
X

MERA: Meta-Learning Based Runtime Adaptation for
Industrial Wireless Sensor-Actuator Networks
XIA CHENG and MO SHA∗, Florida International University, USA

IEEE 802.15.4-based industrial wireless sensor-actuator networks (WSANs) have been widely deployed to
connect sensors, actuators, and controllers in industrial facilities. Configuring an industrial WSAN to meet the
application-specified quality of service (QoS) requirements is a complex process, which involves theoretical
computation, simulation, and field testing, among other tasks. Since industrial wireless networks become
increasingly hierarchical, heterogeneous, and complex, many research efforts have been made to apply
wireless simulations and advanced machine learning techniques for network configuration. Unfortunately, our
study shows that the network configuration model generated by the state-of-the-art method decays quickly
over time. To address this issue, we develop a MEta-learning based Runtime Adaptation (MERA) method
that efficiently adapts network configuration models for industrial WSANs at runtime. Under MERA, the
parameters of the network configuration model are explicitly trained such that a small number of optimization
steps with only a few new measurements will produce good generalization performance after the network
condition changes. We also develop a data sampling method to reduce the measurements required by MERA at
runtime without sacrificing its performance. Experimental results show that MERA achieves higher prediction
accuracy with less physical measurements, less computation time, and longer adaptation intervals compared
to a state-of-the-art baseline.

CCS Concepts: • Networks→Wireless local area networks; Network management; Network simu-
lations; Network performance modeling; Network measurement; • Computing methodologies→
Machine learning approaches.

Additional Key Words and Phrases: IEEE 802.15.4, Industrial Wireless Sensor-Actuator Networks, Runtime
Adaptation, Meta-Learning

ACM Reference Format:
Xia Cheng and Mo Sha. 2023. MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-
Actuator Networks. ACM Trans. Sensor Netw. X, X, Article X (January 2023), 23 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
Industrial wireless sensor-actuator networks (WSANs) typically connect sensors, actuators, and
controllers in industrial facilities, such as manufacturing plants, steel mills, and oil refineries. IEEE
802.15.4-based wireless networks operate at low-power and can be manufactured inexpensively,
which makes them ideal for industrial applications where energy consumption and costs are im-
portant. Today a large number of networks that implement IEEE 802.15.4-based industrial WSAN
standards, such as WirelessHART [47], ISA100 [20], and 6TiSCH [19], have been deployed in
∗Corresponding author

Part of this article was published in Proceedings of the IWQoS.
Authors’ address: Xia Cheng; Mo Sha, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA, {xchen075,
msha}@fiu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1550-4859/2023/1-ARTX $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

X:2 X. Cheng et al.

industrial facilities. For instance, Emerson Process Management, one of the leading WirelessHART
network suppliers, has deployed more than 54,835 WirelessHART networks globally and gath-
ered 19.7 billion operating hours [11]. A decade of real-world deployments has demonstrated
the feasibility of using IEEE 802.15.4-based WSANs to support various industrial applications.
However, configuring an industrial WSAN to meet the application-specified quality of service
(QoS) requirements is a daunting task, which involves theoretical computation, simulation, and
field testing, among other work.
In the literature, significant research efforts have been made to model the characteristics of

low-power wireless networks and optimize their configurations by adapting a few physical layer
or medium access control (MAC) layer parameters. For instance, Zimmerling et al. [55] developed
a framework that helps wireless sensor networks (WSNs) achieve high packet delivery rates by
selecting good radio on and off timings in X-MAC [5] and LPP [31] protocols. Peng et al. [35] and
Wang et al. [45] proposed to reduce energy consumption by selecting optimal sleep intervals in duty-
cycled MAC protocols. As wireless deployments become increasingly hierarchical, heterogeneous,
and complex, a breadth of recent research has reported that resorting to advanced machine learning
techniques for wireless networking presents significant performance improvements compared to
traditional methods. For instance, deep learning is employed to handle a set of parameters for
the optimal configurations [23, 51] and reinforcement learning (RL) is used to help the network
configure itself [27, 33]. The key behind the performance of those methods is the capability of
optimizing a set of free parameters to capture uncertainties, variations, and dynamics in real-world
environments. However, it is usually difficult and costly to collect sufficient training data for those
data-driven methods in harsh industrial environments. In such scenarios, the benefits of employing
the methods that rely on a large amount of physical data are outweighed by the costs. Recently
there have been increasing interests in using wireless simulations to identify good configurations
for industrial WSANs, because simulations can be set up in less time, introduce less overhead,
and allow for different configurations to be tested under the same conditions. However, a recent
study showed that the network configurations selected by simulations cannot always help the
physical network meet the QoS requirements due to the simulation-to-reality gap [40]. Shi et al.
developed a deep learning based domain adaptation method (denoted as DA in this paper) to close
the gap. Unfortunately, our study shows that the network configuration model generated by DA
works well at the beginning but decays quickly over time and periodically running DA to update the
model introduces too much overhead.

To address this issue, we develop aMEta-learning based RuntimeAdaptation (MERA) method that
efficiently adapts network configuration models for industrial WSANs at runtime. Under MERA,
the parameters of the network configuration model are explicitly trained such that a small number
of optimization steps with a small amount of new measurements will produce good generalization
performance after the network condition changes. To our knowledge, this paper represents the
first study that explores the use of meta-learning for runtime adaptations in industrial WSANs.
Specifically, we make the following contributions:

• We present an empirical study to identify the limitations of the state-of-the-art method;
• We formulate the runtime adaptation for industrial WSANs as a machine learning problem
and develop a meta-learning based solution, namely MERA;
• We develop a hybrid learning policy (HLP) that helps MERA consistently provide good
prediction performance since the physical network starts to operate;
• We develop a data sampling method to effectively and efficiently reduce the physical mea-
surements required by MERA at runtime without sacrificing its prediction performance;

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:3

• We implement MERA and evaluate its performance on a testbed that consists of 50 devices.
Experimental results show that MERA provides higher prediction accuracy with less physical
measurements, less computation time, and longer adaptation intervals compared to our
baseline.

The remainder of this paper is organized as follows. Section 2 presents the background of
WirelessHART networks and DA. Section 3 introduces our empirical study. Section 4 presents
our design of MERA. Section 5 introduces our data sampling method. Section 6 describes our
experimental evaluation. Section 7 reviews the related work. Section 8 concludes the paper.

2 BACKGROUND
In this paper, we use the configuration of WirelessHART networks [47] as an example to present
our empirical study and MERA. A WirelessHART network consists of a gateway, multiple access
points, and a set of field devices (sensors and actuators). The network manager, a software module
running on the gateway, is responsible for the network management including collecting network
statistics, generating routes, and scheduling transmissions. To meet the energy efficiency, real-time,
and reliability requirements posed by industrial applications, WirelessHART employs the IEEE
802.15.4 physical layer, adopts the time slotted channel hopping (TSCH) technique in the MAC
layer, and uses the graph routing in the network layer. Under TSCH, time is split into slices of fixed
length that are grouped into a slotframe. All devices are time synchronized and share the notion
of a slotframe that repeats over time. Each time slot is long enough to transmit a packet and an
acknowledgement between a pair of communicating devices. The network uses up to 16 physical
channels in the 2.4GHz ISM band and performs channel hopping in each time slot to combat narrow
band interference. WirelessHART networks have three tunable network parameters (the packet
reception ratio threshold for link selection 𝑅, the number of available physical channels 𝐶 , and
the number of maximum transmission attempts per packet 𝐴), which make significant impacts on
network performance quantified by three key performance metrics: the end-to-end latency 𝐿, the
battery lifetime 𝐵, and the end-to-end reliability 𝐸 [40]. The primary goal of network configuration
is to select good network parameters (𝑅, 𝐶 , and 𝐴) based on the given QoS requirements (𝐿, 𝐵, and
𝐸).
It is costly to collect sufficient physical data for data-driven methods in many industrial envi-

ronments. DA is designed to leverage a large amount of simulation data and a small number of
physical measurements to generate good network configuration models for industrial WSANs.
Specifically, DA employs deep learning based domain adaptation and leverages a teacher-student
neural network to close the simulation-to-reality gap in network configuration. The teacher model
is first trained with the simulation data and generates soft labels [2] for the knowledge transfer
to the student model. Then the student model is trained with the physical measurements and
its parameters are optimized by minimizing the classification loss, domain-consistent loss, and
distillation loss simultaneously. To make use of the knowledge learned by the teacher model, the
distillation loss is computed with the help of the soft labels.

