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ABSTRACT
Buffered crossbar switches are a special type of crossbar switches.
In such a switch, besides normal input queues and output queues,
a small buffer is associated with each crosspoint. Due to theintro-
duction of crosspoint buffers, output and input contentionis elimi-
nated, and the scheduling process for buffered crossbar switches is
greatly simplified. Moreover, crosspoint buffers enable the switch
to work in an asynchronous mode and easily schedule and trans-
mit variable length packets. Compared with fixed length packet
scheduling or cell scheduling, variable length packet scheduling,
or packet scheduling for short, has some unique advantages:higher
throughput, shorter packet latency and lower hardware cost. In
this paper, we present a fast and practical scheduling scheme for
buffered crossbar switches called Localized AsynchronousPacket
Scheduling (LAPS). With LAPS, an input port or output port makes
scheduling decisions solely based on the state informationof its
local crosspoint buffers, i.e., the crosspoint buffers where the in-
put port sends packets to or the output port retrieves packets from.
The localization property makes LAPS suitable for a distributed
implementation and thus highly scalable. Since no comparison op-
eration is required in LAPS, scheduling arbiters can be efficiently
implemented using priority encoders, which can make arbitration
decisions quickly in hardware. Another advantage of LAPS isthat
each crosspoint needs onlyL (the maximum packet length) buffer
space, which minimizes the hardware cost of the switches. Wealso
theoretically analyze the performance of LAPS, and in particular
we prove that LAPS achieves 100% throughput for any admissible
traffic with speedup of two. Finally, simulations are conducted to
verify the analytical results and measure the performance of LAPS.

Categories and Subject Descriptors
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1. INTRODUCTION
Crossbar switches provide non-blocking capability and overcome

the bandwidth limitation of bus based switches. They have long
been the preferred structures for high speed switches and routers.
With the ever increasing demand for more bandwidth and higher
throughput, it has become a more and more challenging task tode-
sign high performance crossbar switches and efficient scheduling
algorithms.

For crossbar switches, packets can be buffered at either output
ports, input ports, or crosspoints of the crossbar. Output queued
(OQ) switches only have buffer space at the output side, and new in-
coming packets must be immediately transferred through thecross-
bar and stored in the output queues. OQ switches achieve 100%
throughput, and can provide different levels of performance guar-
antees by running various fair scheduling algorithms, suchas WFQ
[1], DRR [2], and FMCF [3], at each output port. However, in order
for anN × N switch to achieve 100% throughput, speedup ofN
is required. In other words, the crossbar must haveN times band-
width as that of an input port or output port. Thus, OQ switches
are difficult to scale. On the contrary, input queued (IQ) switches
only have buffer space at the input side, and need no speedup.In
order to make fast scheduling decisions, iterative maximalmatch-
ing algorithms, such as PIM [4], iSLIP [5], and DRRM [6], were
proposed for IQ switches, which can quickly converge on a maxi-
mal matching in multiple iterations. IQ switches are popular on the
market due to their economical hardware architectures and efficient
scheduling algorithms. Unfortunately, until now IQ switches are
found to be able to achieve 100% throughput only when work with
maximum matching algorithms or their variants, such as MWM
[7], which have high time complexity [27] [28] and are not feasible
for high speed scheduling. In order to combine the advantages of
both OQ switches and IQ switches, combined input-output queued
(CIOQ) switches make a tradeoff between the crossbar speedup
and the complexity of the scheduling algorithms. They usually
have fixed small speedup of two, and thus need buffer space at
both the input side and output side. It has been shown that CIOQ
switches with speedup of two can achieve 100% throughput with
any maximal scheduling algorithms [8] [9], and can also emulate
OQ switches with more complex algorithms [15] [16].

For buffering at the input side of a switch, usually the virtual



output queued (VOQ) buffering technique [7] is used, since the tra-
ditional single FIFO queue suffers from the head of line (HOL)
blocking, i.e., even though the destination output ports ofthe pack-
ets behind the HOL packet may be free, these packets cannot be
scheduled to transmit because the HOL packet is blocked. It was
proved in [10] that the HOL blocking limits the maximum through-
put of the switch to about 58.6%. On the contrary, VOQ buffering
maintains a logically separate queue or virtual queue for each out-
put port at every input port, so that a packet will no longer beheld
up by another packet ahead of it that goes to a different output port.

With the development of modern VLSI technology, it has been
feasible to integrate on-chip memory to the crossbar switching fab-
ric. Buffered crossbar switches, or combined input-crosspoint-output
queued (CICOQ) switches [17] [18] [25], are a special type of
CIOQ switches, where each crosspoint of the crossbar is equipped
with a small buffer. Due to the introduction of crosspoint buffers,
the scheduling process is greatly simplified. First, outputcon-
tention is eliminated. Assume that multiple input ports have pack-
ets destined to the same output port. In a traditional unbuffered
crossbar switch, since packets are directly sent from inputports to
output ports, the transmission has to be carefully scheduled so that
no two input ports will simultaneously send packets to the same
output port. On the other hand, in a buffered crossbar switch, these
packets can be first sent to the crosspoint buffers, and then the out-
put port can retrieve the packets from the crosspoint buffers one
by one. Furthermore, since output contention has been eliminated,
different input ports no longer need to cooperate with each other,
and their scheduling can be conducted independently. As a result,
the complexity of the scheduling algorithm is greatly reduced.

