
Wireless Personal Communications (2021) 118:575–598
https://doi.org/10.1007/s11277-020-08033-3

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue
Aware Routing for Self-organizing DTNs

Weitao Wang1 · Yuebin Bai1 · Peng Feng1 · Jun Huang2 ·Mo Sha3 ·
Jianpei Tantai1

Accepted: 23 December 2020 / Published online: 13 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In delay-tolerant networks (DTNs), intermittent network connectivity and lack of global
system information pose serious challenges to achieve effective data forwarding. Most state-
of-the-art DTN routing algorithms are based on hill-climbing heuristics in order to select the
best available next hop to achieve satisfactory network throughput and routing efficiency.
An adverse consequence of this approach is that a small subset of good users take on most
of the forwarding tasks. This can quickly deplete scarce resources (e.g. storage, battery,
etc.) in heavily utilized devices which degrades the network reliability. A system with a
significant amount of traffic carried by a small number of users is not robust to denial of
service attacks and random failures. To overcome these deficiencies, this paper proposes a
new routing algorithm, DTN-Balance, that takes the forwarding capacity and forwarding
queue of the relay nodes into account to achieve a better load distribution in the network.
For this, we defined a new routing metric called message forwarding utility combining nodal
available bandwidth and forwarding workload. Applying small world theory, we impose an
upper bound on the end-to-end hop count that results in a sharp increase in routing efficiency.
Queued messages in a forwarding node are arranged by DTN-Balance based on message
dropping utility metric for a more intelligent decision in the case of a message drop. The
performance of ourmethod is comparedwith that of the existing algorithms by simulations on
real DTN traces. The results show that our algorithm provides outstanding forward efficiency
at the expense of a small drop in the throughput.

Keywords DTN · Routing · Virtual bandwidth · Load balance · Efficiency forwarding ·
Queue control

1 Introduction

In delay-tolerant networks (DTNs) [1,2], due to low node density and mobility, mobile
devices such as smartphones, laptops and PDAs are only intermittently connected. Due to
frequent network partitions in DTNs, the messages are usually transferred in a store-carry-
forward manner [3] that results in high end-to-end latency. However, DTNs could contribute

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-08033-3&domain=pdf
http://orcid.org/0000-0002-3201-1156

576 W. Wang et al.

to significant reduction in infrastructure costs and may result in increasing user bandwidth
by orders of magnitude.

An efficient routing and forwarding mechanism is essential for the success of DTNs. A
routing mechanism based on store-carry-forward manner in DTNs is responsible for cal-
culating the best next hop for forwarding a message in an efficient manner possibly taking
network wide considerations such as traffic load distribution into account. Except for [4–9],
most of the existing works are aimed at maximizing throughput by studying how tomaximize
the delivery ratio and minimize the number of forwarding, thus there has been no attention
to scalability and reliability. Some special characteristics of DTN, such as limited network
coverage, device outages, roaming and human interactions make these networks prone to
failures. There are many reasons for failure: (1) Devices cannot manage the load caused
by insufficient resources to fail [10], (2) Central nodes with high forwarding contributions
may be targeted by denial of service attacks [11], and (3) Many DTN nodes, especially
bottleneck nodes, are reluctant to join the network due to mismatch between the tasks under-
taken (the total number of messages forwarded) and the benefits received (the number of
self owned messages forwarded) [12]. Such failure circumstances result in scalability and
reliability reduction that illustrates the need for effective forwarding and workload balancing
techniques in DTNs.

Reducing forward cost and improving forward efficiency simultaneously remains to be
an important problem in the DTNs and efficient solutions are essential for their successful
deployment.

Node connectivity pattern in DTN networks have statistical properties similar to social
networks. The fat-tail connectivity distribution is one of the characteristics of DTN, which
means that most nodes have only a few connectivity, and multi-connectivity nodes only
account for a small part. Inevitably, nodes with high connectivity carry majority of the traffic.
However, these nodes are usually resource limited (e.g. in terms of buffer size); hence, this
results in an unfair load distribution and low forwarding efficiency.

Since irregular network structure can cause load imbalance, a natural solution is to upgrade
all bottleneck nodes. But every single node has limited resources (i.e., battery life) and differ-
ent management domain (i.e., individual user), thus it cannot be compensated. These routing
algorithms based on best-next-hop doctrine and hill-climbing heuristics do not consider this
significant workload imbalance either. This results in decline of network survivability as
major active nodes are bound to run out quickly. Moreover, even before nodes failure, node’s
buffer is likely to overflow leading to heavy packet loss.

To deal with this problem, we propose the DTN-Balance algorithm that fully utilizes all
nodes’ forwarding capacities andworkloads to guide the forwarding decisions. DTN-Balance
considers the change of forwarding capabilities and workloads of the neighboring nodes and
aims to create a balance among forwarding cost, load distribution and performance, and
distribute the traffic evenly among its neighbors. Compared with the current classic routing
algorithms, DTN-Balance algorithm can achieve higher efficiency and better load balance,
that is demonstrated by simulation results using realistic traces (UIM [40] and Infocom2006
[41]).

The rest of the paper is organized as follows. Section 2 presents the recent related works.
Section 3 introduces the concept of “forwarding capacity” and elaborates on the proposed
queue control mechanism. Section 4 introduces the proposed routing algorithm in detail.
Section 5 describes performance evaluation metrics and simulation results. Finally, Sect. 6
concludes this paper and presents future research directions.

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 577

2 RelatedWorks

Due to enormous potential benefits ofDTNs, a lot ofwork has been done in this field, focusing
on routing algorithm. Initial data forwarding techniques in DTNs originated from Epidemic
Routing [13], the algorithm replicates and transmits messages by flooding to nodes that have
not cached the messages, so as to achieve the goal of maximizing network throughput (i.e.,
the amount of data transmitted from source nodes to destination nodes in unit time). Epidemic
routing maximizes throughput at the cost of flooding, thus its efficiency is very low, because
eachmessage is copied and forwarded without limit until the network is flooded by the copies
of the message. In view of the shortcomings of Epidemic routing, the following researches
approach the performance of Epidemic routing by reducing the number of message copies
created in the network. At present, the number of copies is not considered in most forwarding
schemes. Only Spray-and-Focus scheme [14], the conservative forwarding scheme in [15]
and the scheme of [16] as well as [17] consider a fixed number of copies scenario, single
copy scenario and the limited number of copies scenario, respectively. Most of the current
forwarding schemes are heuristic algorithms based on finding the optimal next hop, which
forwards messages to nodes with the maximum probability of delivering messages to desti-
nation nodes. There are two forms of this method: one is that a relay node forwards data to
its neighbor node with the optimal value of metric, such as Delegation Forwarding [18]; the
other is that all neighbor nodes with their value of metric better than that of current node act
as next hop node of forwarding data, such as Compare-and-Forward [19].

