
1

Buffer Management for Lossless Service
in Shared Buffer Switches

Deng Pan
School of Computing & Information Sciences

Florida International University

Miami, FL 33199, USA

Yuanyuan Yang
Dept. of Electrical & Computer Engineering

State University of New York

Stony Brook, NY 11794, USA

ABSTRACT

Fair scheduling and buffer management are two typical approaches to provide differentiated ser-

vice. Fair scheduling algorithms usually need to keep a separate queue and maintain associated state

variables for each incoming flow, which make them difficult to operate and scale. On the contrary,

buffer management (in conjunction with FIFO scheduling) needs only a constant amount of state in-

formation and processing, and can be efficiently implemented. In this paper, we consider using buffer

management to provide lossless service for guaranteed performance flows in shared buffer switches.

We study the buffer size requirement and buffer allocation strategies by starting with the single output

switch and then extending the analytical results to the general multiple output switch. We present a

universally applicable buffer allocation method for assuring lossless service, and validate the correct-

ness of the theoretical results through simulations.

Keywords: Buffer management, shared buffer, differentiated service, lossless service

I. INTRODUCTION

With the rapid development of broadband based multimedia applications, it is necessary for next

generation networks to provide differentiated service [1] [2] under various types of network traffic

with different requirements. Network service can be broadly classified into two categories: guaran-

teed performance service and best effort service. For guaranteed performance service, resources are

reserved for an allocated transmission rate, and the performance, such as bandwidth, delay and jitter,

is bounded within a pre-specified range. Best effort service, as implied by the name, makes use of the

available transmission capacity and tries the best to forward packets, but provides no guarantees to the

2

service quality. The constant bit rate (CBR) service and unspecified bit rate (UBR) service in ATM

networks [3] belong to the guaranteed performance category and the best effort category, respectively.

There has been a lot of research in providing differentiated service, focusing on fair scheduling

and buffer management. Fair scheduling algorithms [5] [6] [7] [8] organize incoming packets on a per

flow basis, and emulate the ideal GPS model [9] [10] to schedule the packets of different flows in a

fair manner. By using time stamp based or round robin based approaches, they can provide different

levels of fairness guarantees at different costs. However, it has been reported [11] [12] that there exists

a fundamental tradeoff between the delay bound that an algorithm can achieve and its computational

complexity, which implies that fair scheduling algorithms either suffer from long worst-case delay

or high time complexity. Furthermore, fair scheduling algorithms have to keep a separate queue and

maintain associated state variables for each flow. This requirement makes them difficult to implement

and scale in high speed networks. On the contrary, the traditional first-in-first-out (FIFO) scheduler

can perform scheduling fast, by putting packets in a single queue in their arrival order and transmitting

packets from the head of the queue. However, the disadvantage of the FIFO scheduler is that it may not

schedule the flows in a fair manner, i.e., a flow with a higher input rate naturally obtains a higher output

rate. To overcome this problem, buffer management has been adopted in [13] [14] in conjunction with

the simple FIFO scheduler to provide differentiated service. (Unfortunately, Proposition 2 and its

corresponding results in Section 2 in [13] were incorrect, for which we will provide corrections in this

paper.) Buffer management offers protection to guaranteed performance flows as the first defense line,

by preventing other flows from injecting an excessive number of packets. The FIFO scheduler and

buffer management typically require only a constant amount of processing and state information [13],

and are therefore able to work in a high speed environment.

In this paper, we study using buffer management to provide lossless service in shared buffer

switches. The scenario that we consider is illustrated in Fig. 1. The shared buffer switch may have

a single output or multiple outputs. Each output runs a simple FIFO scheduler, and transmits packets

from a shared buffer, where the packets of all the incoming flows are stored. Among the incoming

flows, some are guaranteed performance flows that are compliant to specific traffic shaping schemes

3

and require lossless service. Each packet of these flows is expected to be sent to the destination(s),

and should not be dropped due to lack of buffer space. The rest of the incoming flows are best effort

flows, which may be aggressive and inject packets to any empty space that it can access. Note that

because the proposed buffer management methods are based on the concept of packet flows, they are

not applicable when packets are not transmitted as flows.

The shared buffer in Fig. 1 is partitioned into two types of smaller buffers, one for guaranteed

performance flows and one for best effort flows. The partition is dynamically performed when a new

guaranteed performance flow arrives or an existing guaranteed performance flow leaves. When many

guaranteed performance flows come and leave frequently, the cost to calculate the buffer partition

might be expensive. There are two solutions to remedy this problem. First, as will be seen in Section

II-B, multiple flows can be combined into a single logical flow to simplify the analysis. Second, over-

provisioning can be applied to the buffer of guaranteed performance flows, so that a new calculation

is only necessary when the buffer space requirement is significantly increased or decreased. In other

words, more buffer space than the actually required amount is allocated to the guaranteed performance

flows. By doing so, when a few new guaranteed performance flows come, the allocated buffer space

is still sufficient to ensure lossless service without recalculating the buffer partition. Once the buffer is

divided into smaller buffers, they will not change during packet transmissions, and a specific flow can

only store its packets in the designated area.

The multiplexer in Fig. 1 works in a dynamic time division multiple access (TDMA) mode. It

dynamically allocates bandwidth to different flows based on their traffic patterns. It is assumed that

the multiplexer has sufficient bandwidth and is able to accommodate arbitrary traffic arrivals. The

multiplexer schedules packets from the incoming flows in a first-come-first-served (FCFS) manner.

For the earliest arrived packet, the multiplexer checks whether the buffer of its flow still has sufficient

free space. If there is enough space, the multiplexer accepts the packet and puts it into the buffer of its

flow. Otherwise, the multiplexer will simply discard the packet. Similarly, the demultiplexer in Fig. 1

works in the dynamic TDMA mode and removes packets from the shared buffer in a FCFS manner. It

always selects the earliest arrived packet, regardless it is from a guaranteed performance flow or a best

4

Controler

Mux DemuxShared Buffer

Flow 1
Flow 2

Flow n

Out 1

Out m

Out 2

Fig. 1. The shared buffer switch may have a single or multiple outputs. Among the incoming flows, some are guaranteed
performance flows that require lossless service.

effort flow, and sends it to the corresponding output link.

There have been some buffer management methods [15] [16] [17] proposed in the literature, but

they mostly targeted at improving buffer utilization and minimizing packet loss. Our objective in this

paper is to ensure lossless service for the guaranteed performance flows by investigating the buffer

size requirement and buffer allocation strategies. Our analysis starts with the single output switch,

and extends to the more general case where the switch may have multiple outputs and multicast flows.

A universally applicable buffer allocation solution for ensuring lossless service is obtained, and its

correctness is verified by simulation.

The rest of this paper is organized as follows. Section II introduces some preliminaries for the

work in the paper. Section III analyzes buffer management for lossless service in the single output

switch, and Section IV generalizes the results to the multiple output switch. Section V provides some

important discussions. Section VI presents simulation results to verify the analytical results obtained

in previous sections. Finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we give some definitions and properties that will be used in the rest of this paper.

A. Traffic Shaping Schemes

Traffic shaping is necessary for the guaranteed performance flow when lossless service is con-

sidered. Clearly, if a flow has an unrestricted input rate or it can have burst arrival of any arbitrary

size, there is no way to ensure lossless service. Instead, the guaranteed performance flow should be

compliant with or restricted by some traffic shaping scheme. In this paper, we consider two traffic

5

Token

Incoming Traffic

ρ

σ

To Network
Remove

������
������
������
������
������

������
������
������
������
������

Fig. 2. A leaky bucket has a token bucket of capacity σ with new tokens flowing in at rate ρ.

shaping schemes: the peak rate scheme and the leaky bucket scheme.