Previous research on scheduling algorithms for crossbar switches
mainly focused on fixed length packet scheduling or cell scheduling
[11]. Without crosspoint buffers, packets have to be directly sent
from input ports to output ports. In order to maximize throughput
and make fast scheduling decisions, all the scheduling and trans-
mission units must have the same length, and all the input ports
and output ports have to work in a synchronized mode, i.e., all input
ports send cells at the same time, and all output ports receive cells
at the same time. When variable length packets arrive, they must
be segmented into fixed length cells at input ports. The cellsare
then used as the scheduling units and transmitted to output ports,
where they are reassembled into original packets and sent tothe
output lines. In contrast, buffered crossbar switches haveremoved
the necessity of synchronization due to crosspoint buffers. They
can work in an asynchronous mode, and directly handle variable
length packets. In other words, each input port or output port pe-
riodically chooses a packet with an arbitrary length to sendto or
receive from the crosspoint buffer, and does not need to waitfor
other input ports or output ports.

Compared with cell scheduling, variable length packet schedul-
ing, or packet scheduling for short, has some unique advantages.
First, packet scheduling can better utilize available bandwidth and
achieve higher throughput. For cell scheduling, when a packet is
segmented into cells, its length may not be a multiple of the cell
length, and the last segment has to be padded with empty bits to
reach the cell length. The padding bits do not contain usefulinfor-
mation, and waste transmission capacity of the switch. In the worst
case, if all packets happen to have a slightly longer length than the
cell length, each packet has to be segmented into two cells, and the
switch can only achieve about a half of the maximum throughput.
Second, since there is no segmentation and reassembly in packet
scheduling, newly arrived packets at input ports can be immediately
transferred through the crossbar, and similarly, transmitted pack-
ets at the output ports can be immediately sent to the output lines.

Especially when the load is light, packets have short queueing de-
lay, and the time for segmentation and reassembly can hardlybe
overlapped with other waiting time. Therefore, packet scheduling
reduces the latency that a packet experiences in the switch.Third,
no extra buffer space is needed at the input or output side to seg-
ment and reassemble the packets, which lowers hardware cost. Fi-
nally, cell scheduling can be regarded as a special case of packet
scheduling, or in other words, packet scheduling can also handle
fixed length cells.

Two packet scheduling algorithms for asynchronous buffered cross-
bar switches, Packet GVOQ (PGV) and Packet LOOFA (PLF),
were proposed in [12], and their performance guarantees were an-
alyzed. It was proved that, with speedup of two and2L or more
buffer space at each crosspoint, whereL is the maximum packet
length, PGV and PLF can provide work-conserving guaranteesor
emulate push-in-first-out (PIFO) scheduling algorithms for OQ switches.
In order to be work-conserving, the algorithms proposed in [12]
usually impose an order on buffered packets, and make scheduling
decisions by sorting the packets. With slightly more bufferspace at
each crosspoint, they can emulate any PIFO fair scheduling algo-
rithm for OQ switches by ordering the packets based on the depar-
ture sequence of the packets in the reference algorithm, andthus
provide bandwidth and delay guarantees. Scheduling algorithms
delivering strong performance guarantees are certainly important,
especially considering that nowadays many broadband basedmul-
timedia applications have quality of service (QoS) requirements.
On the other hand, it is also worth studying scheduling algorithms
that are simple and easy to implement.

The objective of this paper is to design packet scheduling al-
gorithms for buffered crossbar switches with low time complexity
and easy hardware implementation. We present a packet scheduling
scheme called Localized Asynchronous Packet Scheduling (LAPS).
LAPS conducts scheduling in an asynchronous and distributed mode.
An input port or output port make scheduling decisions solely based
on the state information of its local crosspoint buffers, i.e., the
crosspoint buffers where the input port sends packets to or the out-
put port retrieves packets from. Since no comparison operation is
required, scheduling arbiters can be efficiently implemented using
priority encoders, which can make decisions quickly in hardware.
LAPS requires onlyL buffer space at each crosspoint. Consider-
ing that on-chip buffers are expensive resources, LAPS minimizes
the hardware cost of switches. We also theoretically analyze the
performance of LAPS, and in particular prove that LAPS achieves
100% throughput for any admissible traffic with speedup of two.
Finally, simulations are conducted to verify the analytical results
and to measure the performance of LAPS.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the scheduling algorithms proposed in the
literature for buffered crossbar switches. In Section 3, wepresent
the LAPS scheduling scheme, analyze its performance and discuss
its hardware implementation. In Section 4, we conduct simulations
to verify the analytical results obtained in Section 3, and test the
performance of LAPS. In Section 5, we conclude the paper.

2. RELATED WORK
Scheduling algorithms for buffered crossbar switches are gener-

ally designed with two possible objectives: to achieve highthrough-
put or to emulate scheduling algorithms for OQ switches. The
latter is a stronger requirement than the former, i.e., an algorithm
that emulates an OQ switch based algorithm usually delivers100%
throughput, but the reverse is not always true. On the other hand, if
100% throughput is the only objective, an algorithm can be simpler
or have less time complexity.



