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Abstract—Network function virtualization (NFV) enables
flexible deployment of middleboxes as virtual machines running
on general hardware. Since different middleboxes may change the
volume of processed traffic in different ways, improper deploy-
ment of NFV middleboxes will result in hot spots and congestion.
In this paper, we study the traffic changing effects of middleboxes,
and propose software-defined networking based middlebox place-
ment solutions to achieve optimal load balancing. We formulate
the traffic aware middlebox placement (TAMP) problem as a
graph optimization problem with the objective to minimize the
maximum link load ratio. First, we solve the TAMP problem
when the flow paths are predetermined, such as the case in a tree.
For a single flow, we propose the least-first-greatest-last (LFGL)
rule and prove its optimality; for multiple flows, we first show
the NP-hardness of the problem, and then propose an efficient
heuristic. Next, for the general TAMP problem without prede-
termined flow paths, we prove that it is NP-hard even for a
single flow, and propose the LFGL based MinMax routing algo-
rithm by integrating LFGL with MinMax routing. We use a joint
emulation and simulation approach to evaluate the proposed solu-
tions, and present extensive experimental and simulation results
to demonstrate the effectiveness of our design.

Index Terms—Network function virtualization, software-
defined networking, middlebox.

I. INTRODUCTION

THE ADVANCEMENT of virtualization technology [16]
has made Network Function Virtualization (NFV) [29]

a promising architecture for middleboxes. Middleboxes are
traffic processing appliances that are widely deployed in
data centers, enterprise networks, and telecommunications
networks [21]. Traditional middleboxes are proprietary hard-
ware devices that implement specialized functions such as fire-
walls, VPN proxies, and WAN optimizers [27]. Such hardware
middleboxes suffer from a number of drawbacks [40], [48],
including high cost, short life time, function inflexibility, and
difficulty to scale up.

NFV decouples network functions from physical equipment,
and implements middleboxes by running network function
software on virtualized general hardware [17]. An NFV server
is an industry standard server that hosts multiple virtual
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Fig. 1. Traffic changing effects of middleboxes.

machines (VMs), each implementing a middlebox function
with specialized software programs. Software middleboxes can
be instantiated at, or moved to, general servers at various loca-
tions of the network, without the need to install new hardware.
Benefiting from the underlying virtualization technology, NFV
enjoys many advantages not available in traditional hardware
middleboxes [5], such as fast deployment, reduced energy
consumption, and real-time optimization.

Unlike switches or routers that are only forwarding traf-
fic, most middleboxes are traffic processing devices, and may
change the volume of processed traffic and may do it in
different ways. For example, the Citrix CloudBridge WAN
optimizer [1] may compress traffic to 20% of its original vol-
ume before sends it to the next hop. On the other hand, a
Stateless Transport Tunneling (STT) proxy [2] adds 76 bytes
to each processed packet due to the encapsulation overhead.
Finally, a firewall will keep the traffic rates of allowed flows
unchanged and reduce the rates of denied flows to zero.

The following toy example in Fig. 1 illustrates the traffic
changing effects of middleboxes. Consider a network consist-
ing of three nodes v1, v2 and v3, and two links (v1, v2) and
(v2, v3). Each node has an attached NFV server, and each
server can host a single middlebox. A flow f starts at v1 and
ends at v3, whose initial traffic rate is 1. Two middleboxes m1
and m2 need to be applied to f . m1 will double the traffic rate,
while m2 will cut the traffic rate in half. If install m1 on v1
and m2 on v3, the load of links (v1, v2) and (v2, v3) will be
1 × 2 = 2, as shown in Fig. 1(a). However, by installing m1
on v3 and m2 on v1, we can reduce the load of both links to
1 × 0.5 = 0.5, as shown in Fig. 1(b).

As can be seen, the flexibility of VMs brings a couple of
challenges for efficient NFV implementation. First, since there
may exist multiple candidate NFV servers, a strategic deploy-
ment plan is necessary to determine the optimal location for a
middlebox. Next, due to traffic changing effects, the order to
deploy different types of middleboxes is critical for balancing
traffic load in the network.
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In this paper, we study optimal deployment of NFV middle-
boxes with the objective to achieve load balancing, and will
focus on the persistent and large-sized elephant flows [20] but
not the transient and small-sized mice flows [20], for the fol-
lowing three reasons. First, since elephant flows constitute a
majority of the network traffic [42], optimizing elephant flows
will efficiently help balance the entire network. Second, mice
flows are transient, and may leave the network before the cal-
culated optimization scheme takes effect, making it difficult
to achieve the optimization objective. Third, the number of
mice flows is much greater than that of elephant flows [20],
and the computation cost to manage so many dynamic flows
is prohibitive. Therefore, our design is to deploy independent
middleboxes for each elephant flow to avoid resource con-
tention and congestion, but instead let mice flows utilize the
leftover processing capacity of middleboxes that have been
deployed for elephant flows. The solution for mice flows will
not be the focus of this paper.

The solution proposed in this paper leverages the emerging
Software-Defined Networking (SDN) architecture [8], which
enables efficient optimization by decoupling the network
control plane and data plane. An SDN based prototype
has been implemented to demonstrate the practicality of
our design.

Our main contributions are summarized as follows. First, we
formulate the Traffic Aware Middlebox Deployment (TAMP)
problem as a graph optimization problem with the objective
to minimize the maximum link load ratio in the network.
Second, when flow paths are predetermined, such as the case
in the tree topology, we propose the Least-First-Greatest-
Last (LFGL) rule to place middleboxes for a single flow,
and prove its optimality. For multiple flows, we show that
the TAMP problem is NP-hard by reduction from the 3-
Satisfiability problem, and propose an efficient heuristic.
Third, for the general scenario without predetermined flow
paths, we prove that the TAMP problem is NP-hard even for a
single flow by reduction from the Hamiltonian Cycle problem,
and propose the LFGL based MinMax routing algorithm
that integrates LFGL with MinMax routing. Fourth, we have
implemented the proposed algorithms in a prototype with the
open-source SDN controller Floodlight and network emulator
Mininet. Finally, we present extensive experimental and simu-
lation results to demonstrate the effectiveness of the proposed
algorithms.

The remaining of this paper is organized as follows.
Section II provides a brief overview of related works.
Section III formulates the TAMP problem. Sections IV and V
solve the TAMP problem with and without predetermined
flow paths, respectively. Section VI describes the implementa-
tion of our prototype. Section VII presents experimental and
simulation results. Finally, Section VIII concludes the paper.

II. RELATED WORKS

NFV has recently attracted significant attention from both
industry and academia as an important shift in network
function provisioning. A wide range of research has been con-
ducted on the NFV architecture, software platform, middlebox

placement, and resource management, as outlined below.
However, to the best of our knowledge, traffic aware deploy-
ment of NFV middleboxes, and in particular the traffic
changing effects, have not been well investigated in the
literature.

NFV architecture: Sekar et al. [46] propose an NFV
architecture named CoMb that explores consolidation oppor-
tunities to reduce network provisioning cost and load skew.
Anderson et al. [14] propose the xOMB architecture for build-
ing scalable and extensible middleboxes. ServerSwitch [37]
is a low cost architecture that integrates a powerful multi-
core commodity server with a programmable switching chip.
PacketShader [30] is a software router framework with
Graphics Processing Unit (GPU) acceleration that brings
significantly higher throughput over previous CPU-only imple-
mentation. Egi et al. [23] identify principles for construct-
ing high-performance software router systems on commodity
hardware, and show that the solutions based on current
and near-future commodity hardware are flexible, practical,
and inexpensive. This work can benefit from those research
advances by implementing our solutions based on the above
NFV architectures.