This metric mentioned above is called data forwarding metric, which is used to measure
the ability of a node to forward data to the destination node. This metric is mainly used in
heuristic forwarding schemes based on finding the optimal next hop. The same forwarding
scheme can use different forwardingmetrics tomeet different performance requirements. The
forwarding metrics can be simply divided into two types: one is related to data destination;
the other is irrelevant to data destination. In the first type, the probability of meeting between
a node and message destination node is taken as the metric, such as [20–28,37–39]. Due to
the lack of global information, the ability to connect other nodes is taken by the second type
as the metric, such as [29–36]. In the second type schemes, data is forwarded based on social
contact patterns. As an example, DTN-FLOW [34] builds an overlay of landmarks on top
of a DTN and uses the landmarks overlay to route the messages by computing the virtual
bandwidth between landmarks.

In summary, except [4–9], none of the other routing methods mentioned above consider
network reliability and survivability. On the contrary, DTN-Balance predicts node’s for-
warding capacity by measuring the virtual bandwidth and creates a balance among load
distribution, forwarding cost and performance to improve network reliability and survivabil-
ity.

3 Data Forwarding Capacity Metric

In this section, we introduce the data forwardingmetric for amobile node based on that node’s
bandwidth to others in the network.We focus onmeasuring available virtual bandwidthwithin
the given scope in terms of the average number of transmitted bytes per unit time.

123

578 W. Wang et al.

Fig. 1 A “virtual path” consisting of node A(source), B(nexthop) and D(destination)

3.1 Virtual Bandwidth

In wired or wireless networks with end-to-end connection, usually “volume” or “ bandwidth”
is used to represent the transmission capacity of the link. In this paper, in the absence of
predefined end-to-end path, a link is considered to be a single-hop path to a neighboring
node. Since the available bandwidth to a neighboring node does not necessarily represent the
end-to-end service capacity,we use the term “virtual bandwidth” to represent the transmission
capacity of a network segment or a single-hop path in DTNs. To be precise, we define the
virtual bandwidth as follows.

Definition 1 Virtual Bandwidth: is defined as the average number of bytes that can be trans-
ferred from node X to node Y per unit of time, and is denoted by C(X , Y).

Virtual bandwidth is a statistical (and not a deterministic) quantity. It is also directional,
i.e., the virtual bandwidth from node X to node Y is different with the virtual bandwidth
from node Y to X . Let C(X , Y) denotes the virtual bandwidth from X to Y , then C(X , Y) is
usually different fromC(Y , X). In the definition of virtual bandwidth, node X and Y does not
need to be neighbors; hence, the data from node X to Y is transferred directly or indirectly
through other nodes.

3.2 Virtual Path

In DTNs, when relaying a message, the sending node chooses a next-hop node that can
transmit packets to the destination. In choosing the next-hop node, it is immaterial how that
node transfers the message to the destination. We only care about the next-hop nodes’ likely
transfer rate to the destination. Thus we can treat the path consisting of source, next hop and
destination as a “virtual path”, depicted in Fig. 1. Here, we call it a “virtual path” since there
is no fixed end-to-end path in DTNs as the connection to neighboring nodes could break
frequently and also we do not care and may even not know how next hop node reaches the
destination. Thus, we use a cloud to represent the connection between the next hop and the
destination. To be precise, the virtual path is defined as in the following.

Definition 2 Virtual Path: A virtual path is denoted by vl(X , Y , Z) where X is the source
node, Y is the second hop node and Z is the destination.

A virtual path vl(X , Y , Z) which starts at node X and reaches node Z via next-hop node
Y exists if and only if node X can directly reach Y and node Y can directly or indirectly reach
Z . Note, existence of vl(X , Y , Z) does not guarantee existence of vl(Z , Y , X). The virtual
bandwidth of vl(X , Y , Z) is represented by C(X , Y , Z), measuring the average bytes per
unit time transferred from node X to Z via node Y . We know C(X , Y , Z) �= C(Z , Y , X).

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 579

3.3 Virtual Bandwidth Calculation

In this subsection, we describe an approach for calculation of the virtual bandwidth. Let’s
first consider the virtual path vl(A, B, D) in Fig. 1 and let’s assume we know the virtual
bandwidth C(A, B, B) of vl(A, B, B) and the virtual bandwidth C(B, D) from node B to
D. Consider one-byte message transferred from node A to D via this virtual path. The time it
takes to relay this message from node A to B is 1

C(A,B,B)
. Once node B receives this message,

it delivers this message to D and the time that it takes is 1
C(B,D)

. Then this one byte message,

the time taken to reach node D from source A via B is 1
C(A,B,B)

+ 1
C(B,D)

. Thus, the virtual
bandwidth C(A, B, D) of vl(A, B, D) is

C(A, B, D) = 1
1

C(A,B,B)
+ 1

C(B,D)

= C(A,B,B)×C(B,D)
C(A,B,B)+C(B,D)

(1)

We now consider calculatingC(X , Y)where there could bemultiple virtual paths between
X and Y . Let us consider the case where there exist two virtual paths as shown in Fig. 2. The
two virtual paths from node A to D are vl(A, B, D) and vl(A,C, D). We consider sending
a one byte message from node A to D. If the message is transferred along vl(A, B, D),
the transit time is 1

C(A,B,D)
. Similarly, the time taken along vl(A,C, D) is 1

C(A,C,D)
. In

each transmission event, one path or the other may be used. As in regular networks, when
transferring a message, we prefer paths with higher local virtual bandwidth. The local virtual
bandwidth in the two virtual paths from A to D areC(A, B, B) andC(A,C,C) respectively.
Thus we let C(A,B,B)

C(A,B,B)+C(A,C,C)
and C(A,C,C)

C(A,B,B)+C(A,C,C)
denote the weights attached to those

two virtual paths. Then, the average time taken from node A to D (T (A, D)) is:

T (A, D) = C(A,B,B)
C(A,B,B)+C(A,C,C)

× 1
C(A,B,D)

+ C(A,C,C)
C(A,B,B)+C(A,C,C)

× 1
C(A,C,D)

(2)

and the virtual bandwidth from node A to D is

C(A, D) = 1

T (A, D)
(3)

To be general, let node X can reach node Z via n virtual paths and the ith virtual path
denoted by vl(X , Yi , Z). Then the virtual bandwidth from node X to Z is defined as follows.

Definition 3 Total Virtual Bandwidth: The total virtual bandwidth between node X and Z
with n existing virtual paths is

C(X , Z) = 1
∑n

i=1
C(X ,Yi ,Yi)∑n
j=1 C(X ,Y j ,Y j)

× 1
C(X ,Yi ,Z)

=
∑n

j=1 C(X , Y j , Y j)

n + ∑n
i=1

C(X ,Yi ,Yi)
C(Yi ,Z)

.