We say a flow is peak rate ρ compliant if during any time interval of length t, the amount of traffic

it injects into the network is less than or equal to ρt. In other words, the flow has a maximum input

rate ρ, and in order to ensure lossless service, reserved bandwidth ρ is required along the transmission

path of the flow. Although the peak rate scheme is simple, it is not efficient. Since only the peak

transmission rate is indicated and the bandwidth is reserved according to this peak rate, the reserved

bandwidth cannot be fully utilized. Nevertheless, the peak rate scheme can be applied to any network

flow in reality, since after all, an actual flow is restricted by the maximum transmission rate of the

physical link.

Another more efficient traffic shaping scheme is the leaky bucket scheme [18]. A flow is said to be

leaky bucket (ρ,σ) compliant if during any time interval of length t, the amount of traffic it injects into

the network is less than or equal to ρt+σ. As illustrated in Fig. 2, a stream of tokens is generated at a

constant rate ρ and flows into a bucket with capacity σ. The newly generated tokens are added to the

bucket if it is not full, or discarded otherwise. For the flow to inject traffic into the network, the same

amount of tokens have to be available and removed from the bucket. As indicated by the formula, ρ

represents the long term average transmission rate of the flow, while σ defines the maximum size of

an instantaneous burst. Since real network traffic is usually in a burst mode, the leaky bucket scheme

is more efficient than the peak rate scheme in the sense that it is able to utilize the bucket to hold the

6

burst and requires lower reserved bandwidth. By varying the average rate and burst size, the leaky

bucket scheme can be used to characterize a broad range of real traffic.

It is interesting to point out that the peak rate scheme can be viewed as a special case of the leaky

bucket scheme with the burst size equal to zero. By using this property, the results for the leaky bucket

scheme can be directly applied to the peak rate scheme. Thus we have the following property.

Property 1: A peak rate ρ compliant flow is leaky bucket (ρ,0) compliant.

B. Logical Traffic Combination

In order to simplify the analysis for a group of flows destined to the same destination, we define

the combination of multiple flows to be a logical flow whose traffic is the sum of the traffic of each

individual physical flow, i.e., the outgoing (incoming) packets of this logical flow is the outgoing (in-

coming) packets of all its member flows. We have the following properties regarding the combination

of peak rate compliant flows or leaky bucket compliant flows.

Property 2: Assume that flow f1, . . . , fn are peak rate ρ1, . . . , ρn compliant, respectively. The

logical combined flow of these flows is peak rate
∑n

i=1 ρi compliant.

Proof. During any time interval of length t, fi has maximum arrived traffic of ρit, and the logical

combined flow has maximum arrived traffic of
∑n

i=1 ρit = (
∑n

i=1 ρi)t. By definition, the logical

combined flow is peak rate
∑n

i=1 ρi compliant.

Property 3: Assume that flow f1, . . . , fn are leaky bucket (ρ1,σ1), . . . , (ρn,σn) compliant, respec-

tively. The logical combined flow of these flows is leaky bucket (
∑n

i=1 ρi,
∑n

i=1 σi) compliant.

Proof. During any time interval of length t, fi has maximum arrived traffic of ρit+σi, and the logical

combined flow has maximum arrived traffic of
∑n

i=1(ρit+σi) = (
∑n

i=1 ρi)t+
∑n

i=1 σi. By definition,

the logical combined flow is leaky bucket (
∑n

i=1 ρi,
∑n

i=1 σi) compliant.

Similarly, a group of best effort flows, which may be unregulated, can also be viewed as a logical

combined best effort flow.

7

C. Buffer Threshold Setting

Buffer threshold setting methods define the way that each individual flow utilizes the buffer space.

The simplest method is complete sharing, in which the incoming packets of all the flows are put into

the same buffer, and a new packet can be accepted as long as there is space in the common buffer.

Complete sharing enables efficient buffer usage, but cannot provide isolation among flows. If an

unregulated flow keeps injecting packets into the common buffer, all other flows will eventually have

no space to accept new packets, and consequently receive no bandwidth. On the contrary, complete

partitioning permanently divides the entire buffer space among different flows, and each flow can only

use its assigned share. Complete partitioning prevents different flows from affecting each other, but

may not fully utilize the entire buffer. It is possible that while the buffers of some flows are empty,

other flows suffer from packet loss due to lack of buffer space.

In order to combine the advantages of both methods, in this paper we partition the buffer space

into two parts, one for guaranteed performance flows and the other for best effort flows, and each part

is shared by all the flows in that group. Since best effort flows are likely to be aggressive, assigning

them an exclusive buffer offers protection to guaranteed performance flows. On the other hand, buffer

utilization is improved by enabling buffer sharing within a group.

III. LOSSLESS SERVICE IN SINGLE OUTPUT SWITCH

In this section, we discuss buffer management for providing lossless service in a single output

switch. The considered switch has buffer space B and a single output, which has bandwidth R and

runs a FIFO scheduler. The incoming flows include a set of guaranteed performance flows f1, . . . , fn,

which will be treated as a logical combined flow fg, and a set of best effort flows, which are combined

as fe. As indicated in Section II, the buffer space B is partitioned into two parts Bg for fg and Be for

fe, where Bg +Be = B. All the guaranteed performance flows share Bg while all the best effort flows

share Be. The objective is to assure lossless service for the guaranteed performance flows under any

traffic arrival.

8

A. Peak Rate Compliant Flows

First, we consider the case where all the guaranteed performance flows are peak rate compliant.

Theorem 1: Assume that flow f1, . . . , fn are peak rate ρ1, . . . ,ρn compliant, respectively. In order

for the single output switch to assure lossless service, the guaranteed performance flows should be

assigned a buffer with size proportional to the sum of their peak rates, i.e.,

Bg =

∑n
i=1 ρi

R
B

Proof. By Property 2, fg, the logical combination of f1, . . . ,fn, is peak rate ρg =
∑n

i=1 ρi compliant.

We adopt a fluid model to effectively analyze the behavior of flows, in which the traffic of a flow

arrives and leaves on an infinitesimal bit basis. We define a set of critical time points t0, t1, . . . , tp,

t0(= 0) is the initial state, and tp+1 is the time that the last bit at tp in Bg and Be leaves the buffer, or in

other words, the buffered content at tp clears from the buffer at tp+1. Since the output schedules traffic

in a FIFO manner and the flows are served on an infinitesimal bit basis, traffic arriving at Bg and Be

at the same time leaves at the same time as well. Because fg is regulated and fe is aggressive, we can

assume that Bg is empty and Be is full at t0.

Define Bg(t) to be the amount of the actually buffered content of fg at time t, and Bg = max{Bg(t)}
is the buffer size of fg in order to ensure lossless service. Next, we prove the following equation by

induction.
Bg(tp) = Be

p∑
q=1

(ρg

R

)q

Base case: During [t0, t1), fe fills its buffer at rate R, and Bg(t1) = Be
ρg

R
.

Since at t0 only fe has buffered content, during [t0, t1) only fe is served at rate R, or it exclusively

consumes all the bandwidth of the output. On the input side, fg receives traffic at its peak rate ρg, and

fe behaves aggressively and fills its buffer at a rate equal to its output rate R. As a result, t1− t0 = Be

R
,

and at t1, fg has accumulated Bg(t1) = ρg(t1− t0) = Be
ρg

R
content in its buffer.

Inductive hypothesis: During [tp−1, tp), fe fills its buffer at rate R∑p−1
q=0(

ρg
R)

q , and Bg(tp) = Be

∑p
q=1

(ρg

R

)q.

