
Traffic Aware Placement of Interdependent
NFV Middleboxes

Wenrui Ma, Oscar Sandoval∗, Jonathan Beltran, Deng Pan, and Niki Pissinou
School of Computing and Information Sciences, Florida International University, Miami, FL

∗Department of Computer Science, Univeristy of Virginia, Charlottesville, VA
{wma006, jbelt021, pand, pissinou}@fiu.edu, ∗oks2vd@virginia.edu

Abstract—Network function virtualization enables flexible im-
plementation of network functions, or middleboxes, as virtual
machines running on standard servers. However, the flexibility
also creates a challenge for efficiently placing such middleboxes,
due to the availability of multiple hosting servers, capability of
middleboxes to change traffic volumes, and dependency between
middleboxes. In this paper, we address the optimal placement
challenge of NFV middleboxes, and propose solutions for mid-
dleboxes of different traffic changing effects and with different
dependency relations. First, we formulate the Traffic Aware
Placement of Interdependent Middleboxes problem as a graph
optimization problem. When the flow path is predetermined,
we design optimal algorithms to place a non-ordered or totally-
ordered middlebox set, and propose an efficient heuristic for the
general scenario of a partially-ordered middlebox set after prov-
ing its NP-hardness. When the flow path is not predetermined,
we show that the problem is NP-hard even for a non-ordered
middlebox set, and propose a traffic and space aware routing
heuristic. We have evaluated the proposed algorithms using
large scale simulations and prototype experiments, and present
extensive evaluation results to demonstrate the effectiveness of
our design.

Index Terms—NFV, SDN, middlebox

I. INTRODUCTION

Network function virtualization (NFV) transforms the im-
plementation of network functions, also called middleboxes,
from proprietary hardware appliances to virtual machines
(VMs) running on industry standard servers [27]. Leveraging
the underlying virtualization technology, VM-based software
middleboxes bring many benefits that were not previously
available, such as accelerated time-to-market, reduced hard-
ware and operation cost, improved security, and elastic scala-
bility [6].

The flexibility of VMs also poses challenges for efficient
NFV implementation. In particular, traditional hardware mid-
dleboxes are deployed at fixed locations in the network, and
leave no choice of service locations. In an NFV network, each
switch may have one or more attached NFV servers with
standard hardware that can host VMs of arbitrary network
functions [27]. It is thus possible to optimize the network
performance by carefully selecting the location to place a
software middlebox among multiple candidate servers. Im-
proper placement decisions may cause inefficient flow paths
and traffic jam.

Furthermore, the NFV service location challenge is compli-
cated by the traffic changing effects of middleboxes. Unlike

switches and routers that forward traffic without changing
its volume, middleboxes may change the traffic volumes of
processed flows, and may do it in different ways. For example,
the Citrix CloudBridge WAN optimizer compresses traffic
before sending it to the next hop, and may reduce the traffic
volume by up to 80% [4]. On the other hand, the BCH(63,48)
encoder, used for satellite communications signaling messages,
increases the traffic volume by 31% due to the checksum
overhead [21].

We use the following example to illustrate the traffic chang-
ing effects of middleboxes. Consider a network of three nodes
v1, v2 and v3, and two links (v1, v2) and (v2, v3). Each node
has an attached NFV server (denoted as a circle in Fig. 1), and
each server can host a single middlebox. A flow f starts at v1
and ends at v3, whose initial traffic rate is 1. Two middleboxes
m1 and m2 need to be applied to f . m1 will double the traffic
rate, while m2 will decrease it by 50%. By placing m1 on v1
and m2 on v3, the loads of links (v1, v2) and (v2, v3) will be
1 × 2 = 2, as shown in Fig. 1(a). However, by placing m1

on v3 and m2 on v1, the loads of both links are reduced to
1× 0.5 = 0.5, as shown in Fig. 1(b).

The placement of middleboxes is also constrained by the
dependency relation that may or may not exist between
middleboxes [26]. For instance, an IPSec decryptor is usually
placed before a NAT gateway [3], while a VPN proxy can
be placed either before or after a firewall [5]. In the above
example, if there is a constraint for m1 to be applied before
m2, then the placement scheme in Fig. 1(b) would violate the
constraint. However, by placing m1 on v1 and m2 on v2, we
can still reduce the load of link (v2, v3) from 2 to 1 as in Fig.
1(c), in contrast to the case in Fig. 1(a).

In this paper, we study the optimal placement of NFV
middleboxes. Compared with the existing works in Section II,
this paper proposes comprehensive solutions that consider
different traffic changing effects of middleboxes as well as
different types of middlebox dependency relations. Our design
utilizes the emerging Software-Defined Networking (SDN)
technology as the implementation platform, because it enables
efficient optimization by decoupling the network control plane
and data plane. An SDN based prototype is implemented to
validate our design.

The proposed algorithms achieve load balancing for large-
size and long-duration elephant flows [9]. Our design philos-
ophy is to prevent different elephant flows from sharing the

v1 v2 v3

m1
x2

m2
x0.5

(a) m1 on v1, m2 on v3 (b) m1 on v3, m2 on v1

2 2

v1 v2 v3

1 0.5

0.5

0.5 1

0.5

1 2 2 1

(c) m1 on v1, m2 on v2

v1 v2 v3

1

1

2 1

2

2

m2
x0.5

m1
x2

m1
x2

m2
x0.5

Fig. 1: Traffic changing effects of middleboxes.

same middlebox to avoid resource contention and congestion,
but instead let mice flows utilize the spare processing capacity
of already deployed middleboxes. Elephant flows can be
statically determined based on the application types, such as
data backup or VM migration, or dynamically detected using
existing techniques in the literature [9], [23]. The solutions for
mice flows will not be the focus of this paper.

Our main contributions in this paper are summarized as
follows.

1) We formulate the Traffic Aware Placement of Interde-
pendent Middleboxes (TAPIM) problem, considering in
particular a generalized partial order for the middlebox
dependency relation, as a graph optimization problem
with the objective to load-balance the network.

