# Alleyne Balanced Game-Force Shape Relay 

# Norman Pestaina 

## Revised: August 16, 2012

## References

1. The Useful-Space Principle, I. Jeff Rubens. The Bridge World Vol. 52 No. 2, November 1980.
2. The Useful-Space Principle, II. Jeff Rubens. The Bridge World Vol. 52 No. 3, December 1980.

## 3. Moscito Symmetric Relay Structure <br> http://mikevin.tripod.com/mosc/english/1_2.htm

## 4. Symmetric Major-Suit Raises, Norman Pestaina

http://cs.fiu.edu/~pestaina/SymmetricMajor.docx

## Acknowledgements

The response system described here is part of the Symmetric Major-Suit Raise System [4]. Responses to an opening bid of 1 of a major are defined by steps, not suit. Thus, the balanced game-forcing raise is 2 N only when the opening is $1 \boldsymbol{\Delta}$; when the opening is $1 \boldsymbol{\downarrow}$, the balanced game-force is $2 \boldsymbol{A}$. This strategy is motivated by the Useful-Space Principle described in [1] and [2]. The implementation uses the ideas of a residual grouping of responding hand-types, and a relay structure, both defined in [3].

What follows is a discussion of the Alleyne Shape Relay that seeks to present the motivation for the system as well as the details of its structure.

## Discussion

When making a balanced 4-card game-forcing raise of major suit opening ( $1 \boldsymbol{\alpha}-2 \mathrm{~N}$ or $1 \boldsymbol{v}-2 \boldsymbol{\wedge}$ ), responder will have one of the following distributions: 7[222] 6[322] 5[422] 5[332] 4[522] 4[432] 4[333] (The $1^{\text {st }}$ number is the number of trumps, the others are the numbers in the other suits, in any order).
 describe her distribution. The description is completed below the level of 4 of the agreed trump suit. Since there are only a relatively small number of bids (actually 8) between the relay and 4 of the major, some similar shapes are grouped together under the initial response to the relay, and resolved via additional relay steps; some shapes are described immediately. We will specify the groups later, but here are the meanings of the first response to the relay:

| Spades |  |  |
| :---: | :---: | :---: |
| 14 | 2N |  |
| 3\% | 3 | R32 group |
|  | 39 | R23 group |
|  | 34 | R22 group |
|  | 3N | 4=2=2=5 2-transfer |
|  | 4* | $4=2=5=2$-transfer |
|  | 4 | 4=5=2=2 『-transfer |
|  | 4 | $4=3=3=3$ |
|  | 4 | $7=2=2=2$ |


| Hearts |  |  |
| :---: | :---: | :---: |
| $1{ }^{19}$ | 24 |  |
| 2N | 30 | R32 group |
|  | 3 | R23 group |
|  | 39 | R22 group |
|  | 34 | 5=4=2=2 |
|  | 3N | 2=4=2=5 -transfer |
|  | 4\% | $2=4=5=2$-transfer |
|  | 4 | $3=4=3=3$ |
|  | 4 | $2=7=2=2$ |

This system places a premium on being able to locate secondary fits $4-4$ and $5-5$ fits when they exist; we'll explain why later. Notice that when responder has exactly 4 -card support for the primary (agreed) suit, and exactly 5 cards in some other suit, responder transfers to this suit, i.e. by bidding just under 4 of the suit (like a normal transfer). This allows opener to accept the transfer when also holding 5 cards in this suit and to make some other bid when he doesn't. The only exception occurs when the primary suit is $\geqslant$, and the secondary ; then, responder bids directly and opener accepts by bidding 3 N .

As can be seen in the tables above, the 7[222], 4[522] and 4[333] distributions are described by the initial response to the relay. All other distributions are allocated to one of the $\mathbf{R 3 2}, \mathbf{R 2 3}$ or $\mathbf{R 2 2}$ groups and resolved via one or two further relays. The R in R32, R23 and $\mathbf{R 2 2}$ stands for Residual; what does this mean? Consider a hand with 5[422] distribution as a 2 -suiter, 5 cards in the agreed trump suit, and 4 cards in one of the other three suits; the remaining two suits are called residuals and the distribution in these residual suits must be $2-2$. So, if the primary suit is $\boldsymbol{\wedge}$, the $\mathbf{R 2 2}$ group includes the responding hands with $5=4=2=2,5=2=4=2$ or $5=2=2=4$ distribution; if the primary suit is $\vee$, the $\mathbf{R 2 2}$ group includes hands with $4=5=2=2,2=5=4=2$ or $2=5=2=4$ distribution. These R22 distributions are described by cue-bidding the 4 -card suit in response to the $2^{\text {nd }}$ stage relay:

