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ABSTRACT

Buffered crossbar switches are a special type of crosshitst®s.

In such a switch, besides normal input queues and outputegueu
a small buffer is associated with each crosspoint. Due tinthe-
duction of crosspoint buffers, output and input contentgalimi-
nated, and the scheduling process for buffered crosshéstmasiis
greatly simplified. Moreover, crosspoint buffers enable skvitch

to work in an asynchronous mode and easily schedule and- trans
mit variable length packets. Compared with fixed length pack
scheduling or cell scheduling, variable length packet datieg,

or packet scheduling for short, has some unique advanthggeer
throughput, shorter packet latency and lower hardware. ctist
this paper, we present a fast and practical scheduling setiem
buffered crossbar switches called Localized Asynchroriarsket
Scheduling (LAPS). With LAPS, an input port or output portkes.
scheduling decisions solely based on the state informatfats
local crosspoint buffers, i.e., the crosspoint buffers nehtbe in-
put port sends packets to or the output port retrieves padian.
The localization property makes LAPS suitable for a distteiol
implementation and thus highly scalable. Since no comparip-
eration is required in LAPS, scheduling arbiters can beiefitty
implemented using priority encoders, which can make aatiin
decisions quickly in hardware. Another advantage of LAP®Bds
each crosspoint needs only(the maximum packet length) buffer
space, which minimizes the hardware cost of the switchesal¥ée
theoretically analyze the performance of LAPS, and in paldr
we prove that LAPS achieves 100% throughput for any adméssib
traffic with speedup of two. Finally, simulations are conigacto
verify the analytical results and measure the performahc@BS.

Categories and Subject Descriptors

C.2.1 Network Architectureand Design]:
Packet-switching networks

*This research was supported in part by the U.S. National Sci-

Yuanyuan Yang
Dept. of Electrical & Computer Engineering
State University of New York
Stony Brook, NY 11794, USA

yang@ece.sunysb.edu

General Terms
Algorithms, Design.

Keywords

Buffered crossbar switches, packet scheduling, 100% tfimouwt,
priority encoders.

1. INTRODUCTION

Crossbar switches provide non-blocking capability andawee
the bandwidth limitation of bus based switches. They hawg lo
been the preferred structures for high speed switches andrso
With the ever increasing demand for more bandwidth and highe
throughput, it has become a more and more challenging tad#-to
sign high performance crossbar switches and efficient stimgd
algorithms.

For crossbar switches, packets can be buffered at eithpuut
ports, input ports, or crosspoints of the crossbar. Outpeuqd
(OQ) switches only have buffer space at the output side, andm:
coming packets must be immediately transferred througbrthes-
bar and stored in the output queues. OQ switches achieve 100%
throughput, and can provide different levels of perforneaguoar-
antees by running various fair scheduling algorithms, ssWFQ
[1], DRR[2], and FMCF [3], at each output port. However, ider
foran N x N switch to achieve 100% throughput, speedupVof
is required. In other words, the crossbar must havémes band-
width as that of an input port or output port. Thus, OQ switche
are difficult to scale. On the contrary, input queued (IQ)tshés
only have buffer space at the input side, and need no speédup.
order to make fast scheduling decisions, iterative maximetich-
ing algorithms, such as PIM [4], iSLIP [5], and DRRM [6], were
proposed for 1Q switches, which can quickly converge on aimax
mal matching in multiple iterations. 1Q switches are popuolathe
market due to their economical hardware architectures ffictbat
scheduling algorithms. Unfortunately, until now 1Q swigshare
found to be able to achieve 100% throughput only when work wit
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[7], which have high time complexity [27] [28] and are notddde
for high speed scheduling. In order to combine the advastafie
both OQ switches and 1Q switches, combined input-outputigde
(ClOQ) switches make a tradeoff between the crossbhar speedu
and the complexity of the scheduling algorithms. They ugual
have fixed small speedup of two, and thus need buffer space at
both the input side and output side. It has been shown thaQCIO
switches with speedup of two can achieve 100% throughput wit
any maximal scheduling algorithms [8] [9], and can also extaul
OQ switches with more complex algorithms [15] [16].

For buffering at the input side of a switch, usually the \aitu



output queued (VOQ) buffering technique [7] is used, sihestta-
ditional single FIFO queue suffers from the head of line (HOL
blocking, i.e., even though the destination output porthefpack-

Especially when the load is light, packets have short quiguee-
lay, and the time for segmentation and reassembly can haglly
overlapped with other waiting time. Therefore, packet dciiag

ets behind the HOL packet may be free, these packets cannot beeduces the latency that a packet experiences in the swlitdhd,

scheduled to transmit because the HOL packet is blockedadt w
proved in [10] that the HOL blocking limits the maximum thogiu
put of the switch to about 58.6%. On the contrary, VOQ buffgri
maintains a logically separate queue or virtual queue foh eait-
put port at every input port, so that a packet will no longehbk
up by another packet ahead of it that goes to a different opig.

