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Abstract—Network Function Virtualization (NFV) enables flex-
ible implementation of network functions, also called middle-
boxes, as virtual machines running on standard servers. However,
the flexibility also makes it a challenge to optimally place middle-
boxes, because a middlebox may be hosted by different servers at
different locations. The middlebox placement challenge is further
complicated by additional constraints, including the capability of
middleboxes to change traffic volumes and dependency between
them. In this paper, we address the optimal placement challenge
of NFV middleboxes for the data plane using a software-defined
networking (SDN) approach. First, we formulate the optimization
problem to place traffic-changing and interdependent middle-
boxes. When the flow path is predetermined, we design optimal
algorithms to place a non-ordered or totally-ordered middle-
box set, and propose a low-complexity solution for the general
scenario of a partially-ordered middlebox set after proving its
NP-hardness. When the flow path is not predetermined, we
show that the problem is NP-hard even for a non-ordered or
totally-ordered middlebox set, and propose an efficient traffic and
space aware routing algorithm. We have evaluated the proposed
algorithms using large scale simulations and a real application
based SDN prototype, and present extensive evaluation results
to demonstrate the superiority of our design over benchmark
solutions.

Index Terms—Network function virtualization, software-
defined networking, middlebox.

I. INTRODUCTION

NETWORK function virtualization (NFV) [1] trans-
forms the implementation of network functions, also

called middleboxes, from proprietary hardware appliances
to virtual machines (VMs) running on industry standard
servers [2]. Leveraging the underlying virtualization technol-
ogy, VM-based software middleboxes bring many benefits
that were not previously available, such as accelerated time-
to-market, reduced hardware and operation cost, and elastic
scalability [3].

The flexibility of VMs also poses a challenge for effi-
cient NFV implementation. In particular, traditional hardware
middleboxes are deployed at fixed locations in the network,
and leave no choice of service locations. On the contrary,
in an NFV network, there are multiple NFV servers with
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standard hardware that can host VMs of arbitrary network
functions [2]. It is thus possible to optimize the network
performance by carefully selecting the location to place a soft-
ware middlebox among multiple candidate servers. Improper
placement decisions may cause inefficient flow paths and
traffic jam.

Furthermore, the NFV service location challenge is compli-
cated by the traffic changing effects of middleboxes. Unlike
switches and routers that forward traffic without changing its
volume, middleboxes may change the traffic volumes of pro-
cessed flows, and may do it in different ways. For example, the
Citrix NetScaler SD-WAN WAN optimizer compresses traffic
before sending it to the next hop, and may reduce the traf-
fic volume by 80% [4]. On the other hand, the BCH(63, 48)
encoder, used in wireless communications for forward error
correction (FEC), increases the traffic volume by 31% due to
the checksum overhead [5].

We use the following example to illustrate the traffic chang-
ing effects of middleboxes. Consider an enterprise network of
three nodes v1, v2 and v3, and two links (v1, v2) and (v2, v3).
A flow f passes the three nodes before leaving the enterprise
network, and its initial traffic rate is 1. Two middleboxes m
and m′ need to be applied to the flow. m will double the traffic
rate, while m′ will decrease it by half. By placing m on v1

and m′ on v3, the loads of links (v1, v2) and (v2, v3) will be
1 × 2 = 2, as shown in Fig. 1(a). However, by placing m
on v3 and m′ on v1, the loads of both links are reduced to
1 × 0.5 = 0.5, as shown in Fig. 1(b).

The placement of middleboxes is also constrained by the
dependency relation that may or may not exist between mid-
dleboxes [6]. For instance, an IPSec decryptor is usually
placed before a NAT gateway [7], while a VPN proxy can
be placed either before or after a firewall [8]. In the above
example, if there is a constraint for m to be applied before
m′, then the placement scheme in Fig. 1(b) would violate the
constraint. However, by placing both m and m′ on v1 in such
a way that traffic is processed by m before m′, we can still
reduce the link loads from 2 to 1 as in Fig. 1(c), in contrast
to the case in Fig. 1(a).

In this paper, we study the optimal placement of NFV mid-
dleboxes, with a focus on elephant flows, which are large-size
and persistent flows [9]. In our design, elephant flows are
served by middleboxes specifically placed for them, while
mice flows, i.e., small-size and transient flows, are served
by already deployed middleboxes instead of new ones. Such
differentiated processing is based on the following considera-
tions. First, since elephant flows constitute a majority of the
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Fig. 1. Traffic changing effects of middleboxes.

network traffic [10], optimizing middlebox placement for ele-
phant flows will effectively balance the network load. Second,
because mice flows are transient, the yield of their optimization
is marginal. Finally, due to their short duration, utilizing exist-
ing middleboxes will help mice flows avoid the instantiation
delay required by new middleboxes. Elephant flows can be
statically determined based on the application types, such as
data backup or VM migration, or dynamically detected using
many existing techniques in the literature [9], [11]. The pro-
cessing of mice flows is not in the scope of this paper, and
will be studied in future work.

Our solution utilizes the emerging Software-Defined
Networking (SDN) technology [12] as the implementation
platform, because it enables efficient optimization by decou-
pling the network control plane and data plane. In the proto-
type implementation that will be presented in Section VI, we
have developed an SDN controller module to manage the ele-
phant flows: routing the flows and determining their middlebox
locations.

Our main contributions in this paper are summarized as
follows.

1) We formulate the Traffic Aware Placement of
Interdependent Middleboxes (TAPIM) problem,
considering in particular a generalized partial order
for the middlebox dependency relation, as a graph
optimization problem with the objective to achieve a
network with balanced link load.

2) For topologies with predetermined paths, such as trees,
we design optimal algorithms for the special case when
the middlebox set is a non-ordered or totally-ordered
one. For the general case when the dependency relation
is a partial order, we show that the TAPIM problem is
NP-hard by reduction from the Clique problem, and pro-
pose an efficient solution to convert a partially-ordered
set to a totally-ordered one.

3) For topologies without predetermined paths, we show
that the TAPIM problem is NP-hard even for a non-
ordered or totally-ordered middlebox set. Our proposed
solution then works in two steps: first finding a path with
enough resources to host all the middleboxes, and then
placing the middleboxes on the given path.

4) We have implemented the proposed algorithms in the
ns-3 simulator and a SDN based prototype, and present
extensive simulation and experiment results to demon-
strate the effectiveness of our design.

The remaining of this paper is organized as follows.
Section II provides a brief overview of related work.
Section III formulates the TAPIM problem. Sections IV and V
solve the TAPIM problem with and without predetermined
flow paths, respectively. Section VI describes the implemen-
tation of our prototype. Section VII presents experiment and
simulation results. Finally, Section VIII concludes the paper.

II. RELATED WORK

In this section, we briefly review research results in several
related categories and highlight our differences.

It is challenging to optimize the placement of NFV
middleboxes, especially with limited available resources.
Cohen et al. [13] formulate the NFV location problem, and
propose near optimal approximation algorithms for middlebox
resource allocation. Kuo et al. [14] study the joint problem
of middlebox placement and path selection by considering the
correlation between the link and server usages. Sang et al. [15]
formulate the middlebox placement problem with the objec-
tive to minimize the total number of instances to provide a
specific service, and propose asymptotically optimal greedy
algorithms with constant approximation ratios. Feng et al. [16]
propose fast approximation algorithms for the NFV service
distribution problem. Wang et al. [17] model resource allo-
cation in NFV as a multi-resource load balancing problem,
and propose a solution to minimize the maximum dominant
load. Ma et al. [18] study the middlebox placement problem
by considering the traffic changing effects, with the objective
to minimize the maximum link load. Fei et al. [19] seek a
proactive approach to provision new instances for overloaded
virtual network functions (VNFs) in the cloud. The formal
model defined in this work differs from the above ones in con-
sidering general partial-order dependency relations between
middleboxes. In addition to the formal model, this work also
presents practical algorithms and a prototype system for design
validation.