2) For topologies with predetermined paths, such as the tree,
we design optimal algorithms for the special case when
the middlebox set is a non-ordered or totally-ordered one.
For the general case when the dependency relation is a
partial order, we show that the TAPIM problem is NP-
hard by reduction from the Clique problem, and propose
an efficient heuristic to convert a partially-ordered set to
a totally-ordered one.

3) For topologies without predetermined paths, we prove
that the TAPIM problem is NP-hard even for a non-
ordered middlebox set by reduction from the Hamiltonian
Cycle problem. Our proposed solution then works in two
steps: first finding a path with enough resources to host
all the middleboxes, and then placing the middleboxes on
the given path.

4) We have implemented the proposed algorithms in the NS-
3 simulator and a SDN based prototype, and present ex-
tensive simulation and experiment results to demonstrate
the effectiveness of our design.

The remaining of this paper is organized as follows. Section
II provides a brief overview of related works. Section III
formulates the TAPIM problem. Sections IV and V solve the
TAPIM problem with and without predetermined flow paths,
respectively. Section VI presents experiment and simulation
results. Finally, Section VII concludes the paper.

II. RELATED WORKS

As the promising platform for network functioning pro-
visioning, NFV has attracted significant research attention.
Multiple efforts have been focusing on designing efficient
hardware and software architectures. Sekar et al. propose

an NFV architecture named CoMb [27] that explores con-
solidation opportunities to reduce network provisioning cost
and load skew. Anderson et al. propose the xOMB [14]
architecture for building scalable and extensible middleboxes.
Hwang et al. propose the NetVM [15] network virtualization
platform, to dynamically scale, deploy, and reprogram network
functions. ClickOS [16] is a high-performance and virtualized
software middlebox platform, which enables hundreds of con-
current virtual network functions without significant overhead
in packet processing. This work can benefit from the above
research advances by utilizing those NFV architectures to
implement our design.

It has been recognized as a challenge to implement a chain
of network functions under certain dependency constraints.
Moens and Turck present an Integer Linear Program (ILP)
model named VNF-P [22] for resource allocation of NFV
service chains, and evaluate it with a case study simulation.
Mehraghdam et al. define a model for formalizing the chaining
of network functions using a context-free language [26],
and allocate network resources by solving a Mixed Integer
Quadratically Constrained Program (MIQCP). Rami et al.
formulate the NFV location problem [24], and propose near
optimal approximation algorithms for NFV resource allocation
without considering network function dependency. Li et al.
propose the NFV-RT [19] resource provisioning system that
uses a linear programming approach to maximize the number
of requests for each service chain, and validate the design
by simulation and emulation. The formal model defined in
this work differs from the above ones in considering different
middlebox traffic changing effects and dependency relations.
In addition to the formal model, this work also proposes prac-
tical algorithms, and conducts evaluations based on prototype
implementations as well as large scale simulations.

Due to its capability of global optimization, SDN is com-
monly adopted as the control protocol to maneuver traffic in
an NFV network. For example, SIMPLE [28] is an SDN-based
policy enforcement layer for efficient middlebox-specific traf-
fic steering. Multiple architectures [13], [17] are proposed
to integrate SDN and NFV for efficient implementation of
service chains. To correctly reason and enforce network-
wide policies, Fayazbakhsh et al. propose an extended SDN
architecture called FlowTags [25], in which middleboxes add
packet tags to provide the necessary context for systematic
policy enforcement. Our work differs from the above ones by
not only implementing the correct policies through SDN, but

also considering the middlebox traffic changing effects and
different dependency relations.

To the best of our knowledge, no existing research has
focused on the traffic changing effects of middleboxes, except
our preliminary work [20], which did not consider dependency
relations between middleboxes. Compared with the extensively
studied problem on general VM placement [18], this work
addresses not only the VM placement but also flow routing
issue, and targets network load balancing instead of resource
utilization.

III. PROBLEM STATEMENT

In this section, we formulate the Traffic Aware Placement
of Interdependent Middleboxes (TAPIM) problem.

Consider a network represented by a directed graph G =
(V,E). Each node v ∈ V may have one or more attached
NFV servers, and its space capacity is denoted as sc[u]1≥ 0,
i.e., the maximum number of middleboxes to host. For sim-
plicity, we assume that each middlebox needs one space, and
additional processing power can be achieved by multiple load-
balanced middlebox instances [10]. A link (u, v) ∈ E has a
bandwidth capacity bc[u, v] ≥ 0, i.e., the amount of available
bandwidth. For easy representation, we define connectivity by
connect[u, v] = 1 if bc[u, v] > 0. The existing load of the
link is denoted as load[u, v].

For route calculation, each link (u, v) ∈ E is assigned a
weight, denoted as weight(u, v, l), which is a non-decreasing
function of the link load l, i.e., ∀l ≤ l′, weight(u, v, l) ≤
weight(u, v, l′). A broad category of weight functions satisfy
the non-decreasing requirement, such as the ones used by the
popular Cisco EIGRP [2] and OSPF [7] protocols. The non-
decreasing link weight function helps load-balance network
traffic when the routing protocol aims to minimizes the path
cost, which is defined as the weight sum of all the path links.

An elephant flow f is defined as a 4-tuple (src, dst, t,M),
in which src ∈ V is the source node, dst ∈ V is the
destination node, t is the initial traffic rate when f arrives
at the ingress switch of the network, and M is the set of
required middleboxes. Multiple flows are processed one at a
time, because flows tend not to arrive at the exactly same time
in reality. Particularly in an SDN network, even if multiple
flows arrive simultaneously, the SDN controller will have to
process them one by one.

Each middlebox m ∈M has an associated traffic changing
factor ratio[m] ≥ 0, which is the ratio of the traffic rate of a
flow after and before being processed by m. The dependency
relation ← is defined as a strict partial order on M that is

1) Irreflexive: m8 m,
2) Transitive: m← m′ and m′ ← m′′ then m← m′′, and
3) Asymmetric: m← m′ then m′ 8 m.

