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Abstract

Given a Boolean function f : Fn2 → {0, 1}, we say a triple (x, y, x + y) is a triangle in f if
f(x) = f(y) = f(x + y) = 1. A triangle-free function contains no triangle. If f differs from every
triangle-free function on at least ε·2n points, then f is said to be ε-far from triangle-free. In this work, we
analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions
from those ε-far from triangle-free.

Let the canonical tester for triangle-freeness denote the algorithm that repeatedly picks x and y
uniformly and independently at random from Fn2 , queries f(x), f(y) and f(x+ y), and checks whether
f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions ε-far from
triangle-free with constant probability if its query complexity is a tower of 2’s whose height is polynomial
in 1/ε. Fox later improved the height of the tower in Green’s upper bound to O(log 1/ε). A trivial lower
bound of Ω(1/ε) on the query complexity is immediate. In this paper, we give the first non-trivial lower
bound for the number of queries needed. We show that, for every small enough ε, there exists an integer
n0(ε) such that for all n ≥ n0 there exists a function f : Fn2 → {0, 1} depending on all n variables which
is ε-far from being triangle-free and requires Ω

(
(1/ε)4.847···

)
queries for the canonical tester. We also

show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness
is at least square-root of the query complexity of the corresponding canonical tester. Consequently, this
means that any one-sided tester for triangle-freeness must make at least Ω

(
(1/ε)2.423···

)
queries.

1 Introduction

Roughly speaking, property testing is concerned with the existence of an efficient algorithm which queries
an input object a small number of times and decides correctly with high probability whether the object has
a given property or it is “far away” from having the property.

Formally, let D be a finite domain and R be a finite range. Letting {D → R} denote the set of all
functions from D to R, a property is specified by a family F ⊆ {D → R} of functions. A tester is
a randomized algorithm which is given a distance parameter ε and has oracle access to an input function
f : D → R. It accepts with probability at least 2/3 if f ∈ F and rejects with probability at least 2/3 if
the function is ε-far from F . Distance between functions f, g : D → R, denoted dist(f, g), is simply the
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fraction of the domain where f and g disagree, and dist(f,F) = ming∈F{dist(f, g)}. For ε ∈ (0, 1), we say
f is ε-far fromF if dist(f,F) ≥ ε and ε-close otherwise. A tester is one-sided if whenever f ∈ F , the tester
accepts with probability 1. The central parameter associated with a tester is its query complexity, the number
of oracle queries it makes to the function f being tested. In particular, a property is called strongly testable
if, for every fixed ε, there is a tester with query complexity that depends only on the distance parameter
ε and is independent of the size of the domain. Property testing was formally defined by Rubinfeld and
Sudan [35], and the systematic exploration of property testing for combinatorial properties was initiated by
Goldreich, Goldwasser, and Ron [21]. Subsequently, a rich collection of properties have been shown to be
strongly testable [8, 7, 3, 14, 33, 5, 4, 28, 27].

A central quest of research in property testing has been to characterize properties according to their
query complexity. One can ask, for example, whether a large class of properties are all strongly testable, and
how the query complexity of a strongly testable property depends on the distance parameter ε. Such broad
understanding of testability has been achieved for graph and hypergraph properties. For graph properties, it
is known exactly ([3, 14]) which properties are strongly testable in the dense graph model. Furthermore, for
an important class of properties, H-freeness for fixed subgraphs H , it is known exactly for which H , testing
H-freeness requires the query complexity to be super-polynomial in 1/ε (ε being the distance parameter)
and for which only a polynomial number of queries suffice: This was proved by Alon [1] for one-sided
testers and by Alon and Shapira [6] for general (two-sided) testers. Progress toward similar understanding
has also been made for hypergraph properties [34, 9, 7].

Somewhat ironically, algebraic properties, the main objects of study in the seminal work of Rubinfeld
and Sudan [35], are not as well understood as (hyper)graph properties from a high-level perspective. On the
one hand, there has been a lot of work in constructing low-query testers for specific algebraic properties,
such as linearity and membership in various error-correcting codes. However, the systematic study of the
query complexity of algebraic properties began only recently with the work of Kaufman and Sudan [29].
Formally, the class of properties under consideration here are linear-invariant properties. In this setting1,
the domain D = Fn2 and range R = {0, 1}, where F2 is the finite field with two elements. A property
F is said to be linear-invariant if for every f ∈ F and linear map L : Fn2 → Fn2 , it holds that f ◦
L ∈ F . Roughly speaking, Kaufman and Sudan showed strong testability of any locally-characterized
linear-invariant and linear property2. Moreover, the query complexity of all such properties is only O(1/ε).
Nonlinear linear-invariant properties were studied formally in [12] where the authors isolated a particular
class of nonlinear linear-invariant properties, M-freeness for some fixed binary matroidsM, and showed
an infinitely large set of strongly testableM-freeness properties.3 Subsequently, Shapira [36] and Král et
al [31] independently showed that, in fact for any fixed binary matroidM,M-freeness is strongly testable,
mirroring the analogous result of subgraph-freeness testing. However, unlike the case of graphs where it is
known exactly which subgraph-freeness properties can be tested in time poly(1/ε) and which cannot, there
are no similar results known for matroid-freeness properties. Indeed, to the best of our knowledge, prior to
our work, there were no non-trivial lower bounds known for the query complexity (in terms of ε) for any

1[29] considers linear invariance over general fields. In this paper, we restrict ourselves to Fn2 for simplicity.
2A property F is linear if for any f and g that are in F necessarily implies that f + g is in F .
3 For the purpose defining properties studied in this paper, matroid is simply a synonym for a collection of binary vectors. Given

a matroid M represented by vectors (v1, . . . , vk) with each vi ∈ Fr2, the property of M-freeness is the family of Boolean functions
FM = {f : Fn2 → {0, 1} | ∀ linear map L : Fr2 → Fn2 , (f(L(v1)), . . . , f(L(vk))) 6= 1k }. Clearly properties such defined are
linear-invariant properties. The matroid corresponds to triangle-freeness is M = (e1, e2, e1 + e2). To see this, note that M-
freeness requires that for any (non-singular) linear map L defined by L(e1) = x and L(e2) = y (hence L(e1 + e2) = x + y),
where x and y are two arbitrary (distinct) vectors in Fn2 , it is the case that (f(x), f(y), f(x+ y)) 6= 13. This is just the definition
of triangle-freeness property.
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natural linear-invariant algebraic property.

1.1 Our Results

We are interested in the property of triangle-freeness for Boolean functions. Let f : Fn2 → {0, 1} be a
Boolean function. We say a triple (x, y, x + y) is a triangle in f if f(x) = f(y) = f(x + y) = 1.
The function f is said to be triangle-free if it contains no triangle. The canonical tester for triangle-freeness
repeatedly picks x and y uniformly and independently at random and checks if f(x) = f(y) = f(x+y) = 1.

In this paper we give the first non-trivial query lower bounds for testing triangle-freeness in Boolean
functions. In particular, we show that, for every small enough (but constant) ε there exists an integer n0(ε)
such that for all n ≥ n0 there exists a function f : Fn2 → {0, 1} depending on all the n variables which is
ε far from being triangle-free and requires Ω

(
(1
ε )

4.847···) queries for the canonical tester (Theorem 3.15 in
Section 3.4), and Ω

(
(1
ε )

2.423···) queries for any one-sided tester (Theorem 4.10 in Section 4). We discuss
more about the background of our results below.

Green [23] showed that it suffices for the canonical tester to make only a constant number of queries,
so that the property of triangle-freeness is strongly testable. Green’s analysis is quite different from that of
typical algebraic tests and is more reminiscent of the analysis for tests of graph properties. In particular,
Green developed an algebraic regularity lemma for the Boolean cube (his result is much more general – in
fact, it works for any abelian group). The query complexity upper bound proved by Green has a very bad
dependency on ε: it is a tower of 2’s whose height is polynomial in 1/ε. A more combinatorial way to state
Green’s result is that, for any function ε-far from being triangle-free, there are at least δ(ε)22n triangles in
the function, though this δ(ε) is only proved to be super tiny. More recently, Fox [19] gave a new proof
of the so-called “graph removal lemma”. His proof does not use Szemerédi’s regularity lemma and gives
a better bound. Combining with Král’, Serra and Vena’s proof [30] (of Green’s removal lemma using the
directed graph removal lemma), Fox improved the height of the tower of 2’s in Green’s query complexity
upper bound from polynomial in 1/ε to O(log(1/ε)) (see [25] for a direct Fourier analytical proof of this
latter bound). A trivial lower bound of Ω(1/ε) is straightforward to show. But, to the best of our knowledge,
there is no non-trivial lower bound for testing triangle-freeness in Boolean functions. This question was left
open in [23].