A service function chain is a set of network functions
to be performed according to a given order. Multiple mod-
els [6], [20]–[25] are proposed to formulate service chain
implementation by solving combined middlebox placement
and path computation, mostly using a linear programming
based approach. Zhang et al. [26] formulate the VNF chains
placement problem as a bin-packing problem, and propose
a priority-driven weighted algorithm. Even et al. [27] pro-
pose a randomized approximation algorithm with performance
guarantee. Lukovszki and Schmid propose a deterministic
and asymptotically optimal online algorithm for admission
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TABLE I
LIST OF NOTATIONS

control of service chains [28], and approximation algo-
rithms based on submodularity for incremental deployment
of middleboxes [29]. Amiri et al. show that general way-
point routing in most practical scenarios, especially with
directed graphs, is computationally intractable [30], and
propose polynomial-time algorithms for graphs of bounded
treewidth [31]. Different from the above works, this work
studies not only the totally-ordered service chain but also non-
ordered and partially-ordered middlebox sets. In addition to
the dependency relations, this work adds a new dimension by
considering the traffic changing effects of NFV middleboxes.

Due to its capability of global optimization, SDN [32]
is commonly adopted as the control protocol to automate
and simplify the NFV service provisioning. Multiple archi-
tectures [33], [34] are proposed to integrate SDN and NFV
for efficient traffic maneuver. For example, SIMPLE [35] is a
SDN-based policy enforcement layer for efficient middlebox-
specific traffic steering. StEERING [36] is a scalable frame-
work based on SDN to dynamically route traffic through a
sequence of services. To support dynamic service chaining,
Fayazbakhsh et al. propose an extended SDN architecture
called FlowTags [37], in which services add packet tags to pro-
vide the necessary context for systematic policy enforcement.
Our work differs from the above ones by not only implement-
ing the correct policies through SDN, but also considering the
middlebox traffic changing effects and different dependency
relations.

III. PROBLEM STATEMENT

In this section, we formulate the Traffic Aware Placement
of Interdependent Middleboxes (TAPIM) problem. Table I
summarizes the list of notations for easy reference.

Consider a network represented by a directed graph G = (V,
E). A node v ∈ V has a space capacity of sc[v]1≥0,
i.e., the number of middleboxes that can be hosted. Since
resource allocation for virtual machines is a well stud-
ied problem [38]–[40], we assume for simplicity that each
middlebox needs one unit space, and additional processing
power can be achieved by multiple load-balanced middlebox

1We use square brackets [] to denote properties or known values, and round
brackets () denote to functions or variables.

instances [41]. A link (u, v) ∈ E has a bandwidth capacity
bc[u, v] ≥ 0, i.e., the amount of available bandwidth. The
existing load of the link is denoted as load[u, v].

For route calculation, each link (u, v) ∈ E is assigned a
weight, denoted as weight(u, v, l), which is a non-decreasing
function of the link load l, i.e., ∀l ≤ l ′,weight(u, v , l) ≤
weight(u, v , l ′). A broad category of weight functions satisfy
the non-decreasing requirement, such as the ones used by the
popular Cisco EIGRP [42] and OSPF [43] protocols. The non-
decreasing link weight function helps load-balance network
traffic when the routing protocol aims to minimizes the path
cost, which is defined as the weight sum of all the path links.

A flow f is defined as a 4-tuple (src, dst, t, M), in which
src ∈ V is the source node, dst ∈ V is the destination node, t
is the initial traffic rate when f arrives at the ingress switch of
the network, and M is the set of required middleboxes. (In case
the flow needs multiple instances of the same middlebox for
increased processing power, M may include multiple copies
of the same middlebox type.)

Each middlebox m ∈ M has an associated traffic changing
ratio ratio[m] ≥ 0, which is the ratio between the traffic rates
of a flow after and before being processed by m. In reality, the
traffic change ratio may be a constant (e.g., for a BCH encoder)
or a variable (e.g., for a WAN optimizer). For convenient and
practical modeling, we use the average in case of a variable
in the following formulation.

The dependency relation ← is defined as a strict partial
order on M that is

1) Irreflexive: m � m ,
2) Transitive: m ← m ′ and m ′ ← m ′′ then m ← m ′′, and
3) Asymmetric: m ← m ′ then m ′

� m .
Intuitively, m ← m ′ means that the middlebox m should be
applied before m′. (With a slight abuse of notation, when
there is no confusion, we also use ratio[m] ← ratio[m ′]
to concisely describe the traffic changing ratios of m and m′
and their dependency relation.) For easy representation, define
depend [m,m ′] = 1 if m ← m ′, and 0 otherwise.

When the flow f enters the network, a multi-hop path,
denoted as route, will be assigned for the flow, which is a
decision variable defined as

route(v , i) =
{

1, if v ∈ V is the i th hop on the path.
0, otherwise.

(1)

We define i to start from one, and denote the last hop number
as n for convenience. Repeating nodes are allowed on a path
to enable more general solutions, and hence the path is also
referred to as a walk in classic graph theory terms. Due to
state consistency requirements such as in-order packet deliv-
ery, splitting traffic among multiple paths is not in the scope
of this paper.

In addition, a placement scheme, denoted as place, will
determine the location for each middlebox m ∈ M , which
is a decision variable defined as

place(m, i) =
{

1, if m ∈ M is placed at the i th hop.
0, otherwise.

(2)
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To avoid resource contention between elephant flows and
achieve load balance, we do not consider sharing of a middle-
box by multiple elephant flows, but instead leave the remaining
processing capacity of a placed middlebox to mice flows.

Use tin(i) and tout (i) to denote the incoming and out-
going traffic rate of flow f at the i th hop on the path,
respectively. If f is processed by a single middlebox m at
the i th hop, then tout (i) = tin(i)ratio[m]. Note that the
incoming traffic rate at the flow source is the initial traf-
fic rate, i.e., tin(1) = t . For convenience, use t(u, v) =∑

i∈[1,n−1] route(u, i)route(v , i + 1)tout (i) to denote the
traffic rate of f on link (u, v).

Consistent with most popular routing protocols, such as
Cisco EIGRP and OSPF, our optimization objective is to deter-
mine route and place to minimize the path cost of flow f as
shown in Equation (3). It should be noted that the proposed
solutions can easily adapt to other optimization objectives,
such as minimizing the maximum link load in the network.

minimize

n−1∑
i=1

∑
u∈V

∑
v∈V

route(u, i)route(v , i + 1)

weight(u, v , t(u, v) + load [u, v ]) (3)

subject to the following constraints:

∀i > n,∀v ∈ V : route(v , i) = 0 (4)

route(src, 1) = 1, route(dst ,n) = 1 (5)

∀v ∈ V :
∑

i∈[1,n]

∑
m∈M

place(m, i)route(v , i) ≤ sc[v ] (6)

∀(u, v) ∈ E : t(u, v) + load [u, v ] ≤ bc[u, v ] (7)

∀m ∈ M :
∑

i∈[1,n]

place(m, i) = 1 (8)

∀m,m ′ ∈ M :⎛
⎝ ∑

i∈[1,n]

place
(
m ′, i

)
i −

∑
i∈[1,n]

place(m, i)i

⎞
⎠

×depend [m,m ′] ≥ 0 (9)

∀i ∈ [1,n] : tout (i)

= tin(i)
∏

m∈M

(
1 + placef (m, i)(ratio[m]− 1)

)
(10)

Brief explanation of the model is as follows. Equation (3)
defines the optimization objective. To discourage repeated
links on the flow path, when the flow traverses the same
link multiple times, the link weight of each traverse will be
counted separately in the path cost. Equation (4) states that
the nth hop is the last hop of the flow path. Equation (5)
enforces the first and last hops of the flow path to be the source
src and destination dst, respectively. Equation (6) states that,
for a node v, the total space demand of hosted middleboxes∑

i∈[1,n]

∑
m∈M place(m, i)route(v , i) should not exceed its

space capacity sc[v]. Equation (7) states that, for a link (u, v),
the aggregate load of all flows traversing it t(u, v)+load [u, v ]
should not exceed its bandwidth capacity bc[u, v]. Equation (8)
states that a middlebox m should be installed once and only

Fig. 2. Examples of non-ordered, totally-ordered, and partially-ordered
middlebox sets.

once. Equation (9) enforces the dependency relation between
middleboxes, or in other words m must be placed no later than
m′ if the former is depended on by the latter. Equation (10)
states that, the outgoing flow traffic rate at a hop, i.e., tout (i),
is equal to the incoming rate, i.e., tin(i), multiplying the traf-
fic changing ratios ratio[m] of all the middleboxes m placed at
this hop. It also ensures flow conservation, in the sense that no
flow traffic can be generated or terminated at an intermediate
node, except the effects of middleboxes.

