radio and transmission selection, are discussed next.

5.2 Study on the Impact of Uncertainties
An offline optimization study is set up to investigate how the radio selection is affected by the

environmental uncertainties (that cause ill-predictable PRR variations) and systemic uncertainties

(that cause power consumption variations). Hence, in this study, we deliberately neither employ any

smoothing operation on the empirical data nor use the regression models developed in Section 4.

Optimization is performed for different sample combinations of distance between sender and re-

ceiver (X ) and data rate (D), whereX ∈ {10, 20, 30, . . . , 150}m andD ∈ {25, 50, 75 . . . , 150} packets/s.
A conservative safety margin of 20% (ϵ = 0.2) is imposed on the data rate/goodput ratio. For a given

distance, data rate, and radio transmission settings (pw ,pz ), the objective function is evaluated

by directly computing the s-risk value of fE (Eq. 5) from the platform power measurements data

pertaining to the stated radio transmission settings and the PRR measurements data pertaining to

given distance and radio transmission settings (Section 3); a risk-aversive parameter of β = 0.8
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is used here. Considering the comparatively smaller variance in the throughput measurements

and the focus of the paper on dynamic systems (where distance variation mainly affects PRR), the

throughput of ZigBee and WiFi is fixed at their respective measured median values (hw = 800

packets/s and hz = 225 packets/s).

Since only a small set of radio settings are available – i.e., 22 × 9 possible combinations of

(pw ,pz ) – those violating the data rate/goodput ratio constraint are first filtered out; then a simple

min-search is employed to identify the optimal feasible setting, p∗w ,p
∗
z , that yields the minimum

power consumption. This process is performed for all the sample combinations of sender-receiver

distance and data rate. The radio transmission setting decisions yielded by this uncertainty-sensitive

optimization is shown in Fig. 4. For illustration purposes, the results for three data rates (150, 175,

and 200 packets/s) are shown. In Fig. 4, the X-axis and Y-axis respectively represent the sender-

receiver distance and the data rate; in the top two plots, the color of the circles represent the optimal

WiFi and ZigBee transmission settings in dBm; and a missing circle indicates that particular radio

was set to “OFF” (for the given data rate/distance sample). The last plot in Fig. 4 indicates whether

the optimal radio setting succeeded (= 1) or failed (= 0) to satisfy the data-rate/goodput ratio

constraint (in Eq. 6).

Fig. 4. Offline study (without smoothing measures or regression models): Top: Optimal transmission power
settings of WiFi and Zigbee when operating together; Bottom: success (= 1) or failure (= 0) in meeting the
“data-rate/goodput” ratio constraint for different distance and data rate combinations.

The impact of noise/uncertainty of the empirical data (driving the nominal decisions) is apparent

in the offline optimization results as shown in Fig. 4. For example, it can be seen that when increasing

the sender-receiver distance, the radios often switch back and forth between higher and lower

settings (instead of a more robust monotonic variation); secondly, no feasible/successful radio

setting combination is found for distances of 90m and 110m, although feasible/successful settings

were found for higher distances of 120 − 140m. These observations highlight the detrimental
impact that directly using recorded data (with their associated uncertainties) can have
on any empirical decision-making strategy. This directly motivates 1) the uncertainty-aware

power consumption and PRR models developed in Section 4, and 2) the design of the two online
algorithms that use these models to offer robust solutions, which will be described in the next

sub-sections.
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5.3 Fast Online Optimization (ARTPoS)
The ARTPoS online optimization artifact is developed to serve as a first foray into training a light-

weight solution for runtime selection of radio and transmission power under an energy-scarce and

uncertain/dynamic environment − typical of application domains such as home/commercial area

networks or highly mobile networks. The online scheme should be able to process, interpret, and

optimally respond to the uncertainties, without resorting to expensive uncertainty quantification

and typical reliability-based optimization techniques. These latter techniques are generally not

suited to be executed at runtime on embedded systems with humble computing capacities.

Our approach aims to construct a novel runtime scheme with the following desirable character-

istics: (i) lightweight execution, (ii) uncertainty-awareness, and (iii) promotion of a power-
saving radio/transmission selection policy. It is important to reiterate that the unique models

of power consumption (s-risk models) and PRR (logistic regressions), presented in Section 4, are

particularly aimed at enabling this light-weight runtime scheme. Drawing parallels to robust control

and Markov Decision Processes, the overall objective of the online scheme can be stated as: to

maintain/accomplish desirable values of the state parameters (e.g., goodput and platform power

consumption) under a dynamic and uncertain environment, by optimally modulating the action

variables (i.e., selection of radio(s) and transmission setting(s)).