It is interesting to compare the testability of algebraic triangle-freeness and graphic triangle-freeness.
Using Szemerédi’s regularity lemma, triangle-freeness in graphs is known to be testable with a tower-type
query complexity upper bound. Alon [1] gave a super-polynomial query complexity lower bound and it is
the strongest query lower bound for a natural strongly testable property known to date. However, the proof
technique in [1] does not seem to directly apply to the algebraic setting due to the inherent additive structures
of the Boolean cubes. More generally, it seems to us that proving lower bounds for the Boolean function
case is more challenging than that of the graphic case.

Proving lower bounds for the canonical tester translates to a clearly defined algebraic question. This is
because a canonical tester is a one-sided tester; consequently, if a function is ε-far from triangle-free and
contains N∆ triangles, then for the canonical tester to reject this function with constant probability, it must
make Ω( 22n

N∆
) number of queries. Therefore, to prove lower bounds for the canonical tester, it suffices to

construct Boolean functions that are ε-far from triangle-free but contain only a small number of triangles.
On the other hand, our ultimate goal would be to understand the query complexity with respect to general
testers, not just the canonical one. To this end, we show that if there is a one-sided, possibly adaptive tester
for triangle-freeness with query complexity q, then one can transform that tester into a canonical one with
query complexity at most O(q2). Combining with our results for canonical testers, this implies a query
complexity lower bound of Ω

(
(1
ε )

2.423···) for testing triangle-freeness, with respect to one-sided testers. In
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fact our result is a bit more general: we prove a polynomial relationship between the query complexity of
the canonical tester and arbitrary one-sided testers, for any matroid-freeness property. This is analogous to
a result in [2] for one-sided testers of subgraph-freeness in graphs4. Another related result is that of Ben-
Sasson, Harsha and Raskhodnikova [11] who showed that there is no gap between the query complexities
of adaptive testers and non-adaptive ones for testing linear properties.

1.2 Overview of Techniques

From a combinatorial point of view, proving a lower bound for the query complexity of the canonical tester
for triangle-freeness amounts to constructing a Boolean function which is far from being triangle-free but
contains only a small number of triangles. By an observation in [26]5, it suffices to construct a function-triple
which is far from being triangle-free but contains a small number of triangles. A triangle in a function-triple
f1, f2, f3 : Fn2 → {0, 1} is a triple (x, y, x + y) ∈ (Fn2 )3 such that f1(x) = f2(y) = f3(x + y) = 1. A
triangle-free function-triple f1, f2, f3 contains no triangles, and a function-triple f1, f2, f3 is said to be ε-far
from being triangle-free if for every triangle-free function-triple g1, g2, g3, it is the case that:(

Pr
x

[f1(x) 6= g1(x)] ≥ ε
)
∨
(
Pr
x

[f2(x) 6= g2(x)] ≥ ε
)
∨
(
Pr
x

[f3(x) 6= g3(x)] ≥ ε
)
.

The observation of [26] is that, if we define f : Fn+2
2 → {0, 1} such that, for all x ∈ Fn2 , f(00, x) = 0,

f(01, x) = f1(x), f(10, x) = f2(x) and f(11, x) = f3(x), then there is a one-to-one correspondence
between the triangles in f and the triangles in the function-triple (f1, f2, f3). As the domain size blow-up is
a only a constant, it follows that lower bounds for function-triples imply lower bounds for single functions.

Our lower bound for function-triples is based on constructing a vertex-disjoint function-triple, meaning
that all the triangles in the triple are pairwise disjoint. The property of being vertex-disjoint makes it simple
to calculate the function-triple’s distance from triangle-freeness as well as counting the number of triangles
within the function-triple. We start our construction of a vertex-disjoint function-triple from three sets, each
of cardinality m, of k-bit binary vectors, {ai}mi=1, {bj}mj=1 and{c`}m`=1, where k and m are fixed integers.
We call such a collection of vectors (k,m)-PMF for reasons to be explained shortly. Next we define three
sets, {AI}, {BJ} and{CL}, of mk-bit vectors, each consisting of the vectors obtained by concatenating
{ai}, {bj} and{c`}, respectively, in all possible orders. Finally we define our function-triple (fA, fB, fC)
to be the characteristic functions of the three sets {AI}, {BJ} and{CL}. In order to make the triangles
in this function-triple pairwise disjoint, we impose the constraint that {ai}, {bj} and{c`} satisfy a certain
1-perfect-matching-free (1-PMF for short) property (see Section 3.2 for formal definition). To make this
construction work for arbitrarily small ε, we concatenate with some n′ ≥ 1 copies of each {ai}, {bj}
and{c`} and require them to satisfy the n′-PMF property for any n′ ≥ 1. It turns out that {ai}, {bj}
and{c`} being PMF is equivalent to a (small) set of homogeneous Diophantine linear equations having no
non-trivial solution, which in turn can be checked by linear programming. Numerical computation indicates
the existence of PMF family of vectors for k = 3, 4, and 5. Our findings show that larger values of k give
stronger lower bounds but unfortunately it was computationally infeasible to search for PMF families of
vectors for k ≥ 6. We conjecture that our approach may lead to super-polynomial query lower bounds for
testing multi-function triangle-freeness.

4Goldreich and Trevisan in [22] prove a polynomial relationship between the query complexity of two-sided testers and canonical
testers, for any graph property. For the purposes of this paper, our weaker result is sufficient.

5In the conference version of this article [13], we showed query lower bounds for single-function and function-triple cases
separately, and the single-function lower bound is weaker than the function-triple one. Since, by the observation in [26], function-
triple lower bound implies single-function lower bound, we omit the original (weaker) single-function lower bound of [13] in this
version.
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We remark that one may start with a function-triple obtained from 1-PMF and tensor itself multiple
times to construct function-triples suitable for arbitrarily small ε’s. However, since the parameters k and m
are (small) finite numbers (in our case, the maximum values of k andm are 5 and 13 respectively), the query
lower bound obtained this way would be Ω

(
(1
ε )
cm,k

)
, where ck,m is some constant depending on k and m.

Concatenating n′ copies of {ai}, {bj} and{c`} for larger values of n′, on the other hand, allows one to obtain
better bounds for smaller ε’s, thus achieving the best asymptotic lower bound attainable employing functions
constructed from (k,m)-PMF (see the proof of Theorem 3.4 for details). However, functions constructed
this way are only in n0 variables, where n0 is a fixed constant depending on ε, k and m. In analogy to the
blow-up operation on graphs [1], we tensor the function in n0 variables with bent functions (see Section 2
for definition) in appropriate number of variables to construct functions on arbitrarily long bits that actually
depend on all these bits.

Our result on canonical tester vs. general one-sided tester for triangle-freeness is an adaptation of the
proof technique from [22] to the algebraic setting. The proof relies crucially on the facts that both the
canonical and general testers are one-sided and the property of being triangle-free is invariant under non-
singular linear transformations of the underlying domain Fn2 . The latter is used to show that, under a random
non-singular linear transformation, all linearly independent 2-tuples have essentially equal probability of
witnessing a triangle. Therefore, in order to have guaranteed performance for every isomorphic copy of the
input function, the best strategy for any one-sided tester (even an adaptive one) for triangle-freeness is to
pick random points in the domain to query and check for triangles.

1.3 Subsequent work

In a recent work, Fu and Kleinberg [20] improved our query lower bound of general one-sided tester for
triangle-freeness from Ω

(
(1/ε)2.423···) to Ω

(
(1/ε)6.619···). They observed a nice connection between PMFs

and Uniquely Solvable Puzzles (USPs) (introduced in [16]) and then modified the (implicit) construction of
USPs in [17] to get asymptotically better PMFs. Haviv and Xie [26] showed that the query complexity of
testing triangle-freeness is super-polynomial if certain conjecture regarding sunflowers6 is false.