The above formulation considers only a single flow instead
of multiple flows because of the following practical consider-
ations. First, as will be seen in Sections IV and V, the TAPIM
problem for a single flow is already NP-hard. Therefore, the
multi-flow version will be even harder and unlikely to have
practical solutions. Second, for certain applications, it is a
small probability for multiple flows to arrive at the same time.
For example, decisions for WAN traffic engineering are taken
at large time scales, and can be scheduled for sequential pro-
cessing. Nevertheless, our algorithms are capable of handling
multiple flows by updating state variables, such as the server
and link capacity, after each flow arrival and departure, and
applying the algorithms to individual flows.

IV. MIDDLEBOX PLACEMENT WITH

PREDETERMINED PATHS

In this section, we propose solutions for the TAPIM problem
when the flow path, i.e., route, is predetermined. For example,
in trees, there is a unique path between any pair of leaves.
We look at three cases of the problem. First, for the special
case when there is no dependency between any middleboxes,
we propose the Non-Ordered Set Placement algorithm that
uses the least-first-greatest-last rule. Next, for the special case
when there is a total dependency order on the middlebox set,
we propose the dynamic programming based Totally-Ordered
Set Placement algorithm. Finally, for the general scenario of
a partial dependency order on the middlebox set, we prove
that it is NP-hard by reduction from the Clique problem, and
propose an efficient solution to convert a partially-ordered set
to a totally-ordered set. Since the flow path is given, for easy
description, we denote the i th hop node on the path as vi .

A. Non-Ordered Middlebox Set

We start with the special case that the middlebox set M is
a non-ordered set, i.e., ∀m,m ′ ∈ M ,m � m ′ and m ′

� m .
Thus, different middleboxes can be placed in an arbitrary
order. An example is shown in Fig. 2(a), where no dependency
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exists between middleboxes. We propose the Non-Ordered Set
Placement (NOSP) algorithm, and show its optimality.

The basic idea is least-first-greatest-last, i.e., to shrink the
flow as early as possible by placing the middleboxes that
decrease the traffic rate from the path head, and expand
the flow as late as possible by placing the middleboxes that
increase the traffic rate from the path tail.

If there are enough spaces on the path, i.e.,∑
i∈[1,n]

∑
v∈V

(
route[v , i ]sc[v ]/

∑
i ′∈[1,n] route[v , i ′]

)
≥

|M |, the NOSP algorithm places the middleboxes as follows.
1) Sort all the middleboxes m ∈ M based on their traffic

changing ratios ratio[m].
2) Place the middleboxes m with ratio[m] < 1 from the

path head in an increasing order of their traffic changing
ratios. When a node has no more space, continue with
the succeeding node on the path.

3) Place the middleboxes m with ratio[m] ≥ 1 from the
path end in an decreasing order. When a node has no
more space, continue with the preceding node.

4) Check each link (vi , vi+1) on the path to ensure no one
is oversubscribed.

The pseudo code of NOSP is shown in Algorithm 1. Line 1
sorts all the middleboxes m ∈ M in the increasing order of
their traffic changing ratios ratio[m]. Lines 2 to 14 are the first
stage to place the middleboxes with traffic changing ratios less
than one from the head of the flow path. In detail, line 2 ini-
tializes by starting with the first hop and the middlebox with
the least traffic changing ratio, i.e., M[1] after sorting. Line 3
is the loop to process middleboxes with ratios less than one.
Line 4 checks if the current hop vi has available spaces. If
yes, Line 5 places the middlebox M[j] on vi , decrements the
number of available spaces sc[vi ] at vi , and increments the
middlebox index j. Lines 7 and 8 check whether the current
hop vi is already the last hop and there are still middleboxes
with ratios less than one to install. If yes, line 9 exits since
there is no more space on the flow path. Otherwise, if the
current hop vi is not the last hop, line 11 continues with
the next hop on the path. Lines 15 to 27 place the mid-
dleboxes with ratios greater than or equal to one from the
tail of the flow path in a similar manner as above. Lines 28
to 32 check each path link to enforce the bandwidth capacity
constraint.

The time complexity of NOSP is O(max(|M | log |M |,n)),
because it sorts the middleboxes with complexity of
O(|M | log |M |), and checks the links with complexity of O(n).

Lemma 1: The Non-Ordered Set Placement algorithm min-
imizes the flow rate on each link of the path.

The lemma can be proved by contradiction, and the detail
is omitted due to space limitations.

Theorem 1: The Non-Ordered Set Placement algorithm
achieves the minimum path cost.

Proof: By Lemma 1, NOSP minimizes the flow rate on
each path link. Thus, the total load of each link as the sum of
the existing load and flow rate is also minimized. Given that
the link weight function weight(u, v, l) is a non-decreasing
function of the total link load l, NOSP minimizes the weight
of each path link and subsequently the path cost.

Algorithm 1 Non-Ordered Set Placement
Require: G , f , route,M [1..|M |]
Ensure: place

1: sort m ∈ M [1..|M |] in non-decreasing order of ratio[m]
2: i = 1, j = 1
3: while j ≤ |M | and ratio[M [j ]] < 1 do
4: while sc[vi ] > 0 and i ≤ n and ratio[M [j ]] < 1 do
5: place(M [j ], i) = 1; sc[vi ]−−; j + +
6: end while
7: if sc[vi ] = 0 and j ≤ |M | and ratio[M [j ]] < 1 then
8: if i = n then
9: exit with insufficient-space error

10: else
11: i++
12: end if
13: end if
14: end while
15: i = n, j = |M |
16: while j ≥ 1 and ratio[M [j ]] ≥ 1 do
17: while sc[vi ] > 0 and j ≥ 1 and ratio[M [j ]] ≥ 1 do
18: place(M [j ], i) = 1; sc[vi ]−−; j −−
19: end while
20: if sc[vi ] = 0 and i ≥ 1 and ratio[M [j ]] ≥ 1 then
21: if i = 1 then
22: exit with insufficient-space error
23: else
24: i−−
25: end if
26: end if
27: end while
28: for i from 1 to n − 1 do
29: if t(vi , vi+1) + load [vi , vi+1] > bc[vi , vi+1] then
30: exit with insufficient-bandwidth error
31: end if
32: end for

B. Totally-Ordered Middlebox Set

Next, we solve the other special case of TAPIM when the
middlebox set is a totally-ordered set, i.e., ∀m,m ′ ∈ M , either
m ← m ′ or m ′ ← m , or in other words the middleboxes
form a dependency chain. An example is shown in Fig. 2(b),
in which m must be placed before m′ and m′ before m′′.
Although the placement order of the middleboxes is known, it
is still necessary to determine the optimal placement location
for each middlebox, because there may be an excessive num-
ber of available spaces on the flow path. For easy description,
we use mj to denote the j th middlebox from the head of the
dependency chain, and vi to denote the i th hop node on the
flow path, where i and j start from 1.

