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Autonomous Traffic-Aware Scheduling for Industrial Wireless
Sensor-Actuator Networks
XIA CHENG and MO SHA∗, Florida International University, USA

Recent years have witnessed rapid adoption of low-power Wireless Sensor-Actuator Networks (WSANs) in

process industries. To meet the critical demand for reliable and real-time communication in harsh industrial

environments, the industrial WSAN standards make a set of specific design choices, such as employing the

Time Slotted Channel Hopping (TSCH) technique. Such design choices distinguish industrial WSANs from

traditional Wireless Sensor Networks (WSNs), which were designed for best-effort services. Recently, there

has been increasing interest in developing new methods to enable autonomous transmission scheduling for

industrial WSANs that run TSCH and the Routing Protocol for Low-Power and Lossy Networks (RPL). Our

study shows that the current approaches fail to consider the traffic loads of different devices when assigning

time slots and channels, which significantly compromises network performance when facing high data rates.

In this paper, we introduce a novel Autonomous Traffic-Aware transmission scheduling method for industrial

WSANs. The device that runs ATRIA can detect its traffic load based on its local routing information and then

schedule its transmissions accordingly without the need to exchange information with neighboring devices.

Experimental results show ATRIA provides significantly higher end-to-end network reliability and lower

end-to-end latency without introducing additional overhead compared with a state-of-the-art baseline.
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1 INTRODUCTION
Industrial Internet of Things (IoT), which underlies the Fourth Industrial Revolution (or Industry

4.0) [27], promises one of the largest potential economic effects of IoT – up to $47 trillion in added

value globally by 2025, according to the McKinsey report on future disruptive technologies [37].

Industrial networks, the underlying support of industrial IoT, typically connect sensors, actuators,

and controllers in industrial facilities, such as manufacturing plants, steel mills, oil refineries, and

infrastructures that implement complex processes. Industrial applications pose unique challenges

to networking because of their critical demand for real-time and reliable communication in harsh

industrial environments. Failure to achieve such performance can lead to production inefficiency,

safety threats, and financial loss. These demands have been traditionally met by specifically chosen
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wired solutions, such as HART [20]. However, wired networks are often costly to deploy and

maintain in industrial environments and difficult to reconfigure to accommodate new requirements.

IEEE 802.15.4-based Wireless Sensor-Actuator Networks (WSANs) appeal to industrial network

designers because they do not require wired infrastructures and can be manufactured inexpensively.

Battery-powered wireless modules easily and inexpensively retrofit existing sensors, actuators,

and controllers in industrial facilities without the need to run cables for communication and

power. To meet the stringent real-time and reliability requirements, the industrial WSAN standards,

such as WirelessHART [53], ISA100 [23], WIA-FA [21], and 6TiSCH [22], make a set of specific

design choices, such as employing the Time Slotted Channel Hopping (TSCH) technique. Such

design choices distinguish industrial WSANs from traditional Wireless Sensor Networks (WSNs),

which were designed for best-effort services [35]. A large number of WSANs that implement those

standards have been deployed all over the world. For instance, Emerson Process Management, a

leading WirelessHART network supplier, has deployed more than 54,835 WirelessHART networks

globally and gathered 19.7 billion operating hours of experience [15]. A decade of real-world

deployments has demonstrated the feasibility of employing WSANs to achieve reliable low-power

wireless communication in industrial facilities.

Recently, WSANs that run TSCH and the Routing Protocol for Low-Power and Lossy Networks

(RPL) [48] have been deployed for various applications [12, 41]. Meanwhile, there has been increas-

ing interest in developing new methods, which enable autonomous transmission scheduling for

industrial WSANs. For instance, Duquennoy et al. introduced Orchestra [11], which allows each

network device to generate its transmission schedule based on its local routing information, and

Kim et al. developed ALICE [29], which overcomes Orchestra’s limitations and enables the use of all

available physical channels in each cell
1
by replacing Orchestra’s node-based scheduling with link-

based scheduling. To understand the performance of those autonomous transmission scheduling

methods, we have performed a series of experimental studies on the FIT IoT-LAB testbed [2]. Our

studies show that the current approaches fail to consider the traffic loads of different devices when

assigning cells, which significantly compromises network performance when facing high data rates.

Therefore, the autonomous scheduling solutions must calculate the traffic loads and assign cells

without introducing additional communication. To address such challenges, we develop ATRIA, a
novel Autonomous Traffic-Aware transmission scheduling method for industrial WSANs. The de-

vice that runs ATRIA can schedule its transmissions to meet its traffic demand without exchanging

information with its neighboring devices. Specifically, each device in the network can detect its

traffic load based on its local routing information, select the best-suited slotframe
2
length based

on the performance requirements specified by the application, then schedule one or more cells

based on its specific traffic load, and adapt the schedule when the traffic demand changes. We

have implemented ATRIA under Contiki [10] and evaluated its performance using a network that

consists of 50 devices on the FIT IoT-LAB testbed. Experimental results show that ATRIA provides

higher end-to-end network reliability and lower end-to-end latency without introducing additional

overhead compared with a state-of-the-art baseline.

The remainder of the paper is organized as follows. Section 2 introduces the background of

TSCH, RPL, and ALICE. Section 3 presents our experimental study. Section 4 introduces our design

of ATRIA. Section 5 presents our experimental evaluation. Section 6 reviews the related work.

Section 7 concludes the paper.

1
A cell denotes the combination of a time slot and a physical channel.

2
A slotframe consists of a group of successive time slots, which repeats over time.
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(a) Network topology. (b) F table. (c) Example transmission schedule.

Fig. 1. Example transmission schedule for a network of five devices, which run TSCH and operate on four
channels. One slotframe consists of three slots.

2 BACKGROUND
In this section, we introduce the background of TSCH, RPL, and ALICE.

2.1 TSCH
TSCH was amended into the IEEE 802.15.4e standard [1] in 2012 as a mode to support industrial

and embedded applications with stringent performance requirements. TSCH combines time-slotted

medium access, multi-channel communication, and channel hopping to provide time-deterministic

packet deliveries and combat narrow-band interference and multi-path fading. In a network that

runs TSCH, time is divided into slices of fixed length (time slots) that are grouped in a slotframe.

All devices are time synchronized using the beacons flooded across the network (e.g., Keep-Alive

messages in WirelessHART) and share the notion of a slotframe that repeats over time. Each

time slot is long enough to deliver a packet and an acknowledgment between a pair of devices.

In each time slot, a set of physical channels can be used, resulting in a matrix-like combination

as shown in Figure 1(c). Each cell in Figure 1(c) is identified by its time slot offset and channel

offset coordinates. The time slot offset of a cell indicates its position in a slotframe and the channel

offset is an index, which maps to one of available physical channels. For a link that is defined as

the pairwise assignment of directional communication between two devices, channel hopping

is achieved by sending successive packets on different channels in different time slots. A pair of

devices identify their communicating channel by computing the following function:

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐹 [(𝐴𝑆𝑁 +𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑂 𝑓 𝑓 𝑠𝑒𝑡)%𝐿𝐶 ] (1)

where 𝐴𝑆𝑁 is the absolute slot number, defined as the total number of slots elapsed since the

network started, and “%” is the modulo operator. 𝐹 is the lookup table that maps the channel offsets

to their corresponding channels, and 𝐿𝐶 is the length of a sequence of available physical channels.

In a conventional network that runs TSCH, each device learns the current 𝐴𝑆𝑁 and the channels

used in the network from its neighbors upon joining the network and then uses such information

to compute the channel used in each cell.