A look-up table system (radio-settings-table) is first generated. Each row (i) and each column

(j) of this table respectively corresponds to a WiFi and a ZigBee transmission setting (p jz ,p
i
w ); the

table thus comprises a total of 22 × 9 cells (See Eq. 6), where each cell Ci j contains one scalar value

and two 4-tuples, as shown below:

Ci j =
{
E(pz, j ,pw,i ), R(pz, j ),R(pw,i )

}
E(p jz ,p

i
w ) = Sz,0.8

(
p jz

)
+ Sw,0.8

(
piw

)
− 2Sp,0.8

R(pz, j ) =
(
r
high

z, j , r
medium

z, j , r lowz, j , r
poor

z, j

)
R(pw,i ) =

(
r
high

w,i , r
medium

w,i , r loww,i , r
poor

w,i

)
where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9.

(7)

In Eq. 7, the scalar E(pz, j ,pw,i ) represents the power consumption attributed to the active radios,

when operating at the associated transmission setting combination (p jz ,p
i
w ); it is derived from the

s-risk measures of power consumption (Section 4.1), where the s-risk value of the platform baseline

power consumption with both radios Off (Sp,0.8) is estimated to be 1831mW ; the s-risk values of the

platform power consumption with ZigBee on (Sz,0.8) and that with WiFi on (Sw,0.8) are estimated

from the linear regressions in Eq. 2.

The two 4-tuples in Eq. 7, R(pz, j ) and R(pw,i ), represent the four PRR values corresponding to the

high, medium, low, and poor operational (or performance) states of ZigBee and WiFi, respectively,

at the corresponding transmission settings. These state values are given by the PRR regression

functions developed in Section 4.2 (Figs. 3(a) and 3(b)).

It is important to note that in practice, the look-up table is stored/loaded in a more compact

form, instead of the 22 × 9 table (described here for ease of illustration). Since the WiFi and ZigBee

settings (i, j) are essentially independent of each other, the look-up table can be stored in the actual

test bed in a form that yields a frugal set of “1 + (5 × (22 + 9))” floating point values, making it

highly effective for fast runtime decision-making on embedded devices.

The runtime radio and transmission selection algorithm/program, that uses this lookup table, is

designed as a four-step process: sense→classify→predict→search. A pseudocode of this runtime

program is given in Algorithm 1, and the individual steps are described below.
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Algorithm 1 ARTPoS

1: Read: x, y, prrw, prrz, Dt, hw, hz; ▷ Input of current state variables from receivers, Sense stage
2: function FindNearest(prrx, x) ▷ Classify stage
3: if min(|prrArray − prrx|) > prrLimit then
4: prrState = min(|prrArray − prrx |);
5: refitArray = RefitData(prrArray, x, prrx); ▷ ARTPoS-new refit

6: return min(refitArray) satisfying |refitArray − prrx|;

7: else
8: return min(prrArray) satisfying |prrArray − prrx|;

9: end if
10: end function
11: function SearchFunc(x, y, prrw, prrz, Dt, hw, hz);

12: return Dt/((hw * FindNearest(prrw, x)) + (hz * FindNearest(prrz, y)));

13: end function
14: exclude← powerTable[x+1, y+1]; ▷ Power values to omit in search

15: for (a, b) in powerTable do;
16: if powerTable[a, b] in exclude then
17: continue;
18: else
19: currentSettings = SearchFunc(a, b, prrw, prrz, Dt, hw, hz); ▷ Search stage
20: if currentSettings > 0.9 then
21: continue;
22: else
23: append (a, b) to feasibleSettings;

24: append powerTable[a, b] to feasiblePower;

25: end if
26: end if
27: end for
28: return feasibleSettings[index of min(feasiblePower)] ▷ Predict stage;

Algorithm Nomenclature:
prrw, prrz : Packet reception ratio of WiFi and ZigBee radios.