During interval [tp−1, tp), fg keeps injecting traffic at its peak rate ρg, while the input rate of fe is

R∑p−1
q=0(

ρg
R)

q as given in the inductive hypothesis. Following the FIFO scheduling principle, the output

rates of fg and fe in [tp, tp+1) are proportional to their input rates in [tp−1, tp). In other words,

9

output rate of fe during [tp, tp+1) =

R∑p−1
q=0(

ρg
R)

q

ρg + R∑p−1
q=0(

ρg
R)

q

R

=
R∑p

q=0

(ρg

R

)q

Since fe behaves aggressively, it has the same input rate during [tp, tp+1) as its output rate. On the

other hand, fg continues to fill its buffer at rate ρg and

Bg(tp+1) = ρg(tp+1 − tp) = ρg
Be

R∑p
q=0(

ρg
R)

q

= Be

p+1∑
q=1

(ρg

R

)q

Thus, we have completed the proof for the inductive case that, during [tp, tp+1) fe fills its buffer at rate

R∑p
q=0(

ρg
R)

q , and Bg(tp+1) = Be

∑p+1
q=1

(ρg

R

)q.

Since Bg(tp+1) > Bg(tp) and Bg(tp) has a limit when p goes to infinity, we have

Bg = max{Bg(t)}= lim
p→∞

Bg(tp) = Be
ρg

R− ρg

By Bg + Be = B, we can obtain Bg = ρg

R
B, or Bg =

∑n
i=1 ρi

R
B.

As indicated by Theorem 1, when all the guaranteed performance flows are peak rate compliant,

Bg =
∑n

i=1 ρi

R
B is sufficient and also necessary to guarantee lossless service for the guaranteed perfor-

mance flows. It is sufficient because fg will never have more than ρg

R
B buffered content. On the other

hand, it is necessary because Bg(t) may infinitely approach this value.

B. Leaky Bucket Compliant Flows

We now look at the situation where the guaranteed performance flows are leaky bucket compliant.

Theorem 2: Assume that flow f1, . . . , fn are leaky bucket (ρ1,σ1), . . . , (ρn,σn) compliant, respec-

tively. In order for the single output switch to assure lossless service, the guaranteed performance

flows should be assigned a buffer of size

Bg =
n∑

i=1

σi +

∑n
i=1 ρi

R

(
B −

n∑
i=1

σi

)

Proof: By Property 3, fg, the logical combination of f1, . . . , fn, is leaky bucket (ρg =
∑n

i=1 ρi, σg =
∑n

i=1 σi) compliant.

A leaky bucket compliant flow is different from a peak rate compliant flow in the way that it

may have an instantaneous burst. In the following, we analyze the effect of a burst on buffer space

10

requirement of guaranteed performance flows. We assume that the size of the burst is σ and arrives at

time t where ts−1 ≤ t < ts. Comparing with the previous case where all the guaranteed performance

flows are peak rate compliant, an immediate result is that the buffered content of fg at ts should take

the burst into consideration Bg(ts) = Be

∑s
q=1

(ρg

R

)q
+ σ.

During [ts, ts+1), the transmission of the traffic is the same as that with the peak rate compliant

flows except for the burst. Since the burst was injected instantaneously, by the FIFO principle, when

it is transmitted, it exclusively consumes all the bandwidth R. Therefore, when the burst is being

transmitted, fe cannot accept new traffic because no existing content has left and its buffer is still full.

On the other hand, fg keeps injecting traffic at rate ρg, and during the time interval that the burst is

being transmitted, fg has σ
R
ρg new content to be buffered. Thus, Bg(ts+1) = Be

∑s+1
q=1

(ρg

R

)q
+σ ρg

R
. We

can see that the effect of the burst on buffer space requirement diminishes as time goes by. It is easy

to prove that

Bg(tp) =





Be

∑p
q=1

(ρg

R

)q
, tp < ts

Be

∑p
q=1

(ρg

R

)q
+ σ

(ρg

R

)p−s
, tp ≥ ts

Since Bg(tq) < Bg(tp) for any tq < ts ≤ tp, in order to obtain Bg, we only need to consider Bg(tp)

where p≥ s. Given p≥ s,
dBg(tp)

dp
=

(ρg

R

)p

ln
ρg

R

(
σ(ρg

R

)s −
Beρg

R− ρg

)

and
(ρg

R

)p
ln ρg

R
< 0. Therefore, Bg(tp) for p ≥ s may be an increasing, decreasing, or equivalent

function depending on the values of σ and s, i.e., the size of the burst and its arriving time. In any

case, the maximum value of Bg(tp) is obtained when either p = s or p =∞, i.e.,

Bg = max{Bg(tp)}= max{Bg(ts), lim
p→∞

Bg(tp)}

= max

{
Be

s∑
q=1

(ρg

R

)q

+ σ,
Beρg

R− ρg

}
<

Beρg

R− ρg

+ σ

Thus, Bg = Beρg

R−ρg
+ σ is sufficient to assure lossless service when fg has a burst of size σ. It is also

necessary. Considering that the burst comes at a time when s is approaching infinity,

lim
s→∞

Bg(ts) = lim
s→∞

Be

s∑
q=1

(ρg

R

)q

+ σ =
Beρg

R− ρg

+ σ

11

The above analysis applies to any arbitrary burst of size σ. As discussed earlier, the effect of the

burst on buffer space requirement diminishes as time goes by. Thus, if the burst arrives as different

parts at different time, say, σ′ coming at t′ and σ′′ at t′′ and σ′ + σ′′ = σ, it is easy to see that Bg =

Beρg

R−ρg
+ σ is still sufficient to ensure lossless service. For the logical guaranteed performance flow fg,

it has a maximum possible burst of size σg, and therefore Bg = Beρg

R−ρg
+ σg. Since Bg + Be = B, we

have Bg = σg + ρg

R
(B− σg), or Bg =

∑n
i=1 σi +

∑n
i=1 ρi

R
(B−∑n

i=1 σi).

C. Buffer Size for Best Effort Flows

It can be noticed that there is no requirement to the total buffer size, except that when all the flows

are peak rate compliant, it should be larger than the sum of the bursts of all the flows. As long as

the entire buffer (in the case that the guaranteed performance flows are peak rate compliant) or the

entire buffer minus the portion for the bursts (in the case that the guaranteed performance flows are

leaky bucket compliant) is partitioned proportionally, lossless service can be assured for guaranteed

performance flows. However, in practice, the buffer size has to be larger than a specific value, because

the lengths of real packets cannot be infinitely small. Furthermore, while lossless service is always

assured for guaranteed performance flows, the total buffer size is critical to the packet loss ratios of

the best effort flows and the throughput of the switch. If the total buffer size becomes larger, by a

proportional partition, the buffer allocated for best effort flows is correspondingly larger, leading to

smaller packet loss ratios and higher throughput.

In addition, the buffer size for best effort flows is also critical to the congestion control of the

network. Network congestion occurs when too many flows attempt to send packets at high rates.

In a congested network, packets experience extremely long delays due to the long queue lengths.

Moreover, as the buffer space is always limited, when too many packets are received, some of them

have to be dropped. In order to compensate for the lost packets due to buffer overflow, the sender has

to retransmit them. When a packet is dropped along a path, the transmission capacity used at each of

the upstream routers to forward the packet to the point at which it is dropped is wasted. It also may

happen that although an acknowledgment is returned, it is significantly delayed, and the sender has

12

retransmitted the packet before receiving it, resulting in bandwidth wasting on forwarding unnecessary

duplicate copies of the same packet.