Software platform: Hwang et al. [32] propose the NetVM
network virtualization platform, built on top of the KVM
infrastructure and Intel DPDK library, to dynamically scale,
deploy, and reprogram network functions. By extending the
idea of Click [36], ClickOS [39] develops a high-performance,
virtualized software middlebox platform, which enables hun-
dreds of concurrent virtual network functions without intro-
ducing significant overhead in packet processing. The above
results can be used as the software foundation to efficiently
implement the algorithms proposed in this work.

Middlebox placement: SIMPLE [44] presents a SDN-based
policy enforcement layer for efficient middlebox-specific traf-
fic steering. Although SIMPLE is designed with the constraints
of legacy hardware middleboxes and existing SDN interfaces,
it can also be applied to software middleboxes running on
commodity hardware. The header modifications induced by
middleboxes make it difficult to reason about the correctness of
network-wide policy enforcement. To address this challenge,
Fayazbakhsh et al. [24] propose an extended SDN architec-
ture called FlowTags, in which middleboxes add packet tags
to provide the necessary context for systematic policy enforce-
ment. Our work differs from the above ones by focusing
on middlebox placement with the objective to achieve load
balancing.

Switch memory management: To efficiently manage the
expensive and power-hungry ternary content-addressable
memory (TCAM) in switches, multiple works [26], [45], [49]
have studied shrinking the routing table size by aggregating
rules. Uzmi et al. [47] further propose a practical and near-
optimal aggregation scheme to minimize the switch table size.
Katta et al. [35] propose the CacheFlow system for SDN to
cache the most popular rules in a small TCAM, while relying
on software to handle the cache miss traffic. Kang et al. [43]
propose a rule placement algorithm to distribute forwarding
policies across general SDN networks while managing rule-
space constraints. Our work relates to the above ones by also



530 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 3, SEPTEMBER 2017

considering the limit of middleboxes that can be hosted at a
node due to resource constraints, such as switch TCAM or
NFV server memory.

III. PROBLEM FORMULATION

In this section, we formulate the Traffic Aware Middlebox
Placement (TAMP) problem.

Consider a network represented by a directed graph G =
(V, E). Each node v ∈ V may have an attached NFV server,
and its space capacity is denoted as scv ≥ 0, i.e., the maximum
number of middleboxes to host. For simplicity, we assume
that each middlebox needs one space, and more processing
power can be achieved by additional middlebox instances.
A link (u, v) ∈ E has a bandwidth capacity bcu,v ≥ 0,
i.e., the available bandwidth. Its current link load is denoted
as lu,v.

Use M to denote the complete set of middlebox types. Each
middlebox type m ∈ M has an associated traffic changing
factor alterm, where 1 + alterm is the ratio of the traffic rate
of a flow after and before being processed by m.

Let F denote the set of flows. Each flow f ∈ F is represented
as a 4-tuple (sf , df , tf , Mf ), in which sf ∈ V is the source node,
df ∈ V is the destination node, tf is the initial traffic rate at the
ingress point, and Mf ⊆ M is the set of required middleboxes.

When a flow f enters the network, a path routef will be
assigned for the flow, which is a decision variable defined as

routef (u, v) =
{

1, if flow f traverses link (u, v).
0, otherwise.

(1)

To avoid performance degradation for TCP flows, a flow is
not allowed to be split among multiple paths [31].

Use tv−f and tv+f to denote the traffic rate of flow f before
entering and after leaving node v, respectively. If f is processed
by a middlebox of type m, or middlebox m for short, at v, then
tv+f = tv−f (1 + alterm). Note that t

sf −
f = tf . For convenience,

use tu,v
f = tu+

f = tv−f to represent the traffic rate of f on its
path link (u, v).

In addition, a placement scheme placef will determine the
locations to install each middlebox m ∈ Mf , which is a
decision variable defined as

placef (m, v) =
{

1, if middlebox m is installed at node v.
0, otherwise.

(2)

Define the ratio between the aggregate load and capac-
ity of a link to be the link load ratio, which is also called
traffic intensity in queuing theory [34] and determines the
queuing delay. To achieve load balancing, our objective is
to minimize the maximum link load ratio in the network by
optimizing routef and placef for each flow f ∈ F, as shown
Equation (3). Our solutions can also easily adapt to other opti-
mization objectives [15], [28], such as minimizing the path
cost or maximizing the residual capacity.

minimize maxRatio (3)

subject to the following constraints:

∀(u, v) ∈ E :
lu,v + ∑

f ∈F routef (u, v)tu,v
f

bcu,v
≤ maxRatio (4)

∀f ∈ F :∑
u∈V

routef (sf , u) =
∑
u∈V

routef (u, sf ) + 1, (5)

∑
u∈V

routef (u, df ) =
∑
u∈V

routef (df , u) + 1 (6)

∀f ∈ F,∀v ∈ V − {sf , df } :∑
u∈V

routef (u, v) =
∑
u∈V

routef (v, u) (7)

∀v ∈ V :∑
f ∈F

∑
m∈Mf

placef (m, v) ≤ scv (8)

∀f ∈ F,∀m ∈ Mf ,∀v ∈ V :

placef (m, v) ≤
∑
u∈V

(routef (u, v) + routef (v, u)) (9)

∀f ∈ F,∀m ∈ Mf :∑
u∈V

placef (m, u) = 1 (10)

∀f ∈ F,∀(u, v) ∈ E :

tu,v
f =

tu−
f routef (u, v)

∏
m∈Mf

(1 + placef (m, u)alterm) (11)

Equation (4) states that, for a link (u, v), its load ratio
(lu,v+∑

f ∈F routef (u, v)tu,v
f )/bcu,v should be less than or equal

to the optimization objective maxRatio. Equations (5) and (6)
enforce each flow f to start and end at its source sf and destina-
tion df , respectively. Equation (7) guarantees flow conservation
at each intermediate node on the path, i.e., no flow generation
or termination at an intermediate node. Equation (8) states that,
for a node v, the total space demand of hosted middleboxes∑

f ∈F
∑

m∈Mf
placef (m, v) should not exceed its space capac-

ity scv. Equation (9) states that a middlebox m can be installed
only on a node v that the flow path traverses. Equation (10)
states that a middlebox m should be installed once and only
once. Equation (11) states that, for a flow f , its traffic rate on
a link (u, v) of its path, i.e., routef (u, v) = 1, or its traffic rate
when leaving u, or its traffic rate when entering v, is equal to
its traffic rate when entering u, i.e., tu−

f , multiplying the traffic
changing ratios 1 + placef (m, u)alterm of all the middleboxes
m placed at node u.

It can be seen that, optimal performance can be achieved
by minimizing the maximum link load ratio on the routing
paths of the flows in F, although the objective maxRatio is
the maximum link load ratio of the entire network. Proofs are
omitted. Thus, the following proposed solutions will focus on
minimizing the maximum link load ratio on flow paths.

IV. TRAFFIC AWARE MIDDLEBOX PLACEMENT

WITH PREDETERMINED PATHS

In this section, we solve the TAMP problem when the
flow paths, i.e., route, have been determined, or are unique
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in certain network topologies, such as the popular tree topol-
ogy. We start with a single flow, i.e., |F| = 1, and propose
the Least-First-Greatest-Last (LFGL) rule to achieve optimal
performance. When there are multiple flows, i.e., |F| > 1,
we prove that the TAMP problem is NP-hard by reduction
from the 3-Satifiability problem, and propose an efficient
heuristic.