We propose a dynamic programming based algorithm called
Totally-Ordered Set Placement (TOSP) based on the following
observation. Use TOSP(i, j) to denote the minimum weight
sum of the first i links when place the first j middleboxes,
i.e., m1 to mj , on the first i hops, i.e., v1 to vi , of the flow
path. The optimal substructure gives the following recursive
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formula.

TOSP(i , j ) =

⎧
⎪⎨

⎪⎩

w(1; 1, j ), if i = 1.

minx∈[1,j+1]

(TOSP(i − 1, x − 1) + w(i ; x , j )), otherwise.

(11)

where w(i; x, j) is the weight of link (vi , vi+1) when placing
middleboxes mx to mj on node vi , i.e.,

w(i ; x , j )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

weight
(
vi , vi+1, t

∏
y∈[1,j ] ratio[my ] + load [vi , vi+1]

)

if sc[vi ] ≥ j − x + 1 and i < n.

0, if sc[vi ] ≥ j − x + 1 and i = n.

0, if x > j .

∞, otherwise.

(12)

Equation (11) states that if i = 1, TOSP(i, j) is simply
the weight of the first path link when placing all the first j
middleboxes on the first hop v1. Otherwise, the optimal result
TOSP(i, j) to place the first j middleboxes on the first i hops is
to select the minimum link weight sum among j + 1 possible
solutions, in which the x th solution places the first x − 1
middleboxes on the first i − 1 hops, i.e., TOSP(i − 1, x − 1),
and places the remaining middleboxes mx to mj on the i th

hop vi , i.e., w(i; x, j).
Equation (12) calculates the weight of the i th path link,

i.e., (vi , vi+1), when placing middleboxes mx to mj at the
i th hop vi , and sets it to zero if x > j or infinity if vi
has fewer than j − x + 1 available spaces. A special case
is when vi is the last hop in question, or in other words
(vi , vi+1) does not exist or is not of interest. Then, the weight
is zero if vi has sufficient spaces or infinity otherwise. Note
that if x ≤ j and vi has sufficient spaces, w(i; x, j) does
not depend on x. Specifically, as long as vi has no less than
j − x + 1 spaces to host middleboxes mx to mj , the weight
of link (vi , vi+1) is the same, which simplifies the calcula-
tion of TOSP(i, j) as the sum of the minimum sub-solution
minx∈[j−sc[vi ]+1,j+1]

{
TOSP(i − 1, x − 1)

}
and a constant.

Thus, we can rewrite the recursive relationship as:

TOSP(i , j )

= min
x∈[1,j+1]

{TOSP(i − 1, x − 1) + w(i ; x , j )}
= min

x∈[j−sc[vi ]+1,j+1]
{TOSP(i − 1, x − 1) + w(i ; x , j )}

= min
x∈[j−sc[vi ]+1,j+1]

{TOSP(i − 1, x − 1)}

+ weight

⎛

⎝vi , vi+1, load [vi , vi+1] + t
∏

y∈[1,j ]

ratio[my ]

⎞

⎠

(13)

The pseudo code of TOSP is shown in Algorithm 2. Lines 1
to 7 conduct the initialization by solving the sub-problems with
only the first hop v1. In detail, line 1 checks if v1 has j spaces.
If yes, TOSP(1,j) is assigned the weight of the first link in
line 3, and otherwise infinity in line 4. Lines 8 and 9 start the
iteration to recursively calculate the remaining sub-problems.
Based on the previous results, lines 10 to 15 finds among the
viable schemes the one with the minimum link weight sum

Algorithm 2 Totally-Ordered Set Placement

Require: G , f , route,M [1..|M |], depend
Ensure: place

1: for j = 1 to |M | do
2: if sc[v1] ≥ j then
3: TOSP(1, j ) = weight(v1, v2, t

∏j
y=1 ratio[my ] +

load [v1, v2])
4: else
5: TOSP(1, j ) =∞
6: end if
7: end for
8: for i = 2 to n do
9: for j = 1 to |M | do

10: min =∞
11: for x = j − sc[vi ] + 1 to j + 1 do
12: if TOSP(i − 1, x − 1) < min then
13: min = TOSP(i − 1, x − 1)
14: end if
15: end for
16: TOSP(i , j )= min +

weight(vi , vi+1, t
∏j

y=1 ratio[my ] + load [vi , vi+1])
17: end for
18: end for

TABLE II
TOSP EXAMPLE

to place a portion of middleboxes in the first i − 1 hops.
Finally, line 16 calculates the optimal TOSP(i, j) by adding
the minimum link weight sum of the first i − 1 hops and the
link weight of the last hop.

Table II shows an example to apply TOSP to a flow f in
the network of Fig. 1. The detail of the flow is as follows:
src = v1, dst = v3, t = 1, and M is a total order chain 0.5←
2 (the concise notation for two middleboxes m1 and m2 with
ratio[m1] = 0.5, ratio[m2] = 2, and m1 ← m2). Assume that
the space capacity of each node is 1, i.e., ∀vi , sc[vi ] = 1, and
the link weight is equal to the link load, i.e., weight(u, v, l) = l.
The algorithm starts from the first column: by placing 0, 1,
and 2 middleboxes at the 1st hop, we have TOSP(1, 0) = 1,
TOSP(1, 1) = 0.5, and TOSP(1, 2) =∞ (because v1 can host
at most one middlebox), respectively. In the second column,
TOSP(2, 1) = 1 is the minimum of two options to place either
0 or 1 middlebox at the 1st hop, i.e., min{TOSP(1,0)+w(2;
1,1) = 1+0.5 = 1.5, TOSP(1, 1)+w(2; 2, 1) = 0.5+0.5 = 1}.
In the third column, TOSP(3, 2) = TOSP(2, 1)+w(3; 2, 2) =
1, and the results for the sub-problems of TOSP(3, 0) and
TOSP(3, 1) are not necessary because TOSP(3, 2) is already
solved.

When the flow path route is not efficient and contains
repeating nodes, the above algorithm may obtain a sub-optimal
result. The reason is that, different hops of a repeating node
share middlebox spaces, but the above algorithm processes
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those hops always from the path head, and thus assigns earlier
hops higher priority.

A simple solution is to first enumerate all the possibilities to
divide the shared spaces among different hops of a repeating
node, and then apply TOSP to each possible division. For
example, if the flow path contains a repeating node with s
spaces that appears twice at the i th1 hop vi1 and the i th2 hop vi2 ,
we view vi1 and vi2 as two independent nodes by allocating
x ∈ [0, s] spaces to vi1 and s − x spaces to vi2 . TOSP is then
applied to each different x value, and the minimum path cost
among all the cases is the optimal solution.

When there is no repeating node on the flow path, the time
complexity of the TOSP algorithm is O(n|M |2), because the
dynamic programming table has n rows and |M | columns,
and it takes up to O(|M |) time to calculate each table entry.
When there are r repeating nodes and each node has up to s
spaces and appears in up to h hops, the time complexity is
O(s(h−1)rn|M |2), because there are s(h−1)r possible divi-
sions of shared spaces, and the time complexity to apply TOSP
to each division is O(n|M |2). Fortunately, efficient routing
paths should have small or zero r and h values, because they
have few repeating nodes.

C. Partially-Ordered Middlebox Set

We now solve the general scenario where the dependency
relation is a partial order. The following theorem shows the
NP-hardness of the problem.

Theorem 2: The TAPIM problem with a predetermined
path for a partially ordered middlebox set is NP-hard.

Proof: We prove by reduction from the Clique problem [44].
The clique problem decides whether an undirected graph
G = (V, E) has a clique of size k, which is a complete sub-
graph with k vertices and

(k
2

)
edges. For example, the graph in

Fig. 3(a) has a clique of size 3: ({a, b, c},{(a, b), (a, c),(b, c)}).
Given an instance of the Clique problem with a graph

G = (V, E), an instance of the TAPIM problem can be
constructed in polynomial time as follows.