1.4 Organization

After some necessary definitions in Section 2, the query complexity lower bound for canonically testing
triangle-freeness is presented in Section 3. In Section 4, we study the relationship between the query com-
plexities of the canonical tester and of a general one-sided tester for a broad class of algebraic properties.
The proof of a well-known result on Diophantine linear system of equations may be found in the appendix.

2 Preliminaries

Let n ≥ 1 be a natural number. We use [n] to denote the set {1, . . . , n}. The n×n identity matrix is denoted
by In. We view elements of Fn2 as n-bit strings, that is elements of {0, 1}n, alternatively. If x and y are
two n-bit strings, then x + y denotes bitwise addition (i.e. XOR) of x and y. We use (x, y) to denote the
concatenation of two bit strings x and y.

Definition 2.1 (Tensor Product of Boolean Functions). Let f1 : Fn1
2 → {0, 1} and f2 : Fn2

2 → {0, 1} be
two Boolean functions on n1 and n2 variables respectively. Then the tensor product of f1 and f2, denoted

6A sunflower is a collection of sets such that the pairwise intersection of any two distinct member sets is equal to the mutual
intersection of all member sets.
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by f1 ⊗ f2, is a Boolean function over Fn1+n2
2 such that f1 ⊗ f2(x1, x2) = f1(x1) · f2(x2) for all x1 ∈ Fn1

2

and x2 ∈ Fn2
2 .

Note that if f1 depends on all the n1 variables and f2 depends on all the n2 variables, then f1 ⊗ f2

depends on all the n1 + n2 input bits.
In order to define and study some properties of bent functions, first we recall the notion of Fourier

transform.

Definition 2.2 (Fourier Transform). Let f : Fn2 → R. The Fourier transform f̂ : Fn2 → R of f is defined to
be f̂(α) = Ex[f(x)χα(x)], where χα(x) = (−1)

∑
i∈[n] αixi . f̂(α) is called the Fourier coefficient of f at

α, and the {χα}α are called characters.

For α, β ∈ Fn2 , the inner product between α and β: 〈χα, χβ〉
def
= Ex∈Fn2 [χα(x)χβ(x)] is 1 if α = β

and 0 otherwise. Therefore the characters form an orthonormal basis for Fn2 , and we thus have the Fourier
inversion formula f(x) =

∑
α∈Fn2

f̂(α)χα(x) and Parseval’s equality
∑

α∈Fn2
f̂(α)2 = Ex[f(x)2]. For two

functions f, g : Fn2 → R, we define their convolution as (f ∗ g)(x)
def
= 1

2n
∑

y∈Fn2
f(y)g(x − y). By the

convolution theorem, f̂ · g = f̂ ∗ ĝ and f̂ ∗ g = f̂ · ĝ.

Definition 2.3 (Bent Functions). Let φ : Fn2 → {0, 1} be a Boolean function and let ψ(x) = (−1)φ(x). φ is
called a bent function if the Fourier coefficients of ψ satisfy that |ψ̂(α)| = 1

2n/2
for every α ∈ Fn2 .

Bent functions have many applications in cryptographic constructions. For more properties of bent
functions, we refer interested readers to [32]. It is well known that bent functions exist when the number of
variables is even. For example, the inner-product function φ(x) = x1x2 + x3x4 + · · · + xn−1xn is a bent
function in n variables for every even n.

Let f1, f2, f3 : Fn2 → {0, 1} be a function-triple. We say (f1, f2, f3) is triangle-free if there is no x and
y such that f1(x) = f2(y) = f3(x + y). We use T-FREE to denote the set of triangle-free function-triples.
We say f is triangle-free if (f, f, f) is. When there is no risk of confusion, we write T-FREE for the set of
triangle-free (single) functions as well.

Let f, g : Fn2 → {0, 1}. The (relative) distance between f and g is defined to be the fraction of points

at which they disagree: dist(f, g)
def
= Prx∈Fn2 [f(x) 6= g(x)]. The distance between (f1, f2, f3) and T-FREE

is:
dist((f1, f2, f3), T-FREE)

def
= min

(g1,g2,g3)∈T-FREE
max
i=1,2,3

dist(fi, gi).

Let f1, f2, f3 be a Boolean function-triple. The “number of triangles passing through f1 at x” is
Df1(x)

def
= |{y ∈ Fn2 : f1(x) = f2(y) = f3(x+ y) = 1}|. We define the triangle degree of f1 at x, denoted

by df1(x), to be df1(x)
def
= Df1(x)/2n. Note that if f1(x) = 0 then df1(x) = 0, however the converse may

not be true. Triangle degrees of f2 and f3 are defined analogously. The triangle degree of a single Boolean
function f at point x is defined in a similar way: df (x)

def
= 1

2n |{y ∈ Fn2 : f(x) = f(y) = f(x + y) = 1}|.
When the function f is clear from context, we drop the subscript f and simply write the triangle degree as
d(x).

3 Lower Bound for the Canonical Tester

Intuitively, our hard instance for the canonical tester is constructed by packing as many pairwise disjoint tri-
angles as possible into a Boolean function. The distance between such a function and T-FREE is immediate:

6



the number of triangles divided by 2n. We can then deduce a lower bound for the query complexity of the
canonical tester.

This section is organized as follows. First we present a theorem from [26] which offers us more flex-
ibility in the construction by considering function-triples with pairwise disjoint functions instead of single
functions directly. Next, we give a systematic scheme for generating such function-triples. We then describe
how to efficiently do a computer search to find function-triples with the desired parameters. The computer
search yields a hard instance for a fixed number of variables, which we then extend using a tensoring process
to an arbitrary number of variables.

3.1 From Function-Triples to Functions

The following theorem [26] is due to the second author and was independently observed by Eli Ben-Sasson
(also mentioned in [20]). For completeness we include a proof here.

Theorem 3.1. For any c > 0 and any integer n > 0, suppose f1, f2, f3 : Fn2 → {0, 1} is a function-triple
such that (f1, f2, f3) is ε-far from triangle-free and the canonical tester for triangle-freeness in function-
triple needs to make q = Ω

(
(1
ε )
c
)

queries to (f1, f2, f3). Then there exists a function f : Fn+2
2 such that f

is at least ε′ ≥ ε/4-far from triangle-free and the canonical tester needs to make q′ = Ω
(
( 1
ε′ )

c
)

queries to
f . In other words, strong canonical tester lower bounds for function-triples imply strong canonical tester
lower bounds for single functions.

Proof. Given the function-triple (f1, f2, f3), define f : Fn+2
2 → {0, 1} as follows. For all u ∈ F2

2 and
x ∈ Fn2 , let

f(u, x) =


0, if u = 00,
f1(x), if u = 01,
f2(x), if u = 10,
f3(x), if u = 11.

By our construction, there is no triangle of f across different cosets of the subspace defined by u = 00.
Hence the correspondence between triangles in (f1, f2, f3) and triangles in f is immediate. By the definition
of distance to triangle-free for function-triples, dist(f, T-FREE) ≥ dist((f1, f2, f3), T-FREE)/4 ≥ ε/47. Let
N∆ be the number of triangles in (f1, f2, f3) and f . Since the query complexity of the canonical tester for a
function-triple (resp. function) is proportional to the inverse of the number of triangles in the input function-
triple (resp. function), so

q′ = Θ(22n+4/N∆) = Θ(22n/N∆) = Θ(q) = Ω

(
(
1

ε
)c
)

= Ω

(
(

1

ε′
)c
)
.

3.2 Perfect-Matching-Free Families of Vectors

We first introduce the notion of perfect-matching free families of vectors, and then show how to use them to
build function-triples with only pairwise disjoint triangles.

7Here we abuse notation and use T-FREE to denote both the set of triangle-free functions and the set of triangle-free function-
triples.
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Definition 3.2 (Perfect-Matching-Free Families of Vectors). Let k and m be integers such that 0 < k <
m < 2k. Let {ai}mi=1 and {bi}mi=1 be two families of vectors, with ai, bi ∈ {0, 1}k for every 1 ≤ i ≤ m. Let
ci = ai + bi.

1. Let {AI}I be the set of (mk)-bit vectors formed by concatenating them vectors in {ai} in all possible
orders (there are m! such vectors), where I = (i1, i2, . . . , im) is a permutation of [m]. Similarly
define {BJ}J and {CL}L as the concatenations of vectors in {bi} and {ci} with J = (j1, j2, . . . , jm)
and L = (`1, `2, . . . , `m), respectively. We say the set of vectors {ai, bi, ci} is a (k,m) 1-perfect-
matching-free (abbreviated as 1-PMF) family of vectors if AI + BJ = CL necessarily implies that
I = J = L (i.e., is = js = `s for every 1 ≤ s ≤ m).