3 EMPIRICAL STUDY
We have performed an empirical study to investigate the effectiveness and efficiency of DA in
identifying good network configurations for WirelessHART networks.

3.1 Experimental Setup and Data Collection
We adopt the publicly accessible WirelessHART implementation [46] and run experiments on our
testbed that consists of 50 TelosB devices placed throughout 22 office and lab areas on the second

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:4 X. Cheng et al.

Fig. 1. Prediction accuracy in different months. Fig. 2. Accuracy degrades over time.

Fig. 3. Accuracy changes over 28 days.

floor of an office building [39]. We configure the network to have two access points and 48 field
devices and set up six data flows with different sources, destinations, data periods, and priorities.
There exist 88 distinct network configurations after removing the redundant combinations that
lead to the same routes and transmission schedule when considering 𝑅 ∈ {0.60, 0.61, ..., 0.90},
𝐶 ∈ {1, 2, ..., 8}, and 𝐴 ∈ {1, 2, 3}.

We measure the network performance (𝐿, 𝐵, and 𝐸) under each of 88 network configurations
and save the measurements as a data sample. We define 88 data samples (one data sample under
each network configuration) as one shot of data. We collect 15 shots of data (1,320 data samples in
total) in each run of experiments. Each run of such data collection experiments lasts about four
days. We repeat the experiments on our testbed once in every month from August 2021 to March
2022. The measurement collected from our testbed is named as the physical data in this paper. We
also implement the same WirelessHART network in the ns-3 simulator [32] and simulate network
performance under each of 88 network configurations. We collect 75 shots of simulation data in
total.
The physical data collected from each experimental run is split into two disjoint datasets: five

shots of data as the training set and 10 shots of data as the testing set. In each experiment, we use
15 shots of physical data and all 75 shots of simulation data. Specifically, we run DA to generate
the network configuration model using a training set and 75 shots of simulation data, and then
evaluate the model with a testing set. If the network configuration predicted by the network
configuration model based on the application-specified QoS requirements (𝐿, 𝐵, and 𝐸) is equal to
its corresponding label, we define the prediction as a correct prediction. The prediction accuracy is
computed by dividing the number of correct predictions by the number of the total testing samples.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:5

Fig. 4. Prediction accuracy when the network con-
figuration model is updated with different time
intervals.

Fig. 5. Overhead over four weeks when the network
configuration model is updated with different time
intervals.

3.2 Performance of DA
We first run DA to generate a network configuration model using the training data collected in
each month and measure the prediction accuracy when we use that model to predict network
configurations on the testing data collected in that month. Figure 1 plots the prediction accuracy of
those eight network configuration models. As Figure 1 shows, the prediction accuracy ranges from
65.65% to 69.59%, which is close to the performance reported by Shi et al. [40].
Observation 1: DA can successfully close the simulation-to-reality gap in network configuration
and the model generated by DA can achieve high prediction accuracy.
We further examine whether the performance of DA changes over time. Figure 2 plots the

prediction accuracy of the network configuration model generated by DA when it is used for
predictions in the following months. As Figure 2 shows, the prediction accuracy provided by the
model trained in August decreases from 66.24% to 45.72% when it is tested with the data collected in
September and further drops to 40.97% when it is used in October. The model only provides 39.86%
accuracy when it is used in March of the following year. Similarly, the network configuration model
generated by DA in September provides 65.81% prediction accuracy in the same month, 42.89%
accuracy in October, and 32.58% accuracy in November.
To investigate how fast the model decays, we reduce the intervals between our experimental

runs and measure the changes on prediction accuracy every four days. As Figure 3 shows, the
prediction accuracy begins to decrease after four days and drops significantly from 66.97% to 49.55%.
The accuracy further decreases to 43.51% after eight days and drops to 36.81% after 28 days.
Observation 2: The network configuration model produced by DA does not generalize well on
new data and decays quickly over time.

3.3 Effectiveness of Runtime Model Updates
Finally, we investigate the feasibility of maintaining high prediction accuracy by periodically
running DA to update network configuration model. Figure 4 plots the boxplot of the prediction
accuracy when we run DA to generate a new model with different time intervals. As Figure 4 shows,
the median accuracy is 66.05% when the model is updated every four days. As a comparison, the
median accuracy is 49.47% or 43.53% when the model is updated every 12 or 28 days. The results
show that periodically running DA to update the network configuration model can maintain high
prediction accuracy.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:6 X. Cheng et al.

Please note that the physical network only provides performance measurements under one or
more selected configurations. To train a newmodel, DAmust configure the network to operate under
other configurations, resulting in undesirable network performance. For example, the end-to-end
reliability of the network is 0.3 and the end-to-end latency is 1.44𝑠 , when it uses the configuration
(𝑅 = 0.87, 𝐶 = 1, 𝐴 = 2). Figure 5 plots the time consumed for data collection over four weeks
when DA updates the model with different time intervals. As Figure 5 shows, the time consumed
by data collection increases sharply when the model is updated more frequently. To provide 66.05%
model prediction accuracy, DA generates seven models during four weeks and spends 85.56 hours
to collect sufficient training data from the physical network. The performance degradation during
such a long time is unacceptable for most industrial applications.
Observation 3: The amount of the training data required by DA to generate new network configu-
ration models is too large.

Our observations motivate us to develop a new method, which can adapt the network configura-
tion model with less measurements from the physical network.

4 DESIGN OF MERA
In this section, we first formulate the runtime adaptation for industrial WSANs as a machine
learning problem and then present our design of MERA.

4.1 Problem Formulation
The primary goal of runtime adaptation is to help the network meet the application-specified
performance requirements by adapting its configuration at runtime. We assume that 𝑢 shots of
simulation data are gathered from a simulated network before the physical network starts to operate.
The simulation data D𝑆 is evenly divided into𝑚 datasets: D𝑆1 ,D𝑆2 , ...,D𝑆𝑚 . After the physical
network starts to operate, the network manager periodically measures the network performance
under all configurations and creates the dataset D𝑃 𝑗

, where 𝑗 denotes the 𝑗-th time period since
the network starts. D𝑃 𝑗

includes 𝑣 shots of physical data. Our goal is to predict the network
configuration, which can help the physical network meet the performance requirements in the 𝑗-th
time period, based on the measured physical datasets D𝑃1 ,D𝑃2 , ...,D𝑃 𝑗

and the simulated datasets
D𝑆1 ,D𝑆2 , ...,D𝑆𝑚 . Therefore, the runtime adaptation for an industrial WSAN can be formulated as a
machine learning problem with the goal of learning a nonlinear mapping model 𝑓𝜃 (·) : x→ y from
D𝑃1 ,D𝑃2 , ...,D𝑃 𝑗

and D𝑆1 ,D𝑆1 , ...,D𝑆𝑚 , where 𝜃 denotes the parameters of 𝑓 , x denotes an input
vector of the network performance requirements, and y denotes a vector of network configuration
parameters, which can help the network meet the performance requirements x. The network
configuration parameters y can be discretized without losing generality. Therefore, 𝑓𝜃 can be
further restricted as a classifier, which predicts the label of the network configuration y with the
performance requirements as the input x. As Figure 5 shows, the creation of the physical data D𝑃

is very costly. Therefore, our goal is to learn a classifier that is robust and can be adapted with the
smallest possible D𝑃 𝑗

.

4.2 Overview of MERA
To achieve our goal, we turn our attention to meta-learning, also known as learning to learn, which
aims to learn a prior over model parameters that is only a few gradient descent steps away from
optimum, enabling fast adaptation to new data using few-shot measurements. The key idea of meta-
learning is to train a good model over a variety of learning tasks, each of which is to solve a learning
problem (e.g., classification and regression) on a specific dataset, containing both input vectors and
true labels. We apply the meta-learning concept into the runtime adaptation for industrial WSANs.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:7

Fig. 6. Overview of MERA.