A. Middlebox Placement for Single Flow

In reality, flows tend not to arrive at exactly the same time.
Even if multiple flows arrive simultaneously in a software-
defined network (SDN), the central controller will have to
process them one by one. Thus, solutions for a single flow
are of practical importance, especially for SDNs. Assume that
the flow set F has only a single flow f , and the path routef has
been determined. Obviously, a valid placement solution placef

exists, if and only if the path links have sufficient bandwidth
capacity, and the number of available NFV spaces on the rout-
ing path is greater than or equal to the number of required
middleboxes, i.e., |Mf |.

The basic idea of our solution is to push heavy traffic out
of the network core by decreasing the traffic rate at the begin-
ning of the path, and increasing it at the end of the path.
Based on this observation, we propose an efficient rule called
Least-First-Greatest-Last (LFGL) to optimally place middle-
boxes. The rule starts by sorting all the middleboxes m ∈ Mf

based on their traffic changing factors alterm. It then places
the middleboxes with non-positive factors, or shrinking mid-
dleboxes, from the head of the path in an increasing order.
When a node has no space left, LFGL continues with the next
node on the path. After finishing placing shrinking middle-
boxes, the rule switches to middleboxes with positive traffic
changing factors, or expanding middleboxes, and place them
from the path tail in the decreasing order of their factors. The
deployment succeeds if all middleboxes are placed, and fails
otherwise.

As can be seen, LFGL processes each middlebox in Mf

only once after sorting, and therefore its time complexity is
O(|Mf | log |Mf |), i.e., the time complexity to sort Mf .

Theorem 1: The Least-First-Greatest-Last rule minimizes
the maximum link load ratio on the flow path.

Proof: For the purpose of contradiction, assume that a
different placement scheme place′

f achieves maximum link
load maxRatio′ lower than that of LFGL, i.e., maxRatio′ <

maxRatio.
Without loss of generality, assume that the differences

between the two placement schemes include shrinking middle-
boxes, and m is the one with the least traffic changing factor.
By the LFGL rule, m is installed in the first available node
u at its placement time, i.e., placef (m, u) = 1. By compar-
ison, the other placement scheme installed m on a different
node u′, i.e., place′

f (m, u′) = 1, which must be after u on the
flow path, and instead a different middlebox m′ is placed on
u, i.e., place′

f (m
′, u) = 1. Apparently, the placement of m′

is also different in placef and place′
f . Since among the dif-

ferences between placef and place′
f , m has the least traffic

changing factor, we know that alterm ≤ alterm′ .

Fig. 2. Proof of Theorem 1.

Next, as shown in Fig. 2, we create a new placement scheme
place′′

f by switching the locations of m and m′ in place′
f , i.e.,

place′′
f (n, v) =

⎧⎪⎨
⎪⎩

place′
f (n, v), if n 	= m, n 	= m′

place′
f

(
m, u′)(= 1), if n = m, v = u

place′
f

(
m′, u

)
(= 1), if n = m′, v = u′

(12)

Then, the maximum link load ratio maxRatio′′ of the new
placement place′′

f will be less than or equal to that of place′
f ,

i.e., maxRatio′′ ≤ maxRatio′. Denote the traffic rates of f on
link (v, w) ∈ E under place′

f and place′′
f as t′v,wf and t′′v,wf ,

respectively. Analyze the following three types of links.
1) For a link (v, w) between sf and u, since the middleboxes

placed before u are the same under place′
f and place′′

f ,
the traffic rates of f on such a link are also the same
under both schemes, i.e., t′′v,wf = t′v,wf .

2) For a link (v, w) between u and nextf (u′), as the loca-
tions of m and m′ are exchanged in place′′

f , t′′f (v, w) =
t′f (v, w)(1+alterm)/(1+alterm′). Since alterm ≤ alterm′
as shown above, we know t′′v,wf ≤ t′v,wf .

3) For a link (v, w) between nextf (u′) and df , since the
middleboxes placed after u′ are the same under place′

f
and place′′

f , the traffic rates of f on such a link are the
same, i.e., t′′v,wf = t′v,wf .

To sum up, for each link on the flow path of f , place′′
f

achieves a lower or equal traffic rate for the flow than place′
f ,

resulting in a lower or equal maximum link load ratio, and
it has one less difference with placef generated by LFGL.
Continuing this process and eliminating all the differences
between place′

f and placef , it can be shown by induction that
placef achieves no higher maximum link load ratio than that
of place′

f , i.e., maxRatio ≤ maxRatio′, which contradicts the
assumption.

B. Middlebox Placement for Multiple Flows

We now solve the problem to place middleboxes for
multiple flows with predetermined paths. As explained in the
introduction, we do not let different elephant flows share the
same middlebox to avoid hot spots, but instead the leftover
processing capacity of installed middleboxes will be utilized
by mice flows.

Theorem 2: The Traffic Aware Middlebox Placement place-
ment problem for multiple flows with predetermined paths is
NP-hard.
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Fig. 3. Reduction from 3-Satisfiability to TAMP for multiple flows with
predetermined paths.

Proof: We prove by reduction from the 3-Satisfiability
problem. The 3-Satisfiability problem decides whether a
boolean formula in 3-CNF, i.e., the conjunction normal form
with three boolean variables per clause, is satisfiable. An
example is (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

The reduction process is as follows. For a pair of boolean
variables x and ¬x, we create two corresponding flows fx and
f¬x, and two nodes startx and endx, each with one available
middelbox space. Each flow f has an initial traffic rate of
tf = 1, and needs a single middlebox Mf = {m} with alterm =
−1 + ε, where ε is a small positive quantity less than one. In
other words, the middlebox m will change the traffic rate of
the processed flow to 1 × (1 + alterm) = ε. The two flows fx
and f¬x both start at the shared node startx, i.e., sfx = sf¬x =
startx, and end at endx, i.e., dfx = df¬x = endx. For each
clause C = x1 ∨ x2 ∨ x3, we create a shared link lC with a
bandwidth capacity of 10, which will be traversed by the three
flows corresponding to x1, x2, and x3. When a boolean variable
is included in multiple clauses, its corresponding flow will
traverse multiple links one by one. Except the shared links,
different flows have separate links for the remaining sections
of their path. The reduction result for the above example CNF
formula is illustrated in Fig. 3. It can be seen that the reduction
can be done in polynomial time.

Next, we show that if a 3-CNF formula has a satisfi-
able assignment, then the constructed TAMP problem has
a maximum link load ratio of no more than (2 + ε)/10,
i.e., maxRatio ≤ (2 + ε)/10. Given a satisfiable assignment,
if a variable x (or ¬x) is assigned the true value, we let
the corresponding flow fx (or f¬x) place its middlebox on
startx, and the negation flow f¬x (or fx) on endx. Note that
a 3-CNF formula has a satisfiable assignment if and only if
each clause C has at least one variable x assigned the true
value, whose corresponding flow fx will put its middlebox
on node startx. Therefore, when fx arrives at the shared link
lC, its traffic rate is ε, and thus the load of lC is at most
2 + ε. Since each shared link has a load of no more than
2 + ε, and any other link has a load of no more than 1, the

maximum link load ratio of the entire network is no more
than (2 + ε)/10.

On the other hand, if the constructed TAMP problem
instance has a maximum link load ratio of no more than
(2 + ε)/10, it indicates that each shared link lC has at least a
flow fx with its traffic rate being less than one, which means
that its middlebox is placed at startx. For each such flow fx,
by assigning the corresponding boolean value x a true value,
we obtain a satisfying assignment for the 3-CNF formula.

The hardness of TAMP for multiple flows with predeter-
mined paths lies in the factorial number of possible sequences
to process the multiple flows. Since different flows are com-
peting for middlebox spaces, flows processed earlier may
consume spaces and make them unavailable for flows pro-
cessed later. We did not find an efficient way to simultaneously
process multiple flows except for very limited scenarios with
special topologies and traffic changing factors. Alternatively,
we will present below a practical heuristic.