Dt : Data rate.
prrArray : Array of pre-generated PRR values that prrw and prrz are classified against.

r ef itArray : Array of PRR values including new prrw and prrz that violates the prrLimit threshold (only in

ARTPoS-new).

SEARCHFUNC: function implementing Search stage to evaluate the datarate to goodput ratio.

powerTable : pre-computed lookup table from Predict stage.
f easibleSett inдs : array of WiFi and Zigbee dBm values that satisfy search conditions.

f easiblePower : array of power values (from lookup table) that satisfy search conditions.

• Sense: The online process measures PRR (reported by the receiver) and throughput of each

radio at a desired sampling frequency; it computes the data rate/goodput ratio (Dt/Gt
) based on

the time averaged values of PRR and throughput over the last time window t . If the constraint,
1 − Dt/Gt ≥ ϵ , is violated, it invokes the succeeding steps; otherwise, no change is made. In

addition, the process computes and checks if the relative change in the D/G ratio is greater than

10%, i.e., |Dt/Gt − Dt−1/Gt−1 | > 0.1. If this criteria is met, the succeeding steps are again invoked;
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otherwise no changes are made. The frequency of the constraint computation and the D/G change

computation depends on the designer’s preferences. More risk aversive strategies will call for higher

frequency of the former, and more energy-conscious strategies will demand higher frequency of

the latter. Too frequent changes however may not be recommended, as it might entail unnecessary

computing overhead on the system.

• Classify: If the sense process invokes the succeeding steps, first, the current state of each

radio’s performance, (ptw , r
t
w ) and (ptz , r

t
z ), is classified into the high, medium, low, and poor (or

in-between) state categories. This is accomplished by the following rule: Classify the current state
of the WiFi into lying at one or between the two categories, whose associated PRR values immediately
bound the measured PRR. For example (using Fig. 3(b)), if the PRR of WiFi transmitting at 14dBm is

70%, then its performance/operation is classified to currently lie between the “medium” and “low”
states; or if the PRR of WiFi transmitting at 4dBm is 90%, then its operation is classified into purely

“high” state. A similar rule applies to ZigBee as well. More sophisticated classification schemes,

such as using Bayes rule, can also be readily implemented within this process. This being the first

implementation of this novel online scheme, the simpler interval based classification is instead

employed here.

• Predict: After the classification step, the D/G constraint (whereG = htwr
t
w,i j +h

t
zr

t
z,i j ) and the

energy objective function (fE ) are evaluated for each cell of the radio-settings table, where the latter
is given by:

f tE,i j = min

(
1,

Dt

htwr
t
w,i + h

t
zr

t
z, j

)
E(p jz ,p

i
w ) + Sp,0.8

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(8)

where the PRR values of ZigBee and WiFi for each cell of the lookup table (r tw,i j , r
t
z,i j ) correspond

to the classified category. More specifically, a linear interpolation is used. Taking the previous

example of PRR of WiFi transmitting at 14dBm to be 70% − where its operational state is estimated

to lie between the “medium” and “low” categories, the expected PRR of WiFi (at that time point) for

say 12dBm will be given by:

r tw,12 = r
low

w,12 +
r tw,14 − r

low

w,14

rmedium

w,14 − r loww,14

(
rmedium

w,12 − r loww,12

)
(9)

For purely high or purely poor states, 100 and 0 are used as the respective upper and lower bounds

for the interpolation.

• Search: Once the expected power consumption (fE,i j ) and the D/G constraint has been com-

puted for all 22 × 9 ZigBee/WiFi settings, those violating the D/G constraint are first filtered out.

A min-search is then executed to identify the optimal ZigBee/WiFi setting, (i, j)∗, as the one that
yields the smallest value of fE,i j . The system immediately switches to this new setting. This step

can be expressed as:

min

i, j
f tE,i j

subject to 1 −
Dt

htwr
t
w,i j + h

t
zr

t
z,i j
≥ ϵ

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(10)

In practice, the filtering of feasible solutions and searching for the optimal solution are both

performed in computational efficient ways − e.g., the filtering is initiated by searching from the

highest setting, (p jz ,p
i
w ) = (5, 21)dBm, and moving somewhat diagonally, until a setting (k, l) is
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reached where the constraint is violated; all other lower settings (i.e., ∀(i ≤ k, j ≤ l)) are filtered
out without computing the constraint.