With the development of modern VLSI technology, it has been
feasible to integrate on-chip memory to the crossbar switcfab-
ric. Buffered crosshar switches, or combined input-crosgpoutput
queued (CICOQ) switches [17] [18] [25], are a special type of
CIOQ switches, where each crosspoint of the crossbar ippgdi
with a small buffer. Due to the introduction of crosspoinffets,
the scheduling process is greatly simplified. First, outpon-
tention is eliminated. Assume that multiple input portsénpack-
ets destined to the same output port. In a traditional uebedf
crossbar switch, since packets are directly sent from ipptts to
output ports, the transmission has to be carefully schedidehat
no two input ports will simultaneously send packets to thmesa
output port. On the other hand, in a buffered crossbar swilese
packets can be first sent to the crosspoint buffers, and treeout-
put port can retrieve the packets from the crosspoint taiffere
by one. Furthermore, since output contention has beenrelbenil,
different input ports no longer need to cooperate with edblerp
and their scheduling can be conducted independently. Asudtye
the complexity of the scheduling algorithm is greatly reetiic

Previous research on scheduling algorithms for crosshitctses
mainly focused on fixed length packet scheduling or cell dalieg
[11]. Without crosspoint buffers, packets have to be diyes¢nt
from input ports to output ports. In order to maximize thrbpgt
and make fast scheduling decisions, all the scheduling ramds-t
mission units must have the same length, and all the inpus por
and output ports have to work in a synchronized mode, iléngait
ports send cells at the same time, and all output ports receils
at the same time. When variable length packets arrive, thest m
be segmented into fixed length cells at input ports. The eals
then used as the scheduling units and transmitted to outptg, p
where they are reassembled into original packets and seheto
output lines. In contrast, buffered crossbhar switches heneved
the necessity of synchronization due to crosspoint buff@isey
can work in an asynchronous mode, and directly handle Jariab
length packets. In other words, each input port or output per
riodically chooses a packet with an arbitrary length to sendr
receive from the crosspoint buffer, and does not need to fwait
other input ports or output ports.

Compared with cell scheduling, variable length packet dahe
ing, or packet scheduling for short, has some unique adgesta
First, packet scheduling can better utilize available badth and
achieve higher throughput. For cell scheduling, when a @ik
segmented into cells, its length may not be a multiple of tlé c
length, and the last segment has to be padded with emptyabits t
reach the cell length. The padding bits do not contain usefai-
mation, and waste transmission capacity of the switch. émtbrst
case, if all packets happen to have a slightly longer lerfugh the
cell length, each packet has to be segmented into two catishe
switch can only achieve about a half of the maximum throughpu
Second, since there is no segmentation and reassembly ketpac
scheduling, newly arrived packets at input ports can be idiately
transferred through the crossbar, and similarly, trartschipack-
ets at the output ports can be immediately sent to the ouitpes.|

no extra buffer space is needed at the input or output sidego s
ment and reassemble the packets, which lowers hardwareFgeost
nally, cell scheduling can be regarded as a special casec&épa
scheduling, or in other words, packet scheduling can alsalba
fixed length cells.

Two packet scheduling algorithms for asynchronous bufferess-
bar switches, Packet GVOQ (PGV) and Packet LOOFA (PLF),
were proposed in [12], and their performance guarantees arer
alyzed. It was proved that, with speedup of two &idor more
buffer space at each crosspoint, whérés the maximum packet
length, PGV and PLF can provide work-conserving guarantees
emulate push-in-first-out (PIFO) scheduling algorithm<3d@ switches.
In order to be work-conserving, the algorithms proposedli?f [
usually impose an order on buffered packets, and make slihgdu
decisions by sorting the packets. With slightly more buéfeace at
each crosspoint, they can emulate any PIFO fair schedulgw a
rithm for OQ switches by ordering the packets based on thardep
ture sequence of the packets in the reference algorithmtharsd
provide bandwidth and delay guarantees. Scheduling dhgosi
delivering strong performance guarantees are certainppitant,
especially considering that nowadays many broadband baskd
timedia applications have quality of service (QoS) requiats.
On the other hand, it is also worth studying scheduling atlgars
that are simple and easy to implement.

The objective of this paper is to design packet schedulirg al
gorithms for buffered crossbhar switches with low time coexgly
and easy hardware implementation. We present a packetudioited
scheme called Localized Asynchronous Packet SchedulihB §).
LAPS conducts scheduling in an asynchronous and distdbutale.
An input port or output port make scheduling decisions ydleked
on the state information of its local crosspoint buffers,,ithe
crosspoint buffers where the input port sends packets tocootit-
put port retrieves packets from. Since no comparison ojperé
required, scheduling arbiters can be efficiently impleraénising
priority encoders, which can make decisions quickly in inzmnek.
LAPS requires onlyL buffer space at each crosspoint. Consider-
ing that on-chip buffers are expensive resources, LAP Smingis
the hardware cost of switches. We also theoretically aeatiie
performance of LAPS, and in particular prove that LAPS adtse
100% throughput for any admissible traffic with speedup af.tw
Finally, simulations are conducted to verify the analyitiesults
and to measure the performance of LAPS.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the scheduling algorithms proposethé
literature for buffered crossbar switches. In Section 3 prnesent
the LAPS scheduling scheme, analyze its performance andsdis
its hardware implementation. In Section 4, we conduct satiohs
to verify the analytical results obtained in Section 3, agst the
performance of LAPS. In Section 5, we conclude the paper.

2. RELATED WORK

Scheduling algorithms for buffered crossbar switches areg
ally designed with two possible objectives: to achieve higbugh-
put or to emulate scheduling algorithms for OQ switches. The
latter is a stronger requirement than the former, i.e., gorghm
that emulates an OQ switch based algorithm usually deli/@@86
throughput, but the reverse is not always true. On the othed hif
100% throughput is the only objective, an algorithm can beptér
or have less time complexity.



