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Abstract—Generalized Processor Sharing (GPS) is a powerful
model and there are many practical scheduling algorithms that
can perfectly emulate it. GPS is widely used as an ideal fairness
model to schedule packets for guaranteed performance traffic.
However, there has not been a way for GPS to properly handle
the best effort traffic. In this paper, we propose a bandwidth
allocation scheme for GPS called Queue Length Proportional
(QLP) in crossbar switches without speedup. QLP dynamically
obtains a feasible bandwidth matrix to schedule best effort
flows. In QLP, the amount of service that each flow receives
is proportional to the length of its backlogged queue. We
analytically prove that QLP is strongly stable and hence provides
100% throughput for any admissible traffic, no matter whether
the traffic distribution is uniform or non-uniform. Moreover, we
show that QLP is feasible, which means the allocated bandwidth
does not exceed the available capacity. We also discuss how to
track the queue length in GPS. Finally, we perform simulations
to verify the theoretical results and to measure the performance
of QLP.

I. INTRODUCTION

Generalized Processor Sharing (GPS) has long been known
as a simple and powerful fluid model for traffic scheduling
[1]. All fair queueing algorithms ultimately emulate the GPS
ideal model because it achieves perfect fairness for packet
scheduling [2], [3], [4]. GPS is a theoretical fluid model and
divides the available bandwidth into logically independent
channels. Thus, traffic of each flow is smoothly transmitted
through its own exclusive channel from the input port to the
output port. GPS is widely used as an ideal fairness model to
schedule packets for guaranteed performance traffic. However,
there has not been a way for GPS to properly handle the
best effort traffic. The objective of this paper is to address
the appropriate scheduling of best effort traffic in order to be
employed in crossbar switches.

Crossbar switches have received significant attention due to
the non-blocking capability and large bandwidth utilization in
comparison with bus based switches [6], [7]. The challenge of
bandwidth allocation in a crossbar switch is how to efficiently
share the available capacity of each input port and output port.
Simple proportional bandwidth allocation for a shared link is
not proper for crossbar switches [8], [9] because flows of a
switch are subject to two bandwidth constraints: the available
bandwidth at both the input port and output port of the flow.
The scheme should be efficient to fully utilize the available
bandwidth, and should be feasible in order to be applied in
practice.

Our motivation for this work arises from the fact that in
crossbar switches we need to dynamically obtain an admissible

bandwidth matrix to properly handle best effort traffic. Guar-
anteed performance flows reserve resources for an allocated
transmission rate [10]. However, best effort flows try to make
the best use of the available transmission capacity but have
no guarantee to the quality of service [7]. As can be seen,
the bandwidth allocation scheme plays several important roles
in guaranteeing the high performance of a switch [11]. First,
the scheme helps to determine the traffic admission policy
and buffer management strategy. Second, an efficient scheme
makes it possible for a switch to achieve 100% throughput.
Third, the scheme is used as the scheduling criterion by fair
scheduling algorithms. There are many fair scheduling algo-
rithms designed for bandwidth allocation in different crossbar
switch architectures [2], [3], [12], [13], [14], [15]. However,
most of them focused on providing quality of service for
guaranteed performance traffic and there is relatively less work
on how to better support best effort traffic.

In this paper, we present a bandwidth allocation scheme
for GPS called Queue Length Proportional (QLP) to properly
handle best effort traffic in crossbar switches without speedup.
In QLP, the amount of service that each flow receives, or
its dedicated bandwidth, is proportional to the length of its
backlogged queue. QLP essentially favors the queues with the
greatest occupancy and thus assists the crossbar switch to be
more work-conserving. We conduct theoretical analysis to
prove that QLP is strongly stable and therefore achieves 100%
throughput for any admissible traffic, no matter whether the
traffic distribution is uniform or non-uniform. We also show
that QLP is feasible, which means the allocated bandwidth
does not exceed the available capacity. Furthermore, we dis-
cuss how to track the queue length is GPS. Lastly, we conduct
simulations to verify the analytical results and to measure the
performance of QLP.

The organization of this paper is as follows. In Section II,
we present the abstract switch model and the QLP bandwidth
allocation scheme. In Section III, we theoretically analyze
the stability and throughput of QLP and then provide some
discussions. We show the simulation results in Section IV.
Finally, we conclude the paper in Section V.