1) For each vertex p ∈ V , create a vertex middlebox mp

with ratio[mp ] = 2.
2) For each edge (p, q) ∈ E , create an edge middlebox

m(p,q) with ratio[m(p,q)] = 2−k/(k2).
3) The middlebox corresponding to an edge (p,q) depends

on the two middleboxes corresponding to its two inci-
dent vertices p and q, i.e., mp ← m(p,q) and mq ←
m(p,q).

4) There is a single flow f with the initial traffic rate of
one, i.e., t = 1. The path has |V |+ |E | nodes. Use vi to
denote the i th node on the path. Each node has a space
capacity of one, i.e., sc[vi ] = 1.

5) Each link on the path has a bandwidth capacity of infin-
ity, i.e., bc[vi , vi+1] =∞. The link (v

k+(k2)
, v

k+(k2)+1
)

is called the critical link, with its weight being one if the
link load is no more than one and infinity otherwise, i.e.,

weight((v
k+(k2)

, v
k+(k2)+1

), l) =
{

1, if l ≤ 1.
∞, if l > 1.

(14)

The weight of any other link is always zero.

Fig. 3. Reduction from Clique to TAPIM with predetermined path.

Next, we show that if the graph G = (V, E) has a clique
of size k, then the constructed TAPIM instance has a mini-
mum path weight of one. Assume the solution clique of size
k is G ′ = (V ′, E′), the solution for TAPIM is constructed as
follows.

1) For each vertex p ∈ V ′, place the corresponding mid-
dlebox mp one by one starting from the path head
v1.

2) For each edge (p, q) ∈ E ′, continue placing the
corresponding middlebox m(p,q) along the path.

3) For each remaining vertex p ∈ V \V ′, continue placing
the corresponding middlebox mp .

4) For remaining edges in (p, q) ∈ E \E ′, continue placing
the corresponding middlebox m(p,q).

Since G′ =(V ′, E′) is a complete sub-graph, for each
edge middlebox m(p,q) placed in Step 2, its two predeces-
sor vertex middleboxes mp and mq must have been placed
in Step 1. Furthermore, since Step 3 places all the remaining
vertex middleboxes, the predecessors of all edge middleboxes
placed in Step 4 are satisfied. Therefore, there is no depen-
dency violation. Also, when the flow arrives at the critical link
(v

k+(k2)
, v

k+(k2)+1
), it has traversed |V ′| = k vertex mid-

dleboxes and |E ′| =
(k
2

)
edge middleboxes, its flow rate is

thus 1 × 2k × (2−k/(k2))(
k
2) = 1. As a result, the weight

of the critical link is one, and the entire path cost is also
one.

Conversely, if the constructed TAPIM instance has a min-
imum path cost of one, then the graph G = (V, E) has
a clique of size k denoted as G ′ = (V ′, E′). We show
by contradiction that the first k +

(k
2

)
middleboxes placed

on the path must be k vertex middleboxes and
(k
2

)
edge

middleboxes.
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1) For contradiction, assume that the first k +
(k
2

)
mid-

dleboxes on the path include more than k vertex
middleboxes and subsequently fewer than

(k
2

)
edge

middleboxes. Since the traffic changing ratio of a ver-
tex middlebox is 2 and that of an edge middlebox is

2−k/(k2), the flow rate will be greater than one when it
comes to the critical link, and the weight of the critical
link would be infinity instead of one.

2) For contradiction, assume that there are fewer than k ver-
tex middleboxes and subsequently more than

(k
2

)
edge

middleboxes. With fewer than k vertex middleboxes, the
number of edges generated by those vertices in G must
be fewer than

(k
2

)
, and thus there must exist an edge

middlebox whose predecessors have not been satisfied.
Thus, the first k +

(k
2

)
middleboxes placed on the path are

exactly k vertex middleboxes and
(k
2

)
edge middleboxes, and

the predecessor vertex middleboxes of all edge middleboxes
are included in this set. Therefore, the sub-graph G′ corre-
sponding to those vertex and edge middleboxes form a clique
of size k.

After proving the NP-hardness, our solution to place a
partially-ordered middlebox set is to first convert it to a
totally-ordered middlebox set and then apply TOSP.

Following the idea of the least-first-greatest-last rule used
in NOSP, the objective of the conversion algorithm is to
arrange the middleboxes in the resulting total order chain in
the increasing order of their traffic changing ratios. The intu-
itive solution is thus to iteratively find the middleboxes without
dependencies, remove among them the one with the least traf-
fic changing ratio, and add it to the end of the total order
chain. For example, given four middleboxes with the follow-
ing traffic changing ratios and dependencies: 1.4 ← 1.5 and
1.6 ← 0.1, the conversion result will be the following total
order chain: 1.4← 1.5← 1.6← 0.1.

To increase the solution search space, we also propose
a lookahead approach. Specifically, the above intuitive solu-
tion compares only individual middleboxes, i.e., those without
dependencies, and picks the one with the least traffic changing
ratio in each round. Instead, the lookahead approach optimizes
by combining multiple middleboxes as a group and calculating
the aggregate traffic changing ratio of the group. Define a self-
dependent middlebox tree rooted from middlebox r, denoted
as T(r), to be a set of middleboxes that all depend on r, i.e.,
∀m ∈ T (r) \ {r}, r ← m , and depend on only middleboxes
in the set, i.e., ∀m ∈ T (r), if m ′ ← m then m ′ ∈ T (r).
We say that the size of T(r) is k if it contains k middleboxes,
i.e., |T (r)| = k . The traffic changing ratio of the tree is the
product of the traffic changing ratios of all the middleboxes in
the tree, i.e., ratio[T (r)] =

∏
m∈T (r) ratio[m]. In the above

example, 1.6← 0.1 is a self-dependent tree of size 2 with 1.6
being the root, and its traffic changing ratio is 1.6×0.1 = 0.16.

The conversion algorithm with a lookahead value of k works
in iterations as follows. In each iteration, the algorithm first
finds all the middleboxes with no dependency. Using each of
such middleboxes as the root, the algorithm calculates the self-
independent tree of size up to k that has the minimum traffic
changing ratio. Among all the calculated trees with different

Algorithm 3 Converting Partially-Ordered Set to Totally-
Ordered Set With Lookahead of k
Require: k ,M , depend
Ensure: M′

1: for each middlebox m ∈ M do
2: if m has no dependency then
3: minratio[m] = mink

x=1{ratio of size x self-
independent tree with root m}

4: else
5: minratio[m] =∞
6: end if
7: end for
8: for j = 1 to |M | do
9: select in M middlebox m with least minratio[m]

10: M ′[j + +] = m
11: M = M \ {m}
12: for each middlebox m′ directly depending on m do
13: minratio[m ′] = mink

x=1{ratio of size x self-
independent tree with root m ′}

14: end for
15: end for

root middleboxes, the algorithm selects the one with the mini-
mum traffic changing ratio, removes its root, and adds it to the
total order chain. For the above example, the first iteration gen-
erates two trees of size up to 2: 1.4 of size 1 with 1.4 being
the root, and 1.6 ← 0.1 of size 2 with 1.6 being the root.
Since the traffic changing ratio of the latter 0.16 is less than
that of the former 1.4, the root of the latter will be removed.
The resulting total order chain after the algorithm converges
is thus: 1.6← 0.1← 1.4← 1.5.