Figure 1(b) shows an example with four pairs of channel offsets (0, 1, 2, and 3) and channels

(channel 20, channel 24, channel 25, and channel 26). Figure 1(c) shows an example transmission

schedule, which allows device 𝑎 in Figure 1(a) to collect data from the rest of the devices every

three time slots. For example, device 𝑑 and 𝑒 are scheduled to use channel 24 (channel offset 1) and

26 (channel offset 3) to transmit a packet in the first time slot, respectively, while device 𝑐 and 𝑏

are scheduled to forward the data in the second and third time slots. The transmission schedule is

generated by the scheduling algorithm, which runs on top of TSCH.
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2.2 RPL
RPL was developed to support IPv6 and provide resource-constrained devices with multi-hop

routing. To address the low-power constraint, RPL constructs a Destination-Oriented Directed

Acyclic Graph (DODAG) anchored at a root, typically a border router to external networks. In a

DODAG, a device computes its RANK (the logical distance to the root) according to its Objective

Function (OF). Minimum Rank with Hysteresis Objective Function (MRHOF) [16] is one of the

commonly used OFs, which adopts the Expected Transmission Count (ETX) metric [50] to compute

RANK. The routing information including RANK is exchanged by broadcasting DODAG Information

Object (DIO) messages. After receiving DIO messages from neighbors, a device can update its

RANK and set or change its preferred parent device by sending a Destination Advertisement Object

(DAO) message to its selected parent to reduce the logical distance to the router. RPL provides

Destination Advertisement Object Acknowledgment (DAO-ACK) as an optional function to enable

a device to resend a DAO message to its parent if it does not receive a DAO-ACK from its parent in

case of transmission failures. By broadcasting DODAG Information Solicitation (DIS) messages, a

device requests routing information from its neighbors. By exchanging DIO and DAO messages,

each device sets up its downward and upward routes in the DODAG. RPL supports two modes of

operation: storing and non-storing. In the storing mode, devices maintain routing tables for routes

locally in a distributed fashion. In the non-storing mode, devices do not maintain the routing states

locally.

2.3 ALICE
ALICE schedules transmissions for the networks that run TSCH and RPL and defines three types of

slotframes to deliver time synchronization, routing, and application traffic [29]. Enhanced Beacons

(EBs) are broadcast by all devices in the time synchronization slotframes and RPL messages are

scheduled in the routing slotframes. The unicast upward and downward application traffic uses

the application slotframes. When a device is scheduled for multiple types of traffic in a time slot,

the device chooses a packet for transmission in this order: time synchronization, routing, and

application. The device that runs ALICE can schedule its transmissions autonomously based on its

local routing information. Specifically, ALICE assigns one cell for each directional link, uses all

available channels, and reschedules transmissions in every application slotframe. Under ALICE, the

slot offset 𝑇𝑘
𝑚,𝑛 of the cell assigned to link𝑚 → 𝑛 (from device𝑚 to device 𝑛) in the 𝑘-th unicast

slotframe (𝑘 = 𝐴𝑆𝑁 /𝐿𝑆 ) is calculated as

𝑇𝑘
𝑚,𝑛 =𝑚𝑜𝑑 (𝐻𝑎𝑠ℎ(𝛼𝐼𝐷 (𝑚) + 𝐼𝐷 (𝑛) + 𝑘), 𝐿𝑆 ) (2)

where𝐻𝑎𝑠ℎ(𝑥) is a HASH function used to randomize the input value to reduce the conflict between

different directional links [51], the coefficient 𝛼 is used to differentiate traffic directions, e.g., link

𝑚 → 𝑛 and link 𝑛 →𝑚, 𝑘 is used to provide different input values in different slotframes to avoid

the same conflict from happening repeatedly in successive slotframes, and 𝐿𝑆 denotes the length of

the unicast slotframe. Similarly, the channel offset 𝐶𝑘
𝑚,𝑛 of this cell is calculated as

𝐶𝑘
𝑚,𝑛 =𝑚𝑜𝑑 (𝐻𝑎𝑠ℎ(𝛼𝐼𝐷 (𝑚) + 𝐼𝐷 (𝑛) + 𝑘), 𝐿𝐶 − 1) + 1 (3)

where 𝐿𝐶 − 1 is used because ALICE reserves a physical channel with offset 0 for the time synchro-

nization slotframe and the routing slotframe. To allocate a unique cell for each directional link in a

network that consists of 𝑁 devices and operates on𝑀 physical channels, ALICE suggests that the

slotframe length should be larger than (2𝑁 − 2)/(𝑀 − 1).
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Fig. 2. Testbed used for our studies. All 50 devices are deployed on the same floor in an office building. The
black star indicates the device that serves as the border router (Root) and the read circles denote end devices.

3 EXPERIMENTAL STUDY
We have performed a series of experimental studies to understand the performance of ALICE when

the network faces different data rates. We select 50 M3 devices [36] from the FIT IoT-LAB testbed [2]

to form a mesh network and run the ALICE implementation provided by Kim et al. [28]. Figure 2

plots the device deployment for our studies. All devices operate on four channels (by default in

ALICE) and send packets using the transmission power of -17𝑑𝐵𝑚. We set the routing slotframe

length and the time synchronization slotframe length to 19𝑠𝑙𝑜𝑡𝑠 and 397𝑠𝑙𝑜𝑡𝑠 , respectively. Each

time slot lasts 10𝑚𝑠 .

3.1 ALICE’s Performance
We first examine the network performance when we increase the data generation interval of

each device from 2𝑠 to 14𝑠 for both upward traffic and downward traffic, typical data rates for

industrial applications [30–32]. We set the length of the unicast slotframe to 43𝑠𝑙𝑜𝑡𝑠 (by default in

ALICE). Figure 3 plots the end-to-end Packet Delivery Ratio (PDR), the end-to-end latency, and

the radio duty cycle under different traffic loads. As Figure 3(a) shows, the PDRs of both upward

and downward traffic are 100% when the data generation interval is 11𝑠 or 14𝑠 . The PDRs drop

to 82.2% (upward) and 70.3% (downward), when the data generation interval decreases to 8𝑠 . The

PDRs further decrease to 36.4% (upward) and 16.4% (downward) when a packet is generated every

2𝑠 . These results show that ALICE performs well at low data rates but cannot deliver all packets at

high data rates. As Figure 3(b) shows, the end-to-end latency increases significantly when the data

generation interval decreases. For example, the latency of the upward traffic increases from 112𝑚𝑠

to 1,251𝑚𝑠 when the data interval decreases from 14𝑠 to 2𝑠 . The duty cycle of the Root and the end

devices also increases when the traffic load increases, as Figure 3(c) shows.

We also investigate the causes of low reliability and long latency when the network has to

deliver data at high rates. Figure 4 plots the Cumulative Distribution Function (CDF) of the cell

utilization for all devices when the slotframe length is 43𝑠𝑙𝑜𝑡𝑠 and the data generation interval is

2𝑠 . As Figure 4 shows, 62.0% of devices use only 21.5% of the cells that are scheduled for upward

traffic, while 20.0% of devices have used 86% or more of their allocated cells. Similarly, 26.3% of

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2022.
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(a) PDR. (b) Latency. (c) Duty Cycle.

Fig. 3. Performance when the network has different traffic loads.

Fig. 4. Cell utilization for upward and downward traffic.

devices use only 21.5% of the cells that are scheduled for downward traffic, while 42.1% of devices

have used 86.0% or more of their allocated cells. These results clearly show that many devices with

heavy traffic do not have enough cells for packet transmission and retransmission, while the rest

have many unused ones. The reason behind that is ALICE fails to consider the traffic demand of

each device when scheduling transmissions and assigns a single cell for every directional link in

each unicast slotframe. Some devices with high traffic demand do not have enough cells to transmit

their data, which results in packet losses and high latency, while some devices with light traffic

waste many unused ones.

Observation 1: Scheduling transmissions without considering the traffic demand of each device
leads to poor network performance when the devices generate data at high rates.

3.2 Impact of Slotframe Length
The slotframe length is a configurable parameter in ALICE. To study the impact of the slotframe

length on network performance, we vary the unicast slotframe length and repeat the experiments

five times. The data generation interval of all devices is set to 2𝑠 for both upward traffic and

downward traffic in all experiments. Figure 5 plots the end-to-end PDR, the end-to-end latency,

and the radio duty cycle when the slotframe lengths are 7𝑠𝑙𝑜𝑡𝑠 , 11𝑠𝑙𝑜𝑡𝑠 , 23𝑠𝑙𝑜𝑡𝑠 , 31𝑠𝑙𝑜𝑡𝑠 , and 43𝑠𝑙𝑜𝑡𝑠

(the five default values in ALICE), respectively. As Figure 5(a) shows, the PDRs increase from 36.4%

(upward) and 16.4% (downward) to 70.8% (upward) and 54.6% (downward), when the slotframe

length decreases from 43𝑠𝑙𝑜𝑡𝑠 to 11𝑠𝑙𝑜𝑡𝑠 . This is because ALICE provides more cells for each link

in a fixed time period when it uses a smaller slotframe. However, the PDRs of both upward and

downward traffic do not continue to increase when the slotframe length further decreases. The

PDRs are 70.7% (upward) and 54.5% (downward) when the slotframe length is 7𝑠𝑙𝑜𝑡𝑠 . This is because

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2022.
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(a) PDR. (b) Latency. (c) Duty cycle.