| Spades |  |  |
| :---: | :---: | :---: |
| 14 | 2N |  |
| 3\% | 34 | R22 group |
| 3N | 4\% | 5=2=2=4 |
|  | 4* | $5=2=4=2$ |
|  | 4 | 5=4=2=2 |


| Hearts |  |  |
| :---: | :---: | :---: |
| $1{ }^{19}$ | 24 |  |
| 2N | 3 | R22 group |
| 34 | 3 N | $4=5=2=2$ (NT surrogate for $\boldsymbol{\sim}$ ) |
|  | 40 | $2=5=2=4$ |
|  | 4* | $2=5=4=2$ |

These are example of 2 -stage relays. Opener simply makes the next available bid to keep the relay going until the group has been fully resolved. The 5[332] distributions are resolved by a 3-stage relay, but always via the R32 group. The $1^{\text {st }}$ stage says R32, the $2^{\text {nd }}$ stage says $5\left[332\right.$ ], and the $3^{\text {rd }}$ stage is a cue-bid of the doubleton. Here it is:

| Spades |  |  |
| :---: | :---: | :---: |
| 14 | 2N |  |
| 3\% | 3 | R32 group |
| 3 | 34 | 5[332] |
| 3N | 49 | $5=3=3=2$ |
|  | 4 | $5=3=2=3$ |
|  | 4 | 5=2=3=3 |


| Hearts |  |  |
| :---: | :---: | :---: |
| 19 | 24 |  |
| 2N | 38 | R32 group |
| 3 | 3 | 5[332] |
| 34 | 3 N | $2=5=3=3$ (NT surrogate for ${ }_{\text {a }}$ ) |
|  | 4* | $3=5=3=2$ |
|  | 4* | $3=5=2=3$ |

There are other distributions included in the R32 group, that's why 3 stages are needed.

Now we come to the most interesting, most frequent, and most critical distributions, the 4[432]. These holdings all include two 4-card suits, and either have 3 cards in the higher residual suit and 2 in the lower (that's R32), or 2 cards in the higher residual and 3 cards in the lower (that's R23):
Spades ( $\Delta$ )
Hearts ( v )
R32: $4=4=3=2,3=4=4=2,3=4=2=4$
R32: $4=4=3=2,4=3=4=2,4=3=2=4$
R23: $4=4=2=3,2=4=4=3,2=4=3=4$

These distributions are also resolved via 2-stage relays, but using transfers at the $2^{\text {nd }}$ stage:

|  | Spades |  |  | Hearts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1. | 2N |  | 1\% | 24. |  |
|  | 32 | 3 | R32 group | 2 N | 32 | R32 group |
|  | 34 | $3{ }^{1}$ | 5[332] | 3 | 34 | 5[332] |
|  |  | 3 N | 4=3=2=4 -transfer |  | 34 | $4=4=3=2$ direct bid |
|  |  | 4* | $4=3=4=2-$-transfer |  | 3 N | 3=4=2=4-transfer |
|  |  | 4 | $4=4=3=2$ - -transfer |  | 4* | $3=4=4=2$-transfer |
| Or |  |  |  |  |  |  |
|  | Spades |  |  | Hearts |  |  |
|  | 14 | 2N |  | 19 | 24 |  |
|  | 320 | 37 | R23 group | 2 N | 3 | R23 group |
|  | 34 |  |  | 37 |  |  |
|  |  | 3 N | 4=2=3=4 -transfer |  | 34 | $4=4=2=3$ direct bid |
|  |  | 4* | 4=2=4=3-transfer |  | 3N | 2=4=3=4-transfer |
|  |  | 4 | 4=4=2=3 $\downarrow$-transfer |  | 4* | 2=4=4=3 -transfer |