A buffered crossbar switch architecture called CIXB-1 wes p Crossbar switching fabiic
posed in [18], where each crosspoint has a one-cell buffiBC _>:|:|:|:D_>0utl
1 offers several advantages for feasible implementatiah a5 B B,
scalability and timing relaxation. It is shown that, in camgtion ! !
with round robin arbitration, CIXB-1 can provide 100% thgbu .
put under uniform traffic. CIXOB-k [19] is the extended versiof
CIXB-1 with a k-cell buffer at each crosspoint and small speedup
for the crossbar. CIXOB-k is shown to be able to achieve 100%
throughput under uniform traffic as well as non-uniform ficaf
A cell scheduling scheme for buffered crossbar switchekedal
Most Critical Buffer First (MCBF) was proposed in [20]. Ito
ducts scheduling based on the crosspoint buffer informatial has
low hardware complexity. MCBF exhibits good performanced an
shows optimal stability in simulations. Shortest Crosep8iuffer
First (SCBF) [21] is another cell scheduling scheme, whiotddia
matching with minimum weight in each time slot. It is provéat
SCBF achieves 100% throughput for any admissible traffibouit

speedup requirement. In order to facilitate hardware impleta- In Iny
tion, a maximal solution of SCBF was also proposed in [21]icivh
achieves lonO(log N) time complexity and is shown to have al- Figure 1: Thestructure of buffered crossbar switches.

most identical performance. The algorithms discusseddratove
are cell scheduling algorithms targeting high throughput.

The emulation of OQ switches by buffered crossbar switctees w . . . .
studied in [24]. It is proved that a buffered crossbar switdth can emulate a PIFO scheduling algorithm for OQ switches with

speedup of two satisfying non-negative slackness (NN®Yiios §L crossppint buffer space. .The Packet LOQFA scheduling algo-
and lowest time to live (LTTL) blocking, and LTTL fabric scthel- rithm provides work-conserving guarantees WidiL,/3 crosspoint

ing can exactly emulate an OQ switch with PIFO scheduling-pol Puffer space, and can emulate a PIFO scheduling algorith@@
cies. In particular, it is shown that the GBVQQCF schedul- sv_wtc_hes with22L/3 crosspomt_ buffer space. [1.7] proposec_i the
ing algorithm can exactly emulate an FIFO OQ switch, and the Distributed Packet Fair Queueing (DPFQ) architecture foysp

GBFG.SP scheduling algorithm can exactly emulate a strict prior- C2lly dispersed line cards to emulate an OQ switch with fagug-

ity OQ switch. In [22], the MCAF-LTF cell scheduling scheme ing, and _the simul_ation results demonstr_ate that the iagusys-
for one-cell buffered crossbar switches was proposed. MCRF tem provides service that closely approximates an outpifierea

does not require costly time stamping mechanism, and iy~ SWitch employing fair queueing with modest speedup. The@bo

be able to emulate an OQ switch with speedup of two. [23] stidi §chemes use variable length packets as the scheduling &ctd-sw
practical scheduling algorithms for buffered crossbartcivs. It ing untts.

is shown that with speedup of two, a buffered crossbar svatch

mimic the restricted PIFO-OQ switch (a PIFO-OQ switch whb t 3. LOCALIZED ASYNCHRONOUSPACKET
restriction that the cells of an input-output pair depag #witch SCHEDULING

in the same order as they arrive), regardless of the incotrifiic
pattern, and that with speedup of three, a buffered crosshiéch
can mimic an arbitrary PIFO-OQ switch and hence provideydela
guarantees. It is also shown that buffered crossbhar sweitche
achieve 100% throughput with speedup of two for any Bermoull
i.i.d. admissible traffic. The above algorithms consideoatell
scheduling, but are designed to emulate scheduling atgositfor
OQ switches.

A buffered crossbar switch architecture supporting pas&eedul-
ing was proposed in [25]. The chip layout was presented aad th
hardware cost was analyzed. The simulation results denadast ; .
that the proposed architecture outperforms unbufferesstear switches?olg?égr;euejd easr.l gg:peL;(ta?T?S er,ni?)l; :: (\j/vevigtr? 'ir;gtlg S: ?Z;;ﬁ;l):;itt:éj Itip

A segmentation and reassembly (SAR) scheme was proposed in : :
[26]. It uses variable size segments while merging multpaek- among input ports, packets in output ports should be bufferea

ets into each segment. The proposed scheme eliminatesngaddi per input port basis, and if different flows require differpacket

. ° delay guarantees, an output port needs to set up as manyscpeue
pverhead, reduces hgader overhead and crosspoint butiersid the number of flows. Different input ports and output portgkvo
is suitable for use with external, modern DRAM buffer memory

in ingress line cards. The simulation results show that ipeu independently and asynchronously. After a packet arrivabe

forms existing segmentation schemes in buffered as wellnas u switch, itis first stored in the input queue. The packet i f@m
g segme the input queue to the crosspoint buffer, and then from tbeser
buffered crossbar switches. The performance guarantgesc&ét X . X
. : i point buffer to the output queue and finally delivered to thgpat
scheduling for asynchronous buffer crossbar switches wire line
fnugsizﬂ Isrc]:r%(zj]dlagdaflggr%grﬁ!trm: ;ﬁg:ﬁgiﬂﬁ;;ﬂ:\:&?dwﬁem Based on the locations of the packets to be scheduled, there
speedup of two, the Packet GVOQ scheduling algorithm pesvid are three types of scheduling involved in such a bufferedssro

h . . bar switch, which we call input scheduling, crossbar schiegu
work-conserving guarantees wiftl, crosspoint buffer space and . . - o
and output scheduling, respectively. In input schedulargjnput

In this section, we present our new Localized Asynchronous
Packet Scheduling (LAPS) scheme, analyze its performaarue,
discuss its hardware implementation.