Fig. 5. Performance when the network uses different slotframe lengths.

the contention for available time slots becomes so severe that many cell allocation failures occur

when the slotframe is too small. Figure 5(b) and 5(c) plot the end-to-end latency and the radio

duty cycle when the network uses different slotframe lengths. The latency of the upward traffic

decreases from 1,251𝑚𝑠 to 438𝑚𝑠 and the duty cycle of the Root increases sharply from 9.19% to

24.69% when the slotframe length decreases from 43𝑠𝑙𝑜𝑡𝑠 to 7𝑠𝑙𝑜𝑡𝑠 . The results show the tradeoffs

between latency and energy efficiency. The reliability and latency can be improved to a certain

degree by reducing the slotframe length at the cost of increasing energy consumption.

Observation 2: Using a smaller slotframe can improve network reliability and latency at the cost of
increased energy consumption. However, tuning the slotframe length cannot always help the network
achieve desirable performance.

4 OUR DESIGN OF ATRIA
In this section, we first present an overview of ATRIA and then introduce each of its modules in

detail.

4.1 Overview
As Figure 6 shows, operating between RPL and TSCH, ATRIA takes the routing information

from RPL, the parameters specified by the application, and the number of transmitted packets

in each specified time duration as inputs and generates the transmission schedule for TSCH to

execute at runtime. ATRIA inherits the basic slotframe designs for time synchronization, routing,

and application traffic and the scheduling priority from ALICE. To avoid introducing additional

communication overhead, ATRIA adopts the storing mode of RPL to make use of the local routing

information. Therefore, each device that runs ATRIA can generate its transmission schedule and

allocate cells for each link based on the medium access control (MAC) addresses stored in the local

routing table. There is no need to exchange information with neighbors. Our study in Section 3.1

shows that scheduling transmissions without considering the traffic demand of each link leads

to poor network performance when the devices generate data at high rates. Therefore, ATRIA is

designed to allocate one or more cells to each link based on its specific traffic demand. To achieve

this goal, each device that runs ATRIA first detects the traffic demand of each link, selects the

best-suited slotframe length, then schedules one or more cells to each directional link, and adapts

the schedule at runtime with four modules:

• Topology Identifier is responsible for learning the current network topology from the local

routing information.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2022.
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Fig. 6. Overview of ATRIA.

• Slotframe Selector computes the best-suited slotframe length based on the network topology

learned by Topology Identifier and the application specified parameters including the data

generation interval 𝑇 of each device and the maximum transmission attempts per packet 𝑁𝑅 .

• Cell Allocator leverages our dual-slotframe design to allocate cells to each directional link

according to the slotframe length and the numbers of scheduled cells provided by Slotframe

Selector.

• Schedule Adaptor adapts to the change of the traffic demand by counting the number of

transmitted packets in a specified time duration and adjusting the numbers of scheduled cells

accordingly.

We will present our designs of those four modules next.

4.2 Topology Identifier
Topology Identifier runs on each device and identifies the number of descendant nodes it has and

the number of descendant nodes belonging to each of its child nodes. Such information is used to

select the slotframe length (See Section 4.3) and allocate cells (See Section 4.4).

To collect such information, ATRIA enables the DAO-ACK option in RPL where each device

keeps updating its route list that stores the routes to its descendants and the neighbor list that stores

its child nodes and their descendants
3
. Topology Identifier detects the descendants of a device by

checking its route list and identifies the child nodes of a device and the descendants belonging to

each of its child nodes by scanning the neighbor list. Topology Identifier is executed by each device

in every slotframe to address the routing list updates resulted from network topology changes.

4.3 Slotframe Selector
Our experimental study in Section 3.2 shows that the selection of the slotframe length significantly

affects network performance. As Figure 5 shows, the network that uses a large slotframe suffers

poor reliability and large latency. Blindly reducing the slotframe length not only cannot keep

improving the reliability but also significantly compromises the energy efficiency. This is because

the slot conflict, where a cell is allocated to more than one link, happens frequently when the

slotframe length is too small. Slotframe Selector is designed to identify the best-suited slotframe

length that allows the network to achieve high reliability with low energy consumption.

3
The route list is implemented as routelist and the neighbor list is implemented as nbr_routes in Contiki 3.0.
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Slotframe Selector runs on each device and takes the topology information provided by Topology

Identifier and the application specified parameters (the data generation interval 𝑇 of each device

and the maximum transmission attempts per packet 𝑁𝑅) as inputs. For a network that consists

of 𝑁 end devices and the Root, Slotframe Selector first detects the traffic loads by calculating the

number of packets, which are scheduled to be transmitted in a specified time duration. We define

the length of such time duration as 𝐷 and set it to the least common multiple of the data generation

intervals used in the network. Please note that all devices in the network derive the same value for

𝐷 , because they use the same set of data intervals as their input. The number of packets 𝑃 𝑗 that are

scheduled to be transmitted through a directional link 𝑗 during 𝐷 is calculated as

𝑃 𝑗 =

𝑚+1∑︁
𝑖=1

𝐷

𝑇𝑖
(4)

where 𝑇𝑖 denotes the data generation interval of the device 𝑖 and𝑚 denotes the number of the

end devices, each of which is the descendant of the sender or the receiver of this link. When𝑚 is

equal to 𝑁 − 1, the directional link is responsible for forwarding the packets between the Root and

the rest 𝑁 − 1 end devices. Under this extreme topology case, this directional link 𝑗 is expected to

transmit the maximum number of packets 𝑃𝑚𝑗 during 𝐷 , which is expressed as

𝑃𝑚𝑗 =

𝑁∑︁
𝑖=1

𝐷

𝑇𝑖
(5)

Meanwhile, the end device that forwards the traffic between the Root and the 𝑁 − 1 end devices is

responsible for transmitting the maximum number of packets during 𝐷 . The maximum traffic load

of a device 𝑃𝑚𝑎𝑥 is

𝑃𝑚𝑎𝑥 ≃ 2 ∗ (
𝑁∑︁
𝑖=1

𝐷

𝑇𝑢
𝑖

+
𝑁∑︁
𝑖=1

𝐷

𝑇𝑑
𝑖

) (6)

where𝑇𝑢
𝑖 denotes the interval of the upward data flow from the device 𝑖 to the Root, and𝑇𝑑

𝑖 denotes

the interval of the downward data flow from the Root to the device 𝑖 .

For a given 𝐷 , the maximum length of the slotframe is 𝐷/𝑆 (𝑆 denoted as the duration of a time

slot). If 𝐷/𝑆 is no less than 𝑃𝑚𝑎𝑥 , the transmission is schedulable by ATRIA. For a given slotframe

length, the success rate of allocating cells without introducing any slot conflict depends on the

specific cell allocation algorithm. While taking the success rate, 𝐷/𝑆 , and 𝑁𝑅 into account, the

following equation can be used to compute the best-suited slotframe length:

𝐿𝑆 = 𝑅 × 𝐷/𝑆 ÷ 𝑁𝑅 =
𝑅 · 𝐷
𝑁𝑅 · 𝑆 (7)

where 𝑅 denotes the success rate of the chosen cell allocation algorithm. We will introduce our

cell allocation algorithm in Section 4.4. Because all devices share the same 𝑅, 𝐷 , 𝑁𝑅 , and 𝑆 , they

select the same value for 𝐿𝑆 , which should be no less than 𝑃𝑚𝑎𝑥 to provide enough cells even under

the extreme topology case. Then, Slotframe Selector decides the number of cells scheduled for

each link according to the number of packets during 𝐷 . For example, 𝑃 𝑗 cells are scheduled for the

directional link 𝑗 in each slotframe to deliver 𝑃 𝑗 packets during 𝐷 . When the network topology

changes, Slotframe Selector only needs to adjust the number of scheduled cells according to the

updates of Topology Identifier.

4.4 Cell Allocator
The existing autonomous allocation methods such as ALICE usually assign the slot offsets com-

pletely randomly by using HASH functions. Such methods may introduce many slot conflicts.
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Fig. 7. Example slot conflicts. A slotframe consists of 18 slots. The numbers of cells scheduled for link 𝑐 → 𝑏,
𝑏 → 𝑐 , 𝑒 → 𝑐 , and 𝑐 → 𝑒 are three, three, one, and one, respectively.