Finally, the 6[322] hands are (arbitrarily, but with good purpose) assigned to one of the residual groups $\mathbf{R 3 2}, \mathbf{R 2 3}$ or R22, based on their specific distribution, $6=2=3=2$ and $2=6=3=2$ to $\mathbf{R 3 2}$, etc. These are resolved by bidding 4 of the trump suit following the $2^{\text {nd }}$ stage relay:

Spades

| 14 | 2N |  |
| :---: | :---: | :---: |
| 3\% | 3 | R32 group |
| 3 | 49 | $6=2=3=2$ |
| Spades |  |  |
| 14 | 2N |  |
| 3\% | 34 | R23 group |
| 3N | 49 | $6=2=2=3$ |
| Spades |  |  |
| 14 | 2N |  |
| 39 | 3 | R22 group |
| 3 | 49 | $6=3=2=2$ |

Hearts

| $1{ }^{*}$ | 24 |  |
| :---: | :---: | :---: |
| 2N | 30 | R32 group |
| 3 | 4 | $2=6=3=2$ |
| Hearts |  |  |
| $1{ }^{19}$ | 24 |  |
| 2N | 39 | R23 group |
| 3s | 4 | $2=6=2=3$ |
| Hearts |  |  |
| 17 | 24 |  |
| 2N | 3\% | R22 group |
| 3 | 4 | $3=6=2=2$ |

Here＇s the complete relay structure with everything pulled together：

Spades


3＊3＊R32 group
3\％R23 group
34 R22 group
3N 4＝2＝2＝5 transfer
4＊4＝2＝5＝2 transfer
4 $4=5=2=2$ transfer 『
4 $4=3=3=3$
4． $7=2=2=2$
Spades
14． 2 N

3＊3＊R32 group
3४ 3ヵ 5［332］
$3 \mathrm{~N} \quad 4=3=2=4$ transfer
4＊ $4=3=4=2$ transfer
4． $4=4=3=2$ transfer $\vee$
$4 \stackrel{4}{4}$
4． $6=2=3=2$
Spades
14 2 N
3＊ 3 R32 group
$3 \vee$ 34 5［332］
$3 \mathrm{~N} \quad 4$ ． $5=3=3=2$
4． $5=3=2=3$
4 $\downarrow \quad 5=2=3=3$
Spades
14 $2 N$
3＊34 R23 group
34 $3 \mathrm{~N} \quad 4=2=3=4$ transfer＊
4＊4＝2＝4＝3 transfer
4＊4＝4＝2＝3 transfer $\downarrow$
4
4． $6=2=2=3$
Spades
14． 2 N
3＊34 R22 group
$3 \mathrm{~N} \quad 4 \boldsymbol{2} \quad 5=2=2=4$
4＊ $5=2=4=2$
4 4 5＝4＝2＝2
4． $6=3=2=2$

| Hearts |  |  |
| :--- | :--- | :--- |
| $1 \mathbf{~}$ | 2A |  |
| 2 N | 3\＆ | R32 group |

3．R23 group
34 R22 group
3． $5=4=2=2$ direct bid
$3 \mathrm{~N} \quad 2=4=2=5$ transfer＊
4＊2＝4＝5＝2 transfer＊
4＊ $3=4=3=3$
4• $2=7=2=2$
Hearts

| $1 \%$ | 2A |  |
| :--- | :--- | :--- |
| $2 N$ | $3 *$ | R32 group |

3＊3ヶ 5［332］
3． $4=4=3=2$ direct bid
$3 \mathrm{~N} \quad 3=4=2=4$ transfer＊
4．3＝4＝4＝2 transfer
4
4 $4=6=3=2$
Hearts
14 24
2N 3＊R32 group
3．34 5［332］
3． $3 \mathrm{~N} \quad 2=5=3=3$（ NT surrogate for $\uparrow$ ）
4＊ $3=5=3=2$
4． $3=5=2=3$
Hearts
14 24
2N 3＊R23 group
34 34 $4=4=2=3$ direct bid
$3 \mathrm{~N} \quad 2=4=3=4$ transfer
4＊2＝4＝4＝3 transfer
4
4 $2=6=2=3$
Hearts
14 20
2N 3V R22 group
3． $3 \mathrm{~N} \quad 4=5=2=2$（NT surrogate for $\uparrow$ ）
4＊ $2=5=2=4$
4＊2＝5＝4＝2
4－ $3=6=2=2$