If m ← m′, we say that the middlebox m′ depends on m,
or intuitively m′ should be applied after m. If m depends
on no other middlebox, i.e., ∀m′ ∈ M,m′ 8 m, we say

1We use square brackets [] to denote properties or known values, and round
brackets () denote to functions or variables.

that m has no dependence. For easy representation, define
depend[m,m′] = 1 if m← m′, and 0 otherwise.

When the flow f enters the network, a multi-hop path,
denoted as route, will be assigned for the flow, which is a
decision variable defined as

route(v, i) =

{
1, if v ∈ V is the ith hop on the path.
0, otherwise.

(1)

We define i to start from one, and denote the last hop number
as n for convenience. Note that repeating nodes are allowed
on the path to enable more general solutions, i.e., ∃v, i 6= i′ :
route(v, i) = 1 and route(v, i′) = 1. To avoid performance
degradation for TCP flows, a flow is not allowed to be split
among two paths [11].

In addition, a placement scheme, denoted as place, will
determine the location for each middlebox m ∈ M , which is
a decision variable defined as

place(m, i) =

{
1, if m ∈M is placed on the ith hop.
0, otherwise.

(2)

Use tin(i) and tout(i) to denote the incoming and outgoing
traffic rate of flow f at the ith hop on the path, respectively.
If f is processed by a single middlebox m at the ith hop, then
tout(i) = tin(i)ratio[m]. Note that the incoming traffic rate
at the flow source is the initial traffic rate, i.e., tin(1) = t. For
convenience, use t(u, v) =

∑
i∈[1,n−1] route(u, i)route(v, i+

1)tout(i) to represent the traffic rate of f on link (u, v).
Consistent with most popular routing protocols, such as

Cisco EIGRP and OSPF, our optimization objective is to
minimize the path cost of flow f as shown in Equation (3),
by calculating route and place. It should be noted that the
proposed solutions can easily adapt to other optimization
objectives, such as minimizing the maximum link load in the
network.

minimize
n−1∑
i=1

∑
u∈V

∑
v∈V

route(u, i)route(v, i+ 1)×

weight(u, v, tout(i) + load[u, v]) (3)

subject to the following constraints:

∀i > n,∀v ∈ V : route(v, i) = 0 (4)
route(src, 1) = 1, route(dst, n) = 1 (5)

∀v ∈ V :
∑

i∈[1,n]

∑
m∈M

place(m, i)route(v, i) ≤ sc[v] (6)

∀(u, v) ∈ E : t(u, v) + load[u, v] ≤ bc[u, v] (7)

∀m ∈M :
∑

i∈[1,n]

place(m, i) = 1 (8)

∀m,m′ ∈M : ∑
i∈[1,n]

place(m′, i)i−
∑

i∈[1,n]

place(m, i)i

×
depend[m,m′] ≥ 0 (9)

∀i ∈ [1, n] : tout(i) =

tin(i)
∏

m∈M
(1 + placef (m, i)(ratio[m]− 1)) (10)

∀i ∈ [1, n− 1],∀u, v ∈ V :

route(u, i)route(v, i+ 1) ≤ connect[u, v] (11)

Brief explanation of the model is as follows. Equation (3)
defines the optimization objective. To discourage repeated
links on the flow path, when the flow traverses the same
link multiple times, the link weight of each traverse will be
counted separately in the path cost. Equation (4) states that
the nth hop is the last hop of the flow path. Equation (5)
enforces the first and last hops of the flow path to be the source
src and destination dst, respectively. Equation (6) states that,
for a node v, the total space demand of hosted middleboxes∑

i∈[1,n]
∑

m∈M place(m, i)route(v, i) should not exceed its
space capacity sc[v]. Equation (7) states that, for a link (u, v),
the aggregate load of all flows traversing it t(u, v)+ load[u, v]
should not exceed its bandwidth capacity bc[u, v]. Equation (8)
states that a middlebox m should be installed once and only
once. Equation (9) enforces the dependency relation between
middleboxes, or in other words m must be placed no later than
m′ if the former is depended on by the latter. Equation (10)
states that, the outgoing flow traffic rate at a hop, i.e., tout(i),
is equal to the incoming rate, i.e., tin(i), multiplying the traffic
changing ratios ratio[m] of all the middleboxes m placed
at this hop, i.e.,

∏
m∈M (1 + placef (m, i)(ratio[m] − 1)).

It also ensures flow conservation, in the sense that no flow
traffic can be generated or terminated at an intermediate node,
except the effects of middleboxes. Equations (11) enforces that
consecutive hops of the flow path must be connected in the
network.

IV. MIDDLEBOX PLACEMENT WITH
PREDETERMINED PATHS

In this section, we propose solutions for the TAPIM problem
when the flow path, i.e., route, is predetermined. For example,
in the tree topology, there is a unique path between any
pair of leaves. We look at three cases of the problem. First,
for the special case when there is no dependency between
any middleboxes, we propose the Non-Ordered Set Placement
algorithm that uses the least-first-greatest-last rule. Next, for
the special case when there is a total dependency order on
the middlebox set, we propose the dynamic programming
based Totally-Ordered Set Placement algorithm. Finally, for
the general scenario of a partial dependency order on the
middlebox set, we prove that it is NP-hard by reduction
from the Clique problem, and propose an efficient heuristic
to convert a partially-ordered set to a totally-ordered set.

m m' m"

(b) Totally-ordered (c) Partially-ordered(a) Non-ordered

m m' m" m m' m"

Fig. 2: Examples of non-ordered, totally-ordered, and
partially-ordered middlebox sets.

A. Non-Ordered Middlebox Set

We start with the special case that the middlebox set M
is a non-ordered set, i.e., ∀m,m′ ∈ M,m 8 m′ and m′ 8
m. Thus, different middleboxes can be placed in an arbitrary
order. An example is shown in Fig. 2(a), where no dependency
exists between middleboxes. We propose the Non-Ordered Set
Placement (NOSP) algorithm, and show its optimality.

The basic idea is to shrink the flow as early as possible by
installing the middleboxes that decrease the traffic rate from
the path head, and expand the flow as late as possible by
installing the middleboxes that increase the traffic rate from
the path tail.