The median execution time of ARTPoS online optimization is 49ms on an ARM processor.

Section 6.1 will present our micro-benchmark evaluations in detail.

5.4 Online Optimization with Insitu Refinement of PRR Models (ARTPoS-irp)
ARTPoS-irp is our first step towards a system that is also capable of judging how far the real

environment (during operation) deviates from the offline training environment, and adapts its

models online in order to provide more reliable decisions. The modified algorithm mainly extends

the Classify step in the ARTPoS system (see Section 5.3) with the aim of increasing the reliability

with which the radio’s performance ((ptw , r
t
w ) and (ptz , r

t
z )) is classified into the high, medium, low,

poor state categories. This is achieved by identifying significant deviations (from the offline trends)

and responding to it by dynamically refitting the PRR regression models used in the Classify step.

As the radio’s performance now seeks to be reflective of the environment in which the system

operates, the algorithm is expected to become more robust in its adaptation.

The refit is invoked by consistent over/underestimation of the PRR state compared to the

classified curves (given in Fig. 3). In ARTPoS-irp, the measure of over/underestimation is through

the observation of the difference between the measured PRR value and the PRR value at the given

transmission setting (dBm) based on the state it is classified under. If the difference exceeds a certain

threshold, rTH = 0.3 for n consecutive time steps, the refit is performed; for example, perform refit

of the WiFi PRR curve if:

|r classifiedw,i − rmeas

w,i | > rTH , for n consecutive time steps (11)

Here, n is set at 5, and r classifiedw,i is the PRR given by the curve into which the current state has

been classified, and rmeas

w,i is the online measured PRR value. If the difference does not exceed the

threshold, the refit is not invoked and ARTPoS-irp behaves identically to ARTPoS.

Next, the violating PRR values are added to the existing dataset, and the refit is performed using

the logistic regression [6] described in Eq. 3. In order to prevent ever-growing size of the dataset

during operation, a forgetting strategy can be used (after a threshold size is exceeded) where every

time new data is added for refit the oldest data at the corresponding transmission dBm can be

removed from the set.

To illustrate the role played by this online updating strategy, we provide a representative example

in Fig. 5. Here, the leftmost plot (Fig. 5(a)) shows the original offline trained PRR models for WiFi.

The next plot (Fig. 5(b)) shows the PRR models after one round of updating invoked by new

deviating data at 7dBm classified under the “medium" category PRR model (note that the blue

curve fit, corresponding to “Model - med" has got updated). The rightmost plot (Fig. 5(c)) shows the

PRR models after another round of updating, in this case invoked by new deviating data at 1dBm

classified under the “high" category (note that the green curve fit, corresponding to “Model - high"

has got updated). It is important to note from Fig. 5 that, the observed effectiveness of adapting

the PRR models to the varying runtime environment is attributed to both the new online updating

scheme in ARTPoS-irp and the original choice of the (logistic) regression fitting.

6 EVALUATION
To examine the efficiency of ARTPoS and ARTPoS-irp, we perform a series of experiments on our

embedded platform presented in Section 3. We first measure the overhead of the key operations such

as the time duration of the optimizer selecting the best radio(s) and needed transmission power(s)

and the overhead attributed to turning the radio(s) On and Off. We then evaluate ARTPoS/ARTPoS-

irp’s impact on power consumption and link reliability, and compare their performance against
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Fig. 5. WiFi PRR Models: showing how the offline trained model gets updated online in response to new PRR
data that deviate from the offline fits

Fig. 6. CDF of the time duration for ARTPoS and ARTPoS-irp to determine the optimal radio and transmission
power.

three baselines. A power meter from Monsoon Solutions [33] is connected to the sender to measure

the power consumption.

6.1 Micro-Benchmark Experiments
We first evaluate the time duration taken by the two online optimal approaches to select the best

radio(s) and minimum needed transmission power(s). We record the time of the events when the

input is fed into the optimizer and the output (i.e., radio and transmission power selection) is

generated. For this experiment, we repeat the measurement 10,000 times for both ARTPoS and

ARTPoS-irp (with refit), using randomly generated inputs, on our 1.2GHz 64-bit quad-core ARMv8
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Fig. 7. Radio activities when the WiFi controller manages packet transmission in a 10s period; averaged power
consumption over the first three time periods, T1 → T2, T2 → T3 and T3 → T4, respectively are 2.09mW ,
2.61mW and 2.03mW .