2. Let n′ ≥ 1 be an integer and now let {AI}I , {BJ}J and {CL}L be the sets of n′mk-bit vectors by
concatenating n′ copies of {ai}, {bi} and {ci}, respectively, in all possible orders (two concatenations
are regarded the same if they give rise to two identical strings in {0, 1}n′mk). We say the set of vectors
{ai, bi, ci} is a (k,m) n′-PMF family of vectors ifAI+BJ = CL necessarily implies that I = J = L.

3. Finally we say {ai, bi, ci} is a (k,m)-PMF family of vectors if it is n′-PMF for all n′ ≥ 1.

In other words, suppose we color all the 3m vectors in {ai, bi, ci} with m different colors so that ai, bi
and ci are assigned the same color. Suppose further we are given equal number of copies of {a1, b1, c1; . . . ;
am, bm, cm} and we wish to arrange them in three aligned rows such that all the ai’s are in the first row,
all the bi’s are in the second row and all the ci’s are in the third row. Then the only way of making every
column summing to 0k is to take the trivial arrangement in which every column is monochromatic.

3.2.1 Construction Based on PMF Families of Vectors

Let {ai, bi, ci} be a (k,m)-PMF family of vectors. Let n be an integer such that mk|n and let n′ = n
mk .

let {AI}I , {BJ}J and {CL}L be the sets of n-bit vectors by concatenating n′ copies of {ai}, {bi} and {ci}
respectively. Note that |{AI}| = |{BJ}| = |{CL}| = (n′m)!

(n′!)m . Now let fA, fB, fC : Fn2 → {0, 1} be three
Boolean functions which are the characteristic functions of sets {AI}I , {BJ}J and {CL}L respectively.
That is, fA(x) = 1 iff x ∈ {AI}, fB(x) = 1 iff x ∈ {BJ} and fC(x) = 1 iff x ∈ {CL}.

Proposition 3.3. All the triangles in the function-triple (fA, fB, fC) are pairwise disjoint.

Proof. This follows directly from the definition that {ai, bi, ci} is a PMF family of vectors.

Theorem 3.4. If (k,m)-PMF family of vectors exists, then there exists ε0 = ε0(k,m) such that for all
ε < ε0, there is a n0 = n0(ε) and functions fA, fB, fC : Fn0

2 → {0, 1} such that (fA, fB, fC) is ε-far from
being triangle-free and testing triangle-freeness in (fA, fB, fC) requires the canonical tester to query the

functions Ω
(
(1
ε )
α−o(1)

)
times, where8 α =

2− logm
k

1− logm
k

.

Proof. Given a small enough ε > 0, let n′ be the largest integer such that ε ≤
(n′m)!

(n′!)m

2n′mk
. Let fA, fB and fC

be the characteristic functions of {AI}I , {BJ}J and {CL}L respectively defined above. Set n0 = n′mk
and then fA, fB and fC are Boolean functions on n0 variables. Let N∆ be the number of triangles in

8All logarithms in this paper are base 2.
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(fA, fB, fC). Then by Stirling’s formula, for all small enough ε (therefore large enough n′ since we assume
that m and k are fixed constants),

N∆ =
(n′m)!

(n′!)m
=

√
2πmn′(mn

′

e )mn
′
(1 +O( 1

n′ ))(√
2πn′(n

′

e )n′(1 +O( 1
n′ ))

)m
= Θ

(
mmn′

n
′m−1

2

)
= 2(m logm)n′−m−1

2
logn′−o(1) = 2(β−o(1))n0 ,

where β = logm
k .

By Proposition 3.3, all the triangles in (fA, fB, fC) are pairwise disjoint, therefore modifying the
function-triple at one point in the domain can remove at most one triangle. Hence dist((fA, fB, fC), T-FREE) ≥
N∆
2n0 ≥ ε. Consequently, the query complexity of the canonical tester is at least Ω

(
22n0

N∆

)
= Ω

(
2(2−β+o(1))n0

)
=

Ω
(
(1
ε )
α−o(1)

)
.

One can construct fA, fB, fC to be Boolean functions on Fn2 for any n ≥ n0, by simply making the
functions ignore the last n − n0 bits and behave as defined above on the first n0 bits. In Theorem 3.15, we
give a construction by tensoring with bent functions so that the resulting functions depend on all n bits.

We conjecture the following to be true.

Conjecture 3.5. There are infinitely many (k,m)-PMF families of vectors with m ≥ 2k(1−ok(1)) as k (and
hence m as well) tends to infinity.

By Theorem 3.4 and Theorem 3.1, Conjecture 3.5 would imply a super-polynomial query lower bound
for testing triangle-freeness in any Boolean function using the canonical tester. To be more specific, if there

exists a (k,m)-PMF family of vectors withm ≥ 2k(1−ok(1)), then query complexity is at least Ω
(

(1
ε )

1
ok(1)

)
.

Moreover, when composed with Theorem 4.4 it would also give a super-polynomial lower bound for any
one-sided triangle-freeness tester.

3.3 Existence of PMF Families of Vectors

In this section we present an efficient algorithm which, given a family of vectors {ai, bi, ci}mi=1, checks if
it is PMF. Let {ai, bi, ci}mi=1 be a family of vectors such that ai, bi, ci ∈ Fk2 and ci = ai + bi for every
1 ≤ i ≤ m. First we observe that if {ai, bi, ci} is PMF, then all the vectors in {ai} must be distinct. The
same distinctness condition holds for vectors in {bi} and {ci}. From now on, we assume these to be true.
Next we define a set of “collision blocks”.

Definition 3.6 (Collision Blocks). Let {ai, bi, ci}mi=1 be a family of vectors satisfying the distinctness condi-
tion. We say (i, j, `) is a collision block if ai + bj = c`, and for simplicity will just call it a block. We denote
the set of all blocks by B. We will call a block trivial if i = j = ` and non-trivial otherwise.

Since {ai, bi, ci} satisfies the distinctness condition, clearly |B| < m2. Let r be the number of non-
trivial blocks, and let {bl1, . . . , blr} be the set of non-trivial blocks. For a collision block bls, we use blas , bl

b
s

and blcs to denote the three indices of the colliding vectors. That is, if bls = (i, j, `) is a block, then blas = i,
blbs = j and blcs = `.

Now suppose {ai, bi, ci}mi=1 is not PMF. Then by the definition of PMF, there exists an integer n′ such
that AI , BJ , CL ∈ {0, 1}n

′mk, AI + BJ = CL and I , J , and L are not the same sequence of indices. We

9



consider the equation AI + BJ = CL as a tiling of 3 × (n′m) k-bit vectors: the first row consists of the
n′m vectors from {ai} with each ai appearing exactly n′ times and the ordering is consistent with that of
AI . Similarly we arrange the second row with vectors from {bi} according to BJ and the third row with
vectors from {ci} according to CL. Observe that when we look at the columns of the tiling, each column
corresponds to a block in B. Now we remove all the trivial blocks, then because I , J , and L are not identical
sequences of indices, there are some non-trivial blocks left in the tiling. Since all the blocks removed are
trivial blocks, the remaining tiling still has equal number of ai, bi and ci for every 1 ≤ i ≤ m. We denote
these numbers by y1, . . . , ym. Note that yi’s are non-negative integers and not all of them are zero. Let the
number of blocks bli left in the tiling be xi, 1 ≤ i ≤ r. Again xi’s are non-negative integers and not all zero.
Moreover, we have the following constraints when counting the number of ai, bi and ci vectors, respectively,
left in the tiling:


∑

j∈[r]:blaj=i xj − yi = 0∑
j∈[r]:blbj=i

xj − yi = 0 (for every 1 ≤ i ≤ m)∑
j∈[r]:blcj=i

xj − yi = 0

(1)

xj = number of type j blocks left after removing trivial blocks

yi = number of vectors ai (equiv. bi or ci) left after removing trivial blocks

Lemma 3.7. {ai, bi, ci}mi=1 is not PMF if and only there is a non-zero integral solution to the system of
linear equations (1).