The basic idea of the heuristic is to place middleboxes
for multiple flows by first processing each individual flow
using the LFGL rule and then optimizing middlebox place-
ment between flow pairs. The optimization of multiple flow
middlebox placement extends the idea from a single flow to
multiple flows. When multiple flows share a common sub-path,
we apply the LFGL rule to the middleboxes of those flows on
the common path, by placing the middlebox that decreases the
maximum amount of traffic at the head of the sub-path, and
the middlebox that increases the maximum amount of traffic
at the end. However, one difference with LFGL for a single
flow is that, since different flows may have different initial
traffic rates, we need to consider the amount of traffic change
caused by each middlebox, i.e., the product of the traffic rate
before entering the middlebox and its traffic changing factor,
instead of just the traffic changing factor as in the case for a
single flow. Fortunately, by Theorem 1, the middleboxes of a
single flow should still be placed in the increasing order of
their traffic changing factors, so we know the traffic rate of a
flow before entering a middlebox, and thus can obtain the traf-
fic change amount by multiplying its traffic changing factor.
For example, if a middlebox of flow f has the i-th least traf-
fic changing factor (ties broken arbitrarily), i.e., Mf [i] in the
sorted list, then the flow rate before entering the middlebox
is tf

∏i−1
x=1(1 + alterMf [x]), and the its traffic change amount is

δMf [i] = alterMf [i]tf
∏i−1

x=1(1 + alterMf [x]).
The pseudo code to place middleboxes for multiple flows

with predetermined paths is shown in Algorithm 1. Brief
explanation is as follows. Line 1 sorts all the flows in the
decreasing order of their initial traffic rates, inspired by the
First-Fit Decreasing Bin Packing algorithm [18] to give prior-
ity to large flows. Lines 2 to 5 apply LFGL to each flow, and
calculate the traffic change amount of each middlebox of the
flow. Line 6 prepares a pair of flows for optimization. Line 7
finds the common sub-paths of the two flows, which may be
multiple. Line 8 processes one of such common sub-paths,
and line 9 extracts all the middleboxes of the two flows on
the common sub-path. Line 10 sorts the extracted middleboxes
based on their traffic changing amounts and insert them back
to the nodes on the sub-path.
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Algorithm 1 Middlebox Placement for Multiple Flows With
Predetermined Paths
Input: G, F, route
Output: place

1: sort f ∈ F in decreasing order of initial traffic rate tf
2: for each flow f in F do
3: apply LFGL to place middleboxes m ∈ Mf for f
4: calculate traffic change amount δm for each m ∈ Mf

5: end for
6: for each pair of flows f and f ′ do
7: P = set of common sub-paths between f and f ′
8: for each common sub-path u ∼> v ∈ P do
9: M[1..n] = extract all middleboxes of f and f ′ on

common sub-path u ∼> v
10: sort m ∈ M[1..n] in increasing order of traffic change

amount δm and insert back in order
11: end for
12: end for

V. TRAFFIC AWARE MIDDLEBOX PLACEMENT

WITHOUT PREDETERMINED PATHS

In this section, we study the general TAMP problem where
the flow paths route are not predetermined. We first show
that the general TAMP problem is NP-hard even for a sin-
gle flow by reduction from the Hamiltonian cycle problem,
and then propose an efficient heuristic by integrating LFGL
and MinMax routing that minimizes the maximum link load
on the flow path. We also discuss the processing of multiple
flows without predetermined paths.

A. NP-Hardness Proof

When flow paths are not determined, the TAMP problem is
NP-hard, even for a single flow.

Theorem 3: The general Traffic Aware Middlebox
Placement problem is NP-hard.

Proof: We prove by reduction from the Hamiltonian cycle
problem, which determines for a directed graph G = (V, E)

whether there exists a simple cycle that contains each vertex
in V . Note that a Hamiltonian cycle must be a simple cycle
without repeated nodes.

Given an instance of the Hamiltonian Cycle problem with
a graph G , we construct an instance of the TAMP problem
with a graph G′ = (V ′, E′) as follows.

1) For each node v ∈ V , create two nodes vin, vout ∈ V ′,
where vin has a space capacity of zero, i.e., scvin = 0, and
vout of one, i.e., scvout = 1. Connect the two nodes with
an edge (vin, vout) ∈ E′, and set its bandwidth capacity
to ten, i.e., bcvin,vout = 10.

2) For each edge (u, v) ∈ E, create an edge (uout, vin) ∈ E′,
and set its bandwidth capacity to ten, i.e., bcuout,vin = 10.
An example to create G′ from G is shown in Fig. 4.

3) Create a flow f , which is the only flow in F, i.e., F = {f }.
The flow source and destination are both sin, i.e., sf =
df = sin, where s is an arbitrary node in V . The initial
traffic rate is one, i.e., tf = 1. The number of required
middleboxes of f is the same as the number of nodes

Fig. 4. Reduction from Hamiltonian cycle to TAMP.

in V , i.e., |Mf | = |V|, and each middlebox does not
change the volume of processed traffic, i.e., ∀m ∈ Mf ,

alterm = 0.
Clearly, the above reduction process can be done in polynomial
time.

Next, we show that if G has a Hamiltonian cycle, then
the TAMP instance with G′ and F has a maximum link load
ratio of no more than 0.1, i.e., maxRatio ≤ 0.1. Given the
Hamiltonian cycle of G we construct a similar path routef

in G′ as follows. Assuming that the Hamiltonian cycle in G
starts with s, for each node v and edge (u, v) in the Hamiltonian
cycle, add edge (vin, vout) and (uout, vin) to routef , respectively.

Since the Hamiltonian cycle traverses each node in G
exactly once, and each node v in G maps to a pair of nodes vin

and vout in G′, routef traverses each node in G′ exactly once as
well. Thus, we can see that routef has |V| available spaces on
the path, sufficient to host all the required middleboxes in Mf .
Further, routef traverses any link in G′ at most once, resulting
in a maximum link load ratio of 0.1, given that the traffic rate
of f is always one.

Reversely, if the TAMP instance with G′ and F has a solu-
tion routef and placef with a maximum link load ratio of 0.1, G
will have a Hamiltonian cycle. Given routef in G′, we construct
a Hamiltonian cycle in G as follows. Starting with sf = sin,
sequentially add the corresponding node v ∈ V of each incom-
ing node vin ∈ V ′ on routef to the cycle in G. Since routef

traverses all outgoing nodes vout to obtain sufficient middle-
box spaces, the constructed cycle traverses all the nodes in G.
Further, since the maximum link load ratio in G′ is 0.1, routef

traverses each link including (vin, vout) for any v at most once.
Thus, the constructed cycle in G traverses each node exactly
once, and is a Hamiltonian cycle.

Corollary 1: There is no polynomial-time approximation
algorithm with an approximation ratio less than two for the
general Traffic Aware Middlebox Placement problem unless
P=NP.

Proof: By contradiction, assume that there exists a
polynomial-time approximation algorithm that achieves an
approximation ratio of C < 2.

Consider an instance of the Hamiltonian Cycle problem with
a graph G = (V, E). Construct an instance of the TAMP
problem with a graph G′ = (V ′, E′) and a flow set F as in
the proof of Theorem 3.
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If G has a Hamiltonian cycle, then the constructed TAMP
problem has an optimal solution with the maximum link load
ratio of 0.1. Thus, the approximation algorithm should return
a solution with the maximum link load ratio less than or equal
to 0.1 × C = C < 0.2.