Figure 6 shows our design of MERA that consists of four processes: Offline-Training, Online-
Training, Fine-Tuning, and Hybrid Learning Policy (HLP). The tasks associated with D𝑆 for
Offline-Training, the tasks associated with D𝑃 for Online-Training, and the tasks associated with
D𝑃 for Fine-Tuning, are named as simulation tasks, training tasks, and testing tasks, respectively.
Before the physical network starts to operate, Offline-Training trains the classifier over𝑚 simulation
tasks T 𝑠

1 ,T 𝑠
2 , ...,T 𝑠

𝑚 . After the physical network starts to operate, Online-Training begins to receive
the physical datasets from the network manager, initializes the classifier with the parameters 𝜃 0
provided by Offline-Training, and then optimizes the classifier over 𝑛 training tasks T1,T2, ...,T𝑛 to
learn a set of good parameters 𝜃 1, which enables the fast adaptation in Fine-Tuning. Fine-Tuning
periodically tunes the parameters 𝜃 1 provided by Online-Training based on the latest dataset D𝑃 𝑗

and then predicts the network configuration. The same neural network architecture is used for the
classifier in those three learning processes. The finely optimized parameters for predictions are
learned by such processes as:

𝜃 ∗ = 𝐿𝑒𝑎𝑟𝑛(T𝑗 ;𝑀𝑒𝑡𝑎𝐿𝑒𝑎𝑟𝑛(T1,T2, ...,T𝑛);
𝑃𝑟𝑒𝐿𝑒𝑎𝑟𝑛(T 𝑠

1 ,T 𝑠
2 , ...,T 𝑠

𝑚))
(1)

where 𝑃𝑟𝑒𝐿𝑒𝑎𝑟𝑛,𝑀𝑒𝑡𝑎𝐿𝑒𝑎𝑟𝑛, and 𝐿𝑒𝑎𝑟𝑛 indicate the parameter optimizations performed by Offline-
Training, Online-Training, and Fine-Tuning, respectively.

Meta-learning has proven to be a powerful paradigm for transferring the knowledge from
previous tasks to facilitate the learning of a new task, but it may not perform well with insufficient
learning tasks [7]. The predicted configurations may lead to poor network performance before the
network manager gathers sufficient physical datasets for Online-Training to train a good network
configuration model through meta-learning. HLP is designed to address this issue by integrating
DA in MERA. We will present the four processes of MERA in detail next.

4.3 Offline-Training
Offline-Training is designed to speed up Online-Training by training the classifier with the simula-
tion data before the physical network starts to operate. The simulation data shares the same input
and label space with the physical data and provides the preliminary knowledge on the features
of the physical data. Specifically, the classifier is optimized over a variety of simulation tasks
T 𝑠
1 ,T 𝑠

2 , ...,T 𝑠
𝑚 that are associated with the datasets D𝑆1 ,D𝑆2 , ...,D𝑆𝑚 and the optimized parameters

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:8 X. Cheng et al.

are computed through:

𝑃𝑟𝑒𝐿𝑒𝑎𝑟𝑛(T 𝑠
1 ,T 𝑠

2 , ...,T 𝑠
𝑚) = argmin

𝜃

𝑚∑︁
𝑖=1
LT𝑠

𝑖
(𝑓𝜃) (2)

where𝑚 is the number of the simulation tasks and LT𝑠
𝑖
is the loss function for the simulation task

T 𝑠
𝑖 .

Algorithm 1: Offline-Training
Input :𝑠 , D𝑠𝑝

𝑆1
,D𝑠𝑝

𝑆2
, ...,D𝑠𝑝

𝑆𝑚
, D𝑞𝑒

𝑆1
,D𝑞𝑒

𝑆2
, ...,D𝑞𝑒

𝑆𝑚

Output :𝜃 0
1 Initialize the classifier randomly;
2 for 𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖 + + do
3 for 𝑝 = 1;𝑝 ≤ 𝑠; 𝑝 + + do
4 Compute LT𝑠

𝑖
(𝑓𝜃𝑝−1) by using D𝑠𝑝

𝑆𝑖
and Eq. 3;

5 Compute updated parameters with gradient descent: 𝜃𝑝 = 𝜃𝑝−1 − 𝛼∇𝜃LT𝑠𝑖 (𝑓𝜃𝑝−1);
6 end
7 end
8 Update 𝜃 ← 𝜃 − 𝛽∇𝜃

∑𝑚
𝑖=1 LT𝑠𝑖 (𝑓𝜃𝑠) by using D𝑞𝑒

𝑆𝑖
and Eq. 3 (D𝑠𝑝

𝑆𝑖
replaced with D𝑞𝑒

𝑆𝑖
);

9 Output 𝜃 as 𝜃 0;

As meta-learning aims at learning to learn, the classifier is designed to be capable of tackling
the unseen tasks through meta-training. To achieve this goal, the simulation data in D𝑆𝑖 is split
into two disjoint parts: support set D𝑠𝑝

𝑆𝑖
and query set D𝑞𝑒

𝑆𝑖
. The support set includes 𝑙 shots of

simulation data, while the query set contains 𝑘 shots of simulation data. The size of D𝑠𝑝

𝑆𝑖
is usually

smaller than the size of D𝑞𝑒

𝑆𝑖
(𝑙 < 𝑘), because the classifier is first evaluated on the support set to

achieve a set of updated parameters and then the updated classifier is tested with the query set and
optimized. Specifically, the loss on the support set of each task T 𝑠

𝑖 takes the following form:
LT𝑠

𝑖
(𝑓𝜃) = − E

(x,y) ∈D𝑠𝑝

𝑆𝑖

ylog𝑓𝜃 (x). (3)

Finn et al. [13] showed that there are some internal representations that are more transferable than
others and can be discovered by making good use of the training data. Based on this essential idea,
the updated parameters 𝜃 ′ is computed by using one or more gradient descent updates on task T 𝑠

𝑖

to quickly adapt to the data samples. For example, when using 𝑠 gradient descent updates, 𝜃 ′ is
denoted as 𝜃𝑠 and computed by using the following functions:

𝜃0 = 𝜃𝑖𝑛𝑖𝑡

𝜃1 = 𝜃0 − 𝛼∇𝜃L (0)T𝑠
𝑖

(𝜃0)
· · ·

𝜃𝑠 = 𝜃𝑠−1 − 𝛼∇𝜃L (0)T𝑠
𝑖

(𝜃𝑠−1)

(4)

where 𝛼 is used to control the updating rate and the superscript in L (0)T𝑠
𝑖

indicates the dataset D𝑠𝑝

𝑆𝑖
.

After computing 𝜃 ′ on each simulation task via 𝑠 updating steps using D𝑠𝑝

𝑆𝑖
, the loss on the query

set is computed by using a function, which adopts the form of Eq. 3 but uses D𝑞𝑒

𝑆𝑖
and the updated

parameters 𝜃 ′. Then, the optimization across different simulation tasks is performed via gradient

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:9

descent using D𝑞𝑒

𝑆𝑖
:

𝜃 ← 𝜃 − 𝛽∇𝜃
𝑚∑︁
𝑖=1
L (1)T𝑠

𝑖

(𝑓𝜃𝑠) (5)

where 𝛽 is the meta-learning rate and the superscript in L (1)T𝑠
𝑖

indicates the dataset D𝑞𝑒

𝑆𝑖
. Compared

to the standard gradient updating in Eq. 4, the gradient term used in Eq. 5 resorts to a gradient
through a gradient that can be named as meta-gradient.
Algorithm 1 shows the detailed procedure of Offline-Training. It first initializes the classifier

randomly (line 1) and then performs optimization to update 𝜃 (line 2–8). Finally, the parameters 𝜃 0
are provided to Online-Training (line 9).

4.4 Online-Training
After the network starts to operate, Online-Training initializes the classifier with the parameters
𝜃 0, optimizes the classifier over a variety of training tasks T1,T2, ...,T𝑛 that are associated with
the physical datasets D𝑃1 ,D𝑃2 , ...,D𝑃𝑛 , and produces a set of good parameters 𝜃 1 for Fine-Tuning.
Specifically, the optimized parameters are learned by executing:

𝑀𝑒𝑡𝑎𝐿𝑒𝑎𝑟𝑛(T1,T2, ...,T𝑛) = argmin
𝜃

𝑛∑︁
𝑖=1
LT𝑖 (𝑓𝜃) (6)

where 𝑛 is the number of the training tasks and LT𝑖 is the loss computed for the training task T𝑖 .
Being consistent with Offline-Training, Online-Training reuses Eq. 3-5 for optimization but replaces
the simulation tasks T 𝑠

1 ,T 𝑠
2 , ...,T 𝑠

𝑚 that are associated withD𝑆1 ,D𝑆2 , ...,D𝑆𝑚 with the training tasks
T1,T2, ...,T𝑛 associated withD𝑃1 ,D𝑃2 , ...,D𝑃𝑛 . The physical measurements inD𝑃𝑖 are also split into
two disjoint parts: support set D𝑠𝑝

𝑃𝑖
(𝑙 shots) and query set D𝑞𝑒

𝑃𝑖
(𝑘 shots), to perform meta-training.