123

580 W. Wang et al.

Fig. 2 Two virtual paths from
node A to D

N1

N2

N3

N4

i
Forward Queue

Forward Queue

Forward Queue

Forward Queue

Forward Queue

Fig. 3 The data packet transmission process in DTN

3.4 Virtual Bandwidth Calculation for Direct Link

Referring to to Definition 1, the virtual bandwidth C(A, B, B) of a path vl(A, B, B) is equal
to the amount of data transferred from node A to its neighbor node B divided by the time
spent for the transfer of this data, etvl(A,B,B). When the network traffic is low, the queuing
delay can be ignored and hence etvl(A,B,B) is determined by link down times. However, the
queuing delay cannot be ignored under high network traffic. If the link is regarded as a service
window, and if we consider link down times as vacations, then packet transmission process
on a link can be modeled as a queuing system with vacations. In DTN, one node may connect
through multiple nodes, as is shown in Fig. 3. Thus the data packet transmission process can
be modeled as multi-server queuing system with vacations.

We consider a message m in the message forwarding queue to be forwarded out from
node i . Let tw be the waiting time until at least one link is up. Message m should wait until
the prior messages in the queue have been served. We denote the queuing time by tq , the
message transfer time by tm , and link up time by tup .

Every up link is considered as a service window. If tq > tw + tup , the messagem cannot be
transferred in the current service window and we must wait for the next transfer opportunity
(window). Assume m needs to wait n rounds. Each round consists of a wait time for link
to be up and a wait time for prior messages to be forwarded (queueing time). In Fig. 4, “1”

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 581

Fig. 4 The compositions of
one-hop delay in DTN

represents thewait state for a link to be up, and “2” represents thewait state for priormessages
to be forwarded. Then the total forwarding delay of message m from node i to node j is

dm(i, j) =
n∑

k=1

(twk + tqk) + tm (4)

We make the following assumptions for our multiple windows queuing system with vaca-
tions:

1. The packet arrival process is assumed to be Poisson with intensity λ;
2. The message transmission times are assumed to be exponentially distributed with rate

μi for each link li ;
3. The buffer size is V N .

Let us have c direct links as service windows, we define ρc as traffic intensity where
ρc = λ∑c

i=1 μi
.

If 0 < ρc < 1, according to our assumptions above, the system is an M/M/C queuing
model with random vacation. If ρc ≥ 1, the system will not be stable which means that
packets will start to drop due to buffer overflow.

When the buffer is not full, new arrivals are appended to the end of the queue. In case a
new arrival encounters a full buffer, it competes with previous packets in the buffer, and then
it may be droped or is appended to the end of the queue. We discuss the message queuing
delay in these two cases in the following.

3.4.1 Stable State

In this case,we have 0 < λ < cμ where μ is the average service rate, and μ =
∑c

i=1 μi
c).

We define N (t) as the number of packets in the system at time t . Under the assumptions
previously discussed, N (t) is a Birth-Death Process. As such, according to Littles’ Formula,
the message average wait time in the classic queuing system is:

Wq =
(

cρc + ρc P∞
1 − ρc

)

/λ − 1

μ
(5)

where P∞ is the probability that all links are busy (i.e. up state), μ is the average service
rate, and P∞ can be predicted as following:

P∞ =
C∏

i=1

Pi
busy (6)

where Pi
busy can be calculated by busy and leisure statistics.

123

582 W. Wang et al.

Let Q = {li1, li2, . . . , liT } be the perceived link down state vector, and lij be the down-time

at state j . Then the average down time l̃ is calculated as:

l̃ i = ΣT
j=1l

i
j

T
(7)

Then the average vacation period is:

l̃ =
∑C

i=1 l̃
i

C
(8)

Assume si j is the transmit speed of link i j , then

tm = Size(m)

si j
(9)

Thus the average delay is obtained as:

d̃1 = (�Wq/l̃�) · l̃ + Wq + si ze(m)

si j
(10)

where Size(m) is message size of m.

3.4.2 Unstable State

In this condition, λ > cμ, the buffer is expected to be fully filled at most of the time. In order
to simplify model, we consider the queuing delay as:

Wq = V N

μ
(11)

Thus the average delay is

d̃2 = (�Wq/l̃�) · l̃ + Wq + 1

si j
(12)

Thus the virtual bandwidth for direct link can be calculated as follows:

C(A, B, B) =

⎧
⎪⎪⎨

⎪⎪⎩

l̃ + 1
si j

, ρc = 0
1
d̃1

, 0 < ρc < 1

1
d̃2

, ρc ≥ 1

. (13)

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 583

4 The Proposed Routing Algorithm

With the introduction of virtual link in Sect. 3, in this section, we develop our message for-
warding schedule to choose the next hop, namely DTN-Balance. To achieve satisfactory load
distribution, high routing efficiency and acceptable network throughput, we use forward-
ing capacity information of the neighboring nodes as well as the status of their forwarding
queues. In the following subsections, we first introduce the data structures used in our algo-
rithm. We then describe the data update and recalculation method before introducing the
proposed message priority queue control and forwarding schedule.

4.1 Data Structures

To calculate the virtual bandwidth calculation method in Theorem 3, we need two pieces of
information: C(X , Yi ,Yi) and C(Yi , Z). We thus need to store these two kinds of forwarding
capacities. We, therefore, create two tables at each node, i.e. Virtual Node Bandwidth Table
(VNBT) and Virtual Path Bandwidth Table (VPBT). The structures of the two tables are
illustrated in Tables 1 and 2. Table 1 contains the destination node Zi and the virtual path’s
virtual bandwidth from current node X to destination Zi . In Table 2, the vir tual bandwidth
is the one-hop virtual path’s virtual bandwidth. V PBTX contains all C(X , Yi , Yi), where
Yi is the node that X can directly deliver message to. The last item in this table, V N BTY ,
is a pointer to the neighbour node Y ’s V N BT that contains all C(Y , Zi), where Zi is the
node that Y can deliver message to (directly or not). We can see that we have a nested data
structure where every row of V PBT table points to a V N BT . Later, we will see that this
design facilitates the packet forwarding schedule calculation.

One should note that the records in V N BT are calculated based on the records in V PBT
and vice versa. Initially, both NV BTX and V PBTX are empty. Once node X meets node Yi ,
if there is no record for node Yi , X creates a record for Yi . Otherwise, updates the record.
When V PBTX is not empty, we can use V PBTX to calculate virtual bandwidth and put the
result into V N BTX .The updated V N BTX will then be used in other V PBT s. This recursive
operations continue until all tables converge to their final values.