Otherwise, if G does not have a Hamiltonian cycle, the con-
structed TAMP problem either does not have a solution or has
a solution with the maximum link load ratio of at least 0.2
due to multiple passes of a link.

To sum up, by simply checking whether the maximum link
load ratio returned by the approximation algorithm is less than
0.2, we can determine whether the original Hamiltonian cycle
problem has a solution within polynomial time, which is a
contradiction to the NP-hardness of the Hamiltonian Cycle
problem.

The general TAMP problem actually resembles the NP-hard
Traveling Salesman Path (TSP) problem [25], which is a gen-
eralized version of the Hamiltonian Cycle problem, because
TSP allows the source and destination to be different, instead
of being the same node, and further the TSP solution needs
to minimize the path cost in addition to traversing each node
in the network. However, while the set of nodes to traverse in
TSP is known, i.e., all nodes, the set of nodes to traverse in
TAMP may be a subset of nodes, and there are a combinatorial
number of such subsets in the network. Furthermore, even the
subset of nodes is known in TAMP, it is the harder non-metric
version of TSP, because computer networks generally do not
satisfy the triangle inequality [38]. Due to the hardness of the
general TAMP problem, we will focus on design efficient and
practical heuristics.

B. LFGL Based MinMax Routing for Single Flow

Next, we propose the LFGL based MinMax routing algo-
rithm to calculate the routing path and middlebox placement
for a single flow f . The basic idea is to integrate the LFGL
rule with the MinMax routing algorithm that minimizes the
maximum link load ratio on the flow path.

Based on the LFGL rule, the algorithm also works in
two stages. In the first stage, the algorithm traverses the
network from the flow source sf , and iteratively calculates the
MinMax path to each node as in Dijkstra’s algorithm. When
the MinMax path to a node v is determined, the algorithm will
attempt to place shrinking middleboxes on v until there is no
more space, as if the node is on the selected final path. In
addition, the relaxation process will be applied to update the
MinMax paths to the neighbors of v. The search will follow
multiple candidate paths, and thus the algorithm will attempt
placing the same middlebox at different nodes with different
candidate paths. The search along a candidate path will ter-
minate if the last shrinking middlebox has been placed on a
node, which we call a termination node. When there is no
more candidate path to search, the algorithm switches to the
second stage to process expanding middleboxes.

In the second stage, the algorithm traverses the network, in
a similar way as in the first stage, but backward from the flow
destination df , and places expanding middleboxes when the
MinMax path to a node is found. Note that if all middleboxes

Algorithm 2 Place Middlebox on Node
Input: sorted Mf [1..n], u, start, flag
Output: placef , index(u) or index′(u), tu+

f or tu−
f

1: i = start
2: if flag < 0 then
3: while scu > 0 and i ≤ n and alterMf [i] ≤ 0 do
4: placef (Mf [i], u) = 1; scu − −; i + +
5: end while
6: index(u) = i − 1
7: tu+

f = t
predf (u)+
f

∏
m∈Mf ,placef (m,u)=1(1 + alterm)

8: else
9: while scu > 0 and i ≥ 1 and alterMf [i] > 0 do

10: placef (Mf [i], u) = 1; scu − −; i − −
11: end while
12: index′(u) = i + 1
13: tu−

f = t
nextf (u)−
f /

∏
m∈Mf ,placef (m,u)=1(1 + alterm)

14: end if

are successfully placed, the departure traffic rate t
df +
f at the

destination df will be tf
∏

m∈Mf
(1 + alterm), which will be

used as the “initial” traffic rate in the second stage. After all
expanding middleboxes have been placed along a candidate
path, the second stage continues searching the MinMax paths
to the remaining nodes, until it reaches a termination node u
of the first stage. This means that a path for flow f has been
found with two sections: from sf to u and from u to df . For
this reason, we call u a junction node. Similar as the first stage,
the second stage stops when there is no more path to search.

After the second stage finishes, the algorithm collects all
the junction nodes, each corresponding to a different path.
The algorithm compares the maximum link load ratio of each
path, and selects the path with the minimum maximum link
load ratio.

Algorithm 3 shows the pseudo code of the LFGL based
MinMax routing algorithm, and Algorithm 2 shows the pseudo
code of the placeMiddlebox function. The latter places shrink-
ing (flag = −1) or expanding (flag = 1) middleboxes on
node u from the start-th one of the sorted list. For easy
description, we use predf (u) and nextf (u) to represent the
preceding and succeeding node of u on the path of flow f ,
i.e., routef (predf (u), u) = 1 and routef (u, nextf (u)) = 1.

Brief explanation of Algorithm 3 is as follows. Line 1 sorts
the middleboxes of flow f in the increasing order of their traffic
changing factors. Lines 2 to 9 initialize the first stage, where
Saw is the set of nodes whose MinMax paths from the source
sf have been determined. Line 2 also places shrinking middle-
boxes on the source sf until there is no more space or no more
shrinking middleboxes. In lines 3 to 9, for each neighbor u of
the source sf , if the link (sf , u) has more available bandwidth
than t

sf +
f , then there is a candidate path from sf to u. mllr(u)

records the maximum link load ratio of the candidate path till
u. Lines 10 to 18 are the loop to find the MinMax path to
a node at a time. At the beginning of each loop, the node
u /∈ Saw with the minimum maximum link load ratio mllr(u)

will be selected and added to Saw. Line 12 places shrinking
middleboxes on u. Lines 13 to 17 apply the relaxation process,



MA et al.: SDN-BASED TRAFFIC AWARE PLACEMENT OF NFV MIDDLEBOXES 535

Algorithm 3 LFGL Based MinMax Routing
Input: G, f , Mf [1..n]
Output: routef , placef

1: sort m ∈ Mf [1..n] in increasing order of alterm
2: Stage 1: Saw = {sf }; placeMiddlebox(sf , Mf [1..n], 1, −1)
3: for each neighbor u of sf do

4: if bcsf ,u − lsf ,u ≥ t
sf +
f then

5: mllr(u) = (lsf ,u + tf )/bcsf ,u; predf (u) = sf
6: else
7: mllr(u) = ∞
8: end if
9: end for

10: while ∃u /∈ Saw, index(predf (u)) < n and
alterMf [index(predf (u))+1] ≤ 0 do

11: select such u with min mllr(u); Saw = Saw ∪ {u}
12: placeMiddlebox(u, Mf [1..n], index(predf (u)) + 1, −1)
13: for each neighbor v of u do
14: if bcu,v − lu,v ≥ tu+

f and mllr(v) > max(mllr(u), (lu,v +
tu+
f )/bcu,v) then

15: mllr(v) = max(mllr(u), (lu,v + tu+
f )/bcu,v); predf (v) = u

16: end if
17: end for
18: end while
19: Stage 2: Saw′ = {df }; placeMiddlebox(df , Mf [1..n], n, 1); J = ∅
20: if df ∈ Saw and index(df ) + 1 = index′(df ) then
21: J = J ∪ {df }; mllr(df ) = max(mllr(df ), mllr′(df ))
22: end if
23: for each neighbor u of df do

24: if bc(u, df ) ≥ t
df −
f then

25: mllr′(u) = (lu,df + t
df −
f )/bcu,df ; nextf (u) = df

26: else
27: mllr′(u) = ∞
28: end if
29: end for
30: while ∃u /∈ Saw′ do
31: select such u with min mllr′(u); Saw′ = Saw′ ∪ {u}
32: placeMiddlebox(u, Mf [1..n], index′(nextf (u)) − 1, 1)

33: if u ∈ Saw and index(u) + 1 = index′(u) then
34: J = J ∪ {u}; mllr(u) = max(mllr(u), mllr(u′))
35: continue
36: end if
37: for each neighbor v of u do
38: if bcv,u − lv,u ≥ tu−

f and mllr′(v) > max(mllr′(u), (lv,u +
tu−
f )/bcv,u) then

39: mllr′(v) = max(mllr′(u), (lv,u + tu−
f )/bcv,u);

nextf (v) = u
40: end if
41: end for
42: end while
43: if J 	= ∅ then
44: select u ∈ J with min mllr(u); exit with success
45: else
46: exit with failure
47: end if

i.e., checking each neighbor v of u to see whether there is a
new path to v via u with a lower maximum link load ratio,
and update if yes. Lines 19 to 42 run the second stage in a
similar manner, but starting from the flow destination df and
placing expanding middleboxes. In lines 33 to 36, if the search
reaches a node u till which all the shrinking and expanding
middleboxes have been placed in the first and second stage,

respectively, u will be added to the junction node set J. When
the second stage finishes, lines 43 to 47 select from J the
node u with the minimum maximum link load, and the final
MinMax path can be constructed by tracing predf (u) from u to
sf and nextf (u) to df . Otherwise, if J is empty, the algorithm
fails to find a path.