The TCP/IP protocol stack has been the standard in the current Internet, and its congestion control

mechanism is widely deployed. TCP uses a window based approach for congestion control [18].

When the transmitted packets are lost due to buffer overflow and no acknowledgment is returned to

the sender, the sender would assume that there is a congestion in the network, and would reduce

the size of the window. TCP uses an additive-increase, multiplicative-decrease (AIMD) algorithm to

adjust the window size. The initial congestion window size is set to one, and is increased exponentially

if all the sent TCP segments are positively acknowledged. When it reaches a specific threshold, the

congestion window size grows linearly rather than exponentially. Due to the bandwidth limitation of

the physical links, the window size cannot increase infinitely, and packet loss will occur eventually.

When a timeout for the lost packet occurs, the value of the threshold is set to half the value of the

current congestion window size, and the congestion window size is reset to one.

Since real network traffic is usually in bursts, a larger buffer size for best effort flows can help

reduce packet loss caused by buffer overflow and improve the network congestion control. Assume

that best effort flows have a small buffer. When a burst of packets comes, it may not be able to fit

into the buffer and will be dropped, although the bandwidth is sufficient for the average traffic rate.

Due to those dropped packets, the sender would assume that there is a congestion in the network and

reduce the TCP congestion window size. However, this may not be necessary and can be avoided if

the best effort flows are allocated a larger buffer. Traditionally, the buffer size for routers and switches

has been calculated as the product of the round trip time (RTT) and the bandwidth [19]. The principle

is to buffer all the sent packets before the first acknowledgment is received, which takes the round trip

time to arrive after the packet transmission. In several recent works [20] [21] [22], it is reported that a

much smaller buffer is sufficient for backbone routers.

There are many queueing based approaches in the literature to improve congestion control. A

well known example is Random Early Detection (RED) [23]. It randomly discards packets in the

earlier stage based on statistical probabilities to avoid TCP global synchronization. Those schemes

13

can be combined with the buffer management strategies proposed in this paper to improve congestion

avoidance.

D. Multiple Output Queues with Complete Partitioning

The results obtained in the above are based on the assumption that there is only a single queue

for all the guaranteed performance flows, i.e., the complete sharing buffer threshold setting method is

used and Bg is shared by f1, . . . , fn. We discuss below the situations when there are multiple output

queues, each for a different guaranteed performance flow. In other words, the complete partitioning

method is used, and each guaranteed performance flow fi is assigned an exclusive buffer, denoted as

Bi.

We first look at the case when all the performance guaranteed flows are peak rate complaint.

If flow fi is peak rate ρi compliant, by a similar analysis to that in Section III-A, we can draw the

conclusion that a buffer of size Bi = ρi

R
B is sufficient and necessary for fi to assure lossless service.

Note that the total buffer space required for all the guaranteed performance flows in this case, i.e.,
∑n

i=1 Bi, is the same as the corresponding Bg in Section III-A. Thus, complete sharing and complete

partitioning make no difference when all the guaranteed performance flows are peak rate complaint.

Next, we will show that a single shared FIFO queue saves buffer space when the guaranteed

performance flows are leaky bucket compliant. Assume that each flow has a separate queue and the

complete partitioning method is used. If flow fi is leaky bucket (ρi, σi) compliant, the buffer space

necessary for fi to ensure lossless service is

Bi = σi +

∑
j 6=i σj

R
ρi +

(
B −

n∑
i=1

(
σi +

∑
j 6=i σj

R
ρi

))
ρi

R

The effect caused by the burst σi of flow fi on buffer space requirement includes two parts. On the

one hand, σi more space is immediately needed to hold the burst. On the other hand, when the burst

is being transmitted, all the guaranteed performance flows have a total of σi

R
ρg new traffic arrived that

needs to be buffered. Since the two parts of traffic do not coexist and σi is larger than σi

R
ρg, if complete

sharing among guaranteed performance flows is adopted, σi is sufficient for the space requirement of

both parts. However, when using complete partitioning, fi needs σi space to buffer its own burst, and

14

needs
∑

j 6=i σj

R
ρi space in the worst case to buffer the traffic arrived when the bursts of all other flows

are scheduled. It is easy to see that
∑n

i=1 Bi is a larger value than the corresponding Bg in Section

III-B, which means that a single queue is more efficient than multiple queues in this case.

Fair scheduling algorithms, such as WF2Q [4] and DRR [6], also use multiple output queues

to buffer the packets of different flows, however, the above results for multiple queues cannot be

directly applied to them, because those results are obtained under the assumption of a FIFO scheduling

algorithm. Fair scheduling algorithms arrange the departure order of the buffered packets of different

flows to ensure that each flow receives the same amount of service as what it should receive in the

ideal Generalized Processor Sharing (GPS) model.

In fact, the buffer space requirement for lossless service of a fair scheduling algorithm is easy to

analyze if its fairness guarantee is known. The fairness guarantee is the maximum difference between

the amount of service that a flow should receive in the ideal GPS model and that it receives in the

specific fair scheduling algorithm. For example, the fairness guarantee of WF2Q is L [4], where L is

the maximum packet length. This indicates that the maximum service difference between GPS and

WF2Q for any flow is at most the length of a single packet.

If the allocated bandwidth of flow fi in GPS is ρi, then the average traffic rate of fi should also be

ρi. Otherwise, if the average traffic rate is too high, the arrived traffic will be infinitely accumulated;

if the average traffic rate is too low, the leftover bandwidth is wasted. Under this assumption, we

will analyze the buffer space requirement of a flow when the adopted fair scheduling algorithm has

a fairness guarantee of θ. First, if fi is peak rate ρi complaint, the buffer space needed for fi to

ensure lossless service is θ. The reasoning is straightforward. According to the definition of the peak

rate scheme, during any interval of length t, fi has maximum arrived traffic of ρit. During the same

interval, the service fi should receive in the ideal GPS model is ρit [9], and with a fairness guarantee of

θ, the service fi receives in the fair scheduling algorithm is at least ρit− θ. As a result, the maximum

amount of traffic stored in the buffer during the interval is θ, which is also the buffer space to ensure

lossless service. Similarly, if fi is leaky bucket (ρi,σi) compliant, the buffer space for lossless service

15

is θ + σi, and the additional σi space is used to store the burst.

IV. LOSSLESS SERVICE IN MULTIPLE OUTPUT SWITCH

In the previous section, we have analyzed buffer management for lossless service in the single

output switch. In this section, we extend the results to the more general situation where the switch has

multiple outputs and a flow may be a multicast flow destined to more than one output. The considered

switch has buffer space B, and m outputs out1, . . . , outm, each of which runs a FIFO scheduler. For a

specific output outj , it has bandwidth Rj , shared by a set of guaranteed performance flows fj1, . . . ,fjnj
,

which are leaky bucket (ρj1,σj1), . . . ,(ρjnj
,σjnj

) compliant respectively, and a set of best effort flows.

The guaranteed performance flows destined to outj are analyzed as a logical combined flow fjg, and

by Property 3, fjg is leaky bucket (ρjg =
∑nj

i=1 ρji,σjg =
∑nj

i=1 σji) compliant. The best effort flows to

outj are analyzed as a logical combined flow fje, and we define ρje = Rj − ρjg, which is the leftover

bandwidth for all the best effort flows to outj .