Apparently, the placement will succeed if the num-
ber of available spaces on the path is greater than
or equal to the number of required middleboxes, i.e.,∑

i∈[1,n]
∑

v∈V

(
route[v, i]sc[v]/

∑
i′∈[1,n] route[v, i

′]
)
≥

|M |. If there are enough spaces, the NOSP algorithm places
the middleboxes as follows.

1) Sort all the middleboxes m ∈ M based on their traffic
changing ratios ratio[m].

2) Place the middleboxes m with ratio[m] < 1 from the
path head in an increasing order of their traffic changing
ratios. When a node has no more space, continue with
the succeeding node on the path.

3) Place the middleboxes m with ratio[m] ≥ 1 from the
path end in an decreasing order. When a node has no
more space, continue with the proceeding node.

As can be seen, NOSP processes each middlebox in M
only once after sorting, and therefore its time complexity is
O(|M | log |M |), i.e., the time complexity to sort M .

Theorem 1. The Non-Ordered Set Placement algorithm
achieves the minimum path cost.

The proof is omitted due to space limitations.

B. Totally-Ordered Middlebox Set

Next, we solve the other special case of TAPIM when the
middlebox set is a totally-ordered set, i.e., ∀m,m′ ∈M , either
m ← m′ or m′ ← m, or in other words the middleboxes
form a dependency chain. An example is shown in Fig. 2(b),
in which m must be placed before m′, and m′ before m′′.
Although the placement order of the middleboxes has been
determined, it is still necessary to determine the optimal
placement location for each middlebox, because there may
be an excessive number of available spaces on the flow path.
For easy description, we use mj to denote the jth middlebox
from the head of the dependency chain, and vi to denote the
ith hop node on the flow path, where i and j start from 1.

We propose a dynamic programming based algorithm called
Totally-Ordered Set Placement (TOSP) based on the following
observation. Use TOSP(i, j) to denote the minimum weight
sum of the first i links when placing the first j middleboxes,
i.e., m1 to mj , on the first i hops, i.e., v1 to vi, of the flow

path. The optimal substructure gives the following recursive
formula.

TOSP(i, j) =

w(1; 1, j), if i = 1.

minx∈[1,j+1]

(
TOSP(i− 1, x− 1)+

w(i;x, j)
)
, otherwise.

(12)

where w(i;x, j) is the weight of link (vi, vi+1) when placing
middleboxes mx to mj on node vi, i.e.,

w(i;x, j) =

weight

(
vi, vi+1, t

∏
y∈[1,j] ratio[my]+

load[vi, vi+1]
)
, if sc[vi] ≥ j − x+ 1.

∞, otherwise.

(13)

Equation (12) states that if i = 1, TOSP(i, j) is simply
the weight of the first path link when placing the first j
middleboxes on the first hop v1. Otherwise, the optimal result
TOSP(i, j) to place the first j middleboxes on the first i hops is
to select the minimum link weight sum among j +1 possible
solutions, in which the xth solution places the first x − 1
middleboxes on the first i− 1 hops, i.e., TOSP(i− 1, x− 1),
and places the remaining middleboxes mx to mj on the ith

hop vi, i.e., w(i;x, j).
Equation (13) calculates the weight of the ith path link, i.e.,

(vi, vi+1), when placing middleboxes mx to mj on the ith hop
vi, and sets it to infinity if vi has fewer than j−x+1 available
spaces. Note that if x ≤ j and vi has sufficient spaces,
w(i;x, j) does not depend on x. In other words, as long as vi
has no fewer than j−x+1 spaces to host middleboxes mx to
mj , the weight of link (vi, vi+1) is the same, which simplifies
the calculation of TOSP(i, j) as the sum of the minimum
sub-solution minx∈[j−sc[vi]+1,j+1]

{
TOSP(i− 1, x− 1)

}
and

a constant.
When there is no repeating node on the flow path, the time

complexity of the TOSP algorithm is O(n|M |2), because the
dynamic programming table has n rows and |M | columns, and
it takes up to O(|M |) time to calculate each table entry.

When the flow path route is not efficient and contains
repeating nodes, the above algorithm may obtain a sub-optimal
result. The reason is that, different hops of a repeating node
share middlebox spaces, but the above algorithm processes
those hops always from the path head, and thus assigns earlier
hops higher priority. A simple solution is to first enumerate all
the possibilities to divide the shared spaces among different
hops of a repeating node, and then apply TOSP to each
possible division. For example, if the flow path contains a
repeating node with s spaces that appears twice at the ith1 hop
vi1 and the ith2 hop vi2 , we view vi1 and vi2 as two independent
nodes by allocating x ∈ [0, s] spaces to vi1 and s− x spaces
to vi2 . TOSP is then applied to each different x value, and the
minimum path cost among all the cases is the optimal solution.

C. Partially-Ordered Middlebox Set

We now solve the general scenario where the dependency
relation is a partial order. The following theorem shows the
NP-hardness of the problem.

a b c d

(a,b) (a,c) (b,c) (c,d)

(a) Clique (b) TAPIM

v1 v2 v8Flow path:

Middleboxes and
dependencies:

ba

d c

Fig. 3: Reduction from Clique to TAPIM with predetermined
path.

Theorem 2. The TAPIM problem with a predetermined path
for a partially ordered middlebox set is NP-hard.

Proof. We prove by reduction from the Clique problem [12].
The clique problem decides whether an undirected graph G =
(V,E) has a clique of size k, which is a complete sub-graph
with k vertices and

(
k
2

)
edges. For example, the graph in Fig.

3(a) has a clique of size 3: ({a, b, c}, {(a, b), (a, c), (b, c)}).
Given an instance of the Clique problem with a graph G =

(V,E), an instance of the TAPIM problem can be constructed
in polynomial time as follows.

1) For each vertex p ∈ V , create a vertex middlebox mp

with ratio[mp] = 2.
2) For each edge (p, q) ∈ E, create an edge middlebox

m(p,q) with ratio[m(p,q)] = 2−k/(
k
2).