Figure 7 shows example slot conflicts when using ALICE to allocate one or more cells randomly for

each link of device 𝑐 in the network plotted in Figure 1(a). We assume that 𝐿𝑆 is 18. The numbers of

cells scheduled for link 𝑐 → 𝑏, 𝑏 → 𝑐 , 𝑒 → 𝑐 , and 𝑐 → 𝑒 are three, three, one, and one, respectively.

For the second cell scheduled for link 𝑐 → 𝑏 and the first cell scheduled for link 𝑏 → 𝑐 , we assume

that the return values of the HASH operation are 185 and 77, respectively. However, the modulo

operation returns the same remainder five for those different inputs when using 18 as the modulus,

leading to the conflict for the slot with the offset five. We define such slot conflict between the links

that connect the same pair of devices as intra-link conflict. Link 𝑏 → 𝑐 and 𝑒 → 𝑐 do not connect

the same pair of devices and the cells scheduled for them are assigned with the same slot offset 10.

We define such slot conflict as inter-link conflict. The abovementioned slot conflicts result in an

allocation success rate of 75.0%. Cell Allocator performs cell allocation according to the slotframe

length selected by Slotframe Selector and the number of cells scheduled for each link provided by

Slotframe Selector and Schedule Adaptor. It runs on each device in every slotframe to enhance the

success rate while allocating one or more cells to each directional link.

Instead of allocating cells randomly, Cell Allocator first intends to allocate the cells that are

scheduled for the two directional links between two devices, e.g., link 𝑎 → 𝑏 and link 𝑏 → 𝑎,

sequentially in a slotframe. This process is designed to eliminate the intra-link conflict by allocating

the cells for the same pair of links one after another. In addition, Cell Allocator reduces the inter-link

conflicts by employing a novel dual-slotframe design and performing the following three steps:

(1) Dividing slotframe: The slotframe is divided equally into a number of subslotframes. The

number (2𝑃𝑚𝑗 ) is enough to provide each cell with a unique subslotframe;

(2) Allocating subslotframes: The cells for the directional link of upward data flows are

distributed among the subslotframes, with similar distances between each other. Similarly, the

cells for downward data flows are distributed among the remaining unoccupied subslotframes;

(3) Allocating cells: A pair of random functions is used to generate the slot offset and the

channel offset of each cell in its subslotframe.

We illustrate this process in Figure 8. We assume that a network is composed of device 𝑎 and 𝑏.

According to Slotframe Selector, 𝐿𝑆 is 18 and 𝑃𝑚𝑗 is four. Four cells are scheduled for link 𝑏 → 𝑎 and

three cells are scheduled for link 𝑎 → 𝑏, resulting from the unbalanced traffic loads. As Figure 8

shows, the slotframe is first divided into eight subslotframes. The length of six subslotframes is

two slots, while the fourth and eighth subslotframes include three slots because of the remainder

(Step 1). Then, seven cells scheduled for link 𝑏 → 𝑎 and 𝑎 → 𝑏 are sequentially allocated to the

subslotframes except the last one (Step 2). In Step 3, Cell Allocator assigns the slot and channel

offsets by revising Eq. 2 and Eq. 3. Specifically, the slot offset 𝑇
𝑘,𝑖

𝑎,𝑏
of the 𝑖-th cell for the link from

device 𝑎 to device 𝑏, in the 𝑗-th subslotframe of the 𝑘-th slotframe since the network started is

calculated as

𝑇
𝑘,𝑖

𝑎,𝑏
=𝑚𝑜𝑑 (𝐻𝑎𝑠ℎ(𝛼𝐼𝐷 (𝑎) + 𝐼𝐷 (𝑏) + 𝑘 × 𝑖), 𝐿 𝑗

𝑆𝑆
) (8)
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Fig. 8. Example slot allocations. A slotframe that consists of 18 slots is divided into eight subslotframes. Seven
cells distribute among eight subslotframes uniformly. Each cell is allocated to a slot in its subslotframe.

where the coefficient 𝛼4
is used to differentiate traffic directions, e.g., link 𝑎 → 𝑏 vs. link 𝑏 → 𝑎. The

product of 𝑘 and 𝑖 is used to differentiate the inputs of the HASH function in different slotframes

to prevent the contention for the same slot from happening repeatedly in successive slotframes.

𝐿
𝑗

𝑆𝑆
denotes the length of the 𝑗-th subslotframe. Similarly, the channel offset 𝐶

𝑘,𝑖

𝑎,𝑏
is calculated as

𝐶
𝑘,𝑖

𝑎,𝑏
=𝑚𝑜𝑑 (𝐻𝑎𝑠ℎ(𝛼𝐼𝐷 (𝑎) + 𝐼𝐷 (𝑏) + 𝑘 × 𝑖), 𝐿𝐶 − 1) + 1 (9)

where 𝐿𝐶 is the length of the sequence of physical channels. In the end, Cell Allocator maps the

slot offset 𝑇
𝑘,𝑖

𝑎,𝑏
in the subslotframe to the slot offset in the unicast slotframe for TSCH operations.

Figure 9 plots example cell allocations for the network plotted in Figure 1(a). We assume that 𝐿𝑆 is

18 and 𝑃𝑚𝑗 is four. The numbers of cells scheduled for link 𝑏 → 𝑎, 𝑎 → 𝑏, 𝑐 → 𝑏, 𝑏 → 𝑐 , 𝑑 → 𝑏,

𝑏 → 𝑑 , 𝑒 → 𝑐 , and 𝑐 → 𝑒 are four, three, three, two, one, one, two, and one, respectively. As Figure 9

shows, the cells scheduled for the same pair of links are allocated uniformly, without any intra-link

conflict. Cell Allocator also significantly reduces the inter-link conflicts, only one conflict in slot 16.

We now prove that using our dual-slotframe design can provide a device with more cells without

slot conflict compared to the random allocation methods. We start from a case where a given device

has a parent and a child node. We assume that 𝑥 cells are scheduled to the pair of links between

the device and its parent in a slotframe that consists of 𝑧 slots. Meanwhile, 𝑦 cells are scheduled to

the pair of links between the device and its child. Let 𝐸 (𝑥,𝑦, 𝑧) and 𝑅(𝑥,𝑦, 𝑧) denote the numbers

of allocated cells while executing Cell Allocator and the random allocation method.

Proposition 1. For any 𝑥 ∈ N+ and 𝑦 ∈ N+ such that 𝑥 > 𝑦 and 𝑥 + 𝑦 < 𝑧, we have 𝐸 (𝑥,𝑦, 𝑧) >
𝑅(𝑥,𝑦, 𝑧).

4
We set 𝛼 to 256, the maximum value of the last byte of MAC address.
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Fig. 9. Example cell allocations to four pairs of bidirectional links in Figure 1(a). A slotframe that consists of
18 slots is divided into eight subslotframes.

Proof. We prove this inequality by constructing the expressions for 𝐸 (𝑥,𝑦, 𝑧) and 𝑅(𝑥,𝑦, 𝑧)
according to each allocation algorithm and comparing them.

𝐸 (𝑥,𝑦, 𝑧)=

x items︷  ︸︸  ︷
1+ ...+1+

y items︷           ︸︸           ︷
𝑧−𝑥
𝑧

+ ...+𝑧−𝑥
𝑧

=𝑥+ (𝑧−𝑥)𝑦
𝑧

𝑅(𝑥,𝑦, 𝑧)=1+𝑧−1
𝑧

+ ...+(𝑧−1
𝑧

)
𝑥+𝑦−1

=𝑧(1−(𝑧−1
𝑧

)
𝑥+𝑦

)

To prove𝐸 (𝑥,𝑦, 𝑧)−𝑅(𝑥,𝑦, 𝑧) > 0, it suffices to prove the equality: (𝐸 (𝑥,𝑦, 𝑧)−𝑅(𝑥,𝑦, 𝑧))𝑧𝑥+𝑦−1 > 0.

After expanding (𝐸 (𝑥,𝑦, 𝑧)−𝑅(𝑥,𝑦, 𝑧))𝑧𝑥+𝑦−1 and merging similar items, we have:

3(𝑥2+𝑦2−𝑥−𝑦)𝑧−(𝑥2+𝑦2+2𝑥𝑦−3𝑥−3𝑦+2)(𝑥+𝑦)
6

𝑧𝑥+𝑦−3

+
(
𝑥+𝑦
4

)
𝑧𝑥+𝑦−4 −

(
𝑥+𝑦
5

)
𝑧𝑥+𝑦−5... +

(
𝑥+𝑦
𝑥+𝑦

)
(−1)𝑥+𝑦𝑧0

Because 𝑥,𝑦 ∈ N+
and 𝑥 + 𝑦 < 𝑧, it is easy to derive that the coefficient of 𝑧𝑥+𝑦−3 is positive.