Proof. We only need to show that if there is a non-zero solution to (1), then {ai, bi, ci}mi=1 is not PMF. Let
{xi, yj} be a set of non-zero integer solution. Note that the solution corresponds to a partial tiling with equal
number of ai, bi and ci for every 1 ≤ i ≤ m. Set n′ = maxi yi. Since the solution is non-trivial, n′ ≥ 1.
Now for each 1 ≤ i ≤ m, add (n′ − yi) number of trivial blocks (i, i, i) to the tiling. Then the resulting
tiling gives AI , BJ , CL ∈ {0, 1}n

′mk and AI +BJ = CL such that I, J and L are not identical.

Writing equations (1) in matrix form, we have

M~Z = ~0,

where

M =



1 · · · 1 −1

1 · · · . . .
· · · −1
· · · 1 −1

1 · · · . . .
1 · · · −1

1 · · · −1

· · · . . .
1 · · · 1 −1


is a 3m× (r +m) integer-valued matrix (actually all entries are in the set {−1, 0, 1}) and

~Z = [x1, . . . , xr, y1, . . . , ym]T
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is an (r + m) × 1 non-negative integer-valued column vector. Note that each of first r columns of M has
exactly three 1s and all other entries are zero, and the lastm columns of M consist of three−Im×m matrices.

The following observation of Domenjoud [18], which essentially follows from Carathéodory’s theorem,
gives an exact characterization of when the system of equations (1) has a non-zero integral solution. We
include a proof in Appendix A for completeness.

Theorem 3.8 ([18]). Let M be an s × t integer matrix, then the Diophantine linear system of equations
M~Z = ~0 with ~Z ∈ Nt has a non-zero solution if and only if ~0 ∈ Conv(M1, . . . ,Mt)

9, where Mi’s are the
column vectors of M and Conv(M1, . . . ,Mt) denotes the convex hull of vectors M1, . . . ,Mt.

It is well known that checking point-inclusion in a convex hull can be solved by Linear Programming,
see e.g. [10]. In particular, following the definition of convex hulls, ~0 ∈ Conv(M1, . . . ,Mt) if and only if
there exist real numbers θ1 ≥ 0, . . . , θt ≥ 0 such that

t∑
i=1

θiMi = ~0

and
t∑
i=1

θi = 1.

After introducing additional slack variables and plugging in our collision matrix M into the formalism, we
finally arrive at the following characterization of a family of vectors being PMF.

Lemma 3.9. The family of vectors {ai, bi, ci}mi=1 is PMF if and only if the following LP

Maximize W = ~c · ~θ

Subject to M′~θ = ~b

~θ ≥ ~0

has no feasible solution with W ≥ 0.
Here

M′ =

[
M I(3m+1)1 · · · 1

]
is a (3m + 1) × (4m + r + 1) integer matrix with M being the collision matrix of the family of vectors
{ai, bi, ci}mi=1,

~b = [0, . . . , 0, 1]T

is a 3m+ 1-dimensional integer vector and

~c = [0, . . . , 0︸ ︷︷ ︸
r+m

,−1, . . . ,−1︸ ︷︷ ︸
3m+1

]T

is the objective function vector of dimension 4m+ r + 1.

Using this procedure for checking if a family of vectors {ai, bi, ci}mi=1 is PMF or not, we find the fol-
lowing (k,m)-PMF families of vectors.

9Here and after N = {0, 1, . . .} denotes the set of natural numbers.
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Theorem 3.10. There are (3, 4)-PMF, (4, 7)-PMF and (5, 13)-PMF families of vectors.

Proof. By numerical calculation, the following set of vectors is (3, 4)-PMF:

a1 = 110 b1 = 001

a2 = 010 b2 = 100

a3 = 101 b3 = 111

a4 = 011 b4 = 011.

The following set of vectors is (4, 7)-PMF:

a1 = 1101 b1 = 0011

a2 = 0001 b2 = 1011

a3 = 0010 b3 = 0111

a4 = 0110 b4 = 1001

a5 = 0000 b5 = 0000

a6 = 0111 b6 = 0100

a7 = 1001 b7 = 0101.

The following set of vectors is (5, 13)-PMF:

a1 = 11101 b1 = 01101

a2 = 11001 b2 = 11101

a3 = 11000 b3 = 10011

a4 = 00101 b4 = 10001

a5 = 10010 b5 = 00101

a6 = 11110 b6 = 10100

a7 = 10000 b7 = 10000

a8 = 01000 b8 = 01111

a9 = 00011 b9 = 01010

a10 = 11100 b10 = 00111

a11 = 00010 b11 = 11010

a12 = 01100 b12 = 10010

a13 = 01010 b13 = 11111.

We were unable to check the cases k ≥ 6 since they are too large to do numerical calculations. However,
our best findings for k = 3, 4, 5 seem to suggest that the exponent α defined in Theorem 3.4 increases as k
increases, which we view as a supporting evidence for Conjecture 3.5.

Now using the (5, 13)-PMF family of vectors as the building block, Theorem 3.4 combined with Lemma
3.1 implies the following.
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Theorem 3.11. For all small enough ε, there is an n0 = n0(ε) and a Boolean functions f : Fn0
2 → {0, 1}

such that f is ε-far from being triangle-free and testing triangle-freeness of f requires the canonical tester
to query the function f Ω

(
(1
ε )

4.847···) times.

3.4 Extending the Hard-to-test Functions

Theorem 3.11 asserts the existence of only one value n0 such that there is a Boolean function f in n0

variables for which the canonical tester requires Ω
(
(1
ε )

4.847···) queries. However, this hard instance is
interesting only if it can be extended to infinitely many values of n. We can overcome this objection in a
very direct way. For any n ≥ n0(ε), let gn : Fn2 → {0, 1} be the function that equals f from Theorem 3.11
evaluated on the first n0(ε) bits. A straightforward argument (that we omit) shows that the distance of gn to
T-FREE is at least ε, so that gn also requires Ω

(
(1
ε )

4.847···) queries for the canonical tester to test.
However, this example is somewhat unsatisfactory as gn depends only on n0 of its n input variables. We

construct below a stronger example that satisfies the lower bound of Theorem 3.11 and also depends on all
its input variables. The idea behind this construction is to tensor f with an appropriate function such that
the triangle-degree is not affected too much.

Let us introduce some notation to analyze the tensoring process. We define the density of f to be
ρf

def
= Prx[f(x) = 1]. We say f is (ρ, d)-regular if ρf = ρ and df (x) = d for all x with f(x) = 1

(where df denotes the triangle-degree defined in Section 2). Observe that tensor product preserves the
triangle-degree regularity of Boolean functions.

Lemma 3.12. Let f1 : {0, 1}n1 → {0, 1} and f2 : {0, 1}n2 → {0, 1} such that f1 is (ρ1, d1)-regular and
f2 is (ρ2, d2)-regular. Then f1 ⊗ f2 is (ρ1 · ρ2, d1 · d2)-regular.

Proof. The density of f1 ⊗ f2 is straightforward from definition. For the degree part, notice that for any
x = (x1, x2) and y = (y1, y2), where x1, y1 ∈ {0, 1}n1 and x2, y2 ∈ {0, 1}n2 , (x, y, x+ y) is a triangle of
f1 ⊗ f2 if and only if both (x1, y1, x1 + y1) is a triangle of f1 and (x2, y2, x2 + y2) is a triangle of f2.

The reason of studying (ρ, d)-regular functions is that it is extremely simple to analyze the query com-
plexity of the canonical tester of triangle-freeness for such functions.

Lemma 3.13. Let f be a (ρ, d)-regular function on n variables. Then there are N∆ = ρd22n

6 triangles of
f and f is ρ/3-far from being triangle-free. Consequently, testing triangle-freeness requires the canonical

tester to query f Ω(1/ρd) = Ω

(
(1
ε )

1+
log 1/d
log 1/ε

)
times, where ε ≥ ρ/3 is the distance between f and T-FREE.

Proof. Since f is (ρ, d)-regular, there are ρ2n x’s with f(x) = 1 and for every such x there are d · 2n/2
triangles passing through it (since every triangle is counted twice in the definition of triangle degree). It
follows that there are in total ρd22n

6 triangles, as each triangle is counted once by each of its three vertices.
Since triangle-freeness is a monotone property, one can only change the function values from 1 to 0 to
possibly remove triangles. Now changing the function value at one point can remove at most d · 2n/2
triangles, so one needs to change the function value of f (from 1 to 0) on at least ρd22n/6

d·2n/2 = ρ2n/3 points
in the domain. That is, dist(f, T-FREE) ≥ ρ/3. Finally combining the query lower bound of the canonical
tester q = Ω

(
22n/N∆

)
with the lower bound ε ≥ ρ/3 on f ’s distance from T-FREE gives the desired

bound.