3) The middlebox corresponding to an edge (p, q) depends
on the two middleboxes corresponding to its two incident
vertices p and q, i.e., mp ← m(p,q) and mq ← m(p,q).

4) There is a single flow f with the initial traffic rate of
one, i.e., t = 1. The path has |V |+ |E| nodes. Use vi to
denote the ith node on the path. Each node has a space
capacity of one, i.e., sc[vi] = 1.

5) Each link on the path has a bandwidth capacity of infinity,
i.e., bc[vi, vi+1] = ∞. The link (vk+(k2)

, vk+(k2)+1) is
called the critical link, with its weight being one if the
link load is no more than one and infinity otherwise, i.e.,

weight((vk+(k2)
, vk+(k2)+1), l) =

{
1, if l ≤ 1.

∞, if l > 1.
(14)

The weight of any other link is always zero.
Next, it can be shown that if the graph G = (V,E) has a

clique of size k, then the constructed TAPIM instance has a
minimum path weight of one, and vice versa. The proof detail
is omitted due to space limitations.

After proving the NP-hardness, our solution to place a
partially-ordered middelbox set is to first convert it to a totally-
ordered middlebox set and then apply TOSP.

Following the least-first-greatest-last rule in NOSP, the
objective of the conversion algorithm is to arrange the mid-
dleboxes in the resulting total order chain in the increasing
order of their traffic changing ratios. The intuitive solution is

thus to iteratively find the middleboxes without dependence,
remove among them the one with the least traffic changing
ratio, and add it to the end of the total order chain. For
example, given four middleboxes with the following traffic
changing ratios and dependencies: 1.4 ← 1.5 and 1.6 ← 0.1,
the conversion result will be the following total order chain:
1.4← 1.5← 1.6← 0.1.

To increase the solution search space, we also add lookahead
information by searching further beyond just the middleboxes
without dependence. Define a self-dependent middlebox tree
of size k to be a tree of k middleboxes that are rooted from a
single middlebox and depend on only the middleboxes in the
tree. The traffic changing ratio of the tree is the product of
the traffic changing ratios of all the middleboxes in the tree.
In the above example, 1.6 ← 0.1 is a self-dependent tree of
size 2, and its traffic changing ratio is 1.6× 0.1 = 0.16.

The conversion algorithm with a lookahead value of k works
in iterations as follows. In each iteration, the algorithm first
finds all the middleboxes with no dependence. Using each of
such middleboxes as the root, the algorithm calculates the self-
dependent tree of size up to k that has the minimum traffic
changing ratio. Among all the calculated trees with different
root middleboxes, the algorithm selects the one with the
minimum traffic changing ratio, removes its root middlebox,
and adds the middlebox to the total order chain. For the above
example, the first iteration generates two trees of size up to 2:
1.4 of size 1 with 1.4 being the root, and 1.6 ← 0.1 of size
2 with 1.6 being the root. Since the traffic changing ratio of
the latter 0.16 is less than that of the former 1.4, the root of
the latter will be removed. The resulting total order chain after
the algorithm converges is thus: 1.6← 0.1← 1.4← 1.5.

When the lookahead parameter k = 1 or 2, the time
complexity of the conversion algorithm is O(|M | log |M |)),
because there are up to |M | iterations, and the time complexity
to select the middelebox with the minimum traffic changing
ratio is O(log |M |) using a heap. When k = 2, the optimal
self-dependent trees of size up to 2 with each middlebox being
the root can be pre-calculated in O(|M |) time. Since |M | is
usually small, k = 2 will be sufficient in most cases.

V. MIDDLEBOX PLACEMENT WITHOUT
PREDETERMINED PATH

In this section, we solve the TAPIM problem when the flow
path, i.e., route, is not predetermined. We start by proving that
the TAPIM problem without a predetermined path is NP-hard
even for a non-ordered set by reduction from the Hamiltonian
Cycle problem. We then propose a two-step solution by first
finding a flow path with sufficient spaces and then applying
the algorithms in Section IV to place middleboxes on the given
path.

A. NP-Hardness

The following theorem shows the hardness of the TAPIM
problem without a predetermined flow path.

Theorem 3. Without a predetermined flow path, the TAPIM
problem is NP-hard even for a non-ordered middlebox set.

aout bout

ain

cin

coutdout

(a) Hamiltonian Cycle (b) TAPIM

din

bin

a b

cd

Fig. 4: Reduction from Hamiltonian Cycle to TAPIM.

Proof. The proof is by reduction from the Hamiltonian Cycle
problem, which determines for a directed graph G = (V,E)
whether there exists a simple cycle that contains each vertex
in V . Note that a Hamiltonian cycle must be a simple cycle
without repeating nodes.

For a Hamiltonian Cycle instance with a graph G = (V,E),
a TAPIM instance with a graph G′ = (V ′, E′) can be
constructed in polynomial time as follows:

1) For each vertex v ∈ V , create two nodes vin, vout ∈ V ′,
where vin has a space capacity of zero, i.e., sc[vin] = 0,
and vout of one, i.e., sc[vout] = 1. Connect the two
nodes with a link (vin, vout) ∈ E′, and set its band-
width capacity to infinity, i.e., bc[vin, vout] = ∞. Its
weight is one if the load is no more than one, i.e.,
∀l ≤ 1, weight(vin, vout, l) = 1, and infinity otherwise.

2) For each edge (u, v) ∈ E, create a link (uout, vin) ∈
E′, and set its bandwidth capacity to one, i.e,
bc[uout, vin] = 1, and its weight to be zero, i.e.,
∀l, weight(uout, vin, l) = 0. An example to create G′

from G is shown in Fig. 4.
3) Create a flow f with the source and destination both

being ain, i.e., src = dst = ain, where a is an arbitrary
vertex in V . The initial traffic rate is one, i.e., t = 1.
The middlebox set M is a non-ordered one with |V |
middleboxes, i.e., |M | = |V |, and each middlebox has a
traffic changing ratio of one, i.e., ∀m ∈M, ratio[m] = 1.