A buffered crossbar switch architecture called CIXB-1 was pro-
posed in [18], where each crosspoint has a one-cell buffer. CIXB-
1 offers several advantages for feasible implementation such as
scalability and timing relaxation. It is shown that, in conjunction
with round robin arbitration, CIXB-1 can provide 100% through-
put under uniform traffic. CIXOB-k [19] is the extended version of
CIXB-1 with a k-cell buffer at each crosspoint and small speedup
for the crossbar. CIXOB-k is shown to be able to achieve 100%
throughput under uniform traffic as well as non-uniform traffic.
A cell scheduling scheme for buffered crossbar switches called
Most Critical Buffer First (MCBF) was proposed in [20]. It con-
ducts scheduling based on the crosspoint buffer information and has
low hardware complexity. MCBF exhibits good performance and
shows optimal stability in simulations. Shortest Crosspoint Buffer
First (SCBF) [21] is another cell scheduling scheme, which finds a
matching with minimum weight in each time slot. It is proved that
SCBF achieves 100% throughput for any admissible traffic without
speedup requirement. In order to facilitate hardware implementa-
tion, a maximal solution of SCBF was also proposed in [21], which
achieves lowO(log N) time complexity and is shown to have al-
most identical performance. The algorithms discussed in the above
are cell scheduling algorithms targeting high throughput.

The emulation of OQ switches by buffered crossbar switches was
studied in [24]. It is proved that a buffered crossbar switchwith
speedup of two satisfying non-negative slackness (NNS) insertion
and lowest time to live (LTTL) blocking, and LTTL fabric schedul-
ing can exactly emulate an OQ switch with PIFO scheduling poli-
cies. In particular, it is shown that the GBVOQOCF schedul-
ing algorithm can exactly emulate an FIFO OQ switch, and the
GBFG SP scheduling algorithm can exactly emulate a strict prior-
ity OQ switch. In [22], the MCAF-LTF cell scheduling scheme
for one-cell buffered crossbar switches was proposed. MCAF-LTF
does not require costly time stamping mechanism, and is proved to
be able to emulate an OQ switch with speedup of two. [23] studied
practical scheduling algorithms for buffered crossbar switches. It
is shown that with speedup of two, a buffered crossbar switchcan
mimic the restricted PIFO-OQ switch (a PIFO-OQ switch with the
restriction that the cells of an input-output pair depart the switch
in the same order as they arrive), regardless of the incomingtraffic
pattern, and that with speedup of three, a buffered crossbarswitch
can mimic an arbitrary PIFO-OQ switch and hence provide delay
guarantees. It is also shown that buffered crossbar switches can
achieve 100% throughput with speedup of two for any Bernoulli
i.i.d. admissible traffic. The above algorithms consider also cell
scheduling, but are designed to emulate scheduling algorithms for
OQ switches.

A buffered crossbar switch architecture supporting packetschedul-
ing was proposed in [25]. The chip layout was presented and the
hardware cost was analyzed. The simulation results demonstrate
that the proposed architecture outperforms unbuffered crossbar switches.
A segmentation and reassembly (SAR) scheme was proposed in
[26]. It uses variable size segments while merging multiplepack-
ets into each segment. The proposed scheme eliminates padding
overhead, reduces header overhead and crosspoint buffer size, and
is suitable for use with external, modern DRAM buffer memory
in ingress line cards. The simulation results show that it outper-
forms existing segmentation schemes in buffered as well as un-
buffered crossbar switches. The performance guarantees ofpacket
scheduling for asynchronous buffer crossbar switches weredis-
cussed in [12], and two algorithms were designed based on exist-
ing cell scheduling algorithms. It is theoretically provedthat, with
speedup of two, the Packet GVOQ scheduling algorithm provides
work-conserving guarantees with2L crosspoint buffer space and
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Figure 1: The structure of buffered crossbar switches.

can emulate a PIFO scheduling algorithm for OQ switches with
5L crosspoint buffer space. The Packet LOOFA scheduling algo-
rithm provides work-conserving guarantees with16L/3 crosspoint
buffer space, and can emulate a PIFO scheduling algorithm for OQ
switches with22L/3 crosspoint buffer space. [17] proposed the
Distributed Packet Fair Queueing (DPFQ) architecture for physi-
cally dispersed line cards to emulate an OQ switch with fair queue-
ing, and the simulation results demonstrate that the resulting sys-
tem provides service that closely approximates an output buffered
switch employing fair queueing with modest speedup. The above
schemes use variable length packets as the scheduling and switch-
ing units.

3. LOCALIZED ASYNCHRONOUS PACKET
SCHEDULING

In this section, we present our new Localized Asynchronous
Packet Scheduling (LAPS) scheme, analyze its performance,and
discuss its hardware implementation.

The switch structure that we consider is illustrated in Figure 1.N
input ports andN output ports are connected by a crossbar switch-
ing fabric, which has speedup of two. We denote the bandwidth
of an input port or output port byR, and the crossbar has band-
width 2R. An input port hasN virtual queues to store the packets
destined to different output ports. Each crosspoint has an exclusive
buffer of sizeL. Depending on the granularity level of performance
guarantees, an output port may have a single queue, or multiple
logical queues. For example, if bandwidth is to be fairly allocated
among input ports, packets in output ports should be buffered on a
per input port basis, and if different flows require different packet
delay guarantees, an output port needs to set up as many queues as
the number of flows. Different input ports and output ports work
independently and asynchronously. After a packet arrives at the
switch, it is first stored in the input queue. The packet is sent from
the input queue to the crosspoint buffer, and then from the cross-
point buffer to the output queue and finally delivered to the output
line.

Based on the locations of the packets to be scheduled, there
are three types of scheduling involved in such a buffered cross-
bar switch, which we call input scheduling, crossbar scheduling,
and output scheduling, respectively. In input scheduling,an input



port selects one of the virtual queues, and sends its head packet to
the crosspoint buffer. In crossbar scheduling, an output port selects
one of the crosspoint buffers, and retrieves the buffered packet to
the output queue. In output scheduling, an output port selects a
buffered packet from the output queue, and sends the packet to the
output line.