Since the LFGL based MinMax routing algorithm inte-
grates the LFGL rule and MinMax routing, which is similar to
Dijkstra’s algorithm, its complexity is the product of the two,
i.e., O((|V| log |V| + |E|) × |Mf |).

C. Optimization of Multiple Flows

Since the general TAMP problem is NP-hard even for a sin-
gle flow, the problem becomes more challenging for multiple
flows. We propose a solution similar to that in Section IV-B,
i.e., processing individual flows followed by optimizing mid-
dlebox placement between flow pairs. In detail, we first sort
all the flows in the decreasing order of their initial traffic
rates, to give priority to large flows. Then, we apply the LFGL
based MinMax routing algorithm to calculate the routing path
and middlebox locations for each individual flow. Finally, we
check each pair of flows, identify their common sub-paths,
and optimize by swapping middleboxes.

VI. IMPLEMENTATION

Due to its centralized control logic, the emerging Software
Defined Networking (SDN) architecture is an ideal platform
to implement the proposed algorithms. We have implemented
a prototype system using the open-source SDN controller
Floodlight [3] and network emulator Mininet [41] to demon-
strate our design. In this section, we describe the prototype
implementation and discuss real deployment issues.

As explained in Section I, an SDN network is decoupled
into the control plane and data plane. For the control plane,
we use the modular Floodlight controller, and implement the
proposed algorithms as a new module to calculate flow path
and middlebox placement. For the data plane, we pick the
Mininet network emulator. Mininet can conveniently create a
network testbed of hosts and SDN-enabled switches, each as
a virtual machine (VM). For each switch in our prototype, we
also create an attached NFV server, and connect it with the
switch via a high speed link.

Fig. 5 summarizes the workflow of our prototype to process
a new incoming flow, and each step is explained in detail
below.

A. Flow Arrival Notification

Elephant flows can be statically determined based on
the application types, such as data backup or VM migra-
tion, or dynamically detected using existing techniques
in [20] and [42]. When the ingress switch detects or learns
an elephant flow, it tries to find a matching entry for the flow
in its flow table. If there is no matching entry, the switch
wraps a packet of the flow within an OFPT_PACKET_IN
message, and sends it to the controller. Upon receiving the for-
warded packet, the controller learns the arrival of the new flow,
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Fig. 5. Middlebox placement workflow.

and will try to calculate a path where each link has a sufficient
bandwidth capacity for the flow.

B. Flow Path and Middlebox Placement Calculation

Our module to calculate the flow path and middlebox place-
ment is triggered by the OFPT_PACKET_IN message received
by the controller. The module determines the application type
based on the packet header information, such as IP addresses
and port numbers, and determines the set of required middle-
boxes for the new flow according to predefined profiles. Next,
the module applies the proposed algorithms to calculate a flow
path and middlebox placement locations.

C. Midllebox VMs Startup

Once the middlebox locations have been calculated, the con-
troller will remotely wake up or start VMs on the selected
NFV servers, which can be done through the communication
between the VM control software and server hypervisor. For
example, for the Kernel-based Virtual Machine (KVM) [4]
hypervisor, the command line tool Virsh [10] can be used
to remotely start, shutdown, suspend, or resume VMs; for
the VMware ESXi hypervisor [11], the VMware vCenter
server [12] can be used to remotely control VMs. Predefined
VM images for different middleboxes will thus be loaded to
perform the desired network functions. Our Mininet prototype
focuses on evaluating the network performance, and starts the
middlebox VMs in advance.

D. Flow Table Update

After the controller obtains the flow path and middle-
box locations, it will accordingly update the switch flow
tables to ensure correct packet forwarding. A path is speci-
fied in Floodlight as a list of Node-Port tuples in the form
of (DatapathId, OFPort), where DatapathId is the Datapath
Identity of an OpenFlow instance on a switch and OFPort

represents a port number of the instance. For the routing path,
the controller sends an OFPT_FLOW_MOD message to each
switch on the routing path. The messages contains the match-
ing fields to define the flow, rule priority, and actions for the
flow. In this case, the action is to forward packets of the flow to
the calculated output port. On the other hand, for the middle-
boxes, the controller sends two types of OFPT_FLOW_MOD
messages to ensure placement locations. The first is to the
associated switch, which tells the switch to forward pack-
ets to the attached NFV server. The second is to the Open
vSwitch (OVS) running in the hypervisor of the NFV server,
which instructs the hypervisor to send matching packets to one
of the hosted middlebox VMs.

E. Middlebox Emulator Development

To evaluate the effects of middleboxes with different traffic
changing factors, we have developed a middlebox emula-
tor program using the libpcap library [9]. While a normal
TCP/UDP socket will only process packets destined to it,
the emulator intercepts all packets forwarded by OVS in the
hypervisor using the libpcap APIs. To emulate a shrinking
middlebox m, the emulator discards intercepted packets with a
probability of −alterm. On the other hand, if m is an expanding
middlebox, the emulator duplicates intercepted packets with a
probability of alterm. In this way, the emulator will accurately
change the traffic volume as indicated by the traffic changing
factor. After processing, the emulator continues to forward the
packets to their actual destinations.

F. Link Load Monitoring

To obtain the link load information necessary for the LFGL
based MinMax routing algorithm, we have developed a link
load monitoring module in Floodlight. The module period-
ically sends the OFPT_STATS_REQUEST message to every
switch to request traffic statistics. Upon receiving the request,
a switch will send the OFPT_STATS_REPLY response, which
contains the transmitted byte count for each port of the switch
along with other statistics data. By collecting the information
from all switches, the module estimates the load of each link
by calculating the exponentially weighted moving average.

G. Post-Processing

After a flow finishes, the flow table entries will be automat-
ically removed after idle or hard timeout [6] by the switch,
and the middelbox VMs can be shut down or hibernated after
a period of inactivity or manually by the controller.

VII. EXPERIMENT AND SIMULATION RESULTS

We use a combination of experiments and simulations to
evaluate the proposed algorithms. Experiments in the imple-
mented prototype generate performance data in realistic envi-
ronments, and simulations in the ns-3 simulator enable us
to conduct evaluations in large scale networks with hun-
dreds of hosts. The experiment and simulation programs are
available at the project page [7]. In this section, we present
extensive experiment and simulation data to demonstrate the
effectiveness of our design.
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A. Benchmark Solutions

Since there are no existing algorithms for the studied TAMP
problem in the literature, we designed the following bench-
mark solutions. From the proof of Theorem 1, it can be
seen that the middleboxes of a flow placed in the increasing
order of their traffic changing factors always result in better
performance, and thus all the benchmark solutions sort the
middleboxes before placement.