Next, it can be shown that if G has a Hamiltonian cycle,
then the TAPIM instance with G′ and f has a minimum path
cost of |V |, and vice versa. The proof detail is omitted due to
space limitations.

B. Traffic and Space Aware Routing

Our solution to TAPIM without a predetermined path works
in two steps by first finding a viable path for the flow and then
applying the algorithms in Section IV to place the middleboxes
on the determined path.

From the proof of Theorem 3, it can be seen that it is NP-
hard to find the minimum cost path with sufficient spaces,
and thus we propose the Traffic And Space Aware Routing
(TASAR) heuristic. The basic idea is to originate from the
source, iteratively route to a nearby node with spaces until

sufficient spaces have been accumulated, and finally go to the
destination.

In detail, the TASAR heuristic works as follows. It starts by
calculating the number of spaces needed on the path besides
those in the source and destination, i.e., |M |−sc[src]−sc[dst].
Next, the heuristic enters iterative loops to accumulate the
necessary number of spaces. In the xth iteration, the heuristic
runs Dijkstra’s algorithm [12] from vx, with v1 = src, to
find the nearest (in terms of the path cost) node with spaces,
denoted as vx+1, and add the path from vx to vx+1 to the flow
path route. If sufficient spaces have been accumulated, i.e.,
|M |−sc[src]−sc[dst]−

∑x+1
i=1 sc[vi] ≤ 0, the iteration stops,

and the heuristic runs Dijkstra’s algorithm for the last time to
find the minimum cost path from the current node vx+1 to
the destination dst. Otherwise, if more spaces are needed, the
iteration continues.

The time complexity of the heuristic is O(|M |(|E| +
|V | log |V |)), because there will be up to O(|M |) iterations,
and the time complexity of each iteration is that of Dijkstra’s
algorithm O(|E|+ |V | log |V |).

VI. EXPERIMENT AND SIMULATION RESULTS

We use a combination of simulations and experiments for
performance evaluation. We have conducted simulations to
obtain performance data in large scale networks, and have
also built a prototype to validate the solutions in realistic
environments. In this section, we present extensive simulation
and experiment results to show the effectiveness of our design.

A. Simulation Results

We have implemented the proposed algorithms in the NS-
3 simulator, and used the following performance metrics for
benchmark comparisons.

1) End-to-end delay: The end-to-end delay is the interval to
transmit a packet from its source to destination.

2) Packet loss ratio: The packet loss ratio is the percentage
of packets lost with respect to packets sent.

Heavier congestion will cause longer end-to-end delays and
higher packet loss ratios.

To reflect the burstiness of realistic traffic, we adopt the
on-off traffic model. When a flow f is in the on state, its
initial traffic rate t is the product of a baseline rate and a
random number between 0.5 to 1.5; when in the off state,
its traffic rate is zero. A flow is in each of the two states
for 50% of the time. There are two candidate middlebox
sets with different traffic changing ratios and dependency
relations, and each flow will randomly choose one of them.
Each link in the network has a bandwidth capacity of 100
Mbps and a propagation delay of 2 µs. We use the Cisco
EIGRP link weight function [2] by setting only K2 to one.
Every simulation run lasts five minutes, and the presented
result is the average of four simulation runs.

1) Placing Non-Ordered Set with Predetermined Path: For
the NOSP algorithm to place a non-ordered middlebox set on
a predetermined path, since there are no existing solutions
for the studied problem, we designed the following three

benchmark algorithms. Same as NOSP, all the benchmark
algorithms sort the middleboxes based on their traffic changing
ratios before placing them.

1) First-fit continuously places the sorted middleboxes in the
increasing order from the head of the flow path.

2) Last-fit continuously places the sorted middleboxex in the
decreasing order from the tail of the flow path.

3) Random-fit randomly places the sorted middleboxes on
random nodes on the path that have spaces.

We pick the tree topology, since it is a popular choice among
institutional networks, and there is only a single path between
any pair of nodes. We set up a four-layer quad-tree with 21
switches and 64 hosts. Each switch has 13 spaces to ensure
sufficient spaces for all flows. Each host generates a flow to
a random destination. The two candidate sets of middleboxes
are: {0.7, 0.8, 1.1, 1.2} and {0.8, 0.9, 1.1, 1.3}. The baseline
traffic rate of each flow ranges from 0.625 to 6.25 Mbps with
a stride of 0.625 Mbps.

0 1 2 3 4 5 6

Traffic rate (Mbps)

10
0

10
1

D
e
la

y
 (

m
s
)

Tree topology

NOSP

First-fit

Last-fit

Random-fit

0 1 2 3 4 5 6

Traffic rate (Mbps)

0

10

20

30

40

50

P
a
c
k
e
t
lo

s
s
 r

a
ti
o
 (

%
)

Tree topology

NOSP

First-fit

Last-fit

Random-fit

(a) End-to-end delay. (b) Packet loss ratio.

Fig. 5: NOSP simulation results.

Fig. 5(a) shows the average end-to-end delays of the four
algorithms. We can see that NOSP consistently achieves the
shortest delay due to its optimal middlebox placement scheme.
On the other hand, Last-fit has the worst performance, because
it places middleboxes at the path tail, and the flow rate is 1×
on most links of the path. By contrast, First-fit achieves a
relatively shorter average delay by placing middleboxes at the
path head. The reason is that half of the flows picked the first
set of middleboxes with an aggregate traffic changing ratio of
0.7 × 0.8 × 1.1 × 1.2 = 0.74, and the other half picked the
second set with a ratio of 0.8× 0.9× 1.1× 1.3 = 1.03, so on
average the middleboxes placed at the path head would reduce
the traffic rate of a flow to (0.74 + 1.03)/2 = 0.885×, which
is the traffic rate on most links of the path. Finally, the delay
of Random-fit is between that of Last-fit and First-fit due to
its randomized strategy.

Fig. 5(b) plots the packet loss ratios. We can observe a
similar trend that NOSP always achieves the lowest packet loss
ratio. When the flow traffic rate is small, all the algorithms
have zero packet loss ratios. Compared with NOSP, other
algorithms experience packet loss at much smaller traffic rates,
and their ratios increase much faster.