CPU platform. In order to show the difference to ARTPoS, we force ARTPoS-irp to invoke its refit

every time by feeding in randomized inputs, since ARTPoS-irp’s behaviour is identical to ARTPoS’s

without invoking its refit. The difference of the execution time between the two methods represents

the time taken to perform the refit triggered by estimation errors. Figure 6 compares the cumulative

probability density (CDF) of the algorithm execution time of ARTPoS and ARTPoS-irp. As shown

in Fig. 6, the median execution time of ARTPoS is 49ms (consuming 13.5mJ more energy than

CPU idling), where 90% and 99% of the experimental runs finish within less than 225ms and 456ms ,
respectively. In comparison, the median execution time of ARTPoS-irp is 1273ms , where 90% of the

experimental runs finish within 2675ms ; this additional computing burden can be directly attributed

to the refitting of the PRR function (via logistic regression) performed insitu in ARTPoS-irp. This

burden can be alleviated by increasing the deviation threshold and/or the number of consecutive

time steps for which deviation is allowed (refer Eq. 11) before invoking the refit; future work would

explore how computational efficiency trades-off with energy and link reliability performance in

this context.

We also measure the time duration and energy consumption of other key operations in ARTPoS

and ARTPoS-irp. Figure 7 shows an example power consumption trace where the WiFi controller

switches On the WiFi radio, transmits 1000 packets, and then switches Off the radio. The platform

takes T2 −T1 = 0.44s and consumes 0.92J of energy to turn On the radio and set its transmission

power. Transmitting 1000 packets takesT3 −T2 = 1.38s , while turning Off the radios takesT4 −T3 =
1.02s . The platform consumes 3.60J and 2.07J of energy to transmit the data and turn Off the

radio, respectively. The radios are kept Off for the rest of the period T5 −T4 = 7.16s . These results
demonstrate the efficiency of the optimizer and the radio controllers, as well as the advantage

of turning the radios Off after transmissions in each period, and also illustrate the significant

need of developing new low-power platforms for IoT applications to achieve lower baseline power

consumption.

6.2 Impact on Power Consumption and Link Reliability
To understand how the proposed methods impact power consumption and link reliability, we

performed a set of experiments comparing the performance of ARTPoS and ARTPoS-irp with

three baselines. In all experiments, we deploy a benchmark application on top of the ARTPoS and
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(a) Power consumption saving provided by ARTPoS-irp over the baselines and ARTPoS

(b) PDR improvement provided by ARTPoS-irp over the baselines and ARTPoS

Fig. 8. Power consumption and PDR differences between our approaches (ARTPoS and ARTPoS-irp) and the
baselines (Fixed-power, ART-WiFi and ART-ZigBee) at different data rates.

ARTPoS-irp by generating data packets periodically. ARTPoS and ARTPoS-irp are configured to

perform the radio and transmission power selection in each period (i.e., 10s) based on the measured

PRR and throughput of the ZigBee and WiFi links. If the then-active radio and transmission power

setting is found to be the best-suited, it is retained; else the ARTPoS/ARTPoS-irp switches to a new

best-suited setting. Non-overlapping channels are used for ZigBee and WiFi to avoid interference.

Radios are turned Off after the last transmission in each period and the unselected one is kept Off

to reduce power consumption for our approaches and the baselines. If both radios are selected

for use, packets are partitioned based on their throughput ratio, allowing the platform to sleep

earlier and save energy. Due to the lack of a baseline that jointly optimizes the selection of both

radio and transmission power, we extend the ART [13], a practical state-of-the-art transmission

power control approach designed for ZigBee, and create three baselines: one with only ZigBee radio

on running ART (ART-ZigBee), one with only WiFi radio on running ART (ART-WiFi), and one

with both radios on operating at their default powers, i.e., 21dBm for WiFi and 5dBm for ZigBee

(Fixed-power).
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We performed five experimental runs, respectively with Fixed-power, ART-WiFi, ART-ZigBee,

ARTPoS, and ARTPoS-irp, in a round robin fashion to minimize the temporal effects of the dynamic

wireless environment (for fair comparison). Figure 8 shows the power consumption and packet

delivery rate (PDR) comparisons between our approaches and the baselines. To explore ARTPoS-

irp’s performance under different traffic demands, we repeated the experiments by controlling the

application to generate data at different rates. Under each data rate and approach, we repeat the

experiments five times and present the confidence intervals in Fig. 8.