Therefore, to prove the above inequality, it suffices to prove the following inequality:(
𝑥+𝑦
4

)
𝑧𝑥+𝑦−4 −

(
𝑥+𝑦
5

)
𝑧𝑥+𝑦−5 ... +

(
𝑥+𝑦
𝑥+𝑦

)
(−1)𝑥+𝑦𝑧0 > 0

We separate the following proof into two cases: (1) 𝑥 + 𝑦 is odd and (2) 𝑥 + 𝑦 is even.

Case 1: In this polynomial, each positive term is followed by a negative term. After merging similar

items in each pair of terms, we observe that the absolute value of the former term is always larger

than that of the latter term. The sum of these pair of terms is positive, we have 𝐸 (𝑥,𝑦, 𝑧) > 𝑅(𝑥,𝑦, 𝑧).
Case 2: In this polynomial, each positive term is followed by a negative term, except the last term,

which is positive. It is easy to derive that the sum of these terms is positive according to Case 1. So

we have 𝐸 (𝑥,𝑦, 𝑧) > 𝑅(𝑥,𝑦, 𝑧). □

When a given device has one more child node and 𝑞 cells are scheduled for the pair of links

between the device and its second child, we construct the expressions for 𝐸 (𝑥,𝑦, 𝑞, 𝑧) and 𝑅(𝑥,𝑦, 𝑞, 𝑧)
and compare them.

𝐸 (𝑥,𝑦, 𝑞, 𝑧)=𝑥+ (𝑧−𝑥)𝑦
𝑧

+ (𝑧2−𝑧𝑥−𝑧𝑦+𝑥𝑦)𝑞
𝑧2

𝑅(𝑥,𝑦, 𝑞, 𝑧)=𝑧(1−(𝑧−1
𝑧

)
𝑥+𝑦+𝑞

)

After expanding and merging similar items by following the similar process, we have 𝐸 (𝑥,𝑦, 𝑞, 𝑧) >
𝑅(𝑥,𝑦, 𝑞, 𝑧). Similarly, under the case where a device has a parent and 𝑁 child nodes, we construct

the expressions for 𝐸 (𝑥1, 𝑥2 · · · 𝑥𝑁+1, 𝑧) and 𝑅(𝑥1, 𝑥2 · · · 𝑥𝑁+1, 𝑧) and compare them to prove that

our dual-slotframe design provides more cells without slot conflict. We derive the success rate of

allocating cells without introducing slot conflict by comparing 𝐸 (𝑥1, 𝑥2 · · · 𝑥𝑁+1, 𝑧) to the number
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of scheduled cells and use the success rate as 𝑅 in Eq. 7. After repeating the dual-slotframe design

for each device, Cell Allocator provides the network with more cells without slot conflict.

4.5 Schedule Adaptor
The traffic demand of a device may change at runtime, therefore it is important to adapt the cell

assignments at runtime. Schedule Adaptor is designed to run on each device and update the numbers

of cells that are scheduled for each link periodically. It takes the number of packets transmitted

through each link in a specified time duration provided by the MAC layer and the slotframe length

𝐿𝑆 provided by Slotframe Selector as inputs, and updates the number of cells scheduled for each

link accordingly. Specifically, Schedule Adaptor performs the following three steps: (1) monitoring

traffic loads; (2) detecting traffic changes; (3) adjusting cell assignments.

Algorithm 1: Confirm Traffic Change

Input :𝑇𝑂
𝑘
, 𝑇𝑇

, 𝐶𝑇

Output :𝑇𝑁
𝑘

1 for 𝑖 = 1; ; 𝑖 + + do
2 for 𝑘 = 1;𝑘 ≤ 𝑀 ;𝑘 + + do
3 Collect the number of packets transmitted successfully through link 𝑘 ;

4 end
5 Generate 𝑇𝑁

𝑘
of each link;

6 if There is no routing topology change then
7 for 𝑘 = 1;𝑘 ≤ 𝑀 ;𝑘 + + do
8 if 𝑇𝑁

𝑘
∉ (𝑇𝑂 −𝑇𝑇 ,𝑇𝑂 +𝑇𝑇 ) then

9 𝐶𝐴
𝑘
+ +;

10 if 𝐶𝐴
𝑘
> 𝐶𝑇 then

11 Replace 𝑇𝑂
𝑘

with 𝑇𝑁
𝑘

and output 𝑇𝑁
𝑘
;

12 end
13 end
14 else
15 Reset 𝐶𝐴

𝑘
when it does not change in a time duration;

16 end
17 end
18 end
19 end

In Step 1, Schedule Adaptor monitors the current traffic load of each link in a checking period. We

set the length of the checking period equal to 𝐷 (the least common multiple of the data generation

intervals) to detect the traffic change happened in each data interval in time. To make the sender

and the receiver of a communicating link share the same number of packets transmitted successfully

through the link, the packet acknowledgements are enabled in the MAC layer. Each packet that is

transmitted successfully is identified and counted according to its corresponding link by the MAC

layer. By reading the parameter that stores the number of transmitted packets, Schedule Adaptor is

able to derive the current traffic load of each link. In Step 2, Schedule Adaptor detects traffic load

changes. Algorithm 1 presents the details of Step 1 and Step 2. The input of Algorithm 1 consists of

three parameters: the original traffic load of each link during 𝐷 (𝑇𝑂
𝑘
), the traffic variation threshold

(𝑇𝑇
), and the counter threshold of traffic changes detected in a series of continuous checking
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Fig. 10. Example of updating the numbers of scheduled cells.

periods (𝐶𝑇
). Schedule Adaptor is executed in every checking period (line 1). It first collects the

number of packets transmitted through each link during this checking period by traversing all𝑀

links (line 2 – 4) and generates the latest traffic load 𝑇𝑁
𝑘

of each link (line 5). When the network

topology changes, the traffic loads usually change sequentially and Slotframe Selector updates the

number of scheduled cells for each link synchronously. Therefore, Algorithm 1 checks whether

the routing topology changes recently (line 6). If there is no routing change, it then traverses all

communicating links (line 7) and compares 𝑇𝑁
𝑘

and 𝑇𝑂
𝑘

(line 8). When the first attempt of a packet

transmission fails in a checking period, the second or third attempt may happen and succeed in

the next checking period, leading to the difference between 𝑇𝑁
𝑘

and 𝑇𝑂
𝑘
. To exclude such cases,

only when the difference between 𝑇𝑁
𝑘

and 𝑇𝑂
𝑘

is larger than the variation threshold 𝑇𝑇
(line 8),

the counter of continuous traffic changes 𝐶𝐴
𝑘
is added (line 9). If the counter 𝐶𝐴

𝑘
is larger than the

threshold𝐶𝑇
, Algorithm 1 confirms that the traffic load of link 𝑘 changes continuously and replaces

𝑇𝑂
𝑘

with 𝑇𝑁
𝑘

(line 10 – 12). If the difference between 𝑇𝑁
𝑘

and 𝑇𝑂
𝑘

is small and then 𝐶𝐴
𝑘
does not

change in a time duration, the counter 𝐶𝐴
𝑘
is reset (line 14 – 16).

After Algorithm 1 updates the traffic load of each link, Schedule Adaptor continues to perform

Step 3. In Step 3, Schedule Adaptor keeps using the slotframe length 𝐿𝑆 provided by Slotframe

Selector and calculates the number of cells that should be scheduled in such a slotframe according

to the latest traffic load. This is because 𝐿𝑆 is shared by all network devices and the latest traffic

load is only shared by each pair of devices without introducing additional communication among

devices. We use an example to illustrate Step 3 (Figure 10). We assume that device 𝑎, 𝑏, 𝑐 , and 𝑑

form the network, where the Root collects data from all other devices. Device 𝑎 is responsible for

forwarding the data packets generated by device 𝑏, 𝑐 , and 𝑑 to its parent. We also assume that

Slotframe Selector sets 𝐿𝑆 to 100, while 𝑁𝑅 is two and 𝑆 is 10𝑚𝑠 . At first, all four devices generate

one data packet every one second. Therefore, the traffic loads of link 𝑐 → 𝑏, link 𝑑 → 𝑏, and link

𝑏 → 𝑎 are one packet per second, one packet per second, and three packets per second, respectively.