The switch structure that we consider is illustrated in Fégli V
input ports andV output ports are connected by a crossbar switch-
ing fabric, which has speedup of two. We denote the bandwidth
of an input port or output port by, and the crossbar has band-
width 2R. An input port hasV virtual queues to store the packets
destined to different output ports. Each crosspoint haxelugve
buffer of sizeL. Depending on the granularity level of performance



port selects one of the virtual queues, and sends its he&etpac
the crosspoint buffer. In crossbar scheduling, an outpritgsdects
one of the crosspoint buffers, and retrieves the bufferettqiato
the output queue. In output scheduling, an output port tekec
buffered packet from the output queue, and sends the packes t
output line.

Over the last decade, output scheduling has been well studie
and a lot of output scheduling algorithms have been propcssxth
as WFQ [1] and DRR [2]. By using different approaches, the-alg
rithms provide different performance guarantees and hidfezeht
time complexity. It is reported in [13] that a fundamentalde-
off exists between the performance guarantees that anithigor
can provide and its time complexity. It should be noted thdpot
scheduling algorithms usually do not affect the throughymrfor-
mance as long as they are work-conserving. In other words) if
output scheduling algorithm sends packets to the outpetdinen-
ever there is a packet in the output queue, 100% throughput ca
be achieved given that the input scheduling algorithm andstyar
scheduling algorithm deliver packets to the output quetieria. In
the rest of the paper, we will mainly consider input schedybnd
crosshar scheduling, and adopt a simple FIFO algorithmdtaud
scheduling, which is work-conserving.

3.1 Algorithm Description

Input scheduling and crossbar scheduling of LAPS are cdaeduc
in an asynchronous and distributed manner, and they onjyorel
the state information of local crosspoint buffers. Locasspoint
buffers of an input port or output port are the crosspoinférsfthat
the input port sends packets to or the output port receivekepa
from.

In input scheduling, when the transmission channel of antinp
port to the crosspoint buffers is idle, the input port sed@rte of its
backlogged virtual queues whose corresponding crosspaifer
is empty, and sends the head packet to the crosspoint biffeen
there are multiple eligible virtual queues, different &dtion rules
can be used, such as fixed priority, random priority, or rouauin.
In particular, the round robin rule is able to avoid stawatby al-
ternatively giving each virtual queue the highest prioriye will
see later in this section that any work-conserving rule is &b
achieve 100% throughput. It should be noted that since theser
bar has speedup of two, the packet is transferred from theavir
queue to crosspoint buffer with bandwidth @R. After the last
bit of the packet is sent to the crosspoint buffer, the scliegiu
and transmission process is repeated again. Crossbansiciged
similar to input scheduling. When the transmission chaofi@n
output port for receiving packets from the crosspoint tugffe idle,
the output port selects a crosspoint buffered packet aresstain
its output queue. The transmission rate from the crossioiffier
to the output queue is alstR, and different arbitration rules can
be used as well.

Table 1: Localized Asynchronous Packet Scheduling

Input Scheduling:
each input port independently dogs
while true do{
select a backlogged virtual queue
whose crosspoint buffer is empty;
transfer the virtual queue head packet
to the crosspoint buffer;
if the channel to the output port is idle
transfer the packet to the output quel
}

}
}

Crossbar Scheduling:
each output port independently doges
while true do{
select a crosspoint buffered packet;
transfer the packet to the output queue;
if the channel to the output line is idle
transfer the packet to the output line;

}

}

2R, and the bandwidth from the output queue to the output line
is R, a packet can be safely delivered to the output line without
being blocked in the middle. However, it should be noted, thet
cause the bandwidth from the input line to the virtual quesds,
cut-throughput switching cannot be used at the input parather
words, only after all the bits of a new incoming packet haverbe
saved in the virtual queue, the packet can begin to be seheto t
crosspoint buffer.

For easy understanding, the pseudo code description fanthe
put scheduling and crossbar scheduling of LAPS is preseanted
Table 1. Note that, in input scheduling, the scheduling hatds
of an input port are only the virtual queues whose crossiuifiiers
are empty. This restriction seems to be unnecessary, leeaus
crosspoint buffer may be able to contain more than one psicket
with shorter length. However, instead of calculating theaaing
free space of the buffer, testing only whether it is empty or o
cupied greatly simplifies the operation. In this way, onle dait
of information needs to be tested for each crosspoint bufter
ing input scheduling, and the testing of all the crosspoitfitess of
the same input port can be conducted in parallel to minintize t
time cost. As a consequence, the round-trip-time (RTT) tiree

In order to reduce the packet latency and increase the switchtween input scheduling and crossbar scheduling of LAPS ean b

throughput, we use cut-through switching in the crosshbaather
words, when a packet is being sent from the virtual queuedo th
crosspoint buffer, if the transmission channel to its otifpudle,
the packet can be directly sent to the output queue withoitt wa
ing for the whole packet to be buffered at the crosspointdpuff
Similarly, if the output port has cut-through switching eapity, a
packet can also be immediately sent to the output line as ason
its first bit arrives at the output queue. Thus, with the tmbtigh
technique, it is possible that a packet is directly sent ftheninput
queue to the output line without being fully buffered anywehen
the way. Since the bandwidth from the input queue to the eross
point buffer and from the crosspoint buffer to the outputupiés

neglected. Similarly, in crossbar scheduling, an output poly
needs to test whether a crosspoint buffer is occupied oryechy
to the cut-through switching capability of the crosshar.