In order to construct Boolean functions on arbitrarily large Boolean domains, we utilize bent functions
to “stretch" the input bits. We show next that any bent function which evaluates to 0 at 0 is regular and
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satisfies ρ ≈ 1/2 and d ≈ 1/4. Such bent functions on Fm2 are well-known to exist for every even number
m ≥ 2.

Lemma 3.14. For every even number m ≥ 2, if φ : Fm2 → {0, 1} is a bent function with φ(0) = 0, then
φ is (ρm, dm)-regular, where ρm = 1

2 ± O(2−m/2) and dm = 1
4 ± O(2−m/2) are two constants depending

only on m.

Proof. Let φ(x) be a bent function on m variables and let ψ(x) = (−1)φ(x). Note that ψ(x) = 1 − 2φ(x)
and φ(x) = 1

2(1− ψ(x)). Then by linearity of Fourier coefficients,

φ̂(α) =

{
1
2 −

1
2 ψ̂(0), if α = 0,

−1
2 ψ̂(α), otherwise.

It follows that ρφ = φ̂(0) = 1
2 ±

1
2
√

2m
.

Without loss of generality, we can assume that φ(0) = 0. This is because, if otherwise, we can do a
shift without changing the magnitudes of the Fourier coefficients of ψ. By definition of dφ, for all x with
φ(x) = 1,

dφ(x) =
1

2m

∑
y

φ(y)φ(x+ y) = (φ ∗ φ)(x),

therefore d̂φ(α) = φ̂2(α).
Now we have, for all x such that φ(x) = 1 (note that x 6= 0),

dφ(x) =
∑
α

d̂φ(α)χα(x)

=
∑
α

φ̂2(α)χα(x)

= (
1

2
− 1

2
ψ̂(0))2χ0(x) +

∑
α 6=0

1

4
ψ̂2(α)χα(x)

= (
1

2
− 1

2
ψ̂(0))2 +

1

2m+2

∑
α 6=0

χα(x).

Since x 6= 0,
∑

α χα(x) = 0, so
∑

α 6=0 χα(x) = −χ0(x) = −1. Plugging this into dφ(x), we conclude

that, for all x with φ(x) = 1, dφ(x) = 1
4 −

1
2 ψ̂(0) = 1

4 ±
1

2
√

2m
.

Tensoring regular bent functions on appropriate number of bits with the function constructed in Theo-
rem 3.11 yields the following Theorem.

Theorem 3.15. For all small enough ε there is an integer n0(ε) such that the following holds. For every
integer n ≥ n0, there is a Boolean function f : Fn2 → {0, 1} such that f is ε-far from being triangle-free
and testing triangle-freeness of f requires the canonical tester to query the function Ω

(
(1
ε )

4.847···) times.
Moreover, f depends on all n input variables.

Proof. Let H be the function on three variables: H(000) = H(111) = 0 and H(x) = 1 otherwise. By
direct calculation, H is (3/4, 1/2)-regular and depends on all three input bits.

Note that the function f constructed in Theorem 3.11 is (ρ, d)-regular, where ρ = N∆

2n′mk
= Θ(ε) and

d = 2
2n′mk

satisfying 1
ρd = Ω

(
(1
ρ)4.847···

)
. Now we can tensor f with φn−n0 (or φn−n0−1 ⊗H , depending
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on the parity of n) to get fn : Fn2 → {0, 1}. The density and degree of fn satisfies the condition that
1
ρd = Ω

(
(1
ρ)4.847···

)
. Finally, applying Lemma 3.13 to fn completes the proof of the theorem.

4 Query Complexities of the Canonical Tester and General One-sided Testers

In this section, we prove a general result between the query complexities of an arbitrary one-sided tester
and the canonical tester, for a large class of algebraic properties. A property in our class is specified10 by k
vectors v1, . . . , vk in the vector space Fr2. Following the notation in [12], we call this set of vectors a rank-r
matroidM. An alternative, equivalent notation based on solutions of systems of linear equations is adopted
in [36].

Definition 4.1 (M∗-free). Given a rank-r matroid M = (v1, . . . , vk) with each vi ∈ Fr2, a k-tuple of
Boolean functions f1, . . . , fk : Fn2 → {0, 1} is said to beM∗-free if there is no full-rank linear transforma-
tion L : Fr2 → Fn2 such that fi(L(vi)) = 1 for every i ∈ [k]. Otherwise, if such an L exists, f1, . . . , fk is
said to containM at L, or equivalently, L is called a violating linear transformation ofM.

Remark Let (e1, . . . , er) be a set of basis vectors in Fr2. Each linear map L in the above definition is then
specified by r vectors z1, . . . , zr in Fn2 such that L(ei) = zi for every 1 ≤ i ≤ r. The linear map L is full
rank if (z1, . . . , zr) are linearly independent.

To see that this generalizes the triangle-freeness property, let e1 and e2 be the two unit vectors in F2
2

and consider the matroid (e1, e2, e1 + e2). Then the three elements of the matroid will be mapped to all
triples of the form (x, y, x+ y) by the set of full-rank linear transformations, where x and y are two distinct
non-zero elements in Fn2 . Also note that in this case, r = 2 and k = 3.

The property of being M∗-free is not linear-invariant. The original notion of M-freeness, as defined
in [12], allows L in the above definition to be arbitrary linear transformations, not restricted to full-rank
ones, and is hence truly linear-invariant. However, from a conceptual level, for a fixed matroid M, the
property of beingM-free and beingM∗-free are very similar. It is analogous to the distinction between a
graph being free of H as a subgraph and being free of homomorphic images of H , for a fixed graph H .

In terms of testability, we have some evidence that the distinction is unimportant, although we are
unable to prove a formal statement at this time. For the case whenM = (e1, e2, e1 + e2), we can show
that a tester for triangle-freeness can be converted to one for triangle∗-freeness. Consider a function-triple
(f1, f2, f3) that is promised to be either triangle∗-free or ε-far from being triangle∗-free, where the distance
parameter ε is a constant. Define a new function-triple (f ′1, f

′
2, f
′
3) by setting, for i = 1, 2, 3, f ′i(0) = 0

and f ′i(x) = fi(x) for all x 6= 0. Observe that if (f1, f2, f3) is triangle∗-free, then (f ′1, f
′
2, f
′
3) is triangle-

free because setting f ′i(0) = 0 removes all degenerate triangles. On the other hand, if (f1, f2, f3) is ε-far
from triangle∗-free, then (f ′1, f

′
2, f
′
3) is still ε′ ≥ ε − 3/2n far from triangle∗-free and, hence, also from

triangle-free. Since ε′ approaches ε as n goes to infinity, assuming the continuity of the query complexity as
a function of the distance parameter, the query complexity of triangle-freeness is therefore lower-bounded11

by the query-complexity of triangle∗-freeness.
For general binary matroidsM = (v1, . . . , vk) with each vi ∈ Fr2, observe that if a function tuple is far

from beingM-free, then almost all the linear maps whereM is contained are full-rank. This is because the
10We assume that r is the minimal dimension of the vector space which preserves the linear dependencies between v1, . . . , vk.

That is, r is the rank of the matrix with v1, . . . , vk as its columns.
11The other direction is easy to show in general: for any binary matroid M and constant ε, an ε-tester for M∗-freeness can be

used to ε-test M-freeness (again assuming continuity of the query complexity function).
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main theorems of [36] and [31] show that if a function tuple is Ω(1)-far fromM-free, thenM is contained
at Ω(2nr) many linear maps, while there are only o(2nr) many linear maps L : Fr2 → Fn2 of rank less
than r. Therefore, in fact, anyM∗-free function tuple is o(1)-close toM-free. If there were a more query
efficient one-sided tester forM-freeness than forM∗-freeness, it must be the case that the few linear maps
with rank less than r whereM is contained can somehow be discovered more efficiently than the full-rank
maps. But on the other hand, we know of a large class of matroids M for which there exist functions
that are far from M-free but do not contain M at any non-full-rank linear map. More precisely, letting
Ck = (e1, . . . , ek−1, e1 + · · · + ek−1) be the graphic matroid of the k-cycle, Theorem 1.3 in [12] proves
that for any odd k ≥ 5, there exist functions which are far from Ck-free but contain Ck only at full-rank
linear maps (by showing a separation between the classes Ck-free and Ck−2-free). So, for these reasons, it
seems unlikely that the query complexities of testingM∗-freeness properties are very different from those
of testing M-freeness properties. We conjecture that the query complexities of testing M-freeness and
M∗-freeness properties are the same12 and leave this as an open problem.