As shown in Fig. 8(a), both of our proposedmethods, ARTPoS and ARTPoS-irp, provide significant

power savings compared to the Fixed-power and ART-WiFi baselines. For example, our ARTPoS-irp

reduces the average power consumption by 114mW and 102mW over Fixed-power and ART-WiFi,

respectively, when the data rate is 1000 packets/period . Similarly, ARTPoS-irp achieves significant

power savings over Fixed-power and ART-WiFi at higher data rates (60.1mW and 66.2mW at

3000 packets/period , 86.5mW and 104mW at 5000 packets/period , and 125mW and 126mW at

7000 packets/period). As a comparison for power saving values, the CC2650 radio consumes

30mW power when transmitting at 5dBm [34]. The original ARTPoS demonstrates significant

improvements over the baselines (Fig. 8). It is however important to note that ARTPoS-irp does

outperform ARTPoS, by providing 0.4% to 6.4% greater PDR (3.7% increase on average), while

consuming 8.7mW to 17.3mW less power (13.5mW decrease on average) than ARTPoS for each

data rate. These observations provide direct evidence for the conceived benefits of the insitu (PRR

model) refinement incorporated in ARTPoS-irp.

Compared to ART-ZigBee, ARTPoS-irp consumes 8.5mW more power at the lowest data rate

since it initially turns on the WiFi and ZigBee radios to measure their channel conditions. More

importantly, although ARTPoS-irp consumes more power than ART-ZigBee, the latter is not able

to deliver satisfactory PDRs at high data rates because of the ZigBee’s limited bandwidth (i.e., the

average PDRs under ART-ZigBee are 68.7%, 44.6%, 31.0%, and 25.0% when the data rate is 3000,

5000, 7000, and 9000 packets/period , respectively, i.e., significantly inferior to ARTPoS-irp and

ARTPoS (as seen from Fig. 8(b)). Neither WiFi nor ZigBee alone can support the data rate of 9000

packets/period , while our ARTPoS-irp and ARTPoS provide satisfactory PDRs by bundling the

WiFi and ZigBee radios.

In order to examine ARTPoS-irp’s performance under different environments, we set the data

rate to 7000 packets/period and performed a set of experiments comparing the performance of

ARTPoS-irp with ARTPoS and two baselines (Fixed-power and ART-WiFi)
2
at different indoor

and outdoor locations. The transmitters and receivers are placed at different rooms in an indoor

office environment and in an outdoor open space. Fig. 9 shows the power consumption and

PDR comparisons between our approaches and the baselines. At each location, we repeat the

experiments with each approach five times and present the confidence intervals in Fig. 9. As shown

in Fig. 9(a), both of our proposed methods, ARTPoS and ARTPoS-irp, provide significant power

savings compared to Fixed-power and ART-WiFi baselines. For example, ARTPoS-irp reduces the

average power consumption by 105mW and 136mW over Fixed-power and ART-WiFi, respectively,

when performed indoors, and saves 118mW and 148mW when performed outdoors. As shown in

Fig. 9(b), ARTPoS and ARTPoS-irp achieve average PDRs over 95% at both indoor and outdoor

locations, which are very close to that of Fixed-power and ART-WiFi.

To evaluate ARTPoS-irp’s performance under different interference conditions, we set the data

rate to 7000 packets/period and performed a set of experiments comparing the performance of

ARTPoS-irp with ARTPoS and two baselines (Fixed-power and ART-WiFi) with and without

2
We did not run experiments to evaluate ART-ZigBee because the data rate (7000 packets/per iod ) is beyond ZigBee’s

capacity.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 1:21

(a) Power consumption saving provided by ARTPoS-irp

over the baselines and ARTPoS

(b) PDR achieved by the baselines and our approaches

Fig. 9. Power consumption and PDR comparison between our approaches (ARTPoS and ARTPoS-irp) and the
baselines (Fixed-power, ART-WiFi and ART-ZigBee) at different locations.