3.2 Performance Analysis

In this subsection, we analyze the performance of LAPSt,Firs
we use the fluid theory in [8] to prove that LAPS is able to aghie
100% throughput for any admissible traffic with speedup «f, tre-
gardless of the arbitration rules used by input schedulivtjcaoss-
bar scheduling.

Before starting the analysis, we define some notations arid va
ables. In; denotes the'™ input port, andOut; denotes the'”



output port. Q;; denotes the virtual queue df; to buffer the
packets destined t@ut;, and B;; denotes the crosspoint buffer
connecting/n; andOwut;. The following variables are used to rep-
resent the status of the switch. Their initial values (aetiipare
conventionally assumed to be zero.

Qi;(t): the number of bits buffered i@;; at timet

B;;(t): the number of bits buffered if;; at timet
A;;(t): the number of bits arrived &;; up to timet
D;;(t): the number of bits left frond);; up to timet
E;;(t): the number of bits left fronB;; up to timet
A;;(t) satisfies a strong law of large numbers (SLLN), i.e.,
lim M = Aij
t—oo t

where);; is called the arrival rate af;;.
A traffic is said to be admissible if it has no oversubscripti
any input port or output port, i.e.,

Vi, Ak <R
k

Vi, > Ak <R
k
Following the definition in [8], we say that a scheduling stlee

achieves 100% throughput if the following equation holdsaoy
admissible traffic.

i, v, lim 22 ®) _ 5,

limy_ o 2 Eii ()
to the;*" output port.im;_. o w = Y. \;; means that all

J
traffic to the;*" output port is delivered to the output queue. Thus,
100% throughput can be achieved, as long as the output dotgedu
algorithm is work-conserving. Intuitively, traffic arriset@;; and
leaves fromB;; with the same speed, and thus packets will not
infinitely accumulate at eithep;; or B;;.

A packet is saved to the virtual queue only after it has beby fu
received by the input port, and thus the valueAf(¢) changes
only at some specific time poin{go, t1,...,tn, ... }, Wheretqg =
0 andt,(n > 0) is the time that thex!" packet is saved into the
virtual queue. Fot, < ¢ < tny1, We haveAd;;(t) = Ai;(tn).
Similar as in [8],4:;(t) is right continuous and have left limits in
[0, 00).

In reality, D;;(t) and E;;(¢t) are discrete functions, because a
packet is removed from the buffer only after the whole patiest
been fully transmitted. In order to mak®;;(t) and E;;(t) con-
tinuous as in [8], in the following analysis, we assume thhit &
immediately released from the buffer after it has been tréied.

In other words, suppose that (so = 0) andr,, (ro = 0) are the
time that thex'” packet is removed fror@;; and B;; respectively.
Fors, < s < sn+1,

S — Sp
Dij(s) = Dij(sn) + ———— (Dij(sn+1)) — Dij(sn))
Sn+1 Sn
and forr, <7 < rp41,
T —1"Tn
Eij(r) = Eij(rn) + ————— (Eij(rn+1)) — Eij(2))
n+1 Tn

When/ (t) is differentiable at, usef (¢) to denote the derivative.
Notice thatD;; (¢) is equal to2R whenQ;; is sending a packet to
Bi;, and is zero otherwise. Similarlyy;;(t) is equal to2R when
B;; is sending a packet to the output queue, and is zero otherwise

Regarding the relationship of the defined variables, we tase
following fluid equations. It should be noted that, becadsg(t)
satisfies a SLLN, we can use;t to approximateA;; (¢) whent is
sufficiently large.

Qij(t) = Aijt — Di;(t)
Bij(t) = Di;(t) — Eu;(t)
Qij (t) + Bij(t) = Xijt — Eu;(t)
In order to prove 100% throughput of LAPS, we need the fol-
lowing lemma from [8].

LEMMA 1. Letf : [0,00) — [0, 00) be an absolutely continu-

ous function withy (0) = 0. Assume thaf (¢) < 0 for almost every
t (wrt Lebesgue measure) such thfét) > 0 and f is differentiable
att. Then,f(t) = 0 for almost every.

The basic idea to prove 100% throughput of LAPS is to first
define the functiory(¢) in Lemma 1 as follows

V()= Qi(t) (Z Qik(t)) + ) Zi(t) (Z ij(t))
ij k ij k
whereZ;; (t) is the sum ofQ;; (¢) and B;; (¢), i.e.,
Zij(t) = Qij(t) + Bi;(t)
Then we prove thaV’ (¢) has a negative or zero derivative when it
is positive, and thus by Lemma Y;(¢) = 0 for almost everyt.

SinceZ;;(t) < V(t), we know thatZ;; (t) = 0 for almost every
as well, which means that the length of each virtual queukviays

7 is the average rate that packets are transmitted bounded, or in other words all incoming traffic is transnuitte the

output queue.
Next, we introduce some supporting lemmas.

LEMMA 2. If B;; is not empty at time, >, Zy;(t) has a neg-
ative derivative, i.e.,
Bij(t) >0= sz](t) <0
k

PROOF The intuitive explanation for this lemma is that,5f;
has buffered bitsput; must be receiving packets.