The traffic in the buffer of a multiple output switch may go to different outputs, and the buffer

threshold setting in Section II needs to be extended to manage the shared buffer. To be specific, the

entire buffer is partitioned into m + 1 parts BG and B1e, . . . ,Bme. BG is shared by all the guaranteed

performance flows, regardless which output the flow is destined to, and Bje is shared by the best

effort flows to outj . The reason for the setting is that, since all the guaranteed performance flows

are leaky bucket compliant, sharing the buffer among them improves the space utilization and lowers

the operation complexity. On the other hand, because the best effort flows are not regulated and may

be aggressive to fill any empty space they can access, assigning an exclusive buffer for the best effort

flows to each output offers protection to the guaranteed performance flows. The protection is two-fold:

first, a best effort flow cannot grab the buffer space for the guaranteed performance flows, and second,

it cannot inject a large amount of traffic by using the buffer space for the best effort flows to other

outputs.

There can be different ways to allocate buffer space for B1e, . . . , Bme. We have known from

Section III that, as long as Bje is proportional to the bandwidth share ρje/Rj of the logical best

16

effort flow fje, lossless service can be assured for the guaranteed performance flows to the same

output. Since there is no requirement for the actual buffer size, the buffer allocation can be quite

flexible. In this paper, we make the buffer sizes of different logical best effort flows proportional to

their bandwidth, i.e.,
B1e

ρ1e

=
B2e

ρ2e

= · · · = Bme

ρme

which simplifies the buffer allocation, and also achieves fairness among the best effort flows to differ-

ent outputs.

We are now ready to present the theorem for the pure unicast scenario.

Theorem 3: Assume that any flow is only destined to one output. In order for the multiple output

switch to assure lossless service, the guaranteed performance flows should be assigned a buffer of size

BG =
m∑

j=1

nj∑
i=1

σji +

∑m
j=1

∑nj

i=1 ρji∑m
j=1 Rj

(
B −

m∑
j=1

nj∑
i=1

σji

)

and the best effort flows to outj should be assigned a buffer of size

Bje =
Rj −

∑nj

i=1 ρji∑m
j=1 Rj

(
B −

m∑
j=1

nj∑
i=1

σji

)

Proof: We first consider the guaranteed performance flows to outj , and define

Bjg = σjg +
ρjg∑m
j=1 Rj

(
B −

m∑

k=1

σkg

)

If we view outj as a single output switch with Rj bandwidth and Bj = Bjg +Bje buffer space, shared

by fjg and fje, it is easy to see that

Bjg = σjg +
ρjg

Rj

(Bj − ρjg)

By Theorem 2, we know that Bjg is sufficient and necessary to ensure lossless service for fjg. Since

we consider only unicast flows, the flows to different outputs have no interference with each other.

Thus, BG =
∑m

j=1 Bjg is sufficient and necessary to ensure lossless service for all the guaranteed

performance flows.

Next, we will generalize the results by adding multicast flows into consideration. In order to save

buffer space, the traffic of a multicast flow is usually stored as a single copy in the shared buffer, which

17

12
f22 f32f31f21f11

out 1 out 2 out 3

f

Fig. 3. A physical multicast flow may be labeled as different flows at different outputs.

will be transmitted to all its destination outputs. A pointer based queueing scheme, similar to that in

[24], can be used to efficiently organize multicast content in the shared buffer.

A multicast flow may be locally labeled as different flows at different outputs. We define the

following functions to represent the fanout property of a multicast flow.

F (fji) = { outk| outk is one of the destinations of the

physical (multicast) flow that fji corresponds to}

For the example in Fig. 3, F (f11) = F (f21) = {out1,out2}, F (f12) = F (f22) = F (f31) = {out1,out2,out3},

and F (f32) = {out3}.

Then, update the expression of ρji and σji by adding multicast information,

ρ̂ji =
ρji

|F (fji)|

σ̂ji =
1

|F (fji)|

(
max

{
σkg

Rk

ρji|outk ∈ F (fji)

}
+ σji−min

{
σji

Rk

∑

|F (fkl)|=1

ρkl|outk ∈ F (fji)

})

ρ̂ji is the scaled rate for the labeled flow fji. Since the traffic of a multicast flow is stored only

once, the scaled traffic rate for each labeled flow can be viewed as 1
|F (fji)| of the original value ρji. For

example, in Fig. 3, a multicast flow is labeled as f11 at out1 and f21 at out2. ρ11 and ρ21 are the actual

rate of the physical flow, and ρ̂11 = ρ̂21 = ρ11

2
= ρ21

2
.

The burst σji of flow fji causes the increase of buffer space requirement in two aspects: to hold

the burst itself, and to store the arriving traffic of all the guaranteed performance flows destined to

the same output when the burst is transmitted. For a unicast flow, since the two parts of traffic never

come together and the former is always larger than the latter, a total of σji extra space is enough to

18

cover the buffer space increase caused by the burst: first to hold the burst itself and then to store the

arriving traffic when the burst is transmitted. However, for a multicast flow, the two parts of traffic

may simultaneously exist in the buffer, such as the situation that the burst has only been transmitted to

part of the destinations of the multicast flow and still needs to be kept in the buffer for the remaining

outputs.

σ̂ji is the scaled extra buffer space of the labeled flow fji to smooth the bursts. There are two parts

in the expression of σ̂ji. The first part is the buffer space for fji to buffer the arriving traffic when the

bursts are transmitted. Different labeled flows may need different amounts of buffer space for the first

part. Since the traffic of a multicast flow is buffered only once, the largest one among those of all the

labeled flows, i.e., max
{

σkg

Rk
ρji|outk ∈ F (fji)

}
, is counted. For example, in Fig. 3, f11 may have up

to σ1g

R1
ρ11 traffic arrived when the burst σ1g of the logical combined guaranteed performance flow f1g

is transmitted. For the other labeled flow f21 of the same multicast flow, the value is σ2g

R2
ρ21. Note that

ρ11 = ρ21. Assuming σ1g

R1
ρ11 ≤ σ2g

R2
ρ21, σ2g

R2
ρ21 should be counted. The second part of the expression is

the space that fji needs to buffer its own burst σji. It should be noted that, when the burst is transmitted

by its last destination output, it will definitely not coexist and its space is able to store the arrived traffic
σji

Rj

∑
|F (fjl)|=1 ρjl of unicast flows to this output, which has been counted in the first part. In order to

ensure sufficiency, we deduct the smallest one among those of all the outputs of a multicast flow, i.e.

σji −min
{

σji

Rk

∑
|F (fkl)|=1 ρkl|outk ∈ F (fji)

}
. For example, in Fig. 3, f32 has σ32

R3
ρ32 traffic arrived

when burst σ32 is transmitted. Since the arrived traffic σ32

R3
ρ32 has been counted in the first part of the

expression, and it will not coexist with burst σ32, we can safely deduct it. Finally, multiply the sum of

the two parts by 1
|F (fji)| , and we obtain the scaled extra buffer space σ̂ji of the labeled flow fji for the

bursts.

Since best effort flows are always assumed to be aggressive to fill any empty buffer space, a

multicast best effort flow has no difference in our analysis compared to a unicast best effort flow.