A minor miracle！We are able to unambiguously describe 24 distinct distributions in the space of 8 bids． This is only possible by using a relay structure that allows related distributions to be grouped initially and later resolved via relay stages．The relay system described here borrows and simplifies the residue schema idea from the Moscito Symmetric Relay System．Did you notice that there are even 2 unused bids？We can try to make use of these bids，but it＇s not necessary．

What about the transfers? Why introduce another level of complexity? The answer is, paradoxically: "to gain some simplicity". Unlike the more traditional Jacoby and Texas transfers, partner may either accept or decline a relay transfer; so at least 2 bids are required to respond to a transfer and space below 4 of the primary suit is at a premium. First, some observations about transfers
$>$ Responder always has exactly 4-card support for the primary suit
$>$ Responder transfers to a secondary suit in which she has either 4 or 5 cards
$>$ Opener accepts the transfer only when he has the same number of cards in the secondary suit as responder (the partner initiating the transfer)
In other words, responder always transfers when his primary-secondary distribution is exactly 4-4 or 4-5. Since opener accepts the transfer when he has the same number of cards in the secondary suit as responder, acceptance is our means of locating a secondary 4-4 or 5-5 fit together with a primary 5-4 fit. There are 2 significant advantages to recognizing the secondary fit:

1. Often, there is an additional trick available when the suit of the secondary 4-4 or 5-5 fit becomes the trump suit since the 5-4 primary suit can provide a discard that is not available when the primary suit is the trump suit. Sometimes, this means that a small slam can be bid in the suit of the secondary fit, but only a game in the suit of the primary fit. Perhaps a grand slam is available in the secondary when only a small slam can be made in the suit of the primary fit.
2. Even if the final contract is not in the suit of the secondary fit, recognizing a double fit allows the partnership, along the way, to employ 6 Ace Keycard Blackwood thus gaining more detailed recognition of their combined controls.

Our agreement is that opener accepts the transfer by making the next available bid; this will be 4 of the secondary suit except when the primary and secondary suits are $\downarrow$ and respectively (see above). When not accepting the transfer, opener normally returns to 4 of the primary suit or makes the keycard-ask for the primary suit. Acceptance of the transfer always initiates 6 Ace Keycard Blackwood. For example:

## Example 1: $\quad$ Shape Relay R32, 4=4=3=2, Secondary Suit Grand

(Modification of deal \#5 of Challenge The Champs, Bridge World, April 2009)

| West | East |  |
| :---: | :---: | :---: |
| ¢KJ742 | ¢ A Q 96 |  |
| - AQ5 3 | - KT92 |  |
| - A 87 | -K63 |  |
| * 5 | - 44 |  |
| West | East |  |
| 19 | 2N |  |
| 3\% | 3 - R | Relay; response shows R32: 4[432] or 5[332] or 6=2=3=2 |
| 39 | 4* R | Relay; response shows a 4=4=3=2 "transfer" to $\downarrow$ |
| 4 | 4, V | --acceptance constitutes a Both-Wood Keycard-ask; (0 or) 3 Keycards shown |
| 4N | $5 \vee$ Q | Queen-ask; $3^{\text {rd }}$ step shows higher trump Queen, $\mathrm{Q} \uparrow$, only |
| 5N | $6 \vee$ K | King-ask; response shows the higher residual King, K ४, only (denies K ${ }_{\text {¢ }}$ ) |

$7 \vee$

West knows East's exact distribution to be $4=4=3=2$, and all of East's significant honors, and pictures East's hand as: AQxx VKxxx*Kxx\&Ax. He can therefore expect to ruff East's loser and to discard East's loser on his $5^{\text {th }} \uparrow$. $7 \uparrow$ will be routine barring an unfavorable $5-0 \vee$-split, or unless one opponent holds $\downarrow J \times x \times$. Note that $7 \boldsymbol{4}$ fails since there will be no legitimate way to dispose of the $3^{\text {rd }} \downarrow$.