Since the crossbar scheduling of LAPS is work-conservirdy an
B;; > 0, Out; is either receiving bits fronB;; or another cross-
point buffer By;. Noticing that the bandwidth from the crosspoint
buffer to the output queue &R, we can obtairy", Ex;(t) = 2R.

According to the fluid equatiof;; (t) = \i;t — Fs;(t), we have

> Zis() =3 (s — B 1))
k k
= Z Akj — Z Ekj(t)
k k
<R-2R

<0

It should be noted that, due to the cut-through switchindp-tec
nique, even ifBy; has only received part of the packet but not the
complete packetB;; can start to send the packet to the output
queue ofOut;.

O

LEMMA 3. If Q;; isnotempty attime, >, Qi ()+X-, Zk;(t)
has a negative or zero derivative, i.e.,

Qis(1) > 0= Qu(t) + Y Zi;(t) <0
k k



PROOF The intuitive explanation for this lemma is that, when By Lemma 3, we know
Q.; has buffered bits, either a virtual queuelof; is sending pack-
ets to its crosspoint buffer, @ut,; is receiving packets from one - .
of the crosspoigt buffers. ! 9P 2 Z Qij(t) (Z Qi (t) + Z Zij (t)> <0
Based on the state @;;, we consider two possible cases. ” F F
Case 1. B;; is empty. Since the input scheduling of LAPS is and by Lemma 2,
work-conserving and);;(t) > 0, eitherQig is sending packets to
B;j, or another virtual queu@;;, of thei*" input port is sending B s
packets taB;. For either casey", Di, = 2R. 2 Z Bii(t) (Z ij(t)) =0
Case 2: B;; is occupied, including the case that, has a fully “ F
buffered packet, and the case ttiy}; is receiving a packet from Thus, we can obtain
Qi; and simultaneously sending the packet to the output queue of .

Out; and By;(t) = 0. Since the crossbar scheduling of LAPS is V() <0
work-conserving and the crossbar switching fabric usesroough By Lemma 1, we know thaV’(t) = 0 for almost everyt. Since
switching, eitherB;; or another crosspoint buffdBy; is sending Qii(t) < V(t), Qi;(t) = 0 for aimost everyt. Noticing that
packets taDut;. For either cas€y ., Fr; = 2R. B;;(t) < L, we can obtain

Note thatD;;(t) > 0 and E;;(t) > 0. Thus, for both of the - - - -
above cases, we can obtdi, D;x(t) + 3, E;(t) > 2R. Jim E%(t) = lim Au(®) = Ql;(t) = By(t)

According to the fluid equation®;; (t) = \i;t — Dy;(t) and e e
Zis(t) = Aijt — Biy(t), we have = tim A5y Q)+ Bt

Do Qi)+ 2 (1) =X =0
k k = Aij
= ()‘ik - Dik(t)) +> (/\kj — Bk (t)) The above equation holds for any admissible traffic. Thus, by
k

the definition, LAPS achieves 100% throughput]

k
Aik + Akj — Dir(t) — Eyj(t

Xk: Xk: ! Xk: © Xk: 0 We have studied the throughput of LAPS. Next we discuss the

R+ R—-2R delay and queue length properties.

0 Before a packet is sent to the output line, it may be buffeted a

the input queue, the crosspoint buffer, and the output quadeex-

n perience corresponding delay at each location. We definiaplg
queueing delay of a packet to be the interval from the timettie

throughI-aSt bit of the packet arrives at the virtual queue to the tinae the
last bit of the packet leaves the virtual queue. In a similay,we
can define the crosshar queueing delay and output queudeng de

PrROOF We define It should be noted that due to the cut-through switchingniple,

the last bit of a packet may leave the crosspoint buffer as asat

V(t) = ZQi;‘(t) (Z Qik(t)) + Z Zii (1) (Z ij(t)> arrives, which makes the crossbar queueing delay of theepaek
ij k ij k

INIA

THEOREM 1. With speedup of two, LAPS achieves 100%
put for any admissible traffic.

zero.

Since the traffic arrival rate at an input pdr}; Ay is less than or

=3 (Qi;()Qin(t) + Zi;(t) Zk; (t)) equal toR, and the bandwidth of the crossbarig, most packets
ijk are immediately transmitted through the crossbar after dineve,

but are buffered in output queues. This indicates shorttiapd
crosshar queueing delay and long output queueing delay.ofihe
servation is consistent with the simulation results otgdim Sec-

It it clear thatV (0) = 0. In addition,

V()= Z (Q” (O)Qik () + Qij () Qir(t) + tion 4. Assume that the traffic arrives according to a Poigson
igk cess and the packet length follows an exponential distabutith
Zii(8) Zns (1) + Zij(t)ij(t)) meanM. Then,In; can be approximately modeled as an M/M/1

system, and accordingly

= 23 (QuQuk(t) + Zis (1) 215 (1)) | |

ik Average input queueing delay W

. ) T 2. Ng

=2 Zk (Q” (B)Qr (1) + (Qis (1) + Bis (1)) Zks (t)> Applying Little’s Law, we can obtain

1k
=2 Qi) (Qik(t) + Z; (t)) +2Y " Bij(t) Zk;(t) Average input queue length MDA

ijk ijk 2R — Ez )‘ij
= 23" Qu®) [ 3 Gut) +ZZ'kj(t)> + 3.3 Hardware Implementation

> & & Practical scheduling algorithms are expected to be eftigien

implemented in hardware to make fast decisions for high dpee
szi (t) switching. In the following, we discuss the hardware imptem
% tation for LAPS.