Theorem 4: In order for the multiple output switch to assure lossless service, the guaranteed per-

formance flows should be assigned a buffer of size

19

BG =
m∑

j=1

nj∑
i=1

σ̂ji +

∑m
j=1

∑nj

i=1 ρ̂ji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

(
B −

m∑
j=1

nj∑
i=1

σ̂ji

)

and the best effort flows of outj should be assigned a buffer of size

Bje =
ρje∑m

j=1(
∑nj

i=1 ρ̂ji + ρje)

(
B −

m∑
j=1

nj∑
i=1

σ̂ji

)

Proof: Similar to the proof of Theorem 3, we view outj as a single output switch shared by fjg and

fje, with Rj bandwidth and Bj = Bjg + Bje buffer space, where Bjg is defined as

Bjg =

nj∑
i=1

σji +

∑nj

i=1 ρji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

(
B −

m∑
j=1

nj∑
i=1

σ̂ji

)

It is easy to see that
Bjg = σjg +

ρjg

Rj

(Bj − ρjg)

By Theorem 2, Bjg is sufficient and necessary to ensure lossless service for fjg. Thus
∑m

j=1 Bjg should

be sufficient to ensure lossless service of all the guaranteed performance flows. However, because there

are multicast flows and the traffic of a multicast flow is buffered only once, the required buffer space

is smaller. Following the above analysis, replacing ρji by the scaled rate ρ̂ji and σji by the scaled burst

σ̂ji in the above formula, we obtain

B̂jg =

nj∑
i=1

σ̂ji +

∑nj

i=1 ρ̂ji∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

(
B −

m∑
j=1

nj∑
i=1

σ̂ji

)

and BG =
∑m

j=1 B̂jg is sufficient and necessary for providing lossless service.

It can be noticed that, for a unicast flow, ρ̂ji = ρji and σ̂ji = σji, and therefore Theorem 4 also

holds under the pure unicast scenario. In fact, it is the universally applicable solution for providing

lossless service in shared buffer switches.

V. SOME DISCUSSIONS

In this section, we first discuss why and how the buffer allocation strategies should be adjusted for

real packet switched networks, and then compare in detail the proposed buffer management schemes

with fair scheduling algorithms.

20

A. Buffer Allocation Adjustment for Packet Switched Networks

So far all our discussions have been based on a fluid model, which greatly simplifies the analysis

but is not practical for real packet switched networks. In the fluid model, traffic comes and leaves on

an infinitesimal bit basis like a fluid flow. However, in the packet switched network, packets are the

scheduling and transmission units. In order to ensure lossless service in the packet switched network,

buffer allocation strategies obtained with the fluid analytical model have to be adjusted due to the

packet fragmentation.

We first calculate the adjustment for the single output switch and then generalize the results to the

multiple output switch. There are two differences between the fluid model and the packet switched

network. First of all, in the fluid model, all flows to the same output are served simultaneously, while

in the packet switched network, flows are served one by one, i.e., only one flow can be served at

any instant. Thus, when a best effort flow is transmitting a packet, the guaranteed performance flows

cannot release any buffer. Because the output uses a FIFO scheduler, best effort flows can continue

sending packets in a time period only if no packet of the guaranteed performance flows arrive. The

maximum length of such a period is L
max{ρl} , where L is the maximum packet length. During this

period, the guaranteed performance flow fi sends no packet in the packet switched network, but can

transmit up to L
max{ρl}ρi traffic in the fluid model, which should be compensated in the adjustment.

As to the second difference, in the fluid model, flows are served on an infinitesimal bit basis, i.e.,

a bit is immediately released from the buffer after it has been transmitted. On the contrary, in the

packet switched network, a packet will not be removed from the buffer until it has been completely

transmitted. Even part of the packet has been sent to the output, the corresponding buffer space is still

occupied. With the maximum packet length of L, a packet can be transmitted for as long as L
R

. During

this interval, fi cannot release any occupied buffer in the packet switched network, but is able to obtain

up to L
R
ρi free space in the fluid model, which should also be considered in the adjustment. If we use

Ai to denote the adjustment for fi in a single output switch, we have the following expression of Ai

by adding the above two components.

21

Ai =
L

max{ρl}ρi +
L

R
ρi

In a multiple output switch with multicast incoming flows, the general expression for the adjust-

ment of fji is given as follows:

Aji = max

{
L

max{ρkl} ρ̂ji|outk ∈ F (fji)

}
+ max

{
L

Rk

ρ̂ji|outk ∈ F (fji)

}

The idea is to choose the largest value among those of all the labeled flows and use the scaled rate

to replace the actual rate. As a result, the universally applicable formulas in Theorem 4 should be

modified as follows to reflect the adjustment for the packet fragmentation.

BG =
m∑

j=1

nj∑
i=1

(σ̂ji + Aji) +
B−∑m

j=1

∑nj

i=1(σ̂ji + Aji)∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)

m∑
j=1

nj∑
i=1

ρ̂ji

Bje =
B−∑m

j=1

∑nj

i=1(σ̂ji + Aji)∑m
j=1(

∑nj

i=1 ρ̂ji + ρje)
ρje

B. Comparison with Fair Scheduling Algorithms

In this subsection, we compare in detail the two approaches for differentiated service: buffer man-

agement schemes and fair scheduling algorithms. The basic idea of differentiated service is to provide

isolation between the flows and guarantee the amount of bandwidth that each flow should receive.

Buffer management schemes, as the first defense line, restrict the amount of traffic that different flows

can inject into the buffer and thus indirectly control the bandwidth consumption. Fair scheduling

algorithms, on the other hand, assume that each flow always has packets in the buffer, and decide

the transmission order of the buffered packets to ensure that each flow receives its desired amount of

bandwidth.

Due to their low computational overheads, buffer management schemes can provide differentiated

service at high speed and low hardware cost. The main advantage of buffer management schemes over

fair scheduling algorithms is that there is no extra computation associated with each packet transmis-

sion. Buffer management schemes only need to recalculate the buffer allocation when a new flow

arrives or an existing flow leaves. For packet transmissions, the FIFO scheduler simply continuously

removes the head packet of the queue and sends it out. Since there is no need to decide which packet

22

to transmit next, the buffer management schemes in conjunction with the FIFO scheduler can transmit

packets at high speed. In addition, the FIFO scheduler does not need the support of special hardware

and can achieve low implementation cost. On the contrary, in order to accelerate the scheduling pro-

cess, fair scheduling algorithms usually need the support of special devices. For example, WFQ needs

two registers for each flow to store the virtual start time and virtual finish time of its head packet, and

it needs comparators to find the smallest time stamp; DRR also needs a register for each flow to store

its remaining transmission quota, and a priority encoder to implement the round robin selection.

It should be noted that, without the help of proper buffer management schemes, fair scheduling

algorithms alone are difficult to provide guaranteed performance service, as will be seen in the simula-

tion results in Section VI. The reason is that fair scheduling algorithms assume that each flow always

has buffered packets, and their job is to decide the transmission order of those packets. Without a

proper buffer management scheme, it may happen that when it is the turn of a flow to transmit a packet,

it has no packet available in the buffer. In this case, the fair scheduling algorithm has to select a packet

of another flow due to the work-conservation property, meaning that the fair scheduling algorithm will

transmit a packet as long as there is one in the buffer. Thus, when guaranteed performance flows and

best effort flows share the same buffer, it is possible for a malicious flow to inject a lot of packets and

occupy most of the buffer space, so that the fair scheduling algorithm can send only its packets. In this

sense, when the buffer size is finite in a practical scenario, fair scheduling algorithms can only provide

guaranteed performance service when there are supporting buffer management schemes.

On the other hand, the trade-off for buffer management schemes is that the performance guar-

antees they provide are not as tight as fair scheduling algorithms. Fair scheduling algorithms are

able to achieve good worst-case performance guarantees, and are suitable for applications with tight

bandwidth or delay requirements.

VI. SIMULATION RESULTS

In this section, we present our simulation results to verify the analytical results obtained in the

previous sections, and compare the proposed methods with fair scheduling algorithms.

23

1

p

q

OffOn λ2λ

Fig. 4. In a Markov modulated Poisson process, the intensity of the Poisson process depends on the state of the Markov
chain.