(a) Power consumption saving provided by ARTPoS-irp

over the baselines and ARTPoS

(b) PDR achieved by the baselines and our approaches

Fig. 10. Power consumption and PDR comparison between our approaches (ARTPoS and ARTPoS-irp) and
the baselines (Fixed-power and ART-WiFi) with and without interference.

interference. We run JamLab [3] on a TelosB mote [22] to generate controlled interference. The

jammer is placed one meter away from the receiver. Fig. 10 shows the power consumption and PDR

comparisons between our approaches and the baselines. Under each channel condition, we repeat

the experiments with each approach five times and present the confidence intervals in Fig. 10. As

shown in Fig. 10(a), ARTPoS and ARTPoS-irp provide significant power savings compared to Fixed-

power and ART-WiFi baselines. For example, ARTPoS-irp reduces the average power consumption
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(a) Radio power consumption trace (b) PDR trace

Fig. 11. Radio power consumption and PDR traces of three transmitters for 30 periods.

by 131mW and 146mW over Fixed-power and ART-WiFi, respectively, when performed without

interference, and saves 246mW and 109mW with interference. It is notable that more energy is

consumed by the WiFi radio when the WiFi channel is interfered, especially for ART-WiFi which

uses the WiFi radio only. As shown in Fig. 10(b), the average PDRs of all approaches are over 95%

without interference and decrease to the range between 81% and 85% with interference.

Finally, we examine the performance of ARTPoS-irp when new nodes join the network. When

multiple senders transmit data to a single receiver, the nework is configured to run a TDMA-based

MAC to avoid packet collisions. In the experiment, we configure three senders to join the network

one by one with the data rate of 3000 packets/period . Specifically, only node 1 sends data to the

receiver during the first 10 periods (200s). Node 2 begins to transmit at the 11th period, while node

3 joins the network at the 21st period. Fig. 11 plots the power consumption and PDR during the

experiment. Each node runs ARTPoS-irp to select its radios and transmission powers. As Fig. 11(a)

shows, each node consumes slightly more power when multiple nodes are present because of the

idle listening. For example, the median power consumption of node 1 during the first 10 periods is

188mW . It increases to 212mW during the next 20 periods when two senders transmit. It further

increases to 218mW when three senders are present. As Fig. 11(b) shows, the PDRs remain stable

when new nodes join the network, demonstrating the effectiveness of ARTPoS-irp on preserving

the link reliability through running a TDMA-based MAC protocol.

The overall experimental results thus show that ARTPoS-irp and ARTPoS can effectively reduce

the energy consumption while maintaining satisfactory link reliability, to meet varying network

traffic demands under different real/uncertain environments. Moreover, the new ARTPoS-irp

consistently delivers superior performance compared to the original ARTPoS, particularly in

terms of power consumption, thereby demonstrating the advantage of the novel online adaptation

mechanism built into ARTPoS-irp.

7 CONCLUSION AND FUTUREWORK
Given the dynamic nature of communication in IoT (e.g., moving IoT/robotic units in uncertain

commercial/residential/industrial environments), a traditional one-radio-fits-all approach cannot

meet the challenges under typically varying operating conditions and traffic. This paper presents

the new ARTPoS system that makes available multiple wireless technologies at runtime and selects

the radio(s) and their transmission power(s) most suitable for the current conditions. The selection

process aims to preserve link reliability within acceptable thresholds, while minimizing the power

consumption of the node attributed to radio operation. To this end, empirical approaches tomodeling

power and PRR are presented, which allow the system to proactively adapt to large variations in

power consumption and link reliability observed runtime. This is followed by the development of

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: February 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 1:23

two computationally light-weight online optimization schemes, based on a unique sense-classify-

predict-search process, with the latter scheme also employing an insitu (runtime) refinement of

the PRR models for added robustness in meeting the QoS objectives. Experimental evaluations of

the thus formulated online optimization schemes, and their comparison with different baselines,

show that ARTPoS can remarkably reduce the power consumption, while maintaining satisfactory

link reliability. We plan to integrate ARTPoS with the low power listening technique to support

efficient duty cycling and enable model updating at runtime as our future works. In addition, we

are also currently investigating approaches to extend this fundamental radio/transmission selection

technique from a one-to-one communication to a many-to-many/network-scale communication

framework involving gateways. Decomposed problem formulations and decentralized decision-

making are expected to serve as two other core elements in facilitating this important next step in

this research.
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