Over the last decade, output scheduling has been well studied,
and a lot of output scheduling algorithms have been proposed, such
as WFQ [1] and DRR [2]. By using different approaches, the algo-
rithms provide different performance guarantees and have different
time complexity. It is reported in [13] that a fundamental trade-
off exists between the performance guarantees that an algorithm
can provide and its time complexity. It should be noted that output
scheduling algorithms usually do not affect the throughputperfor-
mance as long as they are work-conserving. In other words, ifan
output scheduling algorithm sends packets to the output line when-
ever there is a packet in the output queue, 100% throughput can
be achieved given that the input scheduling algorithm and crossbar
scheduling algorithm deliver packets to the output queue intime. In
the rest of the paper, we will mainly consider input scheduling and
crossbar scheduling, and adopt a simple FIFO algorithm for output
scheduling, which is work-conserving.

3.1 Algorithm Description
Input scheduling and crossbar scheduling of LAPS are conducted

in an asynchronous and distributed manner, and they only rely on
the state information of local crosspoint buffers. Local crosspoint
buffers of an input port or output port are the crosspoint buffers that
the input port sends packets to or the output port receives packets
from.

In input scheduling, when the transmission channel of an input
port to the crosspoint buffers is idle, the input port selects one of its
backlogged virtual queues whose corresponding crosspointbuffer
is empty, and sends the head packet to the crosspoint buffer.When
there are multiple eligible virtual queues, different arbitration rules
can be used, such as fixed priority, random priority, or roundrobin.
In particular, the round robin rule is able to avoid starvation by al-
ternatively giving each virtual queue the highest priority. We will
see later in this section that any work-conserving rule is able to
achieve 100% throughput. It should be noted that since the cross-
bar has speedup of two, the packet is transferred from the virtual
queue to crosspoint buffer with bandwidth of2R. After the last
bit of the packet is sent to the crosspoint buffer, the scheduling
and transmission process is repeated again. Crossbar scheduling is
similar to input scheduling. When the transmission channelof an
output port for receiving packets from the crosspoint buffers is idle,
the output port selects a crosspoint buffered packet and saves it in
its output queue. The transmission rate from the crosspointbuffer
to the output queue is also2R, and different arbitration rules can
be used as well.

In order to reduce the packet latency and increase the switch
throughput, we use cut-through switching in the crossbar. In other
words, when a packet is being sent from the virtual queue to the
crosspoint buffer, if the transmission channel to its output is idle,
the packet can be directly sent to the output queue without wait-
ing for the whole packet to be buffered at the crosspoint buffer.
Similarly, if the output port has cut-through switching capability, a
packet can also be immediately sent to the output line as soonas
its first bit arrives at the output queue. Thus, with the cut-through
technique, it is possible that a packet is directly sent fromthe input
queue to the output line without being fully buffered anywhere on
the way. Since the bandwidth from the input queue to the cross-
point buffer and from the crosspoint buffer to the output queue is

Table 1: Localized Asynchronous Packet Scheduling

Input Scheduling:
each input port independently does{

while true do{
select a backlogged virtual queue

whose crosspoint buffer is empty;
transfer the virtual queue head packet

to the crosspoint buffer;
if the channel to the output port is idle{

transfer the packet to the output queue;
}

}
}

Crossbar Scheduling:
each output port independently does{

while true do{
select a crosspoint buffered packet;
transfer the packet to the output queue;
if the channel to the output line is idle{

transfer the packet to the output line;
}

}
}

2R, and the bandwidth from the output queue to the output line
is R, a packet can be safely delivered to the output line without
being blocked in the middle. However, it should be noted that, be-
cause the bandwidth from the input line to the virtual queuesis R,
cut-throughput switching cannot be used at the input port. In other
words, only after all the bits of a new incoming packet have been
saved in the virtual queue, the packet can begin to be sent to the
crosspoint buffer.

For easy understanding, the pseudo code description for thein-
put scheduling and crossbar scheduling of LAPS is presentedin
Table 1. Note that, in input scheduling, the scheduling candidates
of an input port are only the virtual queues whose crosspointbuffers
are empty. This restriction seems to be unnecessary, because a
crosspoint buffer may be able to contain more than one packets
with shorter length. However, instead of calculating the remaining
free space of the buffer, testing only whether it is empty or oc-
cupied greatly simplifies the operation. In this way, only one bit
of information needs to be tested for each crosspoint bufferdur-
ing input scheduling, and the testing of all the crosspoint buffers of
the same input port can be conducted in parallel to minimize the
time cost. As a consequence, the round-trip-time (RTT) timebe-
tween input scheduling and crossbar scheduling of LAPS can be
neglected. Similarly, in crossbar scheduling, an output port only
needs to test whether a crosspoint buffer is occupied or empty due
to the cut-through switching capability of the crossbar.

3.2 Performance Analysis
In this subsection, we analyze the performance of LAPS. First,

we use the fluid theory in [8] to prove that LAPS is able to achieve
100% throughput for any admissible traffic with speedup of two, re-
gardless of the arbitration rules used by input scheduling and cross-
bar scheduling.