One of the advantages of LAPS is that each input port or output
port makes scheduling decisions solely based on the statena-
tion of its local crosspoint buffers. Since no comparisorragion
is required, the scheduling arbiters can be efficiently engnted
using priority encoders [14]. The theoretical time comiexo
make an arbitration i© (log V). In practice, priority encoders per-
form all the operations in hardware, and technically achieon-
stant time complexity for a moderate switch size [29]. Dejieq
on the arbitration rules, different types of priority enecgimay be
used. For example, if arbitration candidates are assigiffsatent
priorities at different time, such as the situation in a muwabin
arbiter, a programmable priority encoder can be used toeémeht
the arbiter.

Moreover, LAPS allows the scheduling of different input tsor
and output ports to be conducted in an independent and asyris
mode. Since different arbiters do not need to exchange athgd
information, LAPS can be implemented in a distributed manne
which makes it highly scalable.

AL A2

q

Figure2: In aMarkov modulated Poisson process, theintensity
of the Poisson processdependson the state of theMarkov chain.

is no comparison operation involved, these algorithms eaaff)-
ciently implemented using priority encoders. In particuRR is
also able to avoid starvation in the scheduling, by givinghezan-
didate the chance to obtain the highest priority. On therdihed,
LQF and OPF need to compare either the packet arrival timieeor t

The cost of crosspoint buffers may seem to be a problem for the queue length when making arbitrations and require moreistph

implementation of buffered crossbar switches. Fortugateith
the recent development of VLSI technology, it has been léasi
to integrate small on-chip memory to the crossbar switclfétg
ric [25]. In addition, LAPS requires only. buffer space at each
crosspoint buffer, and minimizes the switch hardware dest.ex-
ample, if the switch sizéV is 32, and the maximum packet length
L is equal to 12K bits (1.5K bytes), the total size of all crasap
buffers is 1.5M bytes.

4. SIMULATION RESULTS

We have conducted simulations to verify the 100% throughput
of LAPS and to measure its delay and buffer performance.

For the input or crossbar scheduling of LAPS, when there are
more than one eligible virtual queues or crosspoint buffaiffer-
ent scheduling decisions can be made depending on the nules t
make the arbitration. In the simulations, we consider fifeedint
LAPS implementation versions with different arbitratiares: (1)

FP (fixed priority) assigns a fixed priority order to all thetual
gueues of the same input port or all the crosspoint buffethieo
same output port, and always picks the candidate with thie-hig
est priority. In our implementation, higher priorities assigned
to virtual queues to output ports with smaller indexes (&8,
has higher priority tham);;+1), or to crosspoint buffers from in-
put ports with smaller indexes (e.g3;; has higher priority than
B;t1;). (2) RD (random) does not favor any particular candidate,
but makes arbitration on a random basis. (3) RR (round rcigty
up a round robin pointer for the virtual queues of the sametinp
port or the crosspoint buffers to the same output port, aadtgr
to the first candidate that is equal to or larger than the rodiiin
pointer (in a modular manner). After making an arbitratitime
round robin pointer is updated to the next candidate of thre cu
rent assigned one (in a modular manner). (4) OPF (oldestepack
first) uses the packet arrival time as the arbitration dater In
input scheduling, the eligible virtual queue whose headkgaar-
rives earliest at the input port is selected. In crossbaedualng,
the eligible crosspoint buffer whose packet arrives esirig the
crosspoint is selected. (5) LQF (longest queue first) usegtleue
length as the arbitration criterion. In input or crossbdrestiling,
the eligible packet whose virtual queue or crosspoint biifés the
longest queue is selected.

FP, RD and RR rely only on the state information, i.e., fouinp
scheduling, whether a virtual queue has packets and itspoog
buffer is available, and for crossbar scheduling, whetheross-
point buffer has a buffered packet. As discussed earliecesihere

cated hardware support. Our purpose to include the twoittigaos
is that LQF and OPF demonstrate advantages in the schedating
VOQ switches [7], and we want to study whether they are also su
perior in the scheduling for buffered crossbar switches.

In order to reflect the burst nature of real network traffic,eme
ulate the incoming traffic by a Markov modulated Poisson gss¢
as illustrated in Fig. 2. The intensity of the Poisson predesie-
fined by the state of a Markov chain. The Markov chain has two
states: on and off. In the on state, the intensity of the Baigso-
cess is\1, and in the off state the intensity ds. The probability to
switch from the on state to the off statepisand the probability to
switch from the off state to the on stategisin the simulations, we
setp = ¢ = 0.2 and)\2 = 0, and change the value af to adjust
the load.

For the destination of the packets, we consider both unifoafa
fic and non-uniform traffic. For uniform traffic, the destiiet of a
new incoming packet is uniformly distributed among all theepmt
ports, i.e., \;; = IR/N, wherel is the effective load. For non-
uniform traffic, we use the same model as that in [18] and [20].
The traffic arrival rate);; is defined by:, j and an unbalanced

probability w as follows.
IR (w+154), ifi=j

{ZRlTw, ifi#j

The packet length in the simulation is uniformly distritaitee-
tween [50, 1500] bytes. We considerd @ x 16 switch, and each
input port or output port has bandwidth of 1G bps. All packets

an output port are buffered in the same queue, and FIFO isassed
the output scheduling policy for all the algorithms.

4.1 Throughput

In Section 3, we have theoretically proved that with speeafup
two LAPS achieves 100% throughput for any admissible traffic
Now we verify the analytical results by simulation.