II. QUEUE LENGTH PROPORTIONAL (QLP) SCHEME

In this section, we present our bandwidth allocation scheme.
First, we briefly explain the switch model. Then, we describe
the QLP bandwidth allocation algorithm for best effort traffic.



A. The Abstract Switch Model

The considered switch architecture includes /N input ports
and N output ports, connected by a crossbar with no internal
speedup. Let In; denote the i'" input port and Out; denote
the j*" output port. The available bandwidth of each input port
and output port and also the crossbar is R. Define the traffic
from In; destined to Out; to be a flow Fj;. Use R{(t) to
represent the allocated bandwidth of F;; at time ¢. Denote the
queue of packets at In; destined to Out; as Q;;.

B. Algorithm Description

In this subsection we present our Queue Length Propor-
tional (QLP) bandwidth allocation scheme and investigate its
feasibility property.

As mentioned earlier, simple proportional bandwidth allo-
cation policy of GPS does not apply to switches [8], [9],
[11]. For a GPS server works at a fixed bandwidth R, the

rate of zd)j ¢-R will guarantee the performance of each flow,
3P

where ¢; is the weight of each flow [1]. However in contrast
with a single server, flows of a switch are subject to two
bandwidth constraints: the available bandwidth at both the
input and output port of the flow. Naive bandwidth allocation
at the output port may make the flows violate the bandwidth
constraints at their input ports, and vice versa.

QLP dynamically assigns the bandwidth to each best effort
flow proportional to the backlogged queue length. We use
queue length Q;;(t) as a dynamic weight of each flow F;; and
define Q.;(t) = >, Qi;(t) to be the number of bits queued
at all input ports directed to a particular Out; at time ¢, and
Qix(t) = >°; Qi;(t) to be the number of bits queued at a
particular In; destined to different output ports at time ¢. We
also denote the allocated bandwidth of a flow Fj; respecting to
the constraint of each input port and output port as R%(t)
and R{;?“*(t), accordingly. Recalling the GPS fluid model,
traffic of each flow can smoothly stream from the input port
to the output port through its own exclusive channel, without
buffering in the middle, as illustrated in Figure 1. Thus, by
considering the bandwidth constraints at both the input port
and output port of each flow F;j; we have

wingy  Qig(t) o Qi(t)
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In order to avoid bandwidth violation at the input port and
the output port, we consider the overall allocated bandwidth
R;‘j(t) of F;; to be the minimum [8] between two calculated
bandwidths as follows

R?j (t) = min{R?jm(t), R?jout(t)} 3)
Qi) L, Quy(t)
= min{ Ould) R, 0us(0) R} %)
_ Qi; (1) R )

max{Q’L* (t)a Q*j (t)}

As can be seen, QLP bandwidth allocation scheme essentially
favors the queues with the greatest occupancy. It treats all
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Fig. 1. GPS ideal fluid model used for scheduling in a crossbar switch.

queues fairly and assists the crossbar switch to be more work-
conserving [20]. One of the advantages of our scheme is its
simplicity. It does not require any sorting or re-sorting process.
Using the calculated information of the queue lengths, QLP
just needs to find the maximum between the aggregated queue
length of flows waiting in a particular input port and flows
directed to a specific output port.

Now we discuss the important properties of QLP, feasibility
and stability. A bandwidth allocation scheme should efficiently
utilize the available bandwidth while maintaining feasibility.

Definition 1: The allocated bandwidth R, (t) of Fj; will be
feasible if no over-subscription happens at any input port or
output port. In other words, the aggregated assigned rate of
flows does not exceed the available capacity, i.e.

R{, <R and RY; <R (6)
For easy presentation, assume a normalized bandwidth; R = 1.
Now, we show that our scheme is feasible. According to the
QLP description we can write

RY, = im,(t) - i Qi; (1)
oa o max{dl; Qi (1), 32, Qig (1)}
N N
a_ a(p) — Qi;(t)
R*j - ; sz (t) ; m(lfl?{zj QZJ (t), Zl Qij (t)}

Since Y0, Qi;(t) < max{Y; Qi;(t), Y, Qi;(t)} and
S Qu(t) < maz{}_; Qi;(t),>-; Qij(t)}, we have
R, <1 and R; <1 (7)
which indicates QLP is feasible. We study the stability of our
scheme in the next section.
ITI. PERFORMANCE ANALYSIS

A. Stability and Throughput

In this subection, we theoretically prove that QLP is strongly
stable for any admissible traffic which implies that QLP
achieves 100% throughput.