Accordingly, the numbers of cells scheduled for such three links are two, two, and six, respectively.

After a long time of operation, device 𝑐 starts to generate two packets every second, while device 𝑑

changes its data generation interval to two seconds. We assume that Schedule Adaptor detects and

confirms the traffic change by performing Step 1 and Step 2. In Step 3, as the traffic loads of link

𝑐 → 𝑏, link 𝑑 → 𝑏, and link 𝑏 → 𝑎 change to two packets per second, 0.5 packets per second, and
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(a) End-to-end PDR averaged among 49

data flows.

(b) End-to-end latency averaged among

49 data flows.

(c) Energy consumption averaged

among 50 devices.

Fig. 11. Network performance when we vary the data generation interval from 2𝑠 to 14𝑠 . In each experiment,
all devices generate data at the same rate.

3.5 packets per second, respectively, Schedule Adaptor updates the numbers of cells scheduled for

these three links from two to four, from two to one, and from six to seven, respectively. At the start

of the next slotframe, Cell Allocator allocates such numbers of cells to meet the updated traffic

demands of these three links.

5 EVALUATION
To validate the effectiveness of ATRIA in improving network performance at high data rates, we

perform a series of experiments on the FIT IoT-LAB testbed [2]. We first examine the performance

of ATRIA when all devices generate data at the same rate. We then evaluate the capability of ATRIA

to provide high network reliability when the devices have different data rates. Next, we vary the

ratio of upward traffic to downward traffic and study its impact on network performance. Finally, we

evaluate the effectiveness of schedule adaptations. We let one device serve as the Root and configure

49 end devices to generate periodic upward traffic. To study the data dissemination performance,

we also configure the Root to generate packets periodically (downward traffic). Figure 2 plots the

testbed deployment. The network consists of multiple data flows and the routing path of each data

flow includes no more than six hops. All routes are generated by the RPL protocol with MRHOF.

To compare the performance of ATRIA and ALICE, all devices operate on four channels (physical

channel 15, 25, 26, and 20) and send packets using the transmission power of -17𝑑𝐵𝑚 (the default

value in the ALICE implementation). We also compare their performance against that of the optimal

scheduling method (Optimal) with the objective of maximizing the end-to-end reliability. Please

note that Optimal is based on backward data analysis and cannot be implemented at runtime. We

set the slotframe lengths for routing and time synchronization to 19𝑠𝑙𝑜𝑡𝑠 and 397𝑠𝑙𝑜𝑡𝑠 , respectively.

Each time slot lasts 10𝑚𝑠 .

5.1 Performance with A Single Data Generation Interval
In this set of experiments, we configure all devices to generate data at the same rate and vary the

data interval from 2𝑠 to 14𝑠 . We vary 𝑁𝑅 from 1 to 7. Leveraging Eq. 7, the devices that run ATRIA

always select 200𝑠𝑙𝑜𝑡𝑠 as the length. We use the default length (43𝑠𝑙𝑜𝑡𝑠) for ALICE and 100𝑠𝑙𝑜𝑡𝑠 for

Optimal.

Figure 11 plots the network performance when we vary the data generation interval. As Fig-

ure 11(a) shows, the PDRs of the upward and downward data flows are 100% when the data

generation interval is no less than 12𝑠 . As expected, all methods perform well when the data is

generated at low rates. The PDRs of the upward and downward data flows under ALICE decrease
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(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data

flows.

(c) CDF of energy consumption of de-

vices.

Fig. 12. Network performance when the data generation interval is 5𝑠 .

rapidly when the data rate increases. For instance, the PDR of the upward traffic drops from 97.2%

to 74.6% and the PDR of the downward traffic drops from 94.9% to 54.9% when the data generation

interval decreases from 11𝑠 to 6𝑠 . As a comparison, both ATRIA and Optimal provide 100% PDR

at those rates. When we further reduce the data generation interval to 4𝑠 , the PDRs provided by

ATRIA are 94.0% (upward) and 82.1% (downward), while the PDRs provided by ALICE are 57.7%

(upward) and 32.5% (downward). The PDRs under Optimal are 100%, because it can always allocate

enough cells for transmission resulting from the backward data analysis. The results clearly show

the effectiveness of ATRIA in enhancing network reliability at high data rates by allocating cells

based on the traffic demands.

Figure 11(b) plots the averaged end-to-end latency. All methods provide low latency (around

130𝑚𝑠) when the data generation interval is no less than 12𝑠 . As the data rate increases, ATRIA

and Optimal outperform ALICE. For example, when the data interval decreases from 11𝑠 to 6𝑠 , the

latency of the upward data flows under ATRIA and Optimal increases slightly from 157𝑚𝑠 to 207𝑚𝑠

and from 114𝑚𝑠 to 130𝑚𝑠 , respectively, while the one under ALICE increases sharply from 292𝑚𝑠

to 693𝑚𝑠 . When the data interval is less than 5𝑠 , both ATRIA and ALICE suffer high latency. The

results demonstrate the effectiveness of ATRIA in keeping the latency low at high data rates.

Figure 11(c) plots energy consumption
5
averaged among all 50 devices. As Figure 11(c) shows,

the averaged energy consumption under ATRIA is consistently the lowest. For instance, when the

data interval decreases from 14𝑠 to 2𝑠 , the energy consumption under ATRIA increases from 10.2𝐽

to 11.2𝐽 , while the one under ALICE increases from 10.7𝐽 to 11.6𝐽 . This is because all devices that

run ATRIA allocate cells based on their specific traffic loads and wake up accordingly, resulting in

lower energy consumption. The devices that run Optimal consume more energy, because Optimal

schedules more cells to ensure high reliability.

Figure 12 provides a detailed look at the network performance when the data generation interval

is 5𝑠 . Figure 12(a) plots the CDF of the end-to-end PDR of each data flow. When the devices run

ATRIA, 45.0% of the data flows achieve 100% PDR. The median and minimum PDRs are 98.9% and

94.4%, respectively. As a comparison, the maximum, median, and minimum PDRs under ALICE are

76.7%, 42.0%, and 24.0%, respectively. Figure 12(b) plots the CDF of the end-to-end latency of each

data flow. Under ATRIA, the minimum, upper quartile, and maximum latency values are 124𝑚𝑠 ,

455𝑚𝑠 , and 645𝑚𝑠 , respectively. As a comparison, when the devices run ALICE, the minimum, upper

quartile, and maximum latency values are 37𝑚𝑠 , 1372𝑚𝑠 , and 1548𝑚𝑠 , respectively. The results

clearly show that ATRIA can enhance the reliability and reduce the latency by scheduling cells based

on the traffic demands. As Figure 12(c) shows, ATRIA and ALICE provide comparable performance

5
Energy consumption is calculated based on the measured duty cycles and the M3 device datasheet [36].
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(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data

flows.

(c) CDF of energy consumption of de-

vices.

Fig. 13. Network performance when the devices generate data at multiple rates.

on energy consumption. The energy consumption varies from 9.2𝐽 to 21.6𝐽 under ATRIA, while it

ranges from 10.0𝐽 to 16.4𝐽 under ALICE. The devices with different traffic demands are scheduled to

use different numbers of cells in each slotframe, leading to larger variations on energy consumption

among devices under ATRIA. The slight increases in energy consumption variations are in exchange

for a proportionally much-larger enhancement in reliability and reduction in latency. As Figure 11

and Figure 12 show, compared to ALICE, ATRIA provides significantly higher reliability and lower

latency with comparable energy consumption at high data rates, while it consumes less energy to

achieve comparable performance on the network reliability and latency at low data rates.

5.2 Performance with Multiple Data Generation Intervals
In this set of experiments, we evaluate the capability of ATRIA to provide high network reliability

when the devices have different data rates, leading to more unbalanced traffic. We configure 15

devices to generate a packet every 3𝑠 and let 15 devices generate a packet every 6𝑠 . The rest of the

devices generate data with an interval of 12𝑠 . Figure 13(a) plots the CDF of the end-to-end PDR of

each data flow. The performance provided by ATRIA is close to Optimal’s. When the devices run

ATRIA, the minimum PDR is 94.8%, while the maximum, median, and minimum PDRs under ALICE

are 71.7%, 49.2%, and 15.0%, respectively. The results show the benefit of providing more cells to

those devices with heavier traffic loads. Figure 13(b) plots the CDF of the end-to-end latency of

each data flow. When the devices run ATRIA, the minimum, median, and maximum latency values

are 93𝑚𝑠 , 311𝑚𝑠 , and 584𝑚𝑠 , respectively. Under ALICE, the minimum, median, and maximum

latency values are 32𝑚𝑠 , 253𝑚𝑠 , and 1,875𝑚𝑠 , respectively. Many devices that generate data with

small intervals do not have enough cells to deliver their data, resulting in the long tail under ALICE.