2) Placing Totally-Ordered Set with Predetermined Path:
Next, we evaluate the TOSP algorithm to place a totally-
ordered set with similar benchmark algorithms as above, in

which First-fit, Last-fit, and Random-fit place the middleboxes
following the given total order chain from the path head, tail,
and randomly, respectively. The traffic changing ratios and de-
pendency chains of the two candidate sets of middleboxes are:
{0.8 ← 1.1 ← 0.7 ← 1.2} and {1.2 ← 0.7 ← 1.1 ← 0.8}.
Other simulation settings are the same as above.

0 1 2 3 4 5 6

Traffic rate (Mbps)

10
0

10
1

D
e
la

y
 (

m
s
)

Tree topology

TOSP

First-fit

Last-fit

Random-fit

0 1 2 3 4 5 6

Traffic rate (Mbps)

0

10

20

30

40

50

60

P
a
c
k
e
t
lo

s
s
 r

a
ti
o
 (

%
)

Tree topology

TOSP

First-fit

Last-fit

Random-fit

(a) End-to-end delay. (b) Packet loss ratio.

Fig. 6: TOSP simulation results.

As shown in Fig. 6(a), TOSP achieves the shortest end-to-
end delay because of its dynamic programming based optimal
middlebox placement scheme. Similar as above, the delays of
the other three algorithms increase in the sequence of First-fit,
Random-fit, and Last-fit. The packet loss ratio results in Fig.
6(b) are consistent, and TOSP consistently outperforms others.

3) Placing Partially-Ordered Set with Predetermined Path:
To evaluate the placement of partially-ordered middlebox sets
on predetermined paths, we use the proposed heuristic to
convert the partially-ordered sets to fully-ordered sets, and then
apply TOSP. We adjust the lookahead parameter k from one
to two and compare their performances. The traffic changing
ratios and the dependencies of the two candidate sets of
middleboxes are: {1.1 ← 0.8, 1.2 ← 0.7} and {1.1 ←
1.2, 1.3 ← 0.7}. Note that different total order chains will
be generated when using the two different lookahead values.

0 1 2 3 4 5 6

Traffic rate (Mbps)

10
0

10
1

D
e
la

y
 (

m
s
)

Tree topology

Lookahead k=1

Lookahead k=2

0 1 2 3 4 5 6

Traffic rate (Mbps)

0

5

10

15

20

25

30

35

P
a
c
k
e
t
lo

s
s
 r

a
ti
o
 (

%
)

Tree topology

Lookahead k=1

Lookahead k=2

(a) End-to-end delay. (b) Packet loss ratio.

Fig. 7: Partial to total order conversion simulation results.

Fig. 7(a) compares the end-to-end delays of the two different
lookahead values. We can see that the lookahead value of two
achieves shorter delays with a deeper search into the solution
space. Similarly, Fig.7(b) shows that the lookahead value of
two achieves a lower average packet loss ratio.

4) Placing Middleboxes without Predetermined Path: Fi-
nally, we evaluate the Traffic And Space Aware Routing
(TASAR) heuristic by comparing it with a hop count based
and ECMP (i.e., load-balancing) enabled shortest path routing

algorithm. For the multi-path topology, we choose an 8-
pod fat tree with 80 switches and 128 hosts. Each host
generates a flow to a random host in other pods. The baseline
traffic rate of each flow ranges from 10 to 100 Mbps with a
stride of 10 Mbps. The two sets of candidate middleboxes
after conversion are: {1.2 ← 0.7 ← 1.1 ← 0.8} and
{1.3← 0.7← 1.1← 1.2}.

We first compare the routing success ratios of the two
algorithms. We adjust the number of spaces per switch from 6
to 8, and measure the percentage of flows that can successfully
find paths with sufficient middlebox spaces. As shown in
Table I, when the space number per switch is 6, the routing
success ratio of TASAR is 5% higher than that of shortest
path routing. When the number increases 7, TASAR achieves a
100% routing success ratio, while shortest path routing cannot
find path for 3.75% of the flows. Finally, when it increase to
8, both algorithms achieve 100% routing success ratios.

Spaces per switch TASAR Shortest path routing
6 93.75% 88.91%
7 100% 96.25%
8 100% 100%

TABLE I: Flow routing success ratio.

Next, we fix the space number per switch to 8, and compare
the end-to-end delays and packet loss ratios of the two
algorithms. As shown in Fig. 8(a), when the baseline flow
rate is 10 Mbps, TASAR has a slight longer delay, because
its paths are not as short as those generated by shortest
path routing. However, once the flow rate increases beyond
10 Mbps, TASAR consistently delivers shorter delays due to
its traffic awareness in path calculation. Fig. 8(b) also shows
that TASAR consistently achieves lower packet loss ratios.

0 20 40 60 80 100

Traffic rate (Mbps)

10
0

10
1

D
e
la

y
 (

m
s
)

Fat tree topology

TASAR, TOSP

Shortest path, TOSP

0 20 40 60 80 100

Traffic rate (Mbps)

0

20

40

60

80

P
a
c
k
e
t
lo

s
s
 r

a
ti
o
 (

%
)

Fat tree topology

TASAR, TOSP

Shortest path, TOSP

(a) End-to-end delay. (b) Packet loss ratio.

Fig. 8: TASAR simulation results.

B. Experiment Results with Prototype

We have implemented an SDN based prototype using the
open-source SDN controller Floodlight and emulation plat-
form Mininet, and developed a middlebox emulator using
the libpcap library [8]. Due to space limitations, the detailed
description of the implementation is omitted. We validate our
design by comparing TOSP with TASAR routing and TOSP
with shortest path routing.