We first observe a simple fact about the behavior of any one-sided tester forM∗-freeness.

Lemma 4.2. LetM be a matroid of k vectors. Then any one-sided tester T forM∗-freeness rejects if and
only if it detects a violating full-rank linear transformation L ofM.

Proof. Let f1, . . . , fk : Fn2 → {0, 1} be the input k-tuple of Boolean functions. If T finds a violating
full-rank linear transformation L, clearly it should reject. For the other direction, suppose that T rejects
(f1, . . . , fk) without seeing any violating linear maps from the points it queried. Since M∗-freeness is a
monotone property, we can set all the points of the function-tuple that have not been queried by T to 0, thus
making (f1, . . . , fk)M∗-free. Therefore T errs on this function-tuple. But this contradicts our assumption
that T is a one-sided tester forM∗-freeness.

Next, we define the canonical tester forM∗-freeness, which naturally extends the previously described
canonical tester for triangle-freeness.

Definition 4.3 (Canonical Tester). Let M = (v1, . . . , vk), with each vi ∈ Fr2, be a rank-r matroid of
k vectors. A tester T for M∗-freeness is canonical if T operates as follows. Given as input a distance
parameter ε and oracle access to k-tuple of Boolean functions f1, . . . , fk : Fn2 → {0, 1}, the tester T repeats
the following process independently `(ε) times: select uniformly at random a rank-r linear transformation
L : Fr2 → Fn2 and check if f containsM at L. If so, T rejects and halts. If T does not reject after `(ε)
iterations, then T accepts. The query complexity of the canonical tester is therefore at most `(ε) · k.

Our main theorem in this section is the following.

Theorem 4.4. For a given rank-r matroidM = (v1, . . . , vk) with each vi ∈ Fr2, suppose there is a one-
sided tester forM∗-freeness with query complexity q(M, ε). Then the canonical tester forM∗-freeness has
query complexity at most O(k · q(M, ε)r).

Proof. Since the rank ofM is r, without loss of generality, we assume that v1, . . . , vr are the r basis vectors
e1, . . . , er. Thus, any linear transformation L : Fr2 → Fn2 is uniquely determined by L(v1), . . . , L(vr).

Suppose we have a one-sided, possibly adaptive, tester T forM-freeness with query complexity q(M, ε).
We say T operates in steps, where at each step i ∈ [q(M, ε)], T selects an element yi from Fn2 (based on

12It seems possible that for any two given tests for M-freeness and M∗-freeness, there is a function that is ε-far from both
properties but for which the two tests behave quite differently in terms of number of queries made when the function is presented
as input. However, the query complexities in our conjecture are measured as (non-increasing) functions of the distance parameter
ε, which are worst-case query complexities among all input functions that are ε-far from the corresponding properties.
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a distribution that depends arbitrarily on internal coin tosses and oracle answers in previous steps) and then
queries the oracle for the value of fj(yi), for some 1 ≤ j ≤ k.

We convert the tester T into another tester T ′ that operates as follows. Given oracle access to a function
tuple f1, . . . , fk : Fn2 → {0, 1}, T ′ first selects, uniformly at random, a non-singular linear map Π : Fn2 →
Fn2 , and then invokes the tester T , providing it with fj(Π(y)) whenever it queries for fj(y). For convenience
the linear map may be generated on-the-fly in the following sense. Suppose in the first i−1 queries, T queries
(y1, . . . , yi−1) and T ′ queries (x1, . . . , xi−1). Now if T chooses a new point yi to query, tester T ′ picks a Π
uniformly at random from all non-singular maps that are consistent with all the points queried previously,
that is, maps satisfying Π(y1) = x1, . . . ,Π(yi−1) = xi−1, and feeds the query result at Π(yi) to the original
tester T .

Claim 4.5. T ′ is also a tester of (f1, . . . , fk) forM∗-freeness with the same query complexity as T .

Proof. If (f1, . . . , fk) isM∗-free, then (f1 ◦Π, . . . , fk ◦Π) is alsoM∗-free becauseM∗-freeness is closed
under composition with non-singular linear transformations. Therefore T accepts (f1 ◦Π, . . . , fk ◦Π) with
probability 1 and so does T ′ to (f1, . . . , fk).

On the other hand, if (f1, . . . , fk) is ε-far fromM∗-free, then (f1 ◦ Π, . . . , fk ◦ Π) is also ε-far from
M∗-free since Π preserves the distance between (f1, . . . , fk) andM∗-free functions. To see this, suppose
dist((f1◦Π, . . . , fk ◦Π),M∗-free) = ε′ and moreover, some (g1, . . . , gk) ∈M∗-free achieves this distance
from (f1 ◦Π, . . . , fk ◦Π). Since Π is invertible and hence a permutation of the elements in Fn2 , we have

dist((f1, . . . , fk),M∗-free) ≤ dist((f1, . . . , fk), (g1 ◦Π−1, . . . , gk ◦Π−1))

= dist ((f1 ◦Π, . . . , fk ◦Π), (g1, . . . , gk))

= dist((f1 ◦Π, . . . , fk ◦Π),M∗-free),

because if (g1, . . . , gk) is inM∗-free, so is (g1 ◦ Π−1, . . . , gk ◦ Π−1). By the same argument, dist((f1 ◦
Π, . . . , fk◦Π),M∗-free) ≤ dist((f1, . . . , fk),M∗-free) and consequently dist((f1◦Π, . . . , fk◦Π),M∗-free) =
dist((f1, . . . , fk),M∗-free). Finally we have, since (f1 ◦ Π, . . . , fk ◦ Π) is ε-far fromM∗-free, T rejects
(f1 ◦Π, . . . , fk ◦Π) with probability at least 2/3 and so does T ′ to (f1, . . . , fk).

For convenience, let us fix the following notation. At a step i ∈ [q(M, ε)], the element whose value
is requested by T is denoted yi, and the element of Fn2 queried by T ′ (and whose value is supplied to T )
is denoted xi. Both xi and yi are of course random variables, and also xi = Π(yi). We now make the
simple observation that at each step, no matter how cleverly T selects the yi’s, each xi is either uniformly
distributed outside or lies inside the span of elements selected at previous steps. More precisely:

Lemma 4.6. Fix an integer i ∈ [q(M, ε)]. Let y1, . . . , yi be the elements in Fn2 requested by T in the
first i stages, and elements x1, . . . , xi−1 be the points queried by T ′ in the first i − 1 steps. Then, xi, the
element queried by T ′ at the ith step is either an element in span(x1, . . . , xi−1) or is uniformly distributed
in Fn2 − span(x1, . . . , xi−1).

Proof. Recall that we may pick the random non-singular linear transformation in an on-the-fly fashion: after
T queries yi, Π is chosen uniformly among all non-singular linear transformations that satisfy Π(y1) =
x1, . . . ,Π(yi−1) = xi−1. If yi ∈ span(y1, . . . , yi−1), then clearly xi ∈ span(x1, . . . , xi−1). Otherwise, Π
maps yi to a uniformly chosen element xi ∈ Fn2 − span(x1, . . . , xi−1).

Due to Lemma 4.6, we may divide the queries of T into two types: staying query if the newly queried
point is in the span of the previously queried points, and expanding query if the newly queried point is a
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random point outside the span of previously queried points. Let the number of expanding queries of T ′ be
t, t ≤ q(M, ε). Note that t is a random variable depending on T ’s queries. Let the subspace spanned by
(x1, . . . , xq(M,ε)) be VT ′ , then clearly dim(VT ′) = t and the expanding query points generate VT ′ (i.e., the
set of expanding queries (xi1 , . . . , xit) form a basis for VT ′). Therefore, as a corollary to Lemma 4.6, we
have the following property of VT ′ .

Corollary 4.7. The subspace VT ′ spanned by the query points of tester T ′ is a random subspace of dimension
t in Fn2 .