Algorithm 2: Online-Training
Input :𝜃 0, 𝑡 , D𝑠𝑝

𝑃1
,D𝑠𝑝

𝑃2
, ...,D𝑠𝑝

𝑃𝑛
, D𝑞𝑒

𝑃1
,D𝑞𝑒

𝑃2
, ...,D𝑞𝑒

𝑃𝑛

Output :𝜃 1
1 Initialize the classifier with the parameters 𝜃 ← 𝜃 0;
2 for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
3 for 𝑝 = 1;𝑝 ≤ 𝑡 ;𝑝 + + do
4 Compute LT𝑖 (𝑓𝜃𝑝−1) by using D𝑠𝑝

𝑃𝑖
and Eq. 3 (D𝑠𝑝

𝑆𝑖
replaced with D𝑠𝑝

𝑃𝑖
);

5 Compute updated parameters with gradient descent: 𝜃𝑝 = 𝜃𝑝−1 − 𝛼∇𝜃LT𝑖 (𝑓𝜃𝑝−1);
6 end
7 end
8 Update 𝜃 ← 𝜃 − 𝛽∇𝜃

∑𝑛
𝑖=1 LT𝑖 (𝑓𝜃𝑡) by using D𝑞𝑒

𝑃𝑖
and Eq. 3 (D𝑠𝑝

𝑆𝑖
replaced with D𝑞𝑒

𝑃𝑖
);

9 Output 𝜃 as 𝜃 1;

Algorithm 2 shows the detailed procedure of Online-Training. Instead of using random values, it
first initializes the parameters of the classifier with 𝜃 0 generated by Algorithm 1 (line 1), which
speeds up the learning process. It then performs optimization to update 𝜃 . Within the nested
loop (line 2–7), it iteratively optimizes the parameters learned from the support set through 𝑡

gradient descent updates. Then, it further optimizes the parameters through meta-gradient by using
the query set based on 𝜃𝑡 and updates the classifier with the optimized parameters (line 8). This
step (line 2–8) can be executed more than once to make good use of the physical measurements.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:10 X. Cheng et al.

After multiple iterations of optimization, Online-Training provides the updated parameters 𝜃 1 to
Fine-Tuning for its the network configuration predictions.

4.5 Fine-Tuning
Fine-Tuning is designed to quickly adapt the network configuration model with a few newly
collected physical data samples based on a set of good parameters 𝜃 1 and perform well on the
genuine testing data. Fine-Tuning only processes one task T𝑗 at each time. The dataset D𝑃 𝑗

is
divided into two parts: support set and query set. The support set D𝑠𝑝

𝑃 𝑗
contains the training data

used for fine optimization and the query set D𝑞𝑒

𝑃 𝑗
contains the genuine QoS requirements x used to

evaluate the performance of the fast adapted classifier. Therefore, the corresponding labels y are
unknown to the classifier.

Algorithm 3: Fine-Tuning
Input :𝜃 1, 𝑟 , D𝑠𝑝

𝑃 𝑗
, D𝑞𝑒

𝑃 𝑗

Output : 𝑓𝜃 (x)
1 Initialize the classifier with the parameters 𝜃 ← 𝜃 1;
2 for 𝑝 = 1;𝑝 ≤ 𝑟 ; 𝑝 + + do
3 Compute LT𝑗 (𝑓𝜃𝑝−1) by using D𝑠𝑝

𝑃 𝑗
and Eq. 3 (D𝑠𝑝

𝑆𝑖
replaced with D𝑠𝑝

𝑃 𝑗
);

4 Compute updated parameters with gradient descent: 𝜃𝑝 = 𝜃𝑝−1 − 𝛼∇𝜃LT𝑗 (𝑓𝜃𝑝−1);
5 end
6 Predict the network configuration for the input x from D𝑞𝑒

𝑃 𝑗
using updated parameters 𝜃𝑟 ;

Algorithm 3 presents how the classifier is finely tuned with the support set to adapt to each
testing task. The classifier is initialized with the parameters 𝜃 1 (line 1). Within the loop, the classifier
finishes fast adaptation to a new task with a few new physical data samples through 𝑟 gradient
descent updates (line 2-5). As the query set is used for the actual evaluations, there is no gradient
update performed on D𝑞𝑒

𝑃 𝑗
. Finally, the classifier predicts the corresponding network configuration

for each input x (line 6) and outputs such predictions.

4.6 HLP
Although meta-learning is known for its high performance on adapting to a new task with few-shot
examples, it does not perform well with insufficient training tasks [7]. Therefore, Fine-Tuning
may not provide high prediction accuracy when Online-Training fails to identify good parameters
because the network manager has not gathered sufficient training datasets since the network starts.
HLP is designed to address such an issue by monitoring the network configuration prediction
generated by Fine-Tuning and replacing it with the one provided DA when the latter provides a
better prediction. Our implementation of DA adopts the method trained withD𝑃 𝑗

and all simulation
datasets as the traditional method.
To minimize the computation overhead introduced by the traditional method (see Section 6.2),

HLP stops running it after the classifier optimized by Fine-Tuning is capable of helping the network
achieve desirable performance at runtime. Specifically, HLP decides whether to run the traditional
learningmethod based on the increase of the prediction accuracy provided by the classifier generated
by Fine-Tuning. The increase of the prediction accuracy becomes very small when the classifier
produced by Fine-Tuning is good enough. We define the prediction accuracy increase Δ𝑑 𝑗 as:

Δ𝑑 𝑗 = 𝑝 𝑗 − 𝑝 𝑗−1 (7)

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:11

where 𝑝 𝑗 and 𝑝 𝑗−1 denote the prediction accuracy achieved by Fine-Tuning on D𝑞𝑒

𝑃 𝑗
and D𝑞𝑒

𝑃 𝑗−1
,

respectively. The prediction accuracy increase averaged among a sliding window (𝑤 testing tasks)
is computed as:

𝑉𝑗 =
1
𝑤

𝑗∑︁
𝑗−𝑤

Δ𝑑𝑖 . (8)

When the averaged increase 𝑉𝑗 exceeds the threshold 𝑅 𝑗 , HLP runs the traditional learning method
and outputs its prediction. To accommodate network heterogeneity and dynamics, we define 𝑅 𝑗 as:

𝑅 𝑗 = 𝑅 𝑗−1 + 𝜂 (
��𝑉𝑗

�� − 𝑅 𝑗−1) (9)
where 𝜂 is a coefficient to determine the change rate of 𝑅 𝑗 . 𝑅 𝑗 decreases when the averaged increase
of prediction accuracy 𝑉𝑗 experiences a gradually decreasing trend. When 𝑉𝑗 is smaller than 𝑅 𝑗 ,
HLP stops running the traditional learning method. At the same time, MERA notifies the network
manager to suspend the periodical performance measurements (𝑘 shots) for Online-Training until
𝑉𝑗 exceeds the threshold. Only 𝑙 shots of physical measurements need to be gathered in each time
period for Fine-Tuning to adapt the classifier. This significantly reduces the data collection overhead
because 𝑙 ≪ 𝑙 + 𝑘 .

5 PHYSICAL DATA SAMPLING
In this section, we first present our empirical study to quantify the distribution discrepancy among
the physical datasets gathered in different time periods. Then, we introduce a data sampling method
to identify the physical data samples needed to be collected for Fine-Tuning. The primary goal is
to reduce the data collection overhead without significantly degrading the quality of the network
configuration model.

5.1 Quantify Data Discrepancy
The network performance measurements gathered by the network manager vary when the network
condition changes. To compare the physical data collected in different time periods, it is beneficial
to quantify the distribution discrepancy among them. The network performance measurements x
consist of different types of physical values, which vary among different ranges. For example, the
end-to-end latency ranges from 0.05𝑠 to 2.0𝑠 , while the end-to-end reliability of the network varies
from 0.02 to 1.0. Therefore, we preprocess the physical data by performing the standardization
process based on the following function:

𝑥∗ =
𝑥 − 𝜇
𝜎

. (10)

where 𝜇 is the mean value of the physical data, and 𝜎 is the standard deviation of the data. After
the standardization process, all performance measurements vary among the range between zero
and one.

Next, we adopt the maximum mean discrepancy (MMD) criterion proposed in [3] to quantify the
discrepancy among different physical datasets. MMD has been widely used in various machine
learning algorithms to compare distributions without the prior knowledge on their density functions.
The key idea of MMD is to measure the distance between two distributions based on the mean of
features in the reproducing kernel Hilbert space (RKHS) after mapping them to RKHS. Specifically,
MMD can be computed by following the equation:

𝑀𝑀𝐷 (𝑋,𝑌) =
 1
𝑁𝑋

𝑁𝑋∑︁
𝑖=1

𝜙 (𝑥𝑖) −
1
𝑁𝑌

𝑁𝑌∑︁
𝑗=1

𝜙 (𝑦𝑖)

2

𝐻

(11)

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:12 X. Cheng et al.