We first adopt the following definitions presented in [23].
The switch size is shown by P = N x N = N2,



Definition 2: U is the set of vector Y = (Y7,...,Yp) and
Y € R*TP, such that

N
D Yirim <1 j=01..(N-1)  ®
i=1
N-1
D Yrm <1 i=1..N ©)
3=0

Definition 3: ||Y|| is the Euclidean norm of vector Y, i.e.,

P
Y=yt + w7 o ud = i ().

Definition 4: Y is the normalized vector parallel to Y,

i i o — Y Y
given that Y £ 0, ie., Y = T = T

Definition 5: Y is the maximal vector parallel to Y, given
that Y #0 and k € R, ie., Y = mazy kY.

Definition 6: WUy is the symmetric matrix associated with
the projection operator along the direction of Y, given that
Y £0,ie, Uy =YTY,

Property 1: Given that Y # 0, we have YUy =Y, which
is a straightforward result of definition 6.

The following variables are used to represent the status of
the crossbar switch. Their initial values are assumed to be zero
at time ¢ = 0.

Qi;(t) is the number of bits buffered in Q);; at time ¢, belong
to flow Fj;. Q(t) is the vector of queue lengths at time ¢, i.e.,
Q) = (Qi1, -+, Qijy s QNN).

A;;(t) is the number of bits arriving at (;; up to time ¢.
A(t) is the vector of the number of arrivals at time ¢, i.e.,
A(t) = (A, .., Aij, ., Ann).

D;;(t) is the number of bits departing from @);; up to time
t. D(t) is the vector of the number of departures at time ¢,
i.e., D(t) = (D117 ceey Dij7 ceny DNN)-

Assume that the number of arriving bits A;;(t) satisfies the
Strong Law of Large Numbers (SLLN), i.e.

A
lim L@)

t—00 t

= Aij (10)
where \;; is the arrival rate of ();;. Consider the incoming
traffic is admissible, which means that no over-subscription at
any input ports or output ports, i.e., for all A\;; > 0 we have

Vi, Aij <1, and V4, ) A <1 (1)
J i

Correspondingly, A is the vector of the average arrival rates,
ie, A = (M1,..;Aij, ..., Ann), and due to the admissible
traffic we have E[A(t)] = A.

Similar to that in [25][18], the evolution equation of the
switch for the interval [t,¢ + 1] is described as follows

Qt+1) =Q(t) + A(t) — D(t)

Before investigating the stability of our scheme, we first
calculate the average departure rate as the following lemma.

Lemma 1: For a crossbar switch without speedup, the av-
erage departure rate in QLP bandwidth allocation scheme is
proportional to the queue length, i.e.

E[D(t)] = Q(t)

(12)

13)

Proof: According to the previous Section, the dedicated
portion of the available bandwidth R for each queue Q);; at
time ¢, can be described as a weight factor w;;(t). It means
that for a flow Fj; we can have

if Q;;(t) =0

14
otherwise 14

0,
wij(t) = { Qi (1)
maz{}>; Qi; (1), Qi ()}’
which is positive when there is an offered load Q;;(t) > 0.
Consequently, Rf;(t), the allocated bandwidth of flow Fj;

Qij (1) :
maif{szij(t)yziQij(t)}R. Obviously, the
departure rate of each flow will be equal to its allocated

bandwidth as follows.

at time t will be

Qi; (1)
maz{}_; Qi;(t), >2; Qi ()}

which is proportional to its queue length at time t. By
considering the normalized available bandwidth R = 1, we
have D;;(t) = Qi;(t), and thus E[D(t)] = Q(t). [ |
In order to prove 100% throughput of our scheme, we
introduce the following definition and lemma from [23][25].
Definition 7: A system of queues is strongly stable if

R=Qij(t)R

Dyj(t) = Riy (1) =

Jim sup E[[Q(#)]]] < oo (15)
which implies 100% throughput and bounded delay guarantee.