The next Lemma shows, when we look at any fixed linearly independent r-tuple inspected by T , the
corresponding r-tuple queried by T ′ after a random non-singular transformation of the space Fn2 , distributes
uniformly over all linearly independent r-tuples.

Lemma 4.8. Let VT ′ be a random subspace in Fn2 of dimension t < n generated by picking uniformly
at random a set of t linearly independent vectors (b1, . . . , bt)

13 in Fn2 as basis. Let x = (x1, . . . , xr) be
any fixed linearly independent r-tuple, r ≤ t, given by a set of linear combinations of the basis vectors
(b1, . . . , bt). Then x is uniformly distributed over all linearly independent r-tuples in (Fn2 )r.

Proof. Let ~b and ~x be the column vectors representing (b1, . . . , bt) and (x1, . . . , xr), respectively. Let
A ∈ Fr×t2 be the matrix representation of the linear combinations of (x1, . . . , xr) in terms of (b1, . . . , bt),
that is, ~x = A~b. Since (x1, . . . , xr) are linearly independent, it follows that rank(A) = r. Therefore
we can append t − r linearly independent rows to the bottom of A and form an invertible t-by-t matrix
A′. Now we employ an SVD-like (singular-value decomposition) decomposition and write matrix A as
A = IrΣA

′, where Σ ∈ Fr×t2 consists of r 1’s in the diagonals and 0’s otherwise. Since (b1, . . . , bt) is

distributed uniformly over all t linearly independent vectors and A′ is invertible, ~b′def
=A′~b is also a set of t

random linearly independent vectors. Therefore, the first r vectors in~b′,

~b′[r]
def
= ΣA′~b = Σ~b′ =

b
′
1
...
b′r

 ,
is a random linearly independent r-tuple. Finally because Ir is the identity map, ~x = Ir~b

′
[r] is a random

linearly independent r-tuple.

By Lemma 4.2, T ′ rejects if and only if it detects a violating full-rank linear transformation. No-
tice that each full-rank linear transformation L : Fr2 → Fn2 corresponds to a linearly independent r-tuple
(z1, . . . , zr) ∈ (Fn2 )r, where the corresponding linear transformation is given by Lz1,...,zr(u1, . . . , ur) =∑r

i=1 uizi. Thus, T ′ rejects if and only if it finds a linearly independent r-tuple (z1, . . . , zr) such that the
corresponding linear transformation is violating. Furthermore, because v1 = e1, . . . , vr = er, the elements
z1, . . . , zr must lie in the set of queries made by T ′. Let δ be the fraction of violating linearly independent
r-tuples z = (z1, . . . , zr) ∈ (Fn2 )r.

Lemma 4.9. The probability that T ′ rejects (f1, . . . , fk) after q(M, ε) queries is at most δq(M, ε)r.

Proof. Let x1, . . . , xq(M,ε) be the queries made by T ′. Note that these vectors are random variables. For
each S ⊆ [q(M, ε)] with |S| = r, let AS be the event that all the vectors in the r-tuple (xi : i ∈ S) are

13One may think of the basis of VT ′ as the set of expanding query points (xi1 , . . . , xit) of tester T ′.
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linearly independent and they form a violating tuple. By our definition of δ, for every S, Pr[AS ] ≤ r! · δ.
Since the total number of such r-subsets is

(
q(M,ε)

r

)
, by the union bound,

Pr[T ′ rejects after q(M, ε) queries]

=Pr[There exists an S ⊂ [q(M, ε)] such that AS happens]

≤
(
q(M, ε)

r

)
· r! · δ < δ · q(M, ε)r.

By Lemma 4.9, in order for T ′ to reject with probability at least 2/3, the query complexity of T ′ is at
least q(M, ε) ≥ ( 2

3δ )1/r. Now consider the canonical tester T ′′ that runs in ` independent stages which, at
each stage, selects uniformly at random a linearly independent r-tuple (z1, . . . , zr) and checks for violation
of M∗-freeness. How many queries does T ′′ need to make to achieve the same rejection probability on
(f1, . . . , fk) as T ′ does after q(M, ε) queries? Clearly the probability that T ′′ rejects (f1, . . . , fk) after `
stages is 1− (1− δ)` ≥ 2/3, for all ` ≥ `0 = 2

δ = O(q(M, ε)r). Since T ′′ makes k queries in each stage,
the total number of queries T ′′ makes is at most k`0 = O(k · q(M, ε)r).

Combining Theorem 3.15 and Theorem 4.4, and using that for the triangle-free property k = 3 and it
corresponds to the matroidM = (e1, e2, e1 + e2) with rank r = 2, we finally have the following query
lower bound on all one-sided testers for triangle-freeness:

Theorem 4.10. For all small enough ε there is an integer n0(ε) such that the following holds. For every
integer n ≥ n0, there is a Boolean function f : Fn2 → {0, 1} such that f depends on all n input variables,
f is ε-far from being triangle-free, and testing triangle-freeness of f requires any one-sided tester to query
the function Ω

(
(1
ε )

2.423···) times.

5 Concluding Remarks and Open Problems

We have given polynomial lower bounds on the query complexity of one-sided testers for triangle-freeness.
We strongly believe that there exist a super-polynomial lower bound. One possible approach is try to prove
Conjecture 3.5. It seems that one of the main difficulties in understanding triangle-freeness lower bound is
that there is no good characterization of the distance between a Boolean function and the set of triangle-
free functions (as opposed to the linearity case, where the distance is exactly characterized by the Fourier
coefficients of the function). It is also interesting to study the query complexities of (cycle) Cr-freeness for
r ≥ 5.

Another interesting problem is whether the tower of 2’s type query upper bound of testing triangle-
freeness [23, 19] can be improved. Is it possible that some two-sided testers can achieve much better upper
bounds?
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A Proof of Theorem 3.8

We will need the following well-known theorem of Carathéodory in convex geometry (see, e.g., [24]).

Theorem A.1 (Carathéodory’s Theorem). Suppose V is a subset of Rn that contains a point X ∈ Rn in its
convex hull. Then there exists a set V ′ ⊆ V such that |V ′| ≤ n+ 1 and X is contained in the convex hull of
V ′. An implication is that if V contains ~0 in its convex hull and there is no strict subset V ′ containing ~0 in
its convex hull, then rank(V ) = |V | − 1.

Proof of Theorem 3.8. If there exists a non-zero vector ~Z ∈ Nt such that M~Z = ~0, the vector ~z =
~Z
‖~Z‖1

also satisfies M~z = ~0. But then, ~0 ∈ Conv(M1, . . . ,Mt) because
∑

i ziMi = ~0 and each zi ≥ 0 with∑
i zi = 1.
In the other direction, suppose ~0 ∈ Conv(M1, . . . ,Mt). Let {Mi1 , . . . ,Mik} be a minimal subset of

{M1, . . . ,Mt} which contains ~0 in its convex hull. Carathéodory’s theorem (Theorem A.1) implies that the
rank of {Mi1 , . . . ,Mik} is k − 1 ≤ s. Let M′ be the s-by-k matrix with columns {Mi1 , . . . ,Mik}. Then
there exists a unimodular (that is, the determinant of the matrix is either 1 or −1) s-by-s matrix U such that

UM′ =


N
0
...
0

 ,
where N is a (k−1)-by-k integer matrix of rank (k−1) in row-echelon form14. It follows that the nullspace
of N is spanned by a single non-zero vector in Rk. Since ~0 is in the convex hull of {Mi1 , . . . ,Mik},
there exists a non-zero vector ~X ∈ (R≥0)k such that N ~X = ~0. It follows that all the vectors in the
nullspace of N have the same sign at each coordinate. But the vector consists of the cofactors of N, namely,
~Y = (

∣∣N2 · · ·Nk

∣∣ , . . . , (−1)k−1
∣∣N1 · · ·Nk−1

∣∣) is a solution to N ~X = ~0. Furthermore, all the entries in ~Y
are non-zero since the rank of N is k − 1. Hence either ~Y or −~Y is a positive integer solution to N ~X = ~0,
and because U is invertible, the same positive integer vector satisfies M′ ~X = ~0. Appending 0 entries to ~X
at all the remaining (t− k) coordinates gives a non-negative integer solution to M~Z = ~0.

14See, for example, Theorem 2.4.3 in [15].
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