Fig. 7. Discrepancy between D1 and D2.

Fig. 8. Discrepancy between D1 and D3.

where 𝑋 and 𝑌 represent two different physical datasets, 𝑁𝑋 and 𝑁𝑌 indicate the numbers of data
samples in 𝑋 and 𝑌 , respectively, 𝜙 is the function that maps 𝑋 and 𝑌 to RKHS, and 𝐻 represents
RKHS.

Figure 7 plots the discrepancy between two physical datasets D1 and D2, which are collected at
different times, under each of 88 distinct network configurations (IDs range from 1 to 88). As Figure 7
shows, the MMD value varies sharply under different network configurations. For example, the
MMD values are 0.185, 0.104, and 0.078, under Network Configuration 23, 41, and 72, respectively.
As a comparison, the MMD values are 3.50 × 10−5, 6.34 × 10−5, and 8.80 × 10−5, under Network
Configuration 14, 49, and 64, respectively. The small values close to zero indicate that the two
physical datasets share similar distributions under many network configurations.

Figure 8 plots the distribution difference between D1 and D3 under each network configuration.
The MMD value is up to 0.213 under Network configuration 43, while the value is only 2.26 × 10−6
under Network Configuration 52. More importantly, compared to the results shown in Figure 7, the
MMD values are consistently small under many network configurations. For instance, the MMD
value varies slightly from 1.10 × 10−2 to 1.01 × 10−2 under Network Configuration 4. Similarly, the
value decreases from 8.48× 10−5 to 7.44× 10−5 under Network Configuration 31. Such comparisons
clearly show that the network performance changes slightly under those network configurations,
leading to the similar or even identical distributions among three different datasets.

5.2 Data Sampling Method
Collecting training data from a physical network not only leads to performance degradation
discussed in Section 3.3, but also consumes a significant amount of energy and time. As Table 1
shows, it consumes 1,864𝐽 and takes 7.33 hours to collect three shots of data from a physical network
with 50 devices. The energy and time consumption increases significantly when collecting more
data for training. Therefore, it is important to reduce the number of physical data samples collected
for training a good network configuration model. As shown in Figure 7 and Figure 8, the network

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:13

Table 1. Data Collection Overhead

Number of Shots 1 3 5 10 15
Energy Consumption (J) 621 1,864 3,150 6,228 9,319
Collection Time (hour) 2.44 7.33 12.22 24.44 36.67

performance measurements do not change or change slightly under many configurations. Inspired
by this observation, we develop a data sampling method to reduce the physical data collected
periodically for Fine-Tuning, without significantly sacrificing the network configuration prediction
accuracy. The key idea is to suspend the physical data collection under the configurations where
the discrepancy quantified by the MMD criterion between the datasets gathered in different time
periods is small.

Algorithm 4 presents how to determine the network configurations where the network manager
continues gathering the performance measurements, based on the comparison between the histori-
cal data and the newly collected data. The input of Algorithm 4 consists of three parameters: the
historical physical dataset D𝐻

𝑃
, the physical dataset D𝑃 𝑗

that includes all physical data samples
that have already been collected by the network manager in the 𝑗-th time period, and the historical
MMD values𝑚𝐻 . Algorithm 4 first extracts the latest dataset D𝐶 from D𝐻

𝑃
(line 1) and then regu-

larizes the data in D𝐶 and D𝑃 𝑗
(line 2). Within the loop, it traverses each network configuration,

computes the MMD value𝑚𝑖
𝑗 under the 𝑖-th configuration according to Eq. 11, and updates the

historical record𝑚𝐻 (line 4). When the network performance varies dramatically but the gathered
datasetD𝑃 𝑗

shares a similar distribution withD𝐶 by chance,𝑚𝑖
𝑗 may not represent the discrepancy

effectively. To exclude such corner cases, we define the exponential weighted average value𝑀 𝑗 as
follows,

𝑀 𝑗 =
1
𝑧

𝑗∑︁
𝑗−𝑧

𝑒−(𝑗−𝑥+1)𝑚𝑖
𝑥 . (12)

where 𝑧 is the size of the sliding window (the number of time periods). After computing𝑀𝑖
𝑗 (the

value of𝑀 𝑗 under the 𝑖-th network configuration), Algorithm 4 decides to stop the data collection
under the 𝑖-th network configuration in the 𝑗-th time period, if𝑀𝑖

𝑗 is no larger than the threshold
𝑀𝑅 (line 7). Otherwise, it requests the network manager to continue collecting the performance
measurements under the 𝑖-th network configuration (line 10). We have performed a series of
ablation studies to identify the best-suited value for𝑀𝑅 and set𝑀𝑅 to 0.08 in our implementation
(see Section 6.6). The time complexity of computing the MMD value is 𝑂 (𝑁𝑋𝑁𝑌) [21, 54], where
𝑁𝑋 and 𝑁𝑌 indicate the numbers of data samples under one network configuration in D𝐶 and
D𝑃 𝑗

, respectively. Accordingly, the time complexity of Algorithm 4 is 𝑂 (𝑀𝑁𝑋𝑁𝑌), where𝑀 is the
number of distinct network configurations.

6 EVALUATION
We have performed a series of experiments to evaluate MERA. We first perform a six-month
experiment that examines the effectiveness and efficiency of MERA in predicting good network
configurations at runtime and compares its performance against the one provided by our baseline
DA [40] (see Section 6.1). We then study the effects of HLP (see Section 6.2), the support set size (see
Section 6.3), and different learning processes (see Section 6.4) on MERA’s performance. Finally, we
evaluate the robustness of the network configuration model generated by MERA (see Section 6.5)
and study the effect of our data sampling method on the performance of MERA (see Section 6.6).

We implement MERA and DA under the PyTorch framework [34]. Our implementation employs
a deep neural network (DNN) that consists of three fully connected layers for the classifier of

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:14 X. Cheng et al.

Algorithm 4: Data Sampling Method
Input :D𝐻

𝑃
, D𝑃 𝑗

,𝑚𝐻

1 Extract the latest dataset D𝐶 from D𝐻
𝑃
, where D𝐶 and D𝑃 𝑗

share the same size;
2 Regularize the data in D𝐶 and D𝑃 𝑗

;
3 for 𝑖 = 1; 𝑖 ≤ 𝑀 ; 𝑖 + + do
4 Compute MMD value𝑚𝑖

𝑗 under the 𝑖-th network configuration between D𝐶 and D𝑃 𝑗

and record;
5 Compute𝑀𝑖

𝑗 based on Eq. 12;
6 if 𝑀𝑖

𝑗 <= 𝑀𝑅 then
7 Decide to stop data collection under the 𝑖-th configuration in the 𝑗-th period;
8 end
9 else
10 Continue data collection for this configuration;
11 end
12 end

MERA. The DNN uses the vector (𝐿, 𝐵, 𝐸) as the QoS requirements x and employs 120 neurons
and 84 neurons in the two hidden layers. The number of neurons in its output layer is set to 88,
which is equal to the number of distinct network configurations. In addition, the rectified linear
unit (ReLU) function and the softmax function are employed to activate the two hidden layers
and the output layer, respectively. We use the datasets collected from our testbed (introduced in
Section 3.1) to create various support and query sets. All experiments are performed with the same
settings for the data flows. Each support set includes three shots of data and each query set contains
10 shots of data. Our implementation employs Adam [22] as the optimizer for gradient descent
optimization. We empirically set both 𝛼 and 𝛽 to 0.01 and the learning rate used in Adam to 0.1 in
our experiments. We run MERA and DA on a computer equipped with a 2.6GHz 64-bit hexa-core
CPU and an AMD Radeon Pro 5300M GPU.

6.1 Performance over Six Months
Wefirst examine the effectiveness and efficiency ofMERA in predicting good network configurations
at runtime over six months and compare its performance against the one provided by DA. The model
generated by MERA adapts to a few new measurements (three shots of data) before evaluating
with the testing data (10 shots of data) in each month, while DA trains its model with five shots
of physical data and the simulation data using its default setting. We define the prediction as a
correct one if the network configuration predicted by the model generated by MERA based on
the input (𝐿, 𝐵, and 𝐸) is equal to its corresponding label, and calculate the prediction accuracy by
dividing the number of correct predictions by the total number of testing samples. Figure 9 plots
the prediction accuracy and computation overhead when the network runs MERA and DA over six
months. As Figure 9(a) shows, the prediction accuracy provided by MERA is around 70%, which is
consistently higher than the one provided by DA. For example, the model trained by MERA offers
70.47% prediction accuracy in October, while the model trained by DA provides 69.42% accuracy.
Similarly, MERA achieves 69.65% prediction accuracy in January, while the accuracy provided by
DA is 69.15%.