Lemma 2: Given a system of queues whose evolution is
described by a DTMC with state vector S(t) € N, and
whose state space H is a subset of the Cartesian product
of a denumerable state space Hg and a finite state space
Hg, then, if a lower bounded function V(Q(t)), called
Lyapunov function, V : N — R can be found such that
ElV(Qi+1)|S(t)] < oo VS(t) and there exists ¢ € RT,
B € R" such that VS(t) : [|Q(¢)|| > B

E[V(Q(t+1)) = V(Q®))|S(t)] < —€llQD)]

then the system of queues is strongly stable. It means that
the queue length does not grow infinitely which implies 100%
throughput and bounded average delay.

Proof: We need to show lim; o sup E[||Q(t)]|] < oc.
For the detailed proof, see theorem 2 in [23]. [ |

Now, we present the main theorem for the stability of QLP.

Theorem 1: For a crossbar switch without speedup, the
QLP bandwidth allocation scheme is strongly stable for any
admissible traffic, i.e., it achieves 100% throughput.

Proof: According to lemma 2 and equation (16), we can
define a quadratic Lyapunov function V (¢) = Q(t)ZQ™ (t) as
that in [24][25], if there exists a symmetric copositive matrix
7 € RPxP, Similarly, we can consider

Z=1-pUy

(16)

a7

where [ is an identity matrix, p € R such that 0 < p < 1,
A = E[A(t)] is the vector of the average arrival rate, and by
definition 6 we have W, = ATA. It is easy to prove that Z
is positive (semi)definite. We also assume that the state vector

S(t) = Q).



Now, we need to prove that for some ¢ € R*, B € RT (B
is large enough), 3p € R such that for ||Q(¢)|| > B, we have

BRI +1)ZQT(t+1) - Q()ZQT(1)|Q(1)] < —€|Q(®)]

For notational convenience, we define the timing index as a
subscript, e.g., Q;+1 is equivalent to Q(t + 1). Therefore

E[Qt+1ZQtT+1 - QtZQtT|Qt] < —€]|Q:]|

By substituting Q¢+1 and Q7 from the evolution equation
(12) into the left hand side of (18) we have

(18)

ElQi1Z2Q1, — Qe ZQ] Q4] = (19)
E[(Q¢+ Ay — D) Z(Q] + Al = DI') — Q:ZQ7'|Q4] =
E[2(A; — Dy)QF + (A; — Dy)(Ar — D)T1Q4] (20)

For simplicity, we find the limit of (20) when ||Q;| tends
to infinity, as follows.

E[2(A; — D) ZQT + (A — D)T1Q:]

Qx|

As can be seen, the terms (A; — D;) and (A; — Dy)T are
bounded since the number of arrivals and departures in time
interval [t,¢ + 1] are bounded. Also, we know that Z is
a positive (semi)definite matrix. It means that, the limit of
Bl(Ae=D)(A=D)TIQ] ypen |Q:]l — oo is 0. As a result,

D) Z(A; —

1Q¢ll—o0

Q:]
the remaining part of the equation will be
E[2(A; — D) ZQ] Q4] @1
IQell—o0 [1Qell
By definition 4 and knowing that ||QT || = [|Q¢||, we obtain
_ AT
1Qul|—o0 Q]
E[2(A¢ — D) ZQ7 Q4] (23)
By using (17) in (23), we have
E[(A; — D)(I — p2)Q] Q] (24)

By definition 6 and property 1, (24) can be written as follows

2(AQ7 — E[DQ — pAQY + pE[D]VAQY)
By replacing the result of lemma 1 for E[D;], we obtain
2(AQ7 (1= p) = QuQf + pQu¥aQT) (25)
As can be seen, (25) is a function of p and Qt, i.e.,
Flp,Qr) =2(AQ7 (1= p) = QuQf + pQr¥aQf)  (26)

In order to proof the stability, we need to show that for the
entire domain of (), there exists a p such that (26) is always
less than a finite negative constant, i.e.,

3p, YQu : f(p, Qi) < —
Since Q(t) = HQ(gH = \/Zi(gf](t) is a normalized vector,

for a given p, the domain of f(p, Qt) is the surface of the unit
sphere such that Q: € RTP. On the other hand, for a given
vector Qy, variation of f (p, Qt) is linear versus the scalar p.