As a comparison, those values under Optimal are 62𝑚𝑠 , 137𝑚𝑠 , and 189𝑚𝑠 , respectively. Figure 13(c)

plots the CDF of energy consumption. As Figure 13(c) shows, 88.0% of the devices have the lowest

energy consumption when they run ATRIA. The minimum, median, and maximum values under

ATRIA are 9.5𝐽 , 9.7𝐽 , and 21.2𝐽 , respectively. As a comparison, those values are 10.0𝐽 , 10.2𝐽 , and

16.8𝐽 , respectively, when they run ALICE. The devices consume more energy to allocate more cells

to provide higher reliability under Optimal. By observing the results, we can conclude that ATRIA

can better handle packet deliveries across the network when the devices generate data at different

rates.

5.3 Impact of Traffic Patterns
In this set of experiments, we create unbalanced traffic loads by varying the ratio of the upward

traffic to the downward traffic and study its impact on network performance. We first create a

network that mainly collects data by setting the data generation intervals for the upward and
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(a) CDF of end-to-end PDR of data flows. (b) CDF of end-to-end latency of data

flows.

(c) CDF of energy consumption of de-

vices.

Fig. 14. Network performance when upward traffic and downward traffic are under different data rates.

downward traffic to 4𝑠 and 8𝑠 . We then create a network that mainly disseminates data by setting

data intervals for the upward and downward traffic to 8𝑠 and 4𝑠 . Leveraging Eq. 7, the devices that

run ATRIA set the slotframe length to 300𝑠𝑙𝑜𝑡𝑠 . Figure 14(a) plots the CDF of the end-to-end PDR

of each data flow under different traffic ratios. When the network mainly collects data, ATRIA

provides the performance close to Optimal’s. The minimum PDR is 95.0% and 72% of the data flows

achieve 100% PDR. As a comparison, while the devices run ALICE, the maximum, median, and

minimum PDRs are 98.0%, 58.7%, and 26.2%, respectively. When the network mainly disseminates

data, ATRIA also performs better than ALICE. These results demonstrate the benefit of scheduling

cells based on the traffic loads. Figure 14(b) plots the CDF of the end-to-end latency of each data

flow. When the network runs mainly to disseminate data, it takes more time to deliver packets

under ALICE. For example, the minimum, median, and maximum values under ALICE are 42𝑚𝑠 ,

319𝑚𝑠 , and 2,070𝑚𝑠 , respectively. As a comparison, the minimum, median, and maximum values

are 63𝑚𝑠 , 216𝑚𝑠 , and 552𝑚𝑠 , respectively, when the devices run ATRIA. When the network mainly

collects data, we observe similar results. Figure 14(c) presents the CDF of energy consumption.

When the network mainly disseminates data, ATRIA and ALICE provide comparable performance

on energy efficiency. For example, the minimum, median, and maximum energy consumption

values under ATRIA are 9.5𝐽 , 9.7𝐽 , and 21.4𝐽 , while those values under ALICE are 10.0𝐽 , 10.2𝐽 , and

16.8𝐽 , respectively. As a comparison, the devices consume more energy when allocating more cells

under Optimal to achieve 100% PDR. We observe similar results when the network runs mainly to

collect data. In summary, ATRIA provides higher reliability and lower latency with comparable

energy consumption, when upward traffic and downward traffic are under different data rates.

5.4 Effectiveness of Schedule Adaptations
In this set of experiments, we validate the effectiveness of schedule adaptations and evaluate the

network performance when the devices change the data generation rate or the network topology

changes at runtime. We first configure all devices to change the data generation interval from 4𝑠 ,

6𝑠 , 10𝑠 , 12𝑠 , and 14𝑠 to 8𝑠 at runtime. Then we configure all devices to change the data generation

interval from 4𝑠 , 6𝑠 , 8𝑠 , 12𝑠 , and 14𝑠 to 10𝑠 . Next, we evaluate the performance when the network

faces topology changes. We also repeat the experiments when configuring different numbers

of devices (17, 33, and 50) to change the data interval from 10𝑠 to 6𝑠 . Finally, we evaluate the

performance changes when Schedule Adaptor performs schedule adaptations in response to the

data interval changes at runtime. We set 𝑇𝑇
and 𝐶𝑇

to two and one, respectively.

Figure 15(a) and Figure 15(b) plot the CDF of the time consumed by each communicating link to

complete schedule adaptations when all devices change the data generation interval to 8𝑠 and 10𝑠 ,
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(a) Data generation interval changes from 4𝑠 , 6𝑠 , 10𝑠 , 12𝑠 ,

and 14𝑠 to 8𝑠 .

(b) Data generation interval changes from 4𝑠 , 6𝑠 , 8𝑠 , 12𝑠 ,

and 14𝑠 to 10𝑠 .

Fig. 15. Time consumed by schedule adaptations.

(a) PDR. (b) Latency. (c) Energy Consumption.

Fig. 16. Network performance when the data generation interval changes from 4𝑠 , 6𝑠 , 10𝑠 , 12𝑠 , and 14𝑠 to 8𝑠 .

respectively. As Figure 15(a) shows, the time consumed by schedule adaptations increases when

the change of the data interval decreases. For example, when the data generation interval changes

from 14𝑠 to 8𝑠 , 98.0% of the links complete their schedule adaptations within three checking periods

and the other links take one more checking period. When the data interval changes from 10𝑠 to 8𝑠 ,

the upper quartile, and maximum time consumption values are five checking periods and seven

checking periods, respectively. This is because it takes Schedule Adaptor more time to sense and

confirm the slight traffic change by counting the data packets, especially for the links that are not

responsible for forwarding traffic. Figure 15(b) shows similar results when the data generation

interval changes to 10𝑠 . Figure 16 plots the network performance when the data generation interval

changes to 8𝑠 . As Figure 16(a) shows, the PDRs of the upward and downward data flows are 100%

after completing each schedule adaptation. As Figure 16(b) shows, the end-to-end latency after

traffic change is approximately equal to the latency without traffic change. For example, the latency

values of the upward data flows are 168𝑚𝑠 and 173𝑚𝑠 , respectively, when the data interval changes

from 6𝑠 and 10𝑠 to 8𝑠 . As a comparison, the latency is 169𝑚𝑠 when the data interval is consistently

8𝑠 . As Figure 16(c) shows, the energy consumption averaged among all devices is always around

10.5𝐽 after performing schedule adaptations, which is equal to the energy consumption when all

devices consistently generate a packet every 8𝑠 . Figure 17 plots the network performance when

the data generation interval changes to 10𝑠 . The PDRs of the upward and downward data flows

are always 100%, while the energy consumption is around 10.3𝐽 after performing each schedule
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(a) PDR. (b) Latency. (c) Energy Consumption.

Fig. 17. Network performance when the data generation interval changes from 4𝑠 , 6𝑠 , 8𝑠 , 12𝑠 , and 14𝑠 to 10𝑠 .

(a) PDR. (b) Latency. (c) Energy Consumption.

Fig. 18. Network performance when 10 or 20 devices leave the network.

adaptation. The end-to-end latency under each traffic change is close to the value under the fixed

data interval. For example, the latency of the upward data flows is 159𝑚𝑠 after we change the data

interval from 12𝑠 to 10𝑠 , while the one under the fixed 10𝑠 interval is 158𝑚𝑠 . The results shown in

Figure 16 and Figure 17 demonstrate the effectiveness of Schedule Adaptor in meeting the traffic

demand when all devices change the data rate at runtime.