Before starting the analysis, we define some notations and vari-
ables. Ini denotes theith input port, andOutj denotes thejth



output port. Qij denotes the virtual queue ofIni to buffer the
packets destined toOutj , andBij denotes the crosspoint buffer
connectingIni andOutj . The following variables are used to rep-
resent the status of the switch. Their initial values (at time 0) are
conventionally assumed to be zero.
Qij(t): the number of bits buffered inQij at timet
Bij(t): the number of bits buffered inBij at timet
Aij(t): the number of bits arrived atQij up to timet
Dij(t): the number of bits left fromQij up to timet
Eij(t): the number of bits left fromBij up to timet

Aij(t) satisfies a strong law of large numbers (SLLN), i.e.,

lim
t→∞

Aij(t)

t
= λij

whereλij is called the arrival rate ofQij .
A traffic is said to be admissible if it has no oversubscription at

any input port or output port, i.e.,

∀i,
�

k

λik ≤ R

∀j,
�

k

λkj ≤ R

Following the definition in [8], we say that a scheduling scheme
achieves 100% throughput if the following equation holds for any
admissible traffic.

∀i,∀j, lim
t→∞

Eij(t)

t
= λij

limt→∞ �j Eij(t)

t
is the average rate that packets are transmitted

to thejth output port.limt→∞ �j Eij(t)

t
= � j λij means that all

traffic to thejth output port is delivered to the output queue. Thus,
100% throughput can be achieved, as long as the output scheduling
algorithm is work-conserving. Intuitively, traffic arrives atQij and
leaves fromBij with the same speed, and thus packets will not
infinitely accumulate at eitherQij or Bij .

A packet is saved to the virtual queue only after it has been fully
received by the input port, and thus the value ofAij(t) changes
only at some specific time points{t0, t1, . . . , tn, . . . }, wheret0 =
0 andtn(n > 0) is the time that thenth packet is saved into the
virtual queue. Fortn < t < tn+1, we haveAij(t) = Aij(tn).
Similar as in [8],Aij(t) is right continuous and have left limits in
[0,∞).

In reality, Dij(t) andEij(t) are discrete functions, because a
packet is removed from the buffer only after the whole packethas
been fully transmitted. In order to makeDij(t) andEij(t) con-
tinuous as in [8], in the following analysis, we assume that abit is
immediately released from the buffer after it has been transmitted.
In other words, suppose thatsn (s0 = 0) andrn (r0 = 0) are the
time that thenth packet is removed fromQij andBij respectively.
For sn ≤ s < sn+1,

Dij(s) = Dij(sn) +
s − sn

sn+1 − sn
(Dij(sn+1)) − Dij(sn))

and forrn ≤ r < rn+1,

Eij(r) = Eij(rn) +
r − rn

rn+1 − rn
(Eij(rn+1)) − Eij(rn))

Whenf(t) is differentiable att, useḟ(t) to denote the derivative.
Notice thatḊij(t) is equal to2R whenQij is sending a packet to
Bij , and is zero otherwise. Similarly,̇Eij(t) is equal to2R when
Bij is sending a packet to the output queue, and is zero otherwise.

Regarding the relationship of the defined variables, we havethe
following fluid equations. It should be noted that, becauseAij(t)
satisfies a SLLN, we can useλijt to approximateAij(t) whent is
sufficiently large.

Qij(t) = λijt − Dij(t)

Bij(t) = Dij(t) − Eij(t)

Qij(t) + Bij(t) = λijt − Eij(t)

In order to prove 100% throughput of LAPS, we need the fol-
lowing lemma from [8].

LEMMA 1. Letf : [0,∞) → [0,∞) be an absolutely continu-
ous function withf(0) = 0. Assume thaṫf(t) ≤ 0 for almost every
t (wrt Lebesgue measure) such thatf(t) > 0 andf is differentiable
at t. Then,f(t) = 0 for almost everyt.

The basic idea to prove 100% throughput of LAPS is to first
define the functionf(t) in Lemma 1 as follows

V (t) =
�
ij

Qij(t) ��
k

Qik(t)� +
�
ij

Zij(t) ��
k

Zkj(t)�
whereZij(t) is the sum ofQij(t) andBij(t), i.e.,

Zij(t) = Qij(t) + Bij(t)

Then we prove thatV (t) has a negative or zero derivative when it
is positive, and thus by Lemma 1,V (t) = 0 for almost everyt.
SinceZij(t) ≤ V (t), we know thatZij(t) = 0 for almost everyt
as well, which means that the length of each virtual queue is always
bounded, or in other words all incoming traffic is transmitted to the
output queue.

Next, we introduce some supporting lemmas.

LEMMA 2. If Bij is not empty at timet, � k Zkj(t) has a neg-
ative derivative, i.e.,

Bij(t) > 0 ⇒
�

k

Żkj(t) < 0

PROOF. The intuitive explanation for this lemma is that, ifBij

has buffered bits,Outj must be receiving packets.
Since the crossbar scheduling of LAPS is work-conserving and

Bij > 0, Outj is either receiving bits fromBij or another cross-
point bufferBkj . Noticing that the bandwidth from the crosspoint
buffer to the output queue is2R, we can obtain�k Ėkj(t) = 2R.

According to the fluid equationZij(t) = λijt−Eij(t), we have�
k

Żkj(t) =
�

k �λkj − Ėkj(t)�
=
�

k

λkj −
�

k

Ėkj(t)

≤ R − 2R

< 0

It should be noted that, due to the cut-through switching tech-
nique, even ifBkj has only received part of the packet but not the
complete packet,Bkj can start to send the packet to the output
queue ofOutj .