The pseudo code of the conversion algorithm is shown
in Algorithm 3. Lines 1 to 7 conduct the initialization by
calculating the self-independent tree with the minimum traf-
fic changing ratio for each middlebox without dependency.
Lines 8 to 15 are the iterations to build the result total order
chain. Line 9 finds among the middleboxes without depen-
dency the one with the minimum ratio self-independent tree,
line 10 adds it to the total order chain, and line 11 removes
it from the original middlebox set. Lines 12 to 14 calculate
for each child of the removed middlebox its minimum ratio
self-independent tree.

When the lookahead parameter k = 1 or 2, the time
complexity of the conversion algorithm is O(|M | log |M |)),
because there are up to |M | iterations, and the time complex-
ity to select the middlebox with the minimum traffic changing
ratio is O(log |M |) using a heap. When k = 2, the optimal
self-dependent trees of size up to 2 with each middlebox being
the root can be pre-calculated in O(|M |) time. Since |M | is
usually small, and k = 2 will be sufficient in most cases.

V. MIDDLEBOX PLACEMENT WITHOUT

PREDETERMINED PATH

In this section, we solve the TAPIM problem when the flow
path, i.e., route, is not predetermined. We start by showing that
the TAPIM problem without a predetermined path is NP-hard
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even for a non-ordered or totally-ordered set. We then propose
a two-step solution by first finding a flow path with sufficient
spaces and then applying the algorithms in Section IV to place
middleboxes on the given path.

A. NP-Hardness

When the flow path is not known, the TAPIM problem
becomes NP-hard, even for a non-ordered or totally-ordered
middlebox set. The challenge to solve TAPIM without a pre-
determined path is to find an efficient path with sufficient
spaces. More specifically, [30, Th. 3] shows that it is NP-hard
just to decide the existence of a path that traverses a single
node at a fixed location in a directed graph. Therefore, even
if the flow f requests only one middlebox, i.e., |M | = 1, and
there is a single available space in the entire network, i.e.,∑

v∈V sc[v ] = 1, it is still impossible to find a viable path in
polynomial time in general.

B. Traffic and Space Aware Routing

Our solution to TAPIM without a predetermined path works
in two steps by first finding a viable path for the flow and then
applying the algorithms in Section IV to place the middleboxes
on the determined path.

We first propose the fast Traffic And Space Aware Routing
(TASAR) algorithm. The basic idea is to originate from the
source, iteratively route to a nearby node with spaces until
sufficient spaces have been accumulated, and finally go to the
destination.

In detail, TASAR works as follows. It starts by calculating
the number of spaces needed on the path in addition to those in
the source and destination, i.e., |M | − sc[src]− sc[dst ]. Next,
it enters iterative loops to accumulate the necessary number of
spaces. In the x th iteration, Dijkstra’s algorithm [44] is applied
from vx , with v1 = src, to find the nearest (in terms of the path
cost) node with spaces, denoted as vx+1, and add the path from
vx to vx+1 to the flow path route. If sufficient spaces have been
accumulated, i.e., |M | − sc[src]− sc[dst ]−∑x+1

i=1 sc[vi ] ≤ 0,
the iteration stops, and Dijkstra’s algorithm is applied for the
last time to find the minimum cost path from the current node
vx+1 to the destination dst. Otherwise, if more spaces are
needed, the iteration continues.

The pseudo code of TASAR is shown in Algorithm 4.
Line 1 calculates the number of missing spaces. Line 2
initializes the loop between line 3 and 7, which uses
Dijkstra’s algorithm to find the nearest node with spaces
and appends it to the flow path. Finally, line 8 applies
Dijkstra’s algorithm again to find the minimum cost path to the
destination.

The time complexity of the heuristic is O(|M |(|E | +
|V | log |V |)), because the there will be up to O(|M |) iter-
ations, and the time complexity of each iteration is that of
Dijkstra’s algorithm O(|E |+ |V | log |V |).

VI. PROTOTYPE IMPLEMENTATION

To evaluate the proposed design in realistic environments,
we have built an SDN based prototype, using the open-
source SDN controller Floodlight [45] and network emulator

Algorithm 4 Traffic and Space Aware Routing

Require: G , src, dst , |M |
Ensure: route

1: missing = |M | − sc[src]− sc[dst ]
2: v1 = src; i = 1
3: while missing > 0 do
4: vi+1 = nearest node from vi with spaces
5: append to flow path route the section from vi to vi+1

6: missing = missing − sc[v++i ]
7: end while
8: append to flow path route the section from vi to dst

Fig. 4. Flow processing.

Mininet [46]. The flow routing and middlebox placement algo-
rithms are implemented as a module in Floodlight, and VMs
are created in Mininet to emulate switches and NFV servers.
Furthermore, to generate realistic traffic in the experiments,
we have also developed real application based middlebox
programs. In this section, we describe the prototype imple-
mentation and discuss deployment issues.

A. Flow Processing

Our implementation utilizes OpenFlow [47], the underly-
ing communication protocol [12] of SDN, to define and steer
flows. OpenFlow supports flexible flow definition based on
wildcard matching of many different packet headers. An SDN
switch receives flow definitions and associated actions from
the SDN controller, and stores them in its flow table. An
incoming packet that matches a flow table entry will trigger
the corresponding actions. In a production environment, it may
be necessary to define flows at fine granularity using multiple
packet header fields such as IP addresses and port numbers,
so that flows of different applications can be distinguished. In
the comparatively simple environment of the prototype, it is
sufficient for our purpose to define a flow in the switch tables
based on the source and destination IP addresses and input
switch port.

A flow is processed in the following steps as illustrated in
Fig. 4.
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1) Flow Arrival Notification: As explained in the introduc-
tion, elephant flows can be statically or dynamically detected
using different techniques [9], [11] in the literature. After
the ingress switch detects a new elephant flow, it performs
a lookup in its flow table using the flow header fields. If no
flow table entry is found, the switch wraps the first packet
of the flow in an OFPT_PACKET_IN OpenFlow message and
forwards it to the Floodlight controller. The controller thus
learns the arrival of a new flow. Otherwise, if a flow table
entry is found, the flow will be sent to the next hop according
to the routing information.

2) Flow Path and Middlebox Placement Calculation: A
module is developed for Floodlight to calculate the flow
path and middlebox locations. The module is registered as
an OFPT_PACKET_IN message listener, and will be trig-
gered upon receiving such a message sent by the ingress
switch. It first examines the header information, such as
IP addresses and port numbers, of the packet wrapped in
the OFPT_PACKET_IN message to determine the application
type, and applies a set of middleboxes based on predefined
profiles for different applications. Next, the module runs the
proposed algorithms to obtain a flow path if necessary, and
decides the optimal location on the path for each middle-
box. In Floodlight, a path is defined as a list of (DatapathId,
OFPort) tuples, where DatapathId represents a switch and
OFPort represents a port of the switch.

3) Middlebox Startup: Once the placement locations have
been calculated, corresponding middleboxes will be booted or
waken up. This is done with the help of a VM controller, such
as Virsh or VMware vCenter, that can remotely start, shut-
down, suspend, or resume VMs. In detail, the information of
middleboxes to be placed at each node is passed from the SDN
controller to the VM controller, which then sends commands
to the hypervisor of the selected NFV servers. The hypervisor
will load the predefined image to boot up an instance of the
corresponding middlebox or wake it up if it had been put to
sleep.

4) Flow Steering: To steer a flow to follow the calculated
path and visit middleboxes, the SDN controller configures
the switch flow tables via OpenFlow. On the one hand, to
control flow paths, Floodlight sends an OFPT_FLOW_MOD
OpenFlow message to each switch on the flow path. The mes-
sage specifies the matching fields to identify a flow and the
output port for the matched flow. On the other hand, to spec-
ify middlebox locations, the controller generates three types
of OFPT_FLOW_MOD messages.

• The first type is sent to the switch on the routing path,
instructing the switch to detour packets to the connected
NFV server.

• The second type is sent to the Open vSwitch (OVS) [48]
in the hypervisor of the NFV server, telling the OVS to
forward the packets to one of the hosted middlebox VMs.