Table 1 Node virtual bandwidth
table (NVBT)

Node Virtual bandwidth

Z1 C(X , Z1)

… …

Zn C(X , Zn)

Table 2 Virtual path bandwidth
table (VPBT)

Node Virtual bandwidth NV BTY

Y1 C(X , Y1, Y1) NV BTY1
… … …

Ym C(X , Ym , Ym) NV BTYm

123

584 W. Wang et al.

Algorithm 1 Node X ’s behavior when it meet Yi
Input:

the encountered node, Yi
transmit speed between X and Yi , sp

Output:
the updated V PBTX and NV BTX

1: notify node Yi recalculate whole NV BTYi
2: request NV BTYi from node Yi
3: if C(X , Yi , Yi) does not exist in V PBTX then
4: create a new record for Yi in V PBTX
5: set C(X , Yi , Yi) := 0
6: set NV BTYi := empty table
7: end if
8: update NV BTX , recalculate C(X , Yi) using Algorithm 3
9: for every record C(Yi , Zk) in NV BTYi do
10: if NV BTYi of V PBTX does not have C(Yi , Zk) then
11: add C(Yi , Zk) to NV BTYi of V PBTX
12: else
13: update the corresponding record
14: end if
15: recalculate Ĉ(X , Zk) using Algorithm 4
16: update NV BTX , set C(X , Zk) := Ĉ(X , Zk)
17: end for

Algorithm 2 Node X ’s behavior when it separate from Yi
Input:

the separated node, Yi
transmit speed between X and Yi , spi
perceived link down states list between X and Yi , Q

Output:
the updated V PBTX and NV BTX

1: if a record entry contains the Yi in V PBTX then
2: update C(X , Yi , Yi) using Algorithm 3
3: update NV BTX , set C(X , Yi) := C(X , Yi , Yi)
4: for every record C(Yi , Zk) in NV BTYi of V PBTYi do
5: recalculate Ĉ(X , Zk) using Algorithm 4
6: update NV BTX set, C(X , Zk) := Ĉ(X , Zk)
7: end for
8: end if

4.2 Spread and Recalculation

In order to calculate virtual bandwidth, nodes need to gather virtual bandwidth information of
the network and store these information into their V N BT s and V PBT s. When two nodes
meet (their link is up), the first thing they need to do is to exchange their V N BT s. For
example, node X meets Yi , X and Yi both exchange their V N BT s with each other in order to
update their V PBT s. On the other hand, when both V PBT s are updated, V N BT s of both
nodes also need to be updated as both X and Yi recalculate virtual bandwidth for each item
of their V N BT s, respectively. The update process when node X meets node Yi is formally
described in Algorithm 1.

In DTNs, connections with other nodes break frequently. Upon a break, the node needs
to recalculate its virtual bandwidth tables. Take node X and Yi for an instance, when node X
separates with Yi , the virtual bandwidth from X to Yi changes, thus X also needs to update
C(X , Yi , Yi). To update records in both tables, each node needs to refresh C(X , Yi , Yi) and

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 585

Algorithm 3 Calculate virtual bandwidth of direct link
Input:

perceived link down states list between X and Yi , Q
arriving ratio of messages to be forwarded per minute, λ
transmit speed between X and current each neighbour Yi , spi , i = 1, . . . ,C

Output:
virtual bandwidth for direct link, C(X , Yi , Yi)

1: calculate each link service ratio μi = Pi
busy · spi

2: calculate average service ratio μ =
∑C

i=1 μi
C

3: calculate service intensity ρc = λ
cμ

4: if ρc < 1
5: calculate the average forwarding delay d̃ according to equation (10)
6: else
7: calculate d̃ according to equation (12)
8: end if
9: calculate virtual bandwidth for direct link C(X , Yi , Yi) according to equation (13)
10: return C(X , Yi , Yi)

Algorithm 4 Calculate a record in NV BTX
Input:

the node whose virtual bandwidth needs to be recalculated, Zk
Output:

the virtual path’s virtual bandwidth C(X , Zk)
1: set n := 0, numerator := 0, denominator := 0
2: for every record C(X , Y j , Y j) in V PBTX do
3: if C(Y j , Zk) exists in NV BTY j and C(Y j , Zk)! = 0 then
4: denominator+ = C(X , Y j , Y j)/C(Y j , Zk)
5: numerator+ = C(X , Y j , Y j)
6: n + +
7: end if
8: end for
9: if n ! = 0 then
10: set C(X , Zk) := numerator/(denomitor + n)

11: else set C(X , Zk) := 0
12: end if
13: return C(X , Zk)

then it needs to recalculate virtual bandwidths in V N BT . We only refresh C(X , Yi , Yi)
when two nodes separate or meet. It should be pointed out that one node X does not need to
recalculate all records of its V N BT upon meeting or separating from another node. It only
needs to update those C(X , Z j) records where C(Yi , Z j) exists in V N BTYi . Other records
of V N BTX are irrelevant to node Yi . The behavior of X when node X separates from node
Yi is formally described in Algorithm 2. Calculation of the virtual bandwidth for direct links
and also the procedure for updating every record in V N BTX are described in Algorithms 3
and 4, respectively.

123

586 W. Wang et al.

4.3 Message Forwarding Strategy in DTN-Balance

In DTNs, each node can set up connections with multiple nodes at the same time.
Thus, we must decide to transfer which message to which node. To solve this multi-
node multi-message problem, we create a transmitting priority database consisting of
tuples(message,message f orwarding utili t y). The tuple consists of message m and
a connected node Y ’s message f orwarding utili t y (MFU). MFU is defined as follows:

MFU (m, Y) = C(Y , desm)

si ze(m)
· φm (14)

In Eq. (14), desm is the destination node of message m and si ze(m) is message size of
m, C(Y , desm) is the virtual bandwidth from Y to desm , and φm is the meeting probability
between current node and m’s destination node according to Eq. (17). To avoid long paths
and lower the forwarding cost, we set max hop count for each message as 5. This is consistent
with the architecture of social networks demonstrating Small World properties where the Six
Degrees of Separation principle applies. In order to alleviate overdependence on few key
nodes, we also apply a forwarding constraint. That is, the message forwarding is allowed
only if the available buffer space of the next hop node is better than that of the current node.
Otherwise, another relay node is chosen. The node sorts every possible tuple by its MFU
and selects message that has the highest MFU and satisfies the hop number limit as well as
free buffer size limit to transfer. We have designed our message forwarding strategy based on
these principles which is formally described in Algorithm 5. After transferringm, if node Y is
the destination, node X will delete messagem with probability φm . The φm can be calculated
according to the Eqs. (16) and (17).

When transferring message m to node Y , Y needs to decide whether or not to accept
m. Node Y first determines it hasn’t previously received the message m. Besides, in order
to improve workload balance, node Y will refuse the forwarding request from those nodes
whose buffer workload is lower.