Since most realistic networks are packet switching based, our simulations are conducted in a

packet switched network. We assume that the packet length is uniformly distributed in the range

[100,300] bytes. In other words, use l(x) to denote the length distribution density function, and we

have

l(x) =





1
201

, 100≤ x≤ 300

0, otherwise

Because the guaranteed performance flow is leaky bucket compliant, we emulate it with a constant

bit rate (CBR) flow, and the burst may arrive at any time during the simulation run. On the other hand,

the best effort flow is emulated by the Markov modulated Poisson process, to reflect the burst nature

of real network traffic, as illustrated in Fig. 4. In a Markov modulated Poisson process, the intensity of

a Poisson process is defined by the state of a Markov chain. The Markov chain has two states: on and

off. In the on state, the intensity of the Poisson process is λ1, and in the off state the intensity is λ2.

The probability to switch from the on state to the off state is p, and the probability to switch from the

off state to the on state is q. In the simulations, we set p = q = 0.2 and λ2 = 0, and change the value

of λ1 to adjust the load of the best effort flow. Each simulation run lasts for 105 simulation seconds in

order to obtain stable statistics.

A. Single Output Switch

The purpose of the first simulation is to verify Theorem 1. We set up a single output switch with

1M(106) bps bandwidth and 5K(103) bytes buffer space. There are two flows, flow 1 is a guaranteed

performance flow, which is peak rate 600K bps compliant, and flow 2 is a best effort flow, with load

varying from 100K bps to 2M bps.

First, we allocate buffer space according to Theorem 1, i.e., Bg = 5000× 0.6 = 3000 bytes for

24

0 0.5 1 1.5 2
0

20

40

60

80

100

Load of Flow 2 (M bps)

P
ac

ke
t L

os
s

of
 F

lo
w

 1
 (

pe
rc

en
t)

Single Output Switch

Flow 1
Flow 2

0 0.5 1 1.5 2
0

20

40

60

80

100

Load of Flow 2 (M bps)

P
ac

ke
t L

os
s

of
 F

lo
w

 1
 (

pe
rc

en
t)

Single Output Switch

Flow 1
Flow 2

(a) (b)

Fig. 5. The buffer allocation for lossless service in the packet switched network needs to be adjusted due to packet
fragmentation. (a) Packet loss before adjustment. (b) Packet loss after adjustment.

flow 1 and Be = 5000− 3000 = 2000 bytes for flow 2. The packet loss of flow 1 and flow 2 is plotted

in Fig. 5(a). Unfortunately, flow 1 still suffers packet loss, although its packet loss ratio is smaller

comparing with that of flow 2. Furthermore, the packet loss ratio of flow 1 increases gradually as the

load of flow 2 increases.

The reason for the inconsistency between the analytical results and the simulation results is that,

while the analysis is based on a fluid model, the simulation is conducted in a packet switched network.

In Section V-A, we have analyzed how to adjust buffer allocation for packet switched networks. In this

case, the adjustment is 300 + 180 = 480 bytes for flow 1. After the adjustment, Bg = 480 + (5000−
480)× 0.6 = 3192 bytes and Be = 5000−Bg = 1808 bytes, and the packet loss of flow 1 and flow 2

is given in Fig. 5(b). It can be seen that flow 1 has zero packet loss now.

Next, we exam the relationship between the total buffer size and the packet loss ratio of the best

effort flows. We consider a more complex scenario. The single output switch has 1M bps bandwidth

and buffer size varying from 3K to 60K bytes. There are two guaranteed performance flows. Flow

1 is peak rate 200K bps compliant and flow 2 is leaky bucket (400K bps, 4K bits) compliant. There

are two more best effort flows, where flow 3 has a load of 100K bps and flow 4 has a load of 300K

bps. The buffer is allocated according to Theorem 2 with the adjustment for packet fragmentation.

The adjustment for flow 1 and flow 2 is 210 bytes and 420 bytes respectively. Thus, Bg = 4K/8 +

630 + (B− 4K/8− 630)× 0.6 and Be = B−Bg. The packet loss ratios of the four flows are plotted

25

0 1 2 3 4 5 6
0

5

10

15

20

Total Buffer Size (K bytes)

P
ac

ke
t L

os
s

(p
er

ce
nt

)

Single Output Switch

Flow 1
Flow 2
Flow 3
Flow 4

0 1 2 3 4 5 6
93

94

95

96

97

98

99

100

Total Buffer Size (K bytes)

T
hr

ou
gh

pu
t (

pe
rc

en
t)

Single Output Switch

(a) (b)
Fig. 6. Effect of total buffer size on packet loss and throughput. (a) Packet loss decreases as the total buffer size increases.
(b) Throughput increases as the total buffer size increases.

in Fig. 6(a). As can be seen, lossless service is assured for flow 1 and flow 2. On the other hand, flow

3 and flow 4 have similar packet loss ratios, and the values drop as the total buffer size increases. The

throughput of the switch is given in Fig. 6(b). As the increase of the total buffer size, the throughput

of the switch is steadily increasing, and finally approaching 100%.

B. Multiple Output Switch

In this simulation, we verify Theorem 4. The simulation is set up based on the example in Fig. 3.

The switch has three outputs out1, out2 and out3. The total buffer size is 15K bytes, and the bandwidth

for each output is 1M bps. There are three guaranteed performance flows. Flow 1 is a multicast flow

to out1 (labeled as f11) and out2 (as f21), and is leaky bucket (200K bps, 2K bits) compliant. Flow 2

is a multicast flow to out1 (as f12), out2 (as f22) and out3 (as f31), and is leaky bucket (400K bps, 4K

bits) compliant. Flow 3 is a unicast flow to out3 (as f32), and is peak rate 200K bps compliant. There

are also three best effort unicast flows, destined to the three outputs respectively. We let them have the

same load, which varies from 100K bps to 2M bps.

The buffers are allocated according to Theorem 4 with adjustment:

σ̂11 = σ̂21 = 400/2

σ̂12 = σ̂22 = σ̂31 = 800/3

σ̂32 = 100

26

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Load of Flow 4, 5, and 6 (M bps)

P
ac

ke
t L

os
s

(p
er

ce
nt

)

Multiple Output Switch

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5
Flow 6

Fig. 7. By saving a multicast packet as a single copy in the share buffer, the buffer space requirement for ensuring lossless
service is much smaller.

A11 = A21 = 210/2

A12 = A22 = A31 = 420/3

A32 = 210

Thus, we can obtain BG = 2140 + (15000− 2140)× 0.4 = 7284 bytes and B1e = B2e = B3e = 2572

bytes. The packet loss ratio of each flow is shown in Fig. 7. As can be seen, lossless service is assured

for the three guaranteed performance flows, and the best effort flows lose more packets as their load

increases. On the contrary, if a multicast packet is saved as multiple unicast packet copies, BG has

to be greater than 9000 bytes to guarantee lossless service, because for all the three outputs, the input

rate of the guaranteed performance flows is 60% of the output bandwidth.

C. Comparison with Fair Scheduling Algorithms

In this simulation, we compare our methods with two typical fair scheduling algorithms. Weighted

Fair Queuing (WFQ) [10] and Deficit Round Robin (DRR) [6] are considered, which are representa-

tives of time stamp based algorithms and round robin based algorithms, respectively.

We set a single output switch with 1M bps bandwidth and 5K bytes buffer space. There are four

unicast flows. Flow 1 is leaky bucket (100K bps, 1K bits) compliant, flow 2 is peak rate 200K bps

compliant, and flow 3 is leaky bucket (300K bps, 3K bits) compliant. Flow 4 is a best effort flow, and

we let its load increase from 100K bps to 2M bps.