Figure 9(b) plots the computation overhead introduced by MERA and DA. As Figure 9(b) shows,
the computation time of MERA is about two orders of magnitude less than the execution time of DA.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:15

(a) Prediction accuracy. (b) Computation overhead.

Fig. 9. Performance of MERA and DA over six months.

(a) Prediction accuracy. (b) Computation overhead.

Fig. 10. Effect of HLP.

For instance, it takes only 6.31𝑠 and 6.26𝑠 to run MERA in October and January, respectively. As a
comparison, it takes 429.17𝑠 and 432.61𝑠 to run DA in the same months. This is because the training
process of DA requires the cross-entropy loss that is optimized many times on a large amount of
simulation data together with the physical data, while MERA finely tunes the parameters of the
model using only a few iterations with a small number of measurements. The results demonstrate
that the model trained by MERA adapts to new observations more efficiently, introducing much
less computation overhead. More importantly, it takes 7.33 hours to collect three shots of physical
data from the testbed for MERA to achieve such performance, while it consumes 12.22 hours to
collect sufficient data for DA to train a model. The results clearly show that MERA provides higher
prediction accuracy with significantly less overhead.

6.2 Effect of HLP
To validate the effectiveness of HLP, we compare the performance of MERA when it enables or
disables HLP. As Figure 10(a) shows, the accuracy achieved by MERA without HLP is much lower
than the one provided by MERA with HLP during the first few days since the network starts to
operate. For example, the accuracy provided by MERA without HLP is 27.50% during the first four
days and MERA achieves 65.96% accuracy with the help of HLP. This is because the amount of
physical data gathered by the network manager at that time is insufficient for MERA to train a
good model. The difference becomes smaller when more physical data is available.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:16 X. Cheng et al.

(a) Prediction accuracy. (b) Computation overhead.

Fig. 11. Effect of support set size.

We also measure the training time of MERA when it enables or disables HLP. As Figure 10(b)
shows, MERA spends more time during the first 20 days when HLP runs the traditional method. For
example, it takes 419.09𝑠 to run MERA with HLP enabled after 16 days. As a comparison, the time
consumption is only 4.08𝑠 when MERA disables HLP. After HLP observes that the increase of the
prediction accuracy (𝑉𝑗 in Eq. 8) is 2.18%, less than the threshold 2.39% (𝑅 𝑗 in Eq. 9), it stops running
the traditional method. The computation time then drops significantly. The results emphasize the
importance of stopping running the traditional method when possible.

6.3 Effect of Support Set Size
The data collection overhead increases with the amount of measurements in the support set
used for training. To understand the effect of the support set size on MERA’s performance, we
vary the amount of measurements in the support set from one shot to five shots and measure
the prediction accuracy. Figure 11(a) plots the prediction accuracy provided by MERA and DA
when they use different numbers of shots of physical data for training. As Figure 11(a) shows,
the prediction accuracy provided by MERA increases from 62.12% to 69.19% when the amount of
network measurements increases from one shot to three shots. As a comparison, the model trained
by DA achieves 35.56% accuracy when it uses one shot of data and provides 52.49% accuracy when
using three shots of data. This is because meta-learning enhances the generalization of the model
and helps it achieve fast adaptation with fewer measurements collected from the physical network.

We also measure the time consumed to run MERA and DA when they use different amounts of
physical measurements. As Figure 11(b) shows, the computation time of MERA increases when
the amount of measurements increases and the time consumed by MERA is always much less
than the one used by DA. For instance, MERA spends 4.99𝑠 , 5.84𝑠 , and 7.33𝑠 when it uses one shot,
three shots, and five shots for training, respectively. As a comparison, it takes 72.02𝑠 , 157.08𝑠 , and
447.71𝑠 to run DA when it uses one shot, three shots, and five shots for training, respectively. This
is because the model trained by MERA that learns through meta-learning can quickly adapt to
new measurements with a few iterations, rather than running hundreds of iterations to fit exactly
to new observations. The results show that MERA provides high prediction accuracy in a more
efficient way, introducing significantly less communication and computation overhead than DA.

6.4 Effects of Different Learning Processes
To investigate the contributions of MERA’s different learning processes to its performance, we run
MERA to train a model and measure the prediction accuracy when it disables one or two of its

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:17

Fig. 12. Effects of different processes in MERA.

Fig. 13. Prediction accuracy changes over time (O – Online-Training; F – Fine-Tuning).

learning processes. As Figure 12 shows, the prediction accuracy decreases to 62.92% without Offline-
Training. This clearly shows that valuable network configuration knowledge can be learned from
the simulation data even when the simulation-to-reality gap exists. However, only relying on the
model generated by Offline-Training for predictions provides 10.16% accuracy, which highlights the
importance of closing the simulation-to-reality gap. Online-Training plays the most important role
in providing high prediction accuracy. Without Online-Training, the accuracy drops significantly
from 71.47% to 27.18%. As a comparison, the model trained by MERA achieves 42.60% accuracy
when Online-Training is the only process enabled. When Fine-Tuning is disabled, the accuracy
drops to 37.43%. When Fine-Tuning is the only process enabled, MERA provides 3.31% prediction
accuracy. The results show that Fine-Tuning also plays an important role in improving the accuracy
and relies heavily on other learning processes.

6.5 Model Robustness
To examine the robustness of the network configuration model trained by MERA, we measure the
prediction accuracy after four, eight, 16, 32, 64, and 128 days. As the blue bars in Figure 13 show, the
prediction accuracy degrades slowly over time. For instance, the accuracy values achieved by the
network configuration model are 71.03%, 70.87%, and 67.02% after four, 16, and 64 days, respectively.
The results demonstrate the robustness of the model generated by MERA.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:18 X. Cheng et al.

Fig. 14. Number of data samples and accuracy changes with the threshold of data sampling.

We repeat the experiments when MERA disables Online-Training. As the green bars in Figure 13
show, MERA achieves significantly lower prediction accuracy after 64 and 128 days. For example,
MERA provides 60.28% prediction accuracy after 64 days without the help of Online-Training.
The comparison demonstrates the importance of Online-Training in consistently providing high
prediction accuracy at runtime.

We also measure the prediction accuracy provided by MERA without Online-Training and Fine-
Tuning. The yellow and red bars in Figure 13 plot the performance achieved by MERA and DA,
respectively. The performance degrades under both MERA and DA when the interval increases.
However, the performance of the model trained by MERA degrades much slower. For example, the
accuracy values provided by MERA are 68.39%, 65.05%, and 50.08% after four, 16, and 128 days,
respectively. As a comparison, the model generated by DA achieves 49.18%, 37.38%, and 27.66% after
four, 16, and 128 days. The results show that this network configuration model does not require
frequent adaptations to maintain high accuracy at runtime, which is an important feature of MERA.

6.6 Effects of Data Sampling
Finally, we examine the effectiveness and efficiency of our data sampling method on reducing
the data collection overhead. We first study the effect of the threshold𝑀𝑅 on the performance of
our data sampling method. Figure 14 plots the numbers of data samples determined by our data
sampling method in November and the corresponding accuracy offered by MERA, when 𝑀𝑅 varies
from zero to one and the sliding window size is set to one. As Figure 14 shows, both the number of
data samples and the accuracy decrease with the increasing𝑀𝑅 . After𝑀𝑅 is larger than 0.08, the
prediction accuracy experiences a rapid drop. For instance, the prediction accuracy achieved by
MERA using 138 data samples at 0.08 is 68.80%, while the accuracy provided by MERA using 130
data samples at 0.1 is 67.72%. We observe similar trends when repeating the experiments on other
datasets, thus we decide to keep the threshold at 0.08 and the sliding window at one in the rest of
our experiments.

We use our data sampling method to select samples from the data traces used in the experiments
presented in Section 6.1. Figure 15 plots the numbers of data samples collected for Fine-Tuning
when we run MERA with or without our data sampling method. As Figure 15 shows, the numbers of
data samples required by Fine-Tuning to optimize the network configuration model are significantly
reduced with the help of our data sampling method. For instance, the network manager is required
to collect 264 physical data samples (three shots of data) in December and March without the help
of Algorithm 4. As a comparison, the number of data samples collected for training drops to 120
in December and 136 in March, when our data sampling method is running. Meanwhile, MERA
provides comparable prediction accuracy in these months, as shown in Figure 16. For example,

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:19

Fig. 15. Data Reduction. Fig. 16. Prediction accuracy.