In case that the flow paths have been predetermined, there
are three benchmark solutions as follows.

• First-fit: The first-fit rule starts with the head of the flow
path, and places the sorted middleboxes one by one, each
at the first available NFV server.

• Last-fit: The last-fit rule starts from the end of the flow
path, and places the middleboxes sorted in the decreasing
order one by one, each at the first available NFV server
from the tail, or the last from the head.

• Random-fit: The random-fit rule places the middleboxes
at random available nodes along the path.

In case that the flow paths are not predetermined, four
benchmark solutions are used in the simulations. Each first
applies load-balanced (ECMP) shortest path routing to deter-
mine the flow path, and then uses LFGL, First-fit, Last-fit, or
Random-fit to place middleboxes on the shortest path. Two
benchmark solutions are used in the experiments. One is the
optimal solution based on the formulation, the other is shortest
path routing with LFGL. We did implement First-fit, Last-fit,
and Random-fit in this part of the experiments because LFGL
has shown superior performance in the previous experiments
with predetermined paths.

B. Experimental Results With Prototype

In the prototype experiments, we use the following
performance metrics to compare our design and benchmark
solutions.

• End-to-end delay: The end-to-end delay is the delay
between the time points that a packet leaves the source
and arrives at the destination. Congestion will result in a
longer end-to-end delay.

• Maximum link load: The maximum link load is the upper
bound of the link load of all the links during the entire
experiment run. It is a direct indicator of the congestion
level.

For traffic generation, we run Iperf [33] on hosts to generate
real constant bit rate (CBR) UDP traffic. We also patched Iperf
to be able to measure the end-to-end delay.

1) Effectiveness of LFGL Rule: We first show the
effectiveness of the LFGL rule for the TAMP problem
with predetermined paths by comparing it with benchmark
solutions.

We pick the tree topology, because it is a popular choice
for institutional networks, and there is only a predetermined
single path between any pair of nodes. We set up a four-layer
binary tree with seven switches and eight hosts, as depicted
in Fig. 6. Each link has 10 Mbps bandwidth. Each switch
u has an attached NFV server with two middlebox spaces,
i.e., scu = 2. We sequentially create four flows from h1, h2, h3,

Fig. 6. Tree topology for experiments.

Fig. 7. LFGL experimental results.

and h4 to h5, h6, h7, and h8, respectively. The initial traffic rate
of each flow is adjusted from 0.5 Mbps to 4 Mbps with a stride
of 0.5 Mbps. Each flow f requires two middleboxes Mf =
{m1, m2} with traffic changing factors of alterm1 = −0.2 and
alterm2 = 0.2. As a result, the combined traffic changing effect
of both middleboxes is

∏
m∈Mf

(1 + alterm) = (1 − 0.2)(1 +
0.2) = 0.96. When a flow starts, it has only one path, and the
locations of its middleboxes will be calculated by the above
rules.

Fig. 7(a) shows the average end-to-end delays (in logarithm)
of LFGL, First-fit, Last-fit, and Random-fit. We can see that
with its optimal placement strategy, LFGL consistently beats
the other three rules with shorter delay and postponed conges-
tion. In detail, initially, when the flow rate is small and there
is no congestion, all the rules have a small constant delay
at about 7 ms. When the flow rate increases to 2.5 Mbps,
the delay of LFGL keeps stable, but that of other rules starts
increasing due to congestion. This can be explained by the fact
that the root is the bottleneck of a tree, and 2.5 = 10/4 Mbps
is the bandwidth available at the root for each of the four
generated flows. Specifically, Last-fit has the longest delay at
968 ms, since it puts all middleboxes at the end of flow path,
and therefore the flow rate is 1× in most traversed links. On
the other hand, First-fit has shorter delay at 89 ms, because
it puts middleboxes at the beginning, and thus the flow rate
is 0.96× in most traversed links. Using a random strategy,
random-fit achieves a short delay of 60 ms. Further, even when
the flow rate increases to 3 Mbps, LFGL has a moderate delay
of 20 ms. Finally, when the flow rate increases to 3.5 Mbps,
all rules have a saturated network with an end-to-end delay of
about 1150 ms.

Fig. 7(b) shows the maximum link load ratios of the four
rules. Again, LFGL consistently achieves the best performance
among the benchmark solutions. For First-fit, Last-fit, and
Random fit, their maximum link load ratio is approximately
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Fig. 8. Multipath topology for experiments.

Fig. 9. LFGL based MinMax routing experimental results.

4 times of the ratio between the flow rate and link capacity, and
reaches one when the flow rate is 2.5 Mbps. This is consistent
with the observation in Fig. 7(a) that congestion happens at
2.5 Mbps for the three rules. On the other hand, the maximum
link load ratio of LFGL is approximately 3.2 times of the ratio
between the flow rate and link capacity, and reaches one when
the flow rate is 3 Mbps. The reason is that LFGL decreases
flow rates as early as possible and increase as late as possible,
and thus minimizes the traffic volumes in the network core.

2) Effectiveness of LFGL Based MinMax Routing: Next,
we demonstrate the effectiveness of the LFGL based MinMax
routing algorithm.

We pick the butterfly topology with multiple available paths
as depicted in Fig. 8. The network contains six switches and
eight hosts. Each switch has two middlebox spaces, and each
link has 10 Mbps bandwidth. Four flows are sequentially
started from h1, h2, h3, and h4 to h7, h8, h5, and h6, respec-
tively. Each flow needs two middleboxes with traffic changing
factors of −0.2 and +0.2, respectively. We adjust the flow
traffic rate from 2 Mbps to 12 Mbps with a stride of 2 Mbps.

Fig. 9(a) shows the average end-to-end delay. We can see
that LFGL based MinMax routing outperforms LFGL with
shortest path routing due to its traffic awareness in path selec-
tion, and achieves performance close to that of the optimal
solution calculated from the formulation in Section III. While
LFGL based MinMax routing finds disjoint flows to mini-
mize the maximum link load, LFGL with shortest path routing
chooses the same shortest path for multiple flows, resulting in
earlier congestions and longer delays. The optimal solution
produces the shortest delay because it selects the path with
the smallest maximum link load ratio as well as least number
of hops. In detail, the delay of LFGL with shortest path rout-
ing is initially stable at about 7 ms, increases to 16 ms when
the flow rate is 6 Mbps, and exceeds 1 second once the flow

rate becomes 8 Mbps. On the other hand, the delays of LFGL
based MinMax routing and the optimal solution are stable until
the flow rate increases to 10 Mbps, and grow to about 102 ms
and 96 ms, respectively, when the flow rate reaches 12 Mbps.
Fig. 9(b) shows the maximum link load ratio. Although the
optimal solution has shorter delays than LFGL based MinMax
routing due to its shorter paths, the maximum link load ratio
performance of the latter is on a par with that of the for-
mer thanks to traffic awareness in path selection. On the other
hand, LFGL with shortest path routing saturates much earlier
because of overlapping flow paths.

C. Simulation Results With ns-3

In this subsection, we present simulation results in ns-3 to
evaluate the proposed algorithms in large scale networks. To
better reflect realistic traffic characteristics, instead of using
CBR traffic as generated by Iperf, we use the ns-3 On-Off
burst traffic model. A flow is in the Off state with no traffic
for 50% of the time, and in the On state with continuous
CBR traffic for the remaining 50% of the time. The traffic
rate of a flow in the On state is the product of a baseline
traffic rate and a random number between 0.5 to 1.5. Each
flow f requires three middleboxes Mf = {m1, m2, m3} with the
traffic changing factors of alterm1 = −0.5, alterm2 = −0.2,
and alterm3 = 0.2. Each link in the network has a bandwidth
capacity of 100 Mbps and propagation delay of 2 ms. Each
simulation run lasts 300 seconds, and the presented data are
the average of four simulation runs.