• The third type is also sent to the OVS in the hypervisor,
asking the OVS to forward the packets back to the flow
path after they are being processed by the middlebox.

5) Link Load Monitoring: The Floodlight controller has a
built-in statistics module, which can periodically issue port
statistics requests and collect replies sent by switches. Based

on the statistical information collected from the switches, our
module estimates the load of each link using the exponential
weighted moving average to calculate the link weight.

6) Post Processing: To release resources after processing
a flow, we set a non-zero idle_timeout for each entry in the
switch flow table. When a flow finishes, its corresponding flow
table entries will be automatically removed after the time out.
The middlebox VMs will also be shut down or put to sleep
after a certain amount of idle time.

B. Middlebox Development

To conduct experiments in realistic environments, we have
also developed real application based middlebox programs.
Since a normal TCP/UDP socket processes only packets
destined to it, the middlebox program utilizes the libpcap
library [49] to capture all packets from specified interfaces
even if it is not the destination. Three types of middleboxes
with different traffic changing ratios are developed: a compres-
sor that decreases the traffic volume, an encoder that increases
the traffic volume, and a firewall that either completely passes
or stops a flow.

1) Compressor: The compressor is developed using the
zlib [50] library. For every captured packet, the compressor
compresses its payload using the compress API of the zlib
library, and then sends it back to the interface where the packet
was originally captured using the pcap_inject API from the
libpcap library. Since the actual compression ratio for each
packet is a variable that depends on the payload, we use the
average of the testing files as traffic changing ratio of the
compressor, which is 0.8.

Such a traffic changing ratio is reasonable compared with
that of real applications that decrease traffic volumes. For
example, WAN optimizers at the sender side accelerate data
transfer by compressing traffic before sending it to the
next hop, and Citrix’s NetScaler SD-WAN WAN optimizer
achieves compression rates from 5:1 to 300:1 [4]. Video stream
transcoders convert video streams from one format to another
on the fly, and Cisco’s Digital Media Encoder 1000 [51] sup-
ports converting captured video to the MPEG-4/H.264 format
that has compression rates from 352:1 to 6086:1 [52], [53].

2) Encoder: The encoder is developed based on open-
source Bose-Chaudhuri-Hocquenghem (BCH) code implemen-
tation [54]. It adds a series of BCH checksums for the payload
of each captured packet. In detail, it divides the packet pay-
load into 36-bit sections, and uses the encode_bch API from
the BCH(48, 36, 5) implementation to append a 12-bit check-
sum for each section. As a result, the traffic changing ratio of
the encoder is approximately 1.3 (≈ 48/36).

Such a traffic changing ratio is reasonable compared to that
of real applications that increase traffic volumes. For example,
the BCH(31, 21) encoder [55], [56] used in wireless sen-
sor networks add 10 coding bits for every 21 data bits, and
hence has a traffic changing ratio of 1.48 (≈ 31/21). Video
stream transcoders can also convert a stream from a low-bit-
rate format to a high-bit-rate format for clients with limited
computation resources, and the popular Plex Media Server [57]
is capable of transcoding from MPEG4 to MPEG2, which will
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result in a traffic changing ratio of 2 [58], [59]. Finally, WAN
Optimizers at the receiver side decompress the received com-
pressed traffic to recover the original data, and hence increase
the traffic volume up to 300 times.

3) Firewall: The firewall is implemented as a simple rule
based packet filter. It matches the header of each captured
packet against a set of admission rules that are defined on IP
addresses and port numbers, and discards the packet if there
is no match. The traffic changing ratio of the firewall is thus
one for an admitted flow and zero for a rejected flow.

VII. SIMULATION AND EXPERIMENT RESULTS

We use a combination of simulations and experiments for
performance evaluation. We have conducted simulations to
obtain performance data in large scale networks, and exper-
iments that are based on the prototype implementation to
validate the design. In this section, we present extensive simu-
lation and experiment results to show the effectiveness of our
algorithms. The source code of the simulation and experiment
programs is available at the project page [60].

A. Simulation Results

The simulations are conducted in the ns-3 simulator, and
the following performance metrics are used for benchmark
comparisons.

1) End-to-end delay: the interval to transmit a packet from
its source to destination.

2) Packet loss ratio: the percentage of packets lost with
respect to packets sent.

Longer end-to-end delays and higher packet loss ratios indicate
inefficient flow paths and middlebox locations, which make
certain links become oversubscribed. Under oversubscription,
excessive packets will accumulate in the switch queues, and
eventually exceed queue capacities and be dropped.

To reflect the burstiness of realistic traffic, we adopt the
on-off traffic model [61]. When a flow f is in the on state,
its initial traffic rate t is the product of a baseline rate and
a random number between 0.5 to 1.5; when in the off state,
its traffic rate is zero. A flow is in each of the two states
for 50% of the time. There are two candidate middlebox sets
with different traffic changing ratios and dependency relations,
and each flow will randomly choose one of them. Each link
in the network has a bandwidth capacity of 100 Mbps and a
propagation delay of 2 µs. The presented data are the average
of ten simulation runs, each lasting two minutes.

1) Placing Non-Ordered Set With Predetermined Path:
For the NOSP algorithm that places a non-ordered middle-
box set on a predetermined path, since there are no existing
solutions for the studied problem, we designed the following
three benchmark algorithms. Same as NOSP, all the bench-
mark algorithms sort the middleboxes based on their traffic
changing ratios before placing them.

1) First-fit: continuously placing the sorted middleboxes in
the increasing order from the head of the flow path.

2) Last-fit: continuously placing the sorted middleboxex in
the decreasing order from the tail of the flow path.

Fig. 5. NOSP simulation results.

3) Random-fit: randomly placing the sorted middleboxes on
random nodes on the path that have spaces.

We pick the tree topology, since is a popular choice among
institutional networks, and there is only a single path between
any pair of nodes. We set up a four-layer quad-tree with 21
switches and 64 hosts. Each switch has 13 spaces to ensure
sufficient spaces for all flows. The link weight is set using the
Cisco EIGRP [42] metric with only K2 being one and other
parameters being zero, or in other words the link weight is
inversely proportional to the percentage of remaining band-
width. Each host generates a flow to a random destination.
The two candidate sets of middleboxes are: {0.7, 0.8, 1.1, 1.2}
and {0.8, 0.9, 1.1, 1.3}. The baseline traffic rate of each flow
ranges from 0.625 to 6.25 Mbps with a stride of 0.625 Mbps.

Fig. 5(a) shows the average end-to-end delays of the four
algorithms. We can see that NOSP consistently achieves the
shortest delay due to its optimal middlebox placement scheme.
On the other hand, Last-fit has the worst performance, because
it places middleboxes at the path end, and the flow rate is 1×
on most links of the path. By contrast, First-fit achieves rela-
tively shorter delay by placing middleboxes at the beginning
of the path. The reason is that half of the flows picked the first
set of middleboxes with an aggregate traffic changing ratio of
0.7 ·0.8 ·1.1 ·1.2 = 0.74, and the other half picked the second
set with a ratio of 0.8 · 0.9 · 1.1 · 1.3 = 1.03, so on average the
middleboxes placed at the path head would reduce the traffic
rate of a flow to (0.74+1.03)/2 = 0.885×, which is the traffic
rate on most links of the path. Finally, the delay of Random-fit
is between that of Last-fit and First-fit due to its randomized
strategy.

Fig. 5(b) plots the packet loss ratio data. We can observe
a similar trend that NOSP always achieves the lowest packet
loss ratio. When the flow traffic rate is small, all the algorithms
have zero packet loss ratios. Compared with NOSP, other algo-
rithms experience packet losses at smaller traffic rates, and
their ratios increase much faster.