Fig. 17. Computation overhead.

MERA achieves 69.57% prediction accuracy in December using 264 data samples, while it provides
69.38% prediction accuracy using 120 data samples with the help of our data sampling method.
Similarly, the prediction accuracy achieved by MERA decreases slightly from 68.37% to 67.47% in
February. The results demonstrate that our data sampling method slightly degrades the network
prediction performance in exchange for a proportionally much larger reduction in the amount of
physical data required to be collected by the network manager.
We also measure the execution time of MERA when we enable our data sampling method and

compare it to the running time without our data sampling method. As Figure 17 shows, MERA
spends slightly more time in each month when it enables our data sampling method. For instance,
MERA spends 6.31𝑠 without running Algorithm 4 in October, while it spends 6.46𝑠 using Algorithm 4
in the same month. Similarly, the execution time increases slightly from 6.56𝑠 to 6.63𝑠 in December.
The results clearly show that our data sampling method reduces the data collection overhead
without introducing significant computation overhead. Therefore, it is beneficial to employ MERA
together with our data sampling method to perform runtime adaptation for industrial wireless
networks where the communication overhead is a major concern.

7 RELATEDWORK
Early efforts have been made to model the characteristics of low-power wireless networks and
optimize their configurations by selecting a few physical layer or MAC layer parameters. For
example, Zimmerling et al. [55] developed a framework that automatically optimizes the parameter
selections in response to runtime dynamics. Dong et al. proposed to adjust the packet length
dynamically to improve energy efficiency [9, 10]. Fu et al. highlighted the challenges of adapting
multiple parameters simultaneously because of their joint effect on performance [15]. Recently

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

X:20 X. Cheng et al.

there has been growing interest in leveraging machine learning to configure wireless networks as
they become increasingly hierarchical, heterogeneous, and complex. For instance, deep learning
based methods are employed to handle a large number of tunable parameters and seek the optimal
configurations [23, 51] and RL algorithms are adopted to enable network self-configurations [27, 33].
The key behind the success of those learning methods is the capability of optimizing a series
of free parameters to capture extensive uncertainties, variations, and dynamics in real-world
environments. However, data collection from industrial facilities that are not easily accessible
is very costly. Therefore, it is usually difficult to obtain sufficient physical data to train a good
network configuration model by using those data-driven methods. In such scenarios, the benefits
of employing those methods that require much physical data are outweighed by the costs. In recent
years, online RL solutions [28, 52] have been developed to configure networks at runtime, which
introduces less data collection overhead compared to offline RL methods. However, such solutions
still follow the trial-and-error principle resulting in undesirable network performance during the
learning process.
Recently, there have been increasing interests in using wireless simulations to select the good

configurations for industrial WSANs, because simulations can be set up in less time and introduce
less overhead. Moreover, various configurations can be tested under the same conditions. However,
a recent study showed that a straightforward deployment of the model learned from simulations
may result in poor performance in the physical network because of the simulation-to-reality
gap [40]. Shi et al. developed a deep learning based domain adaptation method DA to close the
gap. Unfortunately, our study shows that the learning model generated by DA works well at the
beginning but decays quickly over time and periodically running DA to update the model introduces
significant overhead.
Meta-learning [1, 24], aims to solve new learning problems using only a few training samples

by leveraging the knowledge learned from a set of related problems. Therefore, it is appealing to
few-shot classification problem [36, 43], which evaluates the capability of the system to adapt to
new classification tasks with a few examples. Recently, meta-learning algorithms have been widely
applied in many areas including computer vision [14, 26], natural language processing [18, 29],
and unmanned aerial vehicle (UAV) [17, 25]. In addition, meta-learning algorithms have been
explored on other machine learning topics such as reinforcement learning [13, 16, 48, 49] and
federated learning [6, 12]. There are mainly three common approaches to meta-learning: (1) Metric-
based methods aim to learn a metric or distance function over objects [4, 41–43]; (2) Model-based
methods update the parameters with a few steps, which can be achieved by the internal architecture
or controlled by another meta-learner model [30, 38]; (3) Optimization-based methods learn an
optimized initialization across a set of tasks, allowing fast adaptation to new tasks through one or
more updates of gradient descent [13, 36, 56]. Meanwhile, there are a few hybrid studies over these
three categories [37, 44]. Among optimization-based methods, MAML [13] has enjoyed the attention
for its simplicity and generation performance and been applied in many areas such as clinical risk
prediction [53], computer vision [8], frequency division duplexing communication [50]. As MAML
is model-agnostic, it is compatible with any model trained with a gradient descent procedure and
applicable to a variety of machine learning problems including classification and regression. In this
paper, we leverage MAML to develop MERA for industrial WSAN configuration. To our knowledge,
this is the first study that explores the use of meta-learning for runtime adaptations in industrial
WSANs.

8 CONCLUSIONS
In this paper, we formulate the runtime adaptation for industrial WSANs as a machine learning
problem and present MERA to solve the problem. Under MERA, the parameters of the network

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:21

configuration model are explicitly trained such that a small number of optimization steps with a
few new measurements will produce good generalization performance after the network condition
changes. We also develop a data sampling method to reduce the number of physical measurements
required for training without sacrificing the prediction performance of MERA. We implement
MERA and evaluate it on a testbed that consists of 50 devices. Experimental results show that
MERA achieves higher accuracy with less physical measurements, less computation time, and
longer adaptation intervals compared to a state-of-the-art baseline.

ACKNOWLEDGMENT
This work was supported in part by the National Science Foundation under grant CNS-2150010.

REFERENCES
[1] Marcin Andrychowicz, Misha Denil, Sergio Gómez, MatthewWHoffman, David Pfau, Tom Schaul, Brendan Shillingford,

and Nando de Freitas. 2016. Learning to Learn by Gradient Descent by Gradient Descent. In NeurIPS. Curran Associates
Inc., Red Hook, NY, USA, 3988–3996.

[2] Taichi Asami, Ryo Masumura, Yoshikazu Yamaguchi, Hirokazu Masataki, and Yushi Aono. 2017. Domain Adaptation
of DNN Acoustic Models using Knowledge Distillation. In ICASSP. IEEE, USA, 5185–5189.

[3] Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, and Alex J. Smola.
2006. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy. Bioinformatics 22, 14 (2006),
e49–e57.

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1993. Signature Verification using
a "Siamese" Time Delay Neural Network. In NeurIPS. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
737–744.

[5] M. Buettner, G. V. Yee, E. Anderson, and R. Han. 2006. X-MAC: A Short Preamble MAC Protocol for Duty-Cycled
Wireless Sensor Networks. In SenSys. Association for Computing Machinery, New York, NY, USA, 307–320.

[6] Zachary Charles and Jakub Konečný. 2021. Convergence and Accuracy Trade-Offs in Federated Learning and Meta-
Learning. In AISTATS. PMLR, 2575–2583.

[7] Jiaxin Chen, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, and Fu-lai Chung. 2020. A Closer Look at the Training
Strategy for Modern Meta-Learning. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA, 396–406.

[8] Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun Kim, and Kyoung Mu Lee. 2020. Scene-Adaptive Video
Frame Interpolation via Meta-Learning. In CVPR. IEEE Computer Society, Los Alamitos, CA, USA, 9441–9450.

[9] Wei Dong, Chun Chen, Xue Liu, Yuan He, Yunhao Liu, Jiajun Bu, and Xianghua Xu. 2014. Dynamic Packet Length
Control in Wireless Sensor Networks. IEEE Transactions on Wireless Communications 13, 3 (2014), 1172–1181.

[10] Wei Dong, Jie Yu, and Pingxin Zhang. 2015. Exploiting Error Estimating Codes for Packet Length Adaptation in
Low-Power Wireless Networks. IEEE Transactions on Mobile Computing 14, 8 (2015), 1601–1614.

[11] Emerson. 2020. Emerson. https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/
pervasive-sensing-solutions/wireless-technology

[12] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized Federated Learning with Theoretical
Guarantees: A Model-Agnostic Meta-Learning Approach. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA,
3557–3568.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In ICML. JMLR.org, 1126–1135.

[14] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. 2017. One-Shot Visual Imitation Learning
via Meta-Learning. In CoRL. PMLR, 357–368.