Knowing that 0 < p < 1, we analyze two cases as below, for
all values of ;.

Case 1. when p = 1: f(1,Q;) = 2(— QtQT +QuAQT).
If Q; is in parallel with A, we will have Qt A, by definition
6 we can AWI‘ltC Uy = Qt Q. :Fhus f(l,Qt) =2(— QtQt
QtQ QQF) =20:(-QF +QF) =
If Q, is not in parallel with A, we can ﬁnd QtQt > Qt\IJAQt .
It leads to have a negative value for f(1,Q,). As a result, for
all values of Q; we obtain f(p, Qt)|p 1= f(l,@t) <0.

Case 2. when 0 < p < 1, or in other words: —1 < p—1A< 0.
To investigate this case, we can write f as follows f(p, Q:) =

f(p, Qt)|p:1 +(p— 1)8%]"(p, Qt), where the partial derivative
of f can be found as C%f(p, Q) = 2(—AQT + QYA Q7).

If Q, is in parallel with A, i.e., Q; = A and thus \I/ A= QT Q.
We can write the partial derivative of f as 7 o f (p, Qt) =

( QtQt + Q:QTQ,QT), which is strictly positive, i.e.,
f(p Qt) > 0. Smce in case one we obtained f(1, Qt) <0,

after comparison with (5. Q) = £(1, Q) +(p—1) & F(p. Q1)
for 0 < p < 1, we find that f(p,Q;) < 0.
If (), is not in parallel with A, we will have AQZ < QU AQ?
and therefore, 8% f(p, Qt) will be strictly positive. Similarly,
it can be shown that for 0 < p < 1 we have f(p, Qt) < 0.
Hence, QLP is always stable for a crossbar switch without
speedup for any admissible traffic, no matter whether the traffic
distribution is uniform or non-uniform. It means that the queue
length at input buffers does not grow infinity and there exists
a finite upper bound B < oo at which backlogged queues will
settle. ]

B. Discussions

In this subsection, we discuss how to find out the queue
length of each flow in GPS. For tracking the queue length of
a flow Fj;, similar to equation (12) we can have an evolution
equation for queue ();; during interval [t1,¢2] as follows

Qij(t2) = Quj(t1) + Aij(ta, t1) —

where );;(t1) is the remaining backlogged queue of F;; at
time ¢1. We know that D;;(¢2,t1), the number of departed
bits from a particular flow F;; during interval [, {2] in GPS,
can be obtained as

ta
Dij(ta tr) = / R (1)t
t1

Assume that the allocated bandwidth of Fj; is fixed to a
constant R, during interval [t1,2], ie., jo(t) = R{;,
equation (28) can be calculated as

D;j(ta,t1) 27

(28)

to
Dij (tg,tl) = / R?Jdt = R?j X (t2 — tl) (29)
t1
Thus
Qij(t2) = Qij(t1) + Aij(ta, t1) — (R x (t2 —t1)) (30)

As can be seen, the length of each queue ();; can be found
during any interval [y, t2].



IV. SIMULATION RESULTS

In this section, we carry out simulations to verify the theo-
retical results in Section III, and to evaluate the performance
of QLP. We consider a 16x16 crossbar switch. Each input and
output has a bandwidth of R = 1 Gbps, and the crossbar has
a speedup of one. We set the packet length to be distributed
between 40 and 1,500 bytes [26]. For the destination of the
packets, we consider both uniform traffic and non-uniform
traffic pattern. For uniform traffic, the destination of a new
incoming packet is uniformly distributed among all the output
ports, i.e., Aj; = nR/N, where 7 is the effective load and N
is the switch size. The n takes one of the 10 possible values
of [0.1,1] with a step of 0.1 For non-uniform traffic, we use
the same model as that in [27]. The traffic arrival rate \;; is
defined by 7, 7 and an unbalanced probability w as follows.

walt) = it T
R, if i #£j
In this case, the 7 is fixed to 1 and w takes one of the 11
possible values of [0,1] with a step of 0.1. When w = 0, the
traffic arrival is uniformly distributed among the outputs, i.e.,
Aij(t) = R/N. Otherwise, the incoming packets at In; are
more directed to Out; rather than the other outputs, which
is called the hotspot destination. A special case will happen
when w = 1, i.e., Ay;(t) = R. To constrain the burstiness of
a flow Fj;, we consider a leaky bucket model (1 X A;;, 04;),
where o;; is the burst size of Fj; [7]. We set 0;; of every flow
to a fixed value of 10,000 bytes, and the burst may arrive at
any time during a simulation run.