When these conditions are met, it needs to make room for this message. If Y has enough
buffer for this message, it accepts m. Otherwise, Y needs to decide whether or not to drop
some messages to make room for m. Y makes this decision by sorting the messages in
its buffer based on their dropping probabilities and then mark the messages whose dropping
priority is bigger than the priority ofm. The Message Dropping Utili t y (MDU) is defined
as follows:

MDU (m) = si ze(m) · D(m)

mr (T) · φm
(15)

In Eq. (15), si ze(m) is the size of message m, mr (T) is the remaining time to live for
message m, D(m) is the number of copies of message m that exist in the network, φm is the
meeting probability between current node and m’s destination node which is calculated as
follows:

φm = φm(old) + (1 − φm(old)) × Pit (16)

where Pit is a constant and Pit ∈ [0, 1].
The probability of meeting will decrease with the passage of time, if there is no encounter

event. The Eq. (17) describes the aging process.

φm = φm × γ k (17)

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 587

Algorithm 5Mesage forwarding strategy
Input:

all nodes connected, nc
all messages in buffer, mc

Output:
void

1: create a empty tuple list tuples
2: for current node X and every node Y in nc do
3: for every message m in mc do
4: if (MFU (m, X) < MFU (m, Y)) && (f reeBu f f er(X) < f reeBu f f er(Y)) && (m.maxhop > 1)

&& (Y is the biggest MFU value) then
5: create tuple t(m, Y)

6: add t(m, Y) to T L
7: end if
8: end for
9: end for
10: sort T L by MFU (m, Y) of tuple in descending order
11: while T L is not empty
12: get and remove the first tuple of T L , as t(m, Y)

13: require Y to receive m
14: Y decides whether accepts m using Algorithm 6
15: if node Y refuse to accept m then
16: continue
17: end if
18: transferring m to Y
19: end while

where γ is a constant and γ ∈ (0, 1), k is the number of time units that have elapsed from
the last time of encounter event.

When all messages with higher dropping priority are marked, if the buffer is big enough
for m, we accept m; otherwise, we refuse m. Algorithm 6 describes the process of deciding
whether to accept a message or not. The forwarding process of the DTN-Balance route is
shown in Algorithm 7.

5 Performance Evaluation

In this section, in order to evaluate the effectiveness of the proposed DTN-Balance algorithm,
we compare the performance of our proposed DTN-Balance schemes to existing represen-
tative routing schemes including Spray and Wait Router [8], ProphetRouterV2 (PRV2) [24],
the SimBet [30] and the Bubble Rap [31].

We implement these routing protocols in thewidely-adoptedDTNsimulator:ONE (oppor-
tunistic network environment simulator) [42]. The two realistic mobility data sets, UIM [40],
Infocom2006 [41], are incorporated into ONE simulator. The characteristics of these datasets
are described in Table 3. The time of simulation scenarios and the number ofmessages created
depends on the input trace file. The ONE emulator puts discrete sequential contact events
which are obtained from original trace files as inputs. The size of eachmessage is set between
200k and 1M bytes and every 25s to 35s generates a message. The source and destination of
each message are randomly chosen.

We measured the following metrics that are the generally accepted metrics of choice for
the routing algorithms:

123

588 W. Wang et al.

Algorithm 6 Check whether to accept a message or not
Input:

size of the message to receive, si zem
all messages in buffer, mc
current node free buffer size, rbs
forwarding node’s free buffer size, f bs

Output:
void

1: if transferring or receiving other messages then
2: refuse m
3: else if already has m then
4: refuse m
5: else if f bs > rbs then
6: refuse m
7: end if
8: if rbs >= si zem then
9: accept m
10: else create a empty marked message list mml
11: for every message mci in mc do
12: if MDUmci > MDUm then
13: add mci to mml
14: mbs+ = si zemci
15: end if
16: end for
17: if mbs + rbs >= si zem then
18: while si zem > rbs do
19: find message mmi with highest MDU in mml
20: drop mmi in mc
21: rbs+ = si zemmi
22: end while
23: accept m
24: else
25: refuse m
26: end if
27: end if

Table 3 Characteristics of
mobility traces

Data set UIM Infocom2006

Nodes 28 98

Duration (days) 20 3

Network type Bluetooth Bluetooth

Device Google Phone iMote

Granularity (s) 60 120

1. Throughput as the proportion of successfully delivered messages out of all generated
messages;

2. Cost which is equal to the total number of forwarding occurrences;
3. E f f iciency calculated as the ratio between throughput and number of forwards.

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 589

Algorithm 7 DTN-Balance message forwarding schedule when node X meet node Y
1: Initialization: obtain information from Y about Y ’s NV BTY , update NV BTX
2: Direct delivery: deliver packets destined to Y in decreasing order of their MFU utility
3: Forwarding : for each message i in node X ’s buffer do
4: if i is already in Y ’s buffer then
5: ignore i
6: end if
7: compute MFU (i, Y)

8: forward message according to MFU value and hop number limit and free buffer size limit
9: end for
10: Receiving : for each receiving message j from node Y ’s do
11: if free buffer size of node X rbs is lower than Y ’s f bs
12: continue
13: end if
14: compute MDU (j)
15: if X has free enough space then
16: receive j , Y deletes j
17: else if it can receiving j by dropping some messages then
18: drop the message with bigger than j’s MDU until X has enough space for j , then receive j and Y

deletes j
19: else refuse j
20: end if
21: end for
22: Termination: end transfer and receive when out of radio rang or buffer has no message, update NV BTX

5.1 Evaluation of Efficiency in Single Message Copy Scenario

Single message copy means that although the receiving node is not the message destination,
the forwarding node will delete the message from its buffer after transmission. Thus, there
is only one copy of the message in the network.

5.1.1 Performance with Different Buffer Sizes

The performance of DTN-Balance is evaluated in infocom2006 when the size of buffer is
from 5M and 1500M. In all cases, the value of TTL and link speeds are set as 23,040 s and
250K/s, respectively. We also set the max hop count as 5 for each message during the whole
experiment.

Delivery Ratio Figure 5a presents the throughput of the four routing protocols with the
Infocom2006 trace as a function of the buffer size. We see that when the memory in each
node increases, it results in a significant increase in the throughput. From delivery ratio
point of view, we have the following ranking among various algorithms: ProphetV2>DTN-
Balance > SimBet > Bubble Rap when the buffer size is less than 100M, and ProphetV2 >

SimBet > DTN-Balance> Bubble Rap when buffer size is more than 100M. DTN-Balance
does not have the highest throughput because of its hop count limit and free buffer size limit
constraints but the throughput degradation is minimal compared to the gain obtained in terms
of the forwarding cost. Other routing protocols that have slightly better throughputs rely on
nodes with a higher encounter probability. However, as the traffic rate goes up, a large number
of packets pile up at the nodes, resulting in high queuing delays and packet drop ratios.