We pick the Abilene backbone topology [1], as shown in
Fig. 9. Each node has a space capacity of three, and each link

Fig. 9: Abilene backbone network topology.

has a bandwidth capacity of 10 Mbps. For traffic generation,
we use Iperf to create constant bit rate UDP traffic flows. Four
flows are generated: two from node 1 to 8, and two from 11 to
2. The initial traffic rate of each flow ranges from 1 to 10 Mbps
with a stride of 1 Mbps. Each flow needs four middleboxes
with the following traffic changing ratios and total order chain
after conversion: {1.2← 0.7← 1.1← 0.8}.

0 2 4 6 8 10

Traffic rate (Mbps)

10
1

10
2

10
3

10
4

D
e
la

y
 (

m
s
)

Abilene topology

TASAR, TOSP

Shortest path, TOSP

0 2 4 6 8 10

Traffic rate (Mbps)

0

10

20

30

40

P
a
c
k
e
t
lo

s
s
 r

a
ti
o
 (

%
)

Abilene topology

TASAR, TOSP

Shortest path, TOSP

(a) End-to-end delay. (b) Packet loss ratio.

Fig. 10: Prototype experiment results.

As can be seen in Fig. 10(a), the experiment data are
consistent with the simulation results, and TASAR achieves
shorter end-to-end delays than shortest path routing. Also,
Fig. 10(b) shows that the former achieves much lower packet
loss ratios.

VII. CONCLUSIONS

The advancement of virtualization technology has made
NFV a promising platform for network function provisioning.
However, the flexibility to run an NFV middlebox on any
available standard server also creates a challenge for effi-
cient NFV implementation. In this paper, we have studied
the optimal placement of NFV middleboxes by considering
different middlebox traffic changing effects and dependency
relations. We first formulate the Traffic Aware Placement of
Interdependent Middleboxes problem as a graph optimization
problem with the objective to load-balance the network. Next,
we solve the problem when the flow path is predetermined,
and propose optimal algorithms for a non-ordered or totally-
ordered middlebox set. For the general scenario of a partially-
ordered middlebox set, we show that the problem is NP-
hard by reduction from the Clique problem, and propose
an efficient heuristic to convert a partially-ordered set to a
totally-ordered one. On the other hand, when the flow path

is not predetermined, we prove that the studied problem is
NP-hard even for a non-ordered middlebox set by reduction
from the Hamiltonian Cycle problem, and propose the Traffic
And Space Aware Routing heuristic. We have conducted large
scale simulations to evaluate the proposed solutions, and have
also implemented an SDN based prototype to validate them
in realistic environments. Extensive simulation and experiment
results are presented to show the effectiveness of our design.

REFERENCES

[1] “Abilene backbone,” http://abilene.internet2.edu.
[2] “Cisco EIGRP,” http://www.cisco.com/c/en/us/support/docs/ip/

enhanced-interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.
html.

[3] “Cisco: NAT order of operation,” http://www.cisco.com/c/en/us/support/
docs/ip/network-address-translation-nat/6209-5.html.

[4] “Citrix CloudBridge,” https://www.citrix.com/content/dam/citrix/en us/
documents/products-solutions/cloudbridge-technical-overview.pdf.

[5] “Microsoft TechNet: VPNs and firewalls,” https://technet.microsoft.com/
en-us/library/cc958037.aspx.

[6] “Network functions virtualisation white paper #3,” https://portal.etsi.
org/Portals/0/TBpages/NFV/Docs/NFV White Paper3.pdf.

[7] “OSPF: frequently asked questions,” http://www.cisco.com/c/en/us/
support/docs/ip/open-shortest-path-first-ospf/9237-9.html.

[8] “TCPDUMP/LIBPCAP public repository,” http://www.tcpdump.org/.
[9] A. Curtis et al., “Mahout: Low-overhead datacenter traffic management

using end-host-based elephant detection,” in IEEE INFOCOM, 2011.
[10] A. Singh et al., “Server-storage virtualization: integration and load

balancing in data centers,” in ACM/IEEE Supercomputing, 2008.
[11] B. Heller et al., “Elastictree: saving energy in data center networks,” in

USENIX NSDI, 2010.
[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. MIT Press, 2009.
[13] W. Ding et al., “OpenSCaaS: an open service chain as a service platform

toward the integration of SDN and NFV,” IEEE Network, vol. 29, no. 3,
pp. 30–35, 2015.

[14] J. Anderson et al., “xOMB: extensible open middleboxes with commod-
ity servers,” in ACM/IEEE ANCS, 2012.

[15] J. Hwang et al., “NetVM: high performance and flexible networking
using virtualization on commodity platforms,” IEEE Transactions on
Network and Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[16] J. Martins et al., “ClickOS and the art of network function virtualiza-
tion,” in USENIX NSDI, 2014.

[17] J. Matias et al., “Toward an SDN-enabled NFV architecture,” IEEE
Communications Magazine, vol. 53, no. 4, pp. 187–193, 2015.

[18] H. Jin et al., “Efficient VM placement with multiple deterministic and
stochastic resources in data centers,” in IEEE GLOBECOM, 2012.

[19] Y. Li, L. Phan, and B. T. Loo, “Network functions virtualization with
soft real-time guarantees,” in IEEE INFOCOM, 2016.

[20] W. Ma et al., “Traffic-aware placement of NFV middleboxes,” in IEEE
GLOBECOM, 2015.

[21] M. J. Miller, B. Vucetic, and L. Berry, Satellite communications: mobile
and fixed services. Springer Science & Business Media, 1993.

[22] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in IEEE CNSM, 2014.

[23] T. Mori et al., “Identifying elephant flows through periodically sampled
packets,” in ACM IMC, 2004.

[24] R. Cohen et al., “Near optimal placement of virtual network functions,”
in IEEE INFOCOM, 2015.

[25] S. Fayazbakhsh et al., “Enforcing network-wide policies in the presence
of dynamic middlebox actions using flowtags,” in USENIX NSDI, 2014.

[26] S. Mehraghdam et al., “Specifying and placing chains of virtual network
functions,” in IEEE Cloud Networking, 2014.

[27] V. Sekar et al., “Design and implementation of a consolidated middlebox
architecture,” in USENIX NSDI, 2012.

[28] Z. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4. ACM, 2013, pp. 27–38.