LEMMA 3. If Qij is not empty at timet,� k Qik(t)+� k Zkj(t)
has a negative or zero derivative, i.e.,

Qij(t) > 0 ⇒
�

k

Q̇ik(t) +
�

k

Żkj(t) ≤ 0



PROOF. The intuitive explanation for this lemma is that, when
Qij has buffered bits, either a virtual queue ofIni is sending pack-
ets to its crosspoint buffer, orOutj is receiving packets from one
of the crosspoint buffers.

Based on the state ofBij , we consider two possible cases.
Case 1: Bij is empty. Since the input scheduling of LAPS is

work-conserving andQij(t) > 0, eitherQij is sending packets to
Bij , or another virtual queueQik of the ith input port is sending
packets toBik. For either case,� k Ḋik = 2R.

Case 2: Bij is occupied, including the case thatBij has a fully
buffered packet, and the case thatBij is receiving a packet from
Qij and simultaneously sending the packet to the output queue of
Outj andBij(t) = 0. Since the crossbar scheduling of LAPS is
work-conserving and the crossbar switching fabric uses cut-through
switching, eitherBij or another crosspoint bufferBkj is sending
packets toOutj . For either case,� k Ėkj = 2R.

Note thatḊij(t) ≥ 0 and Ėij(t) ≥ 0. Thus, for both of the
above cases, we can obtain� k Ḋik(t) + � k Ėkj(t) ≥ 2R.

According to the fluid equationsQij(t) = λijt − Dij(t) and
Zij(t) = λijt − Eij(t), we have�

k

Q̇ik(t) +
�

k

Żkj(t)

=
�

k �λik − Ḋik(t)� +
�

k �λkj − Ėkj(t)�
=

�
k

λik +
�

k

λkj −
�

k

Ḋik(t) −
�

k

Ėkj(t)

≤ R + R − 2R

≤ 0

THEOREM 1. With speedup of two, LAPS achieves 100% through-
put for any admissible traffic.

PROOF. We define

V (t) =
�
ij

Qij(t) ��
k

Qik(t)� +
�
ij

Zij(t) ��
k

Zkj(t)�
=
�
ijk

(Qij(t)Qik(t) + Zij(t)Zkj(t))

It it clear thatV (0) = 0. In addition,

V̇ (t) =
�
ijk �Q̇ij(t)Qik(t) + Qij(t)Q̇ik(t) +

Żij(t)Zkj(t) + Zij(t)Żkj(t)�
= 2

�
ijk �Qij(t)Q̇ik(t) + Zij(t)Żkj(t)�

= 2
�
ijk �Qij(t)Q̇ik(t) + (Qij(t) + Bij(t)) Żkj(t)�

= 2
�
ijk

Qij(t) �Q̇ik(t) + Żkj(t)� + 2
�
ijk

Bij(t)Żkj(t)

= 2
�
ij

Qij(t) ��
k

Q̇ik(t) +
�

k

Żkj(t)� +

2
�
ij

Bij(t) ��
k

Żkj(t)�

By Lemma 3, we know

2
�
ij

Qij(t) ��
k

Q̇ik(t) +
�

k

Żkj(t)� ≤ 0

and by Lemma 2,

2
�
ij

Bij(t) ��
k

Żkj(t)� ≤ 0

Thus, we can obtain

V̇ (t) ≤ 0

By Lemma 1, we know thatV (t) = 0 for almost everyt. Since
Qij(t) ≤ V (t), Qij(t) = 0 for almost everyt. Noticing that
Bij(t) ≤ L, we can obtain

lim
t→∞

Eij(t)

t
= lim

t→∞

Aij(t) − Qij(t) − Bij(t)

t

= lim
t→∞

Aij(t)

t
− lim

t→∞

Qij(t) + Bij(t)

t
= λij − 0

= λij

The above equation holds for any admissible traffic. Thus, by
the definition, LAPS achieves 100% throughput.

We have studied the throughput of LAPS. Next we discuss the
delay and queue length properties.

Before a packet is sent to the output line, it may be buffered at
the input queue, the crosspoint buffer, and the output queue, and ex-
perience corresponding delay at each location. We define theinput
queueing delay of a packet to be the interval from the time that the
last bit of the packet arrives at the virtual queue to the timethat the
last bit of the packet leaves the virtual queue. In a similar way, we
can define the crossbar queueing delay and output queueing delay.
It should be noted that due to the cut-through switching technique,
the last bit of a packet may leave the crosspoint buffer as soon as it
arrives, which makes the crossbar queueing delay of the packet be
zero.

Since the traffic arrival rate at an input port� i λij is less than or
equal toR, and the bandwidth of the crossbar is2R, most packets
are immediately transmitted through the crossbar after they arrive,
but are buffered in output queues. This indicates short input and
crossbar queueing delay and long output queueing delay. Theob-
servation is consistent with the simulation results obtained in Sec-
tion 4. Assume that the traffic arrives according to a Poissonpro-
cess and the packet length follows an exponential distribution with
meanM . Then,Ini can be approximately modeled as an M/M/1
system, and accordingly

Average input queueing delay=
M

2R − � i λij

Applying Little’s Law, we can obtain

Average input queue length=
M � i λij

2R − � i λij

3.3 Hardware Implementation
Practical scheduling algorithms are expected to be efficiently

implemented in hardware to make fast decisions for high speed
switching. In the following, we discuss the hardware implemen-
tation for LAPS.