The reserved bandwidth of each guaranteed performance flow is its input rate, i.e., 100K bps for

27

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Load of Flow 4 (M bps)

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

 b
ps

)

Buffer Management for Lossless Service

Flow 1
Flow 2
Flow 3
Flow 4

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Load of Flow 4 (M bps)

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

 b
ps

)

Weighted Fair Queuing

Flow 1
Flow 2
Flow 3
Flow 4

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Load of Flow 4 (M bps)

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

 b
ps

)

Deficit Round Robin

Flow 1
Flow 2
Flow 3
Flow 4

(a) (b) (c)

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Load of Flow 4 (M bps)

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

 b
ps

)

Weighted Fair Queuing (with Infinite Buffer Space)

Flow 1
Flow 2
Flow 3
Flow 4

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Load of Flow 4 (M bps)

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

 b
ps

)

Deficit Round Robin (with Infinite Buffer Space)

Flow 1
Flow 2
Flow 3
Flow 4

(d) (e)
Fig. 8. Actually received bandwidth of each flow with different methods. (a) Buffer management for lossless service.
(b) Weighted Fair Queuing. (c) Deficit Round Robin. (d) Weighted Fair Queuing (with Infinite Buffer Space). (e) Deficit
Round Robin (with Infinite Buffer Space).

flow 1, 200K bps for flow 2 and 300K bps for flow 3 and the leftover bandwidth 400K bps is regarded

as the reserved bandwidth of the best effort flow (flow 4). For the fair scheduling algorithms, all the

four flows share the entire buffer without isolation between guaranteed performance flows and best

effort flows.

The actually received bandwidth of each flow under buffer management for lossless service is

shown in Fig. 8(a). We can see that, regardless of the load of flow 4, the reserved bandwidth of flow

1, flow 2 and flow 3 is guaranteed. The simulation results under WFQ and DRR are plotted in Fig.

8(b) and Fig. 8(c) respectively. As can be seen, although the received bandwidth of flow 1, flow 2

and flow 3 is still approximately proportional to their reserved bandwidth, it is severely affected by

the load of flow 4, and drops dramatically as the load of flow 4 increases. The results indicate that,

without proper buffer management, fair scheduling algorithms alone are difficult to provide bandwidth

guarantees. This is consistent with the analysis in Section V-B. On the other hand, when the buffer

size is infinite, the bandwidth of different flows under WFQ and DRR is shown in Fig. 8(d) and Fig.

28

8(e), respectively. As can be seen, both WFQ and DRR achieve perfect fairness in this case.

VII. CONCLUSIONS

Comparing with fair scheduling algorithms, buffer management does not need to keep a separate

queue for each flow and maintain associated state variables, and thus can provide differentiated service

at high speed with low cost. In this paper, we have studied using buffer management to ensure lossless

service for guaranteed performance flows in shared buffer switches. By adopting the discussed buffer

management methods, the considered switches can efficiently provide guaranteed performance service

in a high speed network.

Our analysis started with the simpler case where the considered switch has only one output. We

extended the results to the more general case for multiple output switches with multicast flows, and

obtained a universally applicable buffer allocation solution for assuring lossless service. We conducted

simulations to verify the analytical results, and discovered the buffer requirement difference between

the fluid analytical model and the packet switched network due to packet fragmentation. A general

formula was then provided for the adjustment, and after adjusting the buffer allocation for packet frag-

mentation, the simulation results demonstrated consistency with the analytical results. This indicates

that our analytical results in conjunction with the packet fragmentation adjustment can model buffer

management for lossless service in shared buffer switches well. We also compared our methods with

two typical fair scheduling algorithms by simulation, and the results showed that our methods provide

better bandwidth guarantees than the fair scheduling algorithms alone.

ACKNOWLEDGMENTS

This research work was supported in part by the U.S. National Science Foundation under grant

numbers CCR-0207999 and CCF-0744234.

REFERENCES

[1] S. Blake et. al., “A framework for differentiated services,” RFC 2475, Dec. 1998.

[2] J. Song, M. Chang, S. Lee, and J. Joung, “Overview of ITU-T NGN QoS Control,” IEEE Commu-

nications Magazine vol. 45, no. 9, pp. 116-123, Sep. 2007.

29

[3] M. Garett, “A service architecture for ATM: from applications to scheduling,” IEEE Network

Magazine, pp. 6-14, May 1996.

[4] H. Zhang, “WF2Q: worst-case fair weighted fair queueing,” IEEE INFOCOM’96, pp. 120-128,

San Francisco, CA, Mar. 1996.

[5] P. Valente, “Exact GPS simulation with logarithmic complexity, and its application to an optimally

fair scheduler,” IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp. 1454-1466, Dec. 2007.

[6] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,” IEEE/ACM

Trans. Networking, vol. 4, no. 3, pp. 375-385, Jun. 1996.

[7] D. Pan and Y. Yang, “Credit based fair scheduling for packet switched networks,” IEEE INFO-

COM’05, pp. 843-854, Miami, FL, March 2005.

[8] X. Yuan and Z. Duan, “Fair round robin: A low complexity packet scheduler with proportional

and worst-case fairness,” IEEE Transactions on Computers, vol. 58, no. 3, pp. 365-379, Mar. 2009.

[9] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow control in integrated

services networks: the single node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357,

Jun. 1993.

[10] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”

ACM SIGCOMM’89, vol. 19, no. 4, pp. 3-12, Austin, TX, Sep. 1989.

[11] J. Xu and R. Lipton, “On fundamental tradeoffs between delay bounds and computational com-

plexity in packet scheduling algorithms”, ACM SIGCOMM’02, Pittsburgh, PA, Aug. 2002.

[12] Q. Zhao and J. Xu, “On the computational complexity of maintaining GPS clock in packet

scheduling”, IEEE Infocom 2004, Hong Kong, Mar. 2004.

[13] R. Guerin, S Kamat, V. Peris and R. Rajan, “Scalable QoS provision through buffer manage-

ment”, ACM SIGCOMM’98, pp. 29-40, 1998.

[14] S. Cheung and C. Pencea, “Pipelined sections: a new buffer management discipline for scalable

QoS provision”, IEEE INFOCOM’01, pp. 1530-1538, Anchorage, Alaska, Apr. 2001.

[15] D. Lin and R. Morris, “Dynamics of random early detection,” ACM SIGCOMM’97, pp. 127-l37,

Sophia Antipolis, France, Sep. 1997.

30

[16] A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM networks,” IEEE J. Sel. Areas

Commun., vol. 13, no. 4, pp. 633-641, May 1995.

[17] J. Turner, “Maintaining high throughput during overload in ATM switches,” IEEE INFOCOM’96,

pp. 287-295, San Francisco, CA, Apr. 1996.

[18] J. Kurose and K. Ross, Computer Networking: a Top-down Approach Featuring the Internet,

Addison Wesley, 3rd edition, May 2004.

[19] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM Computer Communica-

tions Review, vol. 24, no. 5, pp. 45-60, 1994.

[20] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown and T. Roughgarden, “Routers with very small

buffers,” IEEE INFOCOM’06, Barcelona, Spain, April 2006.

[21] D. Wischik and N. McKeown, “Part I: Buffer sizes for core routers,” ACM/SIGCOMM Computer

Communication Review, vol. 35, no. 3, July 2005.

[22] G. Appenzeller, I. Keslassy and N. McKeown, “Sizing router buffers,” SIGCOMM’04, pp. 281-

292, New York, 2004.

[23] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”

IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.

[24] D. Pan and Y. Yang, “FIFO based multicast scheduling algorithm for VOQ packet switches,”

IEEE Trans. Computers, vol. 54, no. 10, pp. 1283-1297, October 2005.