Cost Figure 5b presents the average delay for the four routing protocols using the Info-
com2006 trace. We see that in terms of the cost we have the following apttern: Prophet �

123

590 W. Wang et al.

(a) Throughput (b) Cost

(c) Efficiency

Fig. 5 Performance of DTN-Balance with different buffer sizes using the Infocom2006 trace

SimBet ≥ DTN-Fast ≈ Bubble Rap with Infocom2006. Although prophetV2 has the highest
throughput(about is 1.6 time bigger than that of DTN-Balance), it also has the highest cost
and its cost is 60 time bigger than that of DTN-Balance! Hence, ProphetV2 will rapidly
deplete the energy of DTN nodes, especially the key active nodes which will result in net-
work segmentation and decline of network survivability. As for Bubble Rap, it has the least
forwarding cost since it assumes full knowledge of each nodes’ connectivity and can find
the global optimal solution. However, it also suffers from dependence on nodes with higher
active degree which may be easily congested. Hence, it has the least throughput.

Efficiency Figure 5c plots the efficiency of the four protocols using the Infocom2006 trace.
We find that in terms of the efficiency, the pattern is: ProphetV2 < SimBet < Bubble Rap <

DTN-Balance with Infocom2006. DTN-Balance has highest efficiency since it does not fall
in local optima trap and also limits invalid forwarding,What is more, compared to the second
highest algorithm, Bubble Rap, the throughput of DTN-Balance shows overwhelming superi-
ority. Compared to the ProphetV2, although the average throughput of DTN-Balance(0.466)
is 5/7 of that of ProphetV2 (0.6807), the efficiency is almost 30 time higher. Thus the gain
obtained in terms of efficiency is significant and the cost is acceptable.

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 591

(a) Throughput (b) Cost

(c) Efficiency

Fig. 6 Performance of DTN-Balance with different TTLs using the Infocom2006 trace

5.1.2 Performance with Different TTLs

Under different TTL values, the performance of four forwarding schemes are evaluated using
Infocom2006. The connection speed and buffer size is set as 250K/s and 200M , respectively.

Throughput Figure 6a presents the throughput of the four routing protocols using the
Infocom2006 trace. We see that in terms of the throughput, we have ProphetV2 > SimBet>
DTN-Balance >Bubble in Infocom2006. These results match those in Fig. 5a for similar
reasons. The forwarding opportunities in the DTN are mainly determined by the encounter
opportunities as well as the forward limit condition, which are independent from TTL. With
the increase of TTL, the number of packets that can be successfully delivered does not
increase accordingly.

Cost Figure 6b shows cost of the four routing protocols using the Infocom2006 trace. In
general, we see that in terms of the cost, we have Prophet� SimBet � DTN-Balance >

Bubble Rap with Infocom2006. These results match the results in Fig. 5b for similar reasons.
One can observe that the cost of Bubble Rap always is the lowest with Infocom2006, DTN-
Balance has a relatively higher cost than Bubble Rap but also has much higher throughput.

123

592 W. Wang et al.

(a) Throughput (b) Cost

(c) Efficiency

Fig. 7 Performance of DTN-Balance with different buffer sizes using the UIM trace

Efficiency Figure 6c shows the efficiency of the four routing protocols using the Info-
com2006 trace. Again, this relationship is basically similar to that in Fig. 5c due to the
similar reasons. Generally speaking, DTN-Balance has high throughput and low cost, thus
its efficiency is best.

5.2 Evaluation of Efficiency in Multiple Message Copy Scenario

Multiple message copies means that if the receiving node is not the message destination, the
forwarding node will not delete the message from its buffer. Thus, there might exist multiple
copies of a message in the network.

5.2.1 Performance with Different Buffer Sizes

Under different buffer size values, the four forwarding schemes are evaluated using UIM
trace. The connection speed and the TTL is set 250K/s and 23,040s, respectively.

Throughput Figure 7a presents the throughput of the four routing protocols using the UIM
trace. We see that the average throughput follows the following pattern: ProphetV2 > DTN-
Balance≈ SimBet>Bubble with UIM. Since UIM trace is a sparse dataset, the throughput is
generally low, and there is little difference between different algorithms. The DTN-Balance
has satisfactory throughput constrained only due to enforcing the forward limit condition.

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 593

(a) Throughput (b) Cost

(c) Efficiency

Fig. 8 Performance of DTN-Balance with different TTLs using the UIM trace

Cost Figure 7b shows the cost of the four routing protocols using the UIM trace. In general,
we see the average cost follows the pattern: ProphetV2 > Bubble Rap > SimBet > DTN-
Balance with UIM. The average cost of DTN-Balance is always the lowest with UIM. Its
average cost is 11245, which is 39.3% better than that of SimBet (whose average cost is
18530). The average throughput of DTN-Balance is 0.07, which is 2.598% worse than that
of SimBet (whose average throughput is 0.07189). The gain obtained in terms of cost is far
greater than the slight loss of throughput.

Efficiency Figure 7c shows the efficiency of the four routing protocols using the UIM trace.
We can see that the efficiency of DTN-balance is the best (efficiency value is 0.344) and is
53.84% better than the second best algorithm, SimBet (that is 0.2238). Generally speaking,
DTN-Balance has the higher throughput, lower cost, and thus the best efficiency.

5.2.2 Performance with Different TTLs

Under different TTL values, the four forwarding schemes are evaluated using UIM trace.
The connection speed and the buffer size is set 250K/s and 50M, respectively.

Throughput Figure 8a presents the through of the four routing protocols using the UIM.
We see that the average throughput follows the pattern: ProphetV2 >> DTN-Balance>
SimBet> Bubble. These results match those in Fig. 7a for the similar reasons.

123

594 W. Wang et al.

Cost Figure 8b shows the average cost of the four routing protocols using the UIM. In
general, we see that in terms of the average cost, we have DTN-Balance < SimBet< Bubble
Rap< ProphetV2. These results match the results in Fig. 7b for similar reasons. We also find
that the average cost of DTN-Balance always is the lowest with UIM. Due to sparse contact
density in UIM dataset and lack of forwarding restictions, other methods spend more cost to
forward messages in the sparsely connected network.

Efficiency Figure 8c shows the efficiency of the four routing protocols using the UIM
trace. The performance of the algorithms is similar to those in Figs. 5c and 7c due to similar
reasons. Generally speaking, DTN-Balance fully utilizes all nodes’ forwarding capacities and
its forwarding schedule provisions result in superior performance. The average efficiency of
DTN-Balance is 0.2932, which is 89% better than that of SimBet (0.1551) and demonstrates
an overwhelming advantage over ProphetV2 and Bubble Rap.

Combining all the results obtained with various buffer sizes and TTLs, we can conclude
that DTN-Balance has superior efficiency compared to the previous DTN routing algorithms.
It achieves highest forwarding efficiency, and lowest forwarding cost as well as satisfactory
throughput.