One of the advantages of LAPS is that each input port or output
port makes scheduling decisions solely based on the state informa-
tion of its local crosspoint buffers. Since no comparison operation
is required, the scheduling arbiters can be efficiently implemented
using priority encoders [14]. The theoretical time complexity to
make an arbitration isO(log N). In practice, priority encoders per-
form all the operations in hardware, and technically achieve con-
stant time complexity for a moderate switch size [29]. Depending
on the arbitration rules, different types of priority encoders may be
used. For example, if arbitration candidates are assigned different
priorities at different time, such as the situation in a round-robin
arbiter, a programmable priority encoder can be used to implement
the arbiter.

Moreover, LAPS allows the scheduling of different input ports
and output ports to be conducted in an independent and asynchronous
mode. Since different arbiters do not need to exchange scheduling
information, LAPS can be implemented in a distributed manner,
which makes it highly scalable.

The cost of crosspoint buffers may seem to be a problem for the
implementation of buffered crossbar switches. Fortunately, with
the recent development of VLSI technology, it has been feasible
to integrate small on-chip memory to the crossbar switchingfab-
ric [25]. In addition, LAPS requires onlyL buffer space at each
crosspoint buffer, and minimizes the switch hardware cost.For ex-
ample, if the switch sizeN is 32, and the maximum packet length
L is equal to 12K bits (1.5K bytes), the total size of all crosspoint
buffers is 1.5M bytes.

4. SIMULATION RESULTS
We have conducted simulations to verify the 100% throughput

of LAPS and to measure its delay and buffer performance.
For the input or crossbar scheduling of LAPS, when there are

more than one eligible virtual queues or crosspoint buffers, differ-
ent scheduling decisions can be made depending on the rules to
make the arbitration. In the simulations, we consider five different
LAPS implementation versions with different arbitration rules: (1)
FP (fixed priority) assigns a fixed priority order to all the virtual
queues of the same input port or all the crosspoint buffers tothe
same output port, and always picks the candidate with the high-
est priority. In our implementation, higher priorities areassigned
to virtual queues to output ports with smaller indexes (e.g., Qij

has higher priority thanQij+1), or to crosspoint buffers from in-
put ports with smaller indexes (e.g.,Bij has higher priority than
Bi+1j ). (2) RD (random) does not favor any particular candidate,
but makes arbitration on a random basis. (3) RR (round robin)sets
up a round robin pointer for the virtual queues of the same input
port or the crosspoint buffers to the same output port, and grants
to the first candidate that is equal to or larger than the robinrobin
pointer (in a modular manner). After making an arbitration,the
round robin pointer is updated to the next candidate of the cur-
rent assigned one (in a modular manner). (4) OPF (oldest packet
first) uses the packet arrival time as the arbitration criterion. In
input scheduling, the eligible virtual queue whose head packet ar-
rives earliest at the input port is selected. In crossbar scheduling,
the eligible crosspoint buffer whose packet arrives earliest at the
crosspoint is selected. (5) LQF (longest queue first) uses the queue
length as the arbitration criterion. In input or crossbar scheduling,
the eligible packet whose virtual queue or crosspoint buffer has the
longest queue is selected.

FP, RD and RR rely only on the state information, i.e., for input
scheduling, whether a virtual queue has packets and its crosspoint
buffer is available, and for crossbar scheduling, whether across-
point buffer has a buffered packet. As discussed earlier, since there

1

p

q

OffOn λ2λ

Figure 2: In a Markov modulated Poisson process, the intensity
of the Poisson process depends on the state of the Markov chain.

is no comparison operation involved, these algorithms can be effi-
ciently implemented using priority encoders. In particular, RR is
also able to avoid starvation in the scheduling, by giving each can-
didate the chance to obtain the highest priority. On the other hand,
LQF and OPF need to compare either the packet arrival time or the
queue length when making arbitrations and require more sophisti-
cated hardware support. Our purpose to include the two algorithms
is that LQF and OPF demonstrate advantages in the schedulingfor
VOQ switches [7], and we want to study whether they are also su-
perior in the scheduling for buffered crossbar switches.

In order to reflect the burst nature of real network traffic, weem-
ulate the incoming traffic by a Markov modulated Poisson process,
as illustrated in Fig. 2. The intensity of the Poisson process is de-
fined by the state of a Markov chain. The Markov chain has two
states: on and off. In the on state, the intensity of the Poisson pro-
cess isλ1, and in the off state the intensity isλ2. The probability to
switch from the on state to the off state isp, and the probability to
switch from the off state to the on state isq. In the simulations, we
setp = q = 0.2 andλ2 = 0, and change the value ofλ1 to adjust
the load.

For the destination of the packets, we consider both uniformtraf-
fic and non-uniform traffic. For uniform traffic, the destination of a
new incoming packet is uniformly distributed among all the output
ports, i.e.,λij = lR/N , wherel is the effective load. For non-
uniform traffic, we use the same model as that in [18] and [20].
The traffic arrival rateλij is defined byi, j and an unbalanced
probabilityw as follows.

λij = �lR �w + 1−w
N � , if i = j

lR 1−w
N

, if i 6= j

The packet length in the simulation is uniformly distributed be-
tween [50, 1500] bytes. We consider a16 × 16 switch, and each
input port or output port has bandwidth of 1G bps. All packetsto
an output port are buffered in the same queue, and FIFO is usedas
the output scheduling policy for all the algorithms.