2) Placing Totally-Ordered Set With Predetermined Path:
Next, we evaluate the TOSP algorithm to place a totally-
ordered set with similar benchmark algorithms as above, in
which First-fit, Last-fit, and Random-fit place the middleboxes
based on the given total order chain from the path head, tail,
and randomly, respectively. The traffic changing ratios and
dependency chains of the two candidate sets of middleboxes
are: {0.8 ← 1.1 ← 0.7 ← 1.2} and {1.2 ← 0.7 ← 1.1 ←
0.8}. Other simulation settings are the same as above.
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Fig. 6. TOSP simulation results.

Fig. 7. Partial to total order conversion simulation results.

As shown in Fig. 6(a), TOSP achieves the shortest end-to-
end delay because of its dynamic programming based optimal
middlebox placement scheme. Similar as above, the delays of
the other three algorithms increase in the sequence of First-
fit, Random-fit, and Last-fit. The packet loss ratio results in
Fig. 6(b) are consistent, and TOSP outperforms others.

3) Placing Partially-Ordered Set with Predetermined Path:
To evaluate the placement of partially-ordered middlebox sets
on predetermined paths, we use the proposed algorithm to con-
vert the partially-ordered sets to fully-ordered sets, and then
apply TOSP. We adjust the lookahead parameter k from one
to two and compare their performances. The traffic changing
ratios and the dependencies of the two candidate sets of mid-
dleboxes are: {1.1← 0.8, 1.2← 0.7} and {1.1← 1.2, 1.3←
0.7}. Note that different total order chains will be generated
when using the two different lookahead values.

Fig. 7(a) compares the end-to-end delay of the two different
lookahead values. We can see that the lookahead value of two
achieves shorter delays with a deeper search into the solution
space. Similarly, Fig. 7(b) shows that the lookahead value of
two achieves lower packet loss ratios.

4) Placing Middleboxes Without Predetermined Path:
Finally, we evaluate the Traffic And Space Aware Routing
(TASAR) algorithm by comparing it with a hop count based
and ECMP (i.e., load-balancing) enabled shortest-path routing
algorithm. For the multi-path topology, we choose an 8-pod fat
tree with 80 switches and 128 hosts. Each host generates a flow
to a random host in other pods. The baseline traffic rate of each
flow ranges from 10 to 100 Mbps with a stride of 10 Mpbs.
The two sets of candidate middleboxes after conversion are:
{1.2← 0.7← 1.1← 0.8} and {1.3← 0.7← 1.1← 1.2}.

We first compare the routing success ratios of the two algo-
rithms. We adjust the number of spaces per switch from 6 to 8,
and measure the percentage of flows that can successfully find

TABLE III
FLOW ROUTING SUCCESS RATIO

Fig. 8. TASAR simulation results.

Fig. 9. NSF network topology.

paths with sufficient middlebox spaces. As shown in Table III,
when the space number per switch is 6, the routing success
ratio of TASAR is 5.7% higher than that of shortest-path rout-
ing. When the number increases 7, TASAR achieves a 100%
routing success ratio, while shortest-path routing cannot find
path for 3.82% of the flows. Finally, when it increases to 8,
both algorithms achieve 100% routing success ratios.

Next, we fix the space number per switch to 8, and compare
the end-to-end delay and packet loss ratio of the two algo-
rithms. As shown in Fig. 8(a), when the baseline flow rate
is 10 Mbps, TASAR has a slightly longer delay, because its
paths are not as short as those generated by shortest-path rout-
ing. However, once the flow rate increases beyond 10 Mbps,
TASAR consistently delivers shorter delays due to its traffic
awareness in path selection. Fig. 8(b) also shows that TASAR
consistently achieves lower packet loss ratios.

B. Prototype Experiment Results

We have also developed a prototype system and conducted
experiments using real traffic and applications. Following the
experiment settings in [62], we select the NSF network topol-
ogy with 14 switches and 21 links, as shown in Fig. 9. Each
switch has an associated NFV server with five middlebox
spaces, and each link has a bandwidth capacity of 10 Mbps.
For traffic generation, we create seven flows from node 1
to 2, 1 to 8, 2 to 7, 7 to 12, 7 to 14, 8 to 14, and 12 to 13. Each
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Fig. 10. Prototype experiment results.

flow sends a file of 1 Gbytes, and its initial traffic rate ranges
from 1 to 10 Mbps with a stride of 1 Mbps. Each flow needs
to go through three middleboxes: a compressor with a traffic
changing ratio of 0.8, a firewall of 1, and an encoder of 1.3, as
described in Section VI-B. By the least-first-greatest-last rule,
the three middleboxes will be arranged in a total-order chain
of {0.8 ← 1.0 ← 1.3}. Thus, the aggregate traffic changing
ratio of the three middleboxes is 0.8 · 1.0 · 1.3 ≈ 1.

The experiment results are consistent with the simula-
tion ones. In detail, we compare four solutions: shortest-path
routing with random-fit placement, shortest-path with TOSP,
TASAR with TOSP, and a manually calculated optimal solu-
tion. Fig. 10(a) shows that when the traffic rate is equal to
or less than 4 Mbps, all the solutions have a short end-to-
end delay of less than 1 ms. The delay of shortest-path with
random-fit starts increasing significantly at 5 Mbps and is
the longest thereafter, because both its routing and placement
strategies are not optimized. By changing to a more efficient
placement strategy, shortest-path with TOSP postpones the
delay spike to 7 Mbps, and by further optimizing the routing
strategy, TASAR with TOSP reduces the maximum delay from
over 650 to 260 ms. Finally, the optimal solution achieves the
shortest delay of no more than 13 ms. Note that the TAPIM
problem is NP-hard, and the optimal solution is obtained at
the cost of large computation overhead. Fig. 10(b) shows that
packet losses happen to shortest-path with random-fit as early
as at 5 Mbps. By optimizing middlebox placement, shortest-
path with TOSP and TASAR with TOSP postpone packet
losses to 7 Mbps, and the latter further reduces the loss ratio
with optimized flow routing. The manually calculated optimal
solution experiences no packet loss. Although delay spikes and
packet losses happen at different rates due to different topolo-
gies and experiment settings, the results and those in [63]
demonstrate consistency that TASAR outperforms short-test
path routing thanks to its traffic awareness.

VIII. CONCLUSION AND FUTURE WORK

The advancement of virtualization technology has made
NFV a promising platform for network function provision-
ing. However, the flexibility to run an NFV middlebox on
any available standard server also creates a challenge for effi-
cient NFV implementation. In this paper, we have studied
the optimal placement of NFV middleboxes by considering
different middlebox traffic changing effects and dependency
relations. We first formulate the Traffic Aware Placement of

Interdependent Middleboxes problem as a graph optimization
problem with the objective to load-balance the network.
Next, we solve the problem when the flow path is predeter-
mined, and propose optimal algorithms for a non-ordered or
totally-ordered middlebox set. For the general scenario of a
partially-ordered middlebox set, we show that the problem is
NP-hard by reduction from the Clique problem, and propose
an efficient heuristic to convert a partially-ordered set to a
totally-ordered one. On the other hand, when the flow path
is not predetermined, we show that the studied problem is
NP-hard even for a non-ordered or totally-ordered middlebox
set, and propose the Traffic And Space Aware Routing heuris-
tic. We have conducted large scale simulations to evaluate the
proposed solutions, and have also implemented an SDN based
prototype to validate them in realistic environments. Extensive
simulation and experiment results are presented to demonstrate
the effectiveness of our design.

In our future work, we plan to investigate routing of mice
flows among already placed middleboxes. On the one hand, the
problem context will be different in that middleboxes of differ-
ent types and capacities have been placed in the network. On
the other hand, the same set of constraints including depen-
dency relations and traffic changing effects will still apply.
Due to the nature of waypoint routing [30], we expect the
general problem to be NP-hard, and efficient approximation is
necessary to make a solution practical.
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