6 Conclusion and FutureWork

In this paper, we proposed an efficient routing algorithm for message transfer among mobile
nodes in a DTN. We developed the concept of vir tual bandwidth to measure the forward-
ing capability from current node to destination node. Using the vir tual bandwidth and
message properties, we further proposed the message forwarding utility MFU and the
message dropping utility MDU that are used to efficiently and intelligently forward packets
on hop-by-hop basis until they reach their destinations. In order to improve the forwarding
efficiency, we applied hop-count limits to avoid excessive long routes. Extensive analysis
and trace-driven experiments using ONE simulator demonstrated the effectiveness of the
proposed routing. As a future work, we plan to investigate how to apply network coding to
further enhance the fairness and workload distribution in a DTN.

Acknowledgements This work is supported by the National Science Foundation of China under Grant
No. 61572062, and the National Key Research and Development Program of China under Grant No.
2016YFB1000503.

References

1. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of ACM
SIGCOMM 03 (pp. 27–34).

2. Rodrigues, J. J. P. C., & Soares, V. N. G. (2015). 1-An introduction to delay and disruption-tolerant
networks(DTNs). Elsevier Journal of Advances in Delay-Tolerant Networks (DTNs), 2015, 1–21.

3. Jain, S., Fall, K. R., & Pattra, R. K. (2004). Routing in a delay tolerant network. In Proceedings of the
SIGCOMM (pp. 145–158).

4. Guo, S., & Keshav, S. (2007). Fair and efficient scheduling in data ferrying networks. In Proceedings of
the of ACM/CoNEXT.

5. Balasubramanian, A., Levine, B. N., & Venkataramani, A. (2007). Dtn routing as a resource allocation
problem. In Proceedings of the of SIGCOMM.

6. Lee, K., Yi, Y., Jeong, J., Won, H., Rhee, I., & Chong, S. (2010). Max-contribution: on optimal resource
allocation in delay tolerant networks. In Proceedings of the IEEE INFOCOM (pp. 1–9).

123

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 595

7. Fan, X., Li, V. O. K., & Xu, K. (2014). Fairness analysis of routing in opportunistic mobile networks.
IEEE Transaction on Vehicular Technology, 63(3), 1.

8. Pujol, J. M., Toledo, A. L., & Rodriguez, P. (2009). Fair routing in delay tolerant networks. In IEEE
INFOCOM 2009 proceedings (pp. 837–845).

9. Qi, Y., Yang, L., Pan, C., et al. (2020). CGR-QV: A virtual topology DTN routing algorithm based on
queue scheduling. IEEE China Communications, 17(7), 113–123.

10. Vazintari, A., & Cottis, P. G. (2016). Mobility management in energy constrained self-organizing delay
tolerant networks:An autonomic scheme based on game theory. IEEETransactions onMobileComputing,
15(6), 1401–1411.

11. Pham, T. N. D., & Yeo, C. K. (2016). Detecting colluding blackhole and greyhole attacks in delay tolerant
networks. IEEE Transactions on Mobile Computing, 15(5), 1116–1129.

12. Le, T., & Gerla, M. (2015). A load balanced social-tie routing strategy for DTNs based on queue length
control. In IEEE military communications conference (pp. 383–387).

13. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Technical
report CS-200006. Duke University.

14. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme
for intermittently connected mobile networks. In WDTN 05: Proceeding of the 2005 ACM SIGCOMM
workshop on delay-tolerant networking (pp. 252–259).

15. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2008). Efficient routing in intermittently connected
mobile networks: The single-copy case. IEEE/ACM Transactions on Networking, 16(1), 63–76.

16. Choochotkaew, S., Yamaguchi, H., & Higashino, T. (2018). BALANCE: A robust routing protocol in
self-organized civilian DTN. In 2018 14th international conference on wireless and mobile computing,
networking and communications (WiMob).

17. Sharif, H. Md. (2019). DTN routing protocols on two distinct geographical regions in an opportunistic
network: An analysis. In Springer wireless personal communications.

18. Erramilli, V., Chaintreau, A., Crovella, M., & Diot, C. (2008). Delegation Forwarding. In Proceedings of
the ACM MobiHoc.

19. Dubois-Ferriere, H., Grossglauser, M., & Vetterli, M. (2003). Age matters: Efficient route discovery in
mobile ad hoc networks using encounter ages. In Proceedings of the ACM MobiHoc (pp. 257–266).

20. Nelson, S. C., Bakht, M., Kravets, R. (2009). Encounter based routing in DTNs. In INFOCOM 2009.
New York: IEEE (pp. 846–854).

21. Liu, C., & Wu, J. (2009). An optimal probabilistic forwarding protocol in delay tolerant networks. In
MobiHoc09 (pp. 105–114).

22. Lindgren, A., Doria, A., & Scheln, O. (2003). Probabilistic routing in intermittently connected networks.
ACM SIGMOBILE, 7(3), 19–20.

23. Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). MaxProp: routing for vehicle-based
disruption-tolerant networks. In Proceedings of the IEEE INFOCOM (pp. 1–11).

24. Grasic, S., Davies, E., Lindgren, A.,& Doria, A. (2011). The evolution of a DTN routing protocol
PRoPHETv2. In CHANTS11 (pp. 27–30).

25. Link, J., Schmitz, D., &Wehrle, K. (2011). GeoDTN: Geographic routing in disruption tolerant networks.
In Proceedings of the IEEE GLOBECOM (pp. 1–5).

26. Kurhinen, J., & Janatuinen, J. (2007). Geographical routing for delay tolerant encounter networks. In
Proceedings of the IEEE ISCC (pp. 463–467).

27. Leguay, J., Friedman, T., & Conan, V. (2005). DTN routing in a mobility pattern space. In Proceedings
of the ACM SIGCOMM WDTN (pp. 276–283).

28. Fan, J., Chen, J., Du, Y., Gao, W., Wu, J., & Sun, Y. (2013). Geo community based broadcasting for data
dissemination in mobile social networks. IEEE Transactions on Parallel and Distributed Systems, 24(4),
734–743.

29. Li, F., & Wu, J. (2009). MOPS: Providing content-based service in disruption-tolerant networks. In
Proceedings of the IEEE ICDCS (pp. 526–533).

30. Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant
MANETs. In Proceedings of the ACM MobiHoc (pp. 32–40)

31. Hui, P., Crowcroft, J., & Yoneki, E. (2008). Bubble rap: Social-based forwarding in delay tolerant net-
works. In Proceedings of the ACM MobiHoc (pp. 241–250).

32. Gao, W., Cao, G., La Porta, T., & Han, J. (2013). On exploiting transient social contact patterns for data
forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 12(1), 151–165.

33. Wu, J., & Wang, Y. (2012). Social feature-based multi-path routing in delay tolerant networks. In 2012
proceedings IEEE INFOCOM (pp. 1368–1376).