[15] Songwei Fu, Yan Zhang, Yuming Jiang, Chengchen Hu, Chia-Yen Shih, and Pedro Jose Marron. 2015. Experimental
Study for Multi-layer Parameter Configuration of WSN Links. In ICDCS. IEEE Computer Society, Los Alamitos, CA,
USA, 369–378.

[16] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. 2018. Meta-Reinforcement Learning
of Structured Exploration Strategies. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA, 5307–5316.

[17] Ye Hu, Mingzhe Chen, Walid Saad, H. Vincent Poor, and Shuguang Cui. 2021. Distributed Multi-Agent Meta Learning
for Trajectory Design in Wireless Drone Networks. IEEE Journal on Selected Areas in Communications 39, 10 (2021),
3177–3192.

[18] Po-Sen Huang, ChenglongWang, Rishabh Singh, Wen-tau Yih, and Xiaodong He. 2018. Natural Language to Structured
Query Generation via Meta-Learning. In NAACL-HLT. Association for Computational Linguistics, New Orleans,
Louisiana, 732–738.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
https://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology

X:22 X. Cheng et al.

[19] IETF. 2022. 6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e. https://datatracker.ietf.org/wg/6tisch/documents/
[20] ISA100. 2018. ISA100. http://www.isa100wci.org/
[21] Beomjoon Kim and Joelle Pineau. 2013. Maximum Mean Discrepancy Imitation Learning. In Robotics: Science and

systems.
[22] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.
[23] D.Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2019. Machine Learning Algorithms

for Wireless Sensor Networks: A Survey. Information Fusion 49 (2019), 1–25.
[24] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 2015. Human-level concept learning through

probabilistic program induction. Science 350, 6266 (2015), 1332–1338.
[25] Bo Li, Zhigang Gan, Daqing Chen, and Dyachenko Sergey Aleksandrovich. 2020. UAV Maneuvering Target Tracking

in Uncertain Environments Based on Deep Reinforcement Learning and Meta-Learning. Remote Sensing 12, 22 (2020),
3789.

[26] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. 2018. Learning to Generalize: Meta-Learning for Domain
Generalization. In AAAI. AAAI Press, 3490–3497.

[27] Feng Li, Kwok-Yan Lam, Zhengguo Sheng, Xinggan Zhang, Kanglian Zhao, and Li Wang. 2018. Q-Learning-Based
Dynamic Spectrum Access in Cognitive Industrial Internet of Things. Mobile Networks and Applications 23 (2018), 10.

[28] Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. 2019. Towards Safe Online Reinforcement
Learning in Computer Systems. In NeurIPS.

[29] Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings. 2019. Meta-Learning for Low-resource Natural Language
Generation in Task-oriented Dialogue Systems. In IJCAI. AAAI Press, 3151–3157.

[30] Tsendsuren Munkhdalai and Hong Yu. 2017. Meta Networks. In ICML. JMLR.org, 2554–2563.
[31] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and Andreas Terzis. 2008. Koala: Ultra-low Power Data Retrieval in

Wireless Sensor Networks. In IPSN. IEEE Computer Society, USA, 421–432.
[32] NSNAM. 2022. ns-3 Network Simulator. https://www.nsnam.org/
[33] Stephen S. Oyewobi, Gerhard P. Hancke, Adnan M. Abu-Mahfouz, and Adeiza J. Onumanyi. 2019. An Effective

Spectrum Handoff Based on Reinforcement Learning for Target Channel Selection in the Industrial Internet of Things.
Sensors 19, 6 (2019), 1–21.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA,
8026–8037.

[35] Yang Peng, Zi Li, Daji Qiao, and Wensheng Zhang. 2013. I2C: A Holistic Approach to Prolong the Sensor Network
Lifetime. In INFOCOM. IEEE, USA, 2670–2678.

[36] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot Learning. In ICLR.
[37] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.

2019. Meta-Learning with Latent Embedding Optimization. In ICLR.
[38] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. 2016. Meta-Learning with

Memory-Augmented Neural Networks. In ICML. JMLR.org, 1842–1850.
[39] Mo Sha. 2022. Testbed at the State University of New York at Binghamton. http://users.cs.fiu.edu/%7emsha/testbed.htm
[40] Junyang Shi, Mo Sha, and Xi Peng. 2021. Adapting Wireless Mesh Network Configuration from Simulation to Reality

via Deep Learning based Domain Adaptation. In NSDI. USENIX Association, 887–901.
[41] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for Few-shot Learning. In NeurIPS. Curran

Associates Inc., Red Hook, NY, USA, 4080–4090.
[42] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M. Hospedales. 2018. Learning to

Compare: Relation Network for Few-Shot Learning. In CVPR. IEEE, USA, 1199–1208.
[43] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra. 2016. Matching Networks

for One Shot Learning. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA, 3637–3645.
[44] Duo Wang, Yu Cheng, Mo Yu, Xiaoxiao Guo, and Tao Zhang. 2019. A Hybrid Approach with Optimization-based and

Metric-based Meta-Learner for Few-Shot Learning. Neurocomputing 349 (2019), 202–211.
[45] Jiliang Wang, Zhichao Cao, Xufei Mao, and Yunhao Liu. 2014. Sleep in the Dins: Insomnia Therapy for Duty-cycled

Sensor Networks. In INFOCOM. IEEE, USA, 1186–1194.
[46] WCPS. 2023. Wireless Cyber-Physical Simulator (WCPS). http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-

Physical_Simulator
[47] WirelessHART. 2022. WirelessHART. https://www.fieldcommgroup.org/technologies/wirelesshart
[48] Zhongwen Xu, Hado P van Hasselt, and David Silver. 2018. Meta-Gradient Reinforcement Learning. In NeurIPS. Curran

Associates Inc., Red Hook, NY, USA, 2402–2413.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

https://datatracker.ietf.org/wg/6tisch/documents/
http://www.isa100wci.org/
https://www.nsnam.org/
http://users.cs.fiu.edu/%7emsha/testbed.htm
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator
https://www.fieldcommgroup.org/technologies/wirelesshart

MERA: Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks X:23

[49] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. 2020.
Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning. In CoRL. 1094–1100.

[50] Jun Zeng, Jinlong Sun, Guan Gui, Bamidele Adebisi, Tomoaki Ohtsuki, Haris Gacanin, and Hikmet Sari. 2021. Downlink
CSI Feedback AlgorithmWith Deep Transfer Learning for FDDMassive MIMO Systems. IEEE Transactions on Cognitive
Communications and Networking 7, 4 (2021), 1253–1265.

[51] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep Learning in Mobile and Wireless Networking: A Survey.
IEEE Communications Surveys & Tutorials 21, 3 (2019), 2224–2287.

[52] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu, Cong Li, Xinyu Zhang, Huadong Ma, and Xiaojiang
Chen. 2020. OnRL: Improving Mobile Video Telephony via Online Reinforcement Learning. In MobiCom. Association
for Computing Machinery, New York, NY, USA, 1–14.

[53] Xi Sheryl Zhang, Fengyi Tang, Hiroko H. Dodge, Jiayu Zhou, and Fei Wang. 2019. MetaPred: Meta-Learning for Clinical
Risk Prediction with Limited Patient Electronic Health Records. In KDD. Association for Computing Machinery, New
York, NY, USA, 2487–2495.

[54] Ji Zhao and Deyu Meng. 2015. FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test. Neural
Computation 27, 6 (2015), 1345–1372.

[55] Marco Zimmerling, Federico Ferrari, Luca Mottola, Thiemo Voigt, and Lothar Thiele. 2012. PTunes: Runtime Parameter
Adaptation for Low-Power MAC Protocols. In IPSN. Association for Computing Machinery, New York, NY, USA,
173–184.

[56] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. 2019. Fast Context Adaptation
via Meta-Learning. In ICML. PMLR, 7693–7702.

ACM Trans. Sensor Netw., Vol. X, No. X, Article X. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Background
	3 Empirical Study
	3.1 Experimental Setup and Data Collection
	3.2 Performance of DA
	3.3 Effectiveness of Runtime Model Updates

	4 Design of MERA
	4.1 Problem Formulation
	4.2 Overview of MERA
	4.3 Offline-Training
	4.4 Online-Training
	4.5 Fine-Tuning
	4.6 HLP

	5 Physical Data Sampling
	5.1 Quantify Data Discrepancy
	5.2 Data Sampling Method

	6 Evaluation
	6.1 Performance over Six Months
	6.2 Effect of HLP
	6.3 Effect of Support Set Size
	6.4 Effects of Different Learning Processes
	6.5 Model Robustness
	6.6 Effects of Data Sampling

	7 Related Work
	8 Conclusions
	References