Figure 18 plots the network performance when the network faces topology changes after 10 or

20 devices leave the network. All devices generate a data packet every 8𝑠 . As Figure 18(a) shows,

the PDRs of the upward and downward data flows are always 100% after completing each schedule

adaptation. As Figure 18(b) shows, the end-to-end latency increases slightly after 10 or 20 devices

leave the network. For example, when the network consists of 50 devices, the latency of the upward

data flows is 169𝑚𝑠 . After 20 devices leave the network, the latency increases to 175𝑚𝑠 . This is

because the numbers of scheduled cells are adjusted according to the new topology, leading to less

cells allocated in each slotframe. As Figure 18(c) shows, the energy consumption averaged among

all 30 devices is 10.4𝐽 , slightly lower that averaged among 50 devices (10.5𝐽 ). This is because the

averaged traffic load decreases when some devices leave the network. Figure 19 plots the numbers

of cells scheduled for each device. As Figure 19 shows, the numbers of scheduled cells decrease after

sets of devices leave the network. For instance, at first, Device 40 is responsible for forwarding the

traffic of four devices and 18 cells are scheduled for its traffic. After 20 devices leave the network,

the number of child nodes of Device 40 decreases to two and the number of scheduled cells drops

to 10 accordingly. Similarly, 42 cells are scheduled for Device 47 at first. This number decreases to

34 or 22 after 10 or 20 devices leave the network. The results plotted in Figure 18 and Figure 19

demonstrate the effectiveness of ATRIA in meeting the traffic demand when the network topology

changes.

Figure 20 plots the network performance when we change the number of devices that change the

data generation interval. As Figure 20(a) shows, the PDRs of the upward and downward data flows
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Fig. 19. Number of scheduled cells for each device when 10 or 20 devices leave the network.

(a) PDR. (b) Latency. (c) Energy Consumption.

Fig. 20. Network performance when different numbers of devices change their data generation intervals. F:
devices generate data at the fixed rates; C: 17, 33, and 50 devices change the data generation interval from
10𝑠 to 6𝑠 .

are always 100% after 17, 33, and 50 devices are configured to change the data rate and Schedule

Adaptor completes schedule adaptation. As Figure 20(b) shows, when 17 devices are configured to

change the data generation interval from 10𝑠 to 6𝑠 , the latency of the upward data flows is 175𝑚𝑠 ,

which is close to the one (176𝑚𝑠) provided by ATRIA when devices are set to generate data at

the fixed rates. We observe similar results when 33 and 50 devices change the data interval. As

Figure 20(c) shows, when 33 devices change the data interval, the averaged energy consumption is

10.6𝐽 , which is close to the energy consumed by devices when generating data at the fixed rates.

We also observe similar results in other groups. The results clearly show that ATRIA provides

the desirable performance with the help of Schedule Adaptor when some devices in the network

change their data generation intervals.

Figure 21 plots the performance changes when Schedule Adaptor performs schedule adaptations

in response to the changes of the data generation interval at runtime. As Figure 21(a) shows, the

PDR averaged among all data flows decreases from 100% at T1 (10𝑠) to 98.9% at 50𝑠 , and rises to 100%

at 90𝑠 . It takes 80𝑠 for Schedule Adaptor to adjust the numbers of scheduled cells to accommodate

the change. Similarly, the PDR starts to decrease from 100% when the data generation intervals

change again at T2 (110𝑠) and then increase to 100% after Schedule Adaptor finishes the schedule

adaptation. As Figure 21(b) shows, the end-to-end latency also decreases and then increases when

the data generation interval changes at runtime. For instance, the latency rises from 169𝑚𝑠 at T1

to 178𝑚𝑠 at 60𝑠 , and then decreases to 172𝑚𝑠 at 90𝑠 . Similarly, the latency increases from 172𝑚𝑠

at T2 to 182𝑚𝑠 at 160𝑠 , and then decreases to 176𝑚𝑠 after Schedule Adaptor finishes the schedule

adaptation. As Figure 21(c) shows, the averaged energy consumption increases from 10.35𝐽 at

T1 to 10.38𝐽 at T2, and reaches 10.48𝐽 at 180𝑠 . This is because the overall traffic of the network
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(a) PDR. (b) Latency. (c) Energy Consumption.

Fig. 21. Performance changes when the data generation interval of the network changes at runtime. At T1,
half of devices change the data interval from 10𝑠 to 8𝑠 , while the other half change the data interval from 10𝑠
to 12𝑠 . At T2, the data intervals further change from 8𝑠 to 6𝑠 and 12𝑠 to 14𝑠 , respectively.

increases and the total number of cells scheduled in each slotframe rises accordingly. The results

show ATRIA can help the network achieve the desirable performance when some devices change

the data generation intervals at runtime.

6 RELATEDWORK
Traffic-aware scheduling for Time Division Multiple Access (TDMA) based networks has been

studied in the literature [44]. For example, Wang et al. proposed to use a general weighted link

coloring model to estimate the traffic and schedule transmissions accordingly [52] and Gobriel et al.

proposed to enable slot stealing and sleeping to adjust the slot assignments when facing different

traffic loads [17]. Unfortunately, the existing solutions developed for TDMA based networks

are not directly applicable to the TSCH networks, because they neither consider multi-channel

communication nor support channel hopping.

In recent years, there has been increasing interest in developing new transmission scheduling

solutions for TSCH networks. Many centralized scheduling algorithms have been developed in the

literature. For instance, Jin et al. proposed a method that enables sequential multi-hop scheduling

and allocates more resources to the vulnerable links [25] and Palattella et al. proposed to allocate the

minimum number of needed cells to each device based on its traffic [39]. The centralized scheduling

algorithm simplifies network management at the cost of poor network scalability. Significant efforts

have been made to develop decentralized scheduling algorithms to enhance network scalability.

For example, Tinka et al. introduced a distributed scheduling algorithm that lets all devices contin-

uously advertise their presences and allows neighbors to discover and contact one another [49].

Palattella et al. presented an algorithm that dynamically matches the scheduled bandwidth between

pairs of devices to their actual traffic loads [40]. Those decentralized scheduling methods require

neighboring devices to exchange information at runtime. More recently, autonomous scheduling

methods have been proposed for TSCH networks to eliminate the negotiation overhead between

neighbors [13, 14, 38, 45, 46]. For example, Duquennoy et al. developed Orchestra [11], which allows

each device to generate its transmission schedule based on the local routing information. Kim et al.

developed ALICE [29], which allocates a unique cell to each link and uses all available channels for

communication. Unfortunately, the existing autonomous methods fail to consider the traffic loads

of different devices, resulting in compromised network performance at high data rates. There exist

some traffic-aware scheduling solutions recently developed for TSCH networks. For example, Jeong

et al. developed TESLA [24], which enables devices to dynamically self-adjust the slotframe length

based on the traffic by exchanging information. Jung et al. proposed a parameterized algorithm that

works adaptively to traffic intensity, slotframe length, and reliability requirements [26]. However,

the existing traffic-aware methods depend on exchanging information between neighbors and
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introduce communication overhead. Although e-TSCH-Orch [43] allows devices to dynamically

add a number of consecutive slots based on the number of queued packets, without the need to

exchange information, it may ruin the Orchestra priority setting and result in severe slot conflicts.

In contrast to the existing traffic-aware solutions, ATRIA does not require neighboring device to

exchange information and can significantly reduce slot conflicts.

Opportunistic routing provides a new paradigm for improving network performance by providing

better routes [3, 4, 9, 33, 34]. For instance, Coutinho et al. proposed an opportunistic routing protocol

that routes data packets from sensors to multiple access points [9] and Liu et al. introduced a robust

routing protocol that combines opportunistic routing and asynchronous sleep to improve the

reliability and efficiency [34]. Improving transmission scheduling and enhancing routing are

complementary to each other. Our paper focuses on improving network performance by providing

better transmission schedules for the networks that adopt RPL as the routing protocol and leaves

the integration of our transmission scheduling method and opportunistic routing protocols as

future work.

The security aspects of industrial networks have been studied recently and many enhancements

have been developed [7, 8, 18, 19, 42, 47, 54, 55]. For example, Rajakaruna et.al proposed to use a

mobile edge server to enable end-to-end secure connectivity [42] and Cheng et al. identified the

vulnerabilities of the TSCH channel hopping [6].

7 CONCLUSIONS
In this paper, we present ATRIA, a novel autonomous traffic-aware transmission scheduling method

for industrialWSANs. The device that runs ATRIA can detect its traffic load based on its local routing

information, then schedule its transmission accordingly, and adapt the schedule at runtime. We have

implemented ATRIA under Contiki and evaluated its performance using a network that consists of

50 devices on the FIT IoT-LAB testbed. Experimental results show that ATRIA provides significantly

higher end-to-end network reliability and lower end-to-end latency without introducing additional

overhead compared to the existing method.
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