34. Chen, K., & Shen, H. (2015). DTN-FLOW: Inter-landmark data flow for high-throughput routing in
DTNs. IEEE/ACM Transactions on Networking, 23(1), 212–226.

123

596 W. Wang et al.

35. Tantai, J., Bai, Y., Zhao, Y., Liu, J., & Chen, W. (2015). Capacity routing based message priority for delay
tolerant networks. In Proceedings of the 24th international conference on computer communications and
networks (ICCCN).

36. Haoran, S., Muqing, W., & Yanan, C. (2019). A community-based opportunistic routing protocol in delay
tolerant networks. In 2018 IEEE 4th international conference on computer and communications (ICCC).
New York: IEEE.

37. Qi, W., Song, Q., Wang, X., & Guo, L. (2017). Trajectory data mining-based routing in DTN-enabled
vehicular ad hoc networks. IEEE Access, 5, 24128–24138.

38. Wang, W., Bai, Y., Feng, P., et al. (2018). DTN-Knca: A high throughput routing based on contact
pattern detection in DTNs. In 2018 IEEE 42nd annual computer software and applications conference
(COMPSAC), Tokyo (pp. 926–931). https://doi.org/10.1109/COMPSAC.2018.00159.

39. Wen, Z., et al. (2019). An adaptive probability prediction routing scheme in urban DTNs. In 2019 IEEE
25th international conference on parallel and distributed systems (ICPADS). New York: IEEE.

40. Nahrstedt, K., & Vu, L. (2012). CRAWDAD data set uiuc/uim (v. 2012-01-24). Downloaded from http://
crawdad.cs.dartmouth.edu/uiuc/uim.

41. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., & Chaintreau, A. (2009). Data set cam-
bridge/haggle/imote/infocom2006 (Online). http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/
infocom2006.

42. The ONE simulator, an Available Website. http://www.netlab.tkk.fi/tutkimus/dtn/theone/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Weitao Wang received B.S. degree in mathematics and applied mathe-
matics from Hebei Normal University, Shijiazhuang, China, in 2010,
and M.S. degree in applied mathematics from Fuzhou University,
Fuzhou, China, in 2013. Currently he is a Ph.D. degree Candidate in
School of Computer Science and Engineering at Beihang University.
His research interests include DTN, Ad Hoc Networks and Cognitive
Radio Networks.

Yuebin Bai received his Ph.D. degree in computer science from Xi’an
Jiaotong University, Xi’an, China, in 2001. From 2001 to 2003, he was
engaged in postdoctoral research at the College of Science and Tech-
nology at Nihon University, Tokyo, Japan. In 2003, he joined the fac-
ulty of Beihang University, Beijing, China, where he is currently a pro-
fessor in School of Computer Science and Engineering. His research
interests include Wireless Networks, Embedded and Real-Time Sys-
tems, System Virtualization and Cloud Computing.

123

https://doi.org/10.1109/COMPSAC.2018.00159
http://crawdad.cs.dartmouth.edu/uiuc/uim
http://crawdad.cs.dartmouth.edu/uiuc/uim
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006
http://www.netlab.tkk.fi/tutkimus/dtn/theone/

DTN-Balance: A Forwarding-Capacity and Forwarding-Queue… 597

Peng Feng received his B.S. degree in computer science from Xiang-
tan University, Xiangtan, China, in 2011. He received his MS degree in
computer Science from Guangxi University, Nanning, China, in 2014.
Currently he is a Ph.D. degree Candidate in School of Computer Sci-
ence and Engineering at Beihang University. His research has focused
on DTN, Ad Hoc Networks and Cognitive Radio Networks.

Jun Huang received the B.S. and M.S. degrees in School of Computer
Science and Engineering from Beihang University, China, in 2005 and
2008, respectively, and the Ph.D. degree in computer science and engi-
neering from Michigan State University, USA, in 2013. He is currently
an assistant professor in the Center for Energy Efficient Computing and
Applications (CECA), School of EEC, Peking University. He received
the Best Paper Awards at the 18th IEEE International Conference on
Network Protocols (ICNP) in 2010. His research interests include wire-
less networking and mobile systems.

Mo Sha is an Assistant Professor in the Department of Computer Sci-
ence at Binghamton University—State University of New York, USA.
He received his Ph.D. degree in Computer Science from Washington
University in St. Louis, USA, in 2014. Prior to his Ph.D., he received
a M.Phil. degree from City University of Hong Kong in 2009 and a
B.Eng. degree from Beihang University in 2007. His research interests
include Wireless Networks, Internet of Things, Embedded and Real-
Time Systems, and Cyber-Physical Systems.

123

598 W. Wang et al.

Jianpei Tantai received his B.S. degree in computer science from Hebei
University of Technology, Tianjin, China, in 2013. He received his
M.S. degree in School of Computer Science and Engineering from Bei-
hang University, Beijing, China, in 2016. His research has focused on
DTN, Ad Hoc Networks and Cognitive Radio Networks.

Affiliations

Weitao Wang1 · Yuebin Bai1 · Peng Feng1 · Jun Huang2 · Mo Sha3 ·
Jianpei Tantai1

B Yuebin Bai
byb@buaa.edu.cn

Weitao Wang
weitaowang@buaa.edu.cn

Peng Feng
fengpeng@buaa.edu.cn

Jun Huang
jun.huang@pku.edu.cn

Mo Sha
mosha@binghamton.edu

Jianpei Tantai
JPTanTai@buaa.edu.cn

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 Center for Energy Efficient Computing and Applications (CECA), Peking University, Beijing

100871, China
3 Department of Computer Science, State University of New York, Binghamton, NY 13902, USA

123

http://orcid.org/0000-0002-3201-1156

	DTN-Balance: A Forwarding-Capacity and Forwarding-Queue Aware Routing for Self-organizing DTNs
	Abstract
	1 Introduction
	2 Related Works
	3 Data Forwarding Capacity Metric
	3.1 Virtual Bandwidth
	3.2 Virtual Path
	3.3 Virtual Bandwidth Calculation
	3.4 Virtual Bandwidth Calculation for Direct Link
	3.4.1 Stable State
	3.4.2 Unstable State

	4 The Proposed Routing Algorithm
	4.1 Data Structures
	4.2 Spread and Recalculation
	4.3 Message Forwarding Strategy in DTN-Balance

	5 Performance Evaluation
	5.1 Evaluation of Efficiency in Single Message Copy Scenario
	5.1.1 Performance with Different Buffer Sizes
	5.1.2 Performance with Different TTLs

	5.2 Evaluation of Efficiency in Multiple Message Copy Scenario
	5.2.1 Performance with Different Buffer Sizes
	5.2.2 Performance with Different TTLs

	6 Conclusion and Future Work
	Acknowledgements
	References