Figure 3(a) depicts the relationship between the througbpu
different algorithms and the effective load under uniforaffic. As
can be seen, all algorithms have similar curves and achi@®&ol
throughput. Figure 3(b) shows the results under non-umifoaf-
fic. We fix the load of the switch to one, and adjust the unbaenc
probability. Again, all the five algorithms achieve 100%caihgh-
put. As we have seen, both the simulation data under unificaffict
and non-uniform traffic support the previous analyticalisswell.

It also can be noticed that, in terms of throughput perforceathe
five algorithms have no significant difference.

)\ij =
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Figure 3: Throughput of different algorithms.

In the rest simulations, we fix the unbalanced probabilityhef
non-uniform traffic to 0.5.

4.2 Average Delay

In this subsection, we study the delay performance of differ
algorithms. Two types of delay measures are consideredfirie
one is called transmission delay, which is the interval ftbmtime
that the last bit of a packet arrives at its input port to theetthat the
last bit of the packet is sent to the output line. Transmissielay
is the total time that a packet stays in the switch, and is guoim
tant performance criterion. The other measure is calledtiapd
crossbar (IC) queueing delay, which is the interval from tihee
that the last bit of a packet arrives at its input port to theetithat
the last bit of the packet leaves the crosspoint buffer. ismpghper,
we mainly discuss the input scheduling and crossbar scimgood
buffered crossbar switches, and all the simulation algorét use
the same output scheduling principle. Thus, IC queueingydisl
a good measure to compare the different arbitration ruled us
different algorithms. On the other hand, the transmissiglaydof

a packet is equal to the sum of its IC queueing delay and its out
put queueing delay. With the above two measures, it is plessib

to determine the proportion of time that packets spend &drdifit
buffering locations in the switch.
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Figure4: Average delay of different algorithms.

five algorithms under uniform traffic and non-uniform traféice
shown in Figure 4(a) and (b) respectively. The solid lingzree
sent the transmission delay, and the dashed lines reprigsei®
queueing delay. First, we can notice that, for any algorjtbom-
pared with the transmission delayo(® second), the IC queue-
ing delay (0~° second) is small enough to be neglected. Second,
we can also see that the IC queueing delay of different dlgos
does not have significant difference. Combining the abowedi+
servations, we can make the conclusion that, for bufferedser
bar switches with speedup of two, input scheduling and barss
scheduling do not significantly affect the transmissioragelf the
packet. Thus, when considering implementation cost, tpleist
algorithms, such as RR and FP, are the preferred choicesheOn t
other hand, since the IC queueing delay is very small, madtgia

are immediately transmitted to their output buffers aftexytarrive

at input ports. Thus, we can expect LAPS to exhibit similar pe
formance as OQ switch based scheduling algorithms. Moremve
conjunction with LAPS, existing fair scheduling algoriteprsuch

as WFQ, DRR and FMCF, can be used as the output scheduling
principles to provide deterministic performance guareste

4.3 Maximum Queue Length
In order to achieve 100% throughput for admissible traffie, i

The average transmission delay and IC queueing delay of the put ports and output ports must have enough buffer spaceotd av
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Figure5: Maximum queue length of different algorithms.

packet overflow. We also collect the maximum queue lengtotit b
the output side and input side during the simulations to ceflee
buffer requirement of the algorithms. The maximum outpleug!

length is defined to be the maximum number of bytes buffered at

any output queue during the whole simulation run. The marimu

input queue length is defined to be the maximum number of bytes

buffered at all the virtual queues of any input port.

Figure 5(a) and (b) show the maximum queue length of the algo- [9]

rithms under uniform traffic and non-uniform traffic respesty.
The solid lines represent the maximum output queue length, a
the dashed lines represent the maximum input queue lerigthn |
be seen that all the algorithms exhibit similar buffer regoient
at both the input side and the output side. On the other héed, t
input ports have much shorter maximum queue length thanuite o
put ports. This indicates that, with speedup of two, packets
be quickly transferred through the crossbar, and more packe
buffered at output ports than at input ports.

5. CONCLUSIONS

In this paper, we have studied packet scheduling for buffere
crossbar switches. Buffered crossbar switches are a $pgmeof
CIOQ switches, whose crosspoints are associated with small
chip buffers. The introduction of crosspoint buffers eliaies out-
put and input contention, and greatly simplifies the schiaduiro-

cess. Furthermore, the scheduling of different input portsut-
put ports are conducted in an independent and asynchronodes, m
and variable length packets can be directly scheduled ams-tr
mitted without segmentation or reassembly. Compared wdth c
scheduling, packet scheduling has some unique advantaigésr
throughput, shorter packet delay and cheaper hardware ¥dst
have presented a packet scheduling scheme called Locali&ed
chronous Packet Scheduling (LAPS) for buffered crossbackes.
With LAPS, each crosspoint needs as littldasuffer space, which
minimizes the hardware cost for switches. Another advantsg
LAPS is that the scheduling of an input port or output poriesel
only on the state information of its local crosspoint busfeiThe
localization property makes LAPS suitable for a distriloutraple-
mentation and thus highly scalable. Since there is no casgar
needed, priority encoders can be used to quickly make stihgdu
arbitrations in hardware. We also theoretically proved thsPS
with speedup of two achieves 100% throughput for any adbiessi
traffic, and conducted simulations to verify the analyticadults
and evaluate the performance of LAPS.
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