In addition to the end-to-end delay and maximum link load,
we also collect the following additional performance data.

• Packet loss ratio: The packet loss ratio is the ratio of
the number of lost packets to the number of sent packets.
Heavier congestion will result in a larger packet loss ratio.

1) Topology With Predetermined Paths: We first conduct
simulations for topologies with predetermined paths. As in
Section VII-B1, we pick the tree topology, and set up a four-
layer quad tree with 21 switches and 64 hosts. Each switch has
10 middlebox spaces. Each host generates a flow to a random
destination, and we adjust the average traffic rate of each flow
from 1.25 Mbps to 12.5 Mbps with a stride of 1.25 Mbps.

Fig. 10(a) compares the average end-to-end delay of LFGL,
First-fit, Last-fit, and Random-fit. We can observe a similar
trend as in the prototype experiment data that LFGL consis-
tently achieves the shortest delay due to its optimal middlebox
placement. By contrast, Last-fit has the longest delay, because
it places middleboxes at the end of flow path, and the flow
rate is 1× in most links on the path. First-fit achieves shorter
delay, since it places middleboxes at the beginning, and thus
the flow rate is (1 − 0.5)(1 − 0.2)(1 + 0.2) = 0.48× in most
links. Random-fit has a delay between that of First-fit and
Last-fit with a random strategy.

Fig. 10(b) and (c) show the packet lost ratio and maximum
link load ratio, respectively, of the four rules. The conclusion
is consistent with that in Fig. 10(a) that, in the order of LFGL,
First-fit, Random-fit, and Last-fit, each rule achieves a lower
packet loss ratio as well as a lower maximum link load ratio
than the subsequent ones.
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Fig. 10. LFGL simulation results.

Fig. 11. Improvement of multi-flow optimization with predetermined paths.

We have also evaluated the optimization algorithm for
multiple flows presented in Algorithm 1. As comparison,
LFGL processes the multiple flows individually in a random
order. Fig. 11(a) and (b) show the improvements of the opti-
mization algorithm on the end-to-end delay and packet loss
ratio, respectively. We can see that it reduces the end-to-end
delay and packet loss ratio by up to 6% and 8%, respectively.
The improvement is not significant in some cases, because the
optimization algorithm cannot find many middlebox pairs to
swap. Note that when the flow rate is less than or equal to
6 Mbps, both solutions have a zero packet loss ratio, and thus
there is no improvement. Since the maximum link load ratio
measures the instantaneous worst case performance, we do not
see significant improvements by the optimization algorithm.

2) Topology Without Predetermined Paths: Next, we con-
sider multi-path topologies, and set up a 8-pod fat tree [13]
with 80 switches and 128 hosts. To utilize the multiple paths of
the fat tree, we apply equal-cost multi-path (ECMP) [22] load
balancing for the shortest-path routing algorithm, by randomly
dispatching a flow to one of the available next hops. The traf-
fic rate of each flow is adjusted from 10 Mbps to 100 Mbps
with a stride of 10 Mbps. Other settings are similar as in the
tree simulations in Section VII-C1.

Fig. 12(a) compares the end-to-end delay of LFGL based
MinMax routing with four benchmark solutions. We can see

Fig. 12. LFGL based MinMax routing simulation results.

Fig. 13. Improvement of multi-flow optimization without predetermined
paths.

that LFGL based MinMax routing consistently achieves the
shortest end-to-end delay. Among the other four benchmark
solutions, LFGL achieves a shorter delay than the remaining.
Fig. 12(b) shows the packet loss ratio. We can clearly see that
in the order of LFGL based MinMax routing, LFGL, First-fit,
Last-fit, and Random-fit, each achieves a lower packet loss
ratio than the subsequent ones. Finally, Fig. 12(c) illustrates
the maximum link load ratio. When the flow rate is 10 Mbps,
we see that LFGL based MinMax routing performs the best,
but when the flow rate increases to 20 Mbps and above, all
algorithms have a saturated instantaneous maximum link load
ratio of one.

Similarly, we have also conducted simulations to evaluate
the optimization algorithm for multiple flows as explained in
Section V-C. As comparison, LFGL based MinMax routing
processes the multiple flows individually in a random order.
Fig. 13(a) and (b) show the improvements of the optimization
algorithm on the end-to-end delay and packet loss ratio. We
can see that it reduces the end-to-end delay and packet loss
ratio by up to 7% and 14%, but is not always effective due
to the random order taken by LFGL based MinMax routing
to process the flows. Again, when the flow rate is 10 Mbps,
both algorithms have a zero packet loss ratio, and thus no
improvement is seen in the figure.
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Fig. 14. LFGL based MinMax routing simulation results (1024 hosts 1 Mbps
link capacity).

Fig. 15. Improvement of multi-flow optimization without predetermined
paths (1024 hosts 1 Mbps link capacity).

For performance evaluation in large scale networks, we have
conducted simulations in a fat-tree network with 1024 hosts.
To reduce the simulation convergence time, we decrease the
link capacity to 1 Mbps. The simulation results for LFGL
based MinMax routing are presented in Fig. 14. We can see
that the algorithm also works in large scale networks, beating
other benchmark solutions. However, the small link capac-
ity leads to a longer transmission delay and consequently a
longer end-to-end delay in Fig. 14(a). The data in Fig. 15 also
show that our optimization algorithm significantly improves
the performance for multiple flows.

D. Comparison Between Experimental and
Simulation Results

Comparing the above experimental and simulation results,
we can see that they are consistent. In the case with
predetermined flow paths, the proposed LFGL rule outper-
forms other solutions, which rank in the order of First-fit,
Random-fit, and Last-fit when the traffic changing ratio prod-
uct of all middleboxes of a flow is less than one. In the
case without predetermined flow paths, LFGL based MinMax
routing beats other solutions with shortest path routing.

However, there are also differences due to different link
capacities and network sizes. Since the link capacity in the
experiments is smaller than that in the simulations, the end-
to-end delay in the experiments is long than that in the
simulations. Also, the smaller network size and flow number
in the experiments result in smoother and more predictable
curves due to less variation.

VIII. CONCLUSION

With the development of virtualization technology, Network
Function Virtualization enables flexible deployment of middle-
boxes as VMs running on commodity server hardware. In this
paper, we have studied how to efficiently deploy such mid-
dleboxes to achieve load balancing using a Software-Defined
Networking approach, and considered in particular the traf-
fic changing effects of different middleboxes. We formulate
the Traffic Aware Middlebox Placement (TAMP) problem as
a graph based optimization problem, and solve it in two steps.
First, we solve the special case of TAMP when flow paths
are predetermined. For a single flow, we propose the Least-
First-Greatest-Last (LFGL) rule, and prove its optimality; for
multiple flows, we prove NP-hardness by reduction from the 3-
Satisfiability problem, and propose an efficient heuristic. Next,
we solve the general version of TAMP without predetermined
flow paths. We prove that the general TAMP problem is NP-
hard by reduction from the Hamiltonian problem, and propose
the LFGL based MinMax routing algorithm by integrating
LFGL with MinMax routing. To validate our design, we have
implemented the proposed algorithms in a prototype system
with the open-source SDN controller Floodlight and emula-
tion platform Mininet. In addition, we conducted simulations
in ns-3 for performance evaluation in large scale networks.
Extensive experiment and simulation results are presented to
demonstrate the superiority of our algorithms over competing
solutions.
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