4.1 Throughput
In Section 3, we have theoretically proved that with speedupof

two LAPS achieves 100% throughput for any admissible traffic.
Now we verify the analytical results by simulation.

Figure 3(a) depicts the relationship between the throughput of
different algorithms and the effective load under uniform traffic. As
can be seen, all algorithms have similar curves and achieve 100%
throughput. Figure 3(b) shows the results under non-uniform traf-
fic. We fix the load of the switch to one, and adjust the unbalanced
probability. Again, all the five algorithms achieve 100% through-
put. As we have seen, both the simulation data under uniform traffic
and non-uniform traffic support the previous analytical results well.
It also can be noticed that, in terms of throughput performance, the
five algorithms have no significant difference.
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Figure 3: Throughput of different algorithms.

In the rest simulations, we fix the unbalanced probability ofthe
non-uniform traffic to 0.5.

4.2 Average Delay
In this subsection, we study the delay performance of different

algorithms. Two types of delay measures are considered. Thefirst
one is called transmission delay, which is the interval fromthe time
that the last bit of a packet arrives at its input port to the time that the
last bit of the packet is sent to the output line. Transmission delay
is the total time that a packet stays in the switch, and is an impor-
tant performance criterion. The other measure is called input and
crossbar (IC) queueing delay, which is the interval from thetime
that the last bit of a packet arrives at its input port to the time that
the last bit of the packet leaves the crosspoint buffer. In this paper,
we mainly discuss the input scheduling and crossbar scheduling of
buffered crossbar switches, and all the simulation algorithms use
the same output scheduling principle. Thus, IC queueing delay is
a good measure to compare the different arbitration rules used in
different algorithms. On the other hand, the transmission delay of
a packet is equal to the sum of its IC queueing delay and its out-
put queueing delay. With the above two measures, it is possible
to determine the proportion of time that packets spend at different
buffering locations in the switch.

The average transmission delay and IC queueing delay of the
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Figure 4: Average delay of different algorithms.

five algorithms under uniform traffic and non-uniform trafficare
shown in Figure 4(a) and (b) respectively. The solid lines repre-
sent the transmission delay, and the dashed lines representthe IC
queueing delay. First, we can notice that, for any algorithm, com-
pared with the transmission delay (10−3 second), the IC queue-
ing delay (10−5 second) is small enough to be neglected. Second,
we can also see that the IC queueing delay of different algorithms
does not have significant difference. Combining the above two ob-
servations, we can make the conclusion that, for buffered cross-
bar switches with speedup of two, input scheduling and crossbar
scheduling do not significantly affect the transmission delay of the
packet. Thus, when considering implementation cost, the simplest
algorithms, such as RR and FP, are the preferred choices. On the
other hand, since the IC queueing delay is very small, most packets
are immediately transmitted to their output buffers after they arrive
at input ports. Thus, we can expect LAPS to exhibit similar per-
formance as OQ switch based scheduling algorithms. Moreover, in
conjunction with LAPS, existing fair scheduling algorithms, such
as WFQ, DRR and FMCF, can be used as the output scheduling
principles to provide deterministic performance guarantees.

4.3 Maximum Queue Length
In order to achieve 100% throughput for admissible traffic, in-

put ports and output ports must have enough buffer space to avoid
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Figure 5: Maximum queue length of different algorithms.

packet overflow. We also collect the maximum queue length at both
the output side and input side during the simulations to reflect the
buffer requirement of the algorithms. The maximum output queue
length is defined to be the maximum number of bytes buffered at
any output queue during the whole simulation run. The maximum
input queue length is defined to be the maximum number of bytes
buffered at all the virtual queues of any input port.

Figure 5(a) and (b) show the maximum queue length of the algo-
rithms under uniform traffic and non-uniform traffic respectively.
The solid lines represent the maximum output queue length, and
the dashed lines represent the maximum input queue length. It can
be seen that all the algorithms exhibit similar buffer requirement
at both the input side and the output side. On the other hand, the
input ports have much shorter maximum queue length than the out-
put ports. This indicates that, with speedup of two, packetscan
be quickly transferred through the crossbar, and more packets are
buffered at output ports than at input ports.

5. CONCLUSIONS
In this paper, we have studied packet scheduling for buffered

crossbar switches. Buffered crossbar switches are a special type of
CIOQ switches, whose crosspoints are associated with smallon-
chip buffers. The introduction of crosspoint buffers eliminates out-
put and input contention, and greatly simplifies the scheduling pro-

cess. Furthermore, the scheduling of different input portsor out-
put ports are conducted in an independent and asynchronous mode,
and variable length packets can be directly scheduled and trans-
mitted without segmentation or reassembly. Compared with cell
scheduling, packet scheduling has some unique advantages:higher
throughput, shorter packet delay and cheaper hardware cost. We
have presented a packet scheduling scheme called LocalizedAsyn-
chronous Packet Scheduling (LAPS) for buffered crossbar switches.
With LAPS, each crosspoint needs as little asL buffer space, which
minimizes the hardware cost for switches. Another advantage of
LAPS is that the scheduling of an input port or output port relies
only on the state information of its local crosspoint buffers. The
localization property makes LAPS suitable for a distributed imple-
mentation and thus highly scalable. Since there is no comparison
needed, priority encoders can be used to quickly make scheduling
arbitrations in hardware. We also theoretically proved that LAPS
with speedup of two achieves 100% throughput for any admissible
traffic, and conducted simulations to verify the analyticalresults
and evaluate the performance of LAPS.
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