To evaluate the performance of our scheme, We compare our
simulation data with Localized Independent Packet Schedul-
ing (LIPS), in which an input port or output port makes
scheduling decisions solely based on the state information
of its local crosspoint buffers [6]. We consider four different
LIPS implementation versions with different arbitration rules
as follows: FP (Fixed Priority) assigns a fixed priority order
to all the virtual queues of the same input to the same output
and always picks the candidate with the highest priority; RD
(Random) makes the arbitration on a random basis; RR (Round
Robin) alternatively chooses eligible candidates in a round
robin manner to avoid starvation; OPF (Oldest Packet First)
uses the packet arrival time as the arbitration criterion, i.e.,
the packet arriving earlier has a higher priority. Now, we
investigate the results on the throughput and the average delay.
A. Throughput

To verify theorem 1, we present the simulation data to show
that our scheme achieves 100% throughput.

Figure 2(a) displays the throughput under uniform traffic.
It can be seen that, the throughput of different schemes
grows consistently with the effective load, and finally reaches
100% when the effective load becomes 1, only FP slightly
decreases when the load is the maximum. Figure 2(b) shows
the throughput under non-uniform traffic. It clearly reflects the
non-monotonic performance variations of other methods. As
expected, QLP significantly yields higher throughput than the
other schemes when the speedup is one. The other schemes
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Fig. 2. Throughput of QLP. (a) With different loads (b) With different
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achieve the lowest throughput when the unbalanced probability
is around 0.5 and then, throughput is gradually improved until
the unbalanced probability becomes 1. In fact at this point, all
the packets of In; go to Out; and no scheduling is necessary.
The results confirm that, QLP achieves 100% throughput and
outperforms the other four methods when the speedup is one.
B. Average Delay

Next, we study the delay performance of QLP. We measure
the total time that a packet stays in the switch. It is the interval
from the time that the last bit of a packet arrives at its input
to the time that the last bit of the packet is sent to the output.
We plot the average delay of different schemes in logarithmic
scale and the average delay is measured in seconds.

Figure 3(a) displays the average delay under uniform traffic.
As can be seen, the delay grows gradually when the effective
load increases, and jumps when the effective load becomes
1. Surprisingly, for the effective loads greater than 0.8, the
QLP outperforms the other four schemes. Figure 3(b) depicts
the average delay under non-uniform traffic. As expected,
QLP shows an optimistic behavior in comparison with the
other four methods and the delay difference is more than one
decade. The average delay of other schemes increases with the
unbalanced probability and reaches to the maximum when the
unbalanced probability is around 0.5. Then, the average delay
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of all schemes drops when the unbalanced probability is equal
to 1, because at this point all traffic of an input is destined to
the same output and no switching is necessary. It is observed
that, different unbalanced probabilities do not significantly
affect the average delay of QLP, which demonstrates that our
scheme works well under non-uniform traffic.

V. CONCLUSIONS

In this paper, we have presented the Queue Length Propor-
tional (QLP) bandwidth allocation scheme for GPS to schedule
best effort traffic in crossbar switches without speedup. In
QLP, the amount of service that each flow receives is propor-
tional to the length of its backlogged queue. QLP essentially
favors the queues with the greatest occupancy and thus assists
the crossbar switch to be more work-conserving. By theoretical
analysis, we have proved that QLP is strongly stable and
therefore provides 100% throughput for any admissible traffic,
no matter whether the traffic distribution is uniform or non-
uniform. We have also shown that QLP is feasible, which
means the allocated bandwidth does not exceed the available
capacity. Furthermore, we have discussed how to track the
queue length in GPS. Finally, we have conducted simulations
to verify the analytical results.
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