## Example 2: $\quad$ Shape Relay R32, 3=4=2=4, Secondary Suit Grand

(Alleyne Bridge Hand Generator)

| West | East |  |
| :---: | :---: | :---: |
| $\triangle$ A | AQ95 |  |
| -KJ7642 | $\checkmark$ AQT3 |  |
| -65 | - AJ |  |
| \& AK9 3 | \&QT 76 |  |
| West | East |  |
| 19 | 24 |  |
| 2N | 3\% | Shape Relay; response shows R32: 4[432] or 2=6=3=2 |
| 3 | 3N | Relay; e-transfer shows 3=4=2=4 |
| 4\% | 5 | Acceptance is a Both-Wood Keycard ask; 2 Keycards, both Qe and QP |
| 5 | 54 | King-ask; zero or both residual Kings |
| 5N | 6\% | Relay; no residual Kings |

The Shape Relay reveals a double $\boldsymbol{v}$ - fit, and East's specific distribution to be $3=4=2=4$. Accepting the transfer automatically triggers Both-Wood, East's the $6^{\text {th }}$ Step response promising 2 Keycards and both trump Queens, Q* and Q $\mathrm{Q}^{\boldsymbol{*}}$. At this stage, West can count 12 tricks assuming the adverse split 3-2. Any residual King, $\mathrm{K}>$ or K , would make the trick-count 13, but the King-ask discovers no Kings. With $*$ as trumps, East's $\uparrow$-loser may be discarded on the long $\uparrow$, and West's $\downarrow$-loser ruffed, so $7 \boldsymbol{*}$ is chosen.

## Example 4: $\quad$ Shape Relay R23, 2=4=4=3 - Stopping on a Nickle

(Modification of deal \#7 of Challenge The Champs, Bridge World, July 2009)

| West | East |  |
| :---: | :---: | :---: |
| ¢ A 965 | - Q 8 |  |
| ャKJ873 | - AQ92 |  |
| - A 985 | -KT43 |  |
| $\stackrel{1}{*}$ | * 495 |  |
| West | East |  |
| 17 | 24 |  |
| 2N | 3 - R | Relay; ${ }^{\text {nd }}$ step response shows R23: 4[4][23] or 6=3=2=3 |
| 3 | 4\% R | Relay; response shows a 2=4=4=3, transfer to * |
| 4 | $4 \checkmark$ | " "acceptance" and BothWood Keycard ask; East shows (0 or) 3 Keycards |
| 49 | $5 . \quad$ Q | Queen-ask; East's $3^{\text {rd }}$ step response shows higher trump Queen, Qץ, only |
| 5 |  |  |

Missing the trump Queen in a 4-4 fit will usually guarantee a trump loser, so West retreats to 5『. Too, East's promised $A \mathcal{A}$ is probably wasted. East has no cover cards beyond the controls already promised and accepts West's decision. Note that either residual King, would offer good play for $6 \downarrow$, so holding either of these cards, East should venture $6 \star$.

The examples above are from Alleyne Game-Forcing Major Suit Raises, another discussion on opener's continuations following the game-forcing sequence $14-2 N$ or 1 - 24 . There are other continuations available to opener when his distribution is exceptional, but the Shape Relay described here is the most frequently used continuation. The article also gives a description of Both-Wood, a variation of the 6 Ace Keycard Blackwood convention. The Alleyne continuations and Both-Wood are summarized here.

The Alleyne Balanced Game-Force major suit raise (similar to the Jacoby 2 N ) takes the form of a single jump to the next higher denomination, 2 N after a 14 opening, but $2 \boldsymbol{A}$ following a $1 \vee$ opening. Opener's next bids after the game-forcing raise are summarized here:

| Spades |  |  |
| :---: | :---: | :---: |
| 14 | 2N |  |
| 30 |  | Shape Relay |
| 3 |  | Control Ask |
| 3 |  | Self-Splinter |
| 32 |  | Trump Ask |
| 3N |  | a-2 2-suiter, at least 6-5 |
| 40 |  | -- 2-suiter, at least 6-5 |
| 4 |  | Q-४ 2-suiter, at least 6-5 |
| 4 |  |  |
| 49 |  | Sign-off |
| 4N |  | Kickback |

Hearts
18 24

34 - 2-suiter, at least 6-5
3N $\quad$ 2-suiter, at least 6-5
4\% - 2-suiter, at least 6-5
4
49
4

Shape Relay
Control Ask
Self-Splinter
Trump Ask

Sign-off
Kickback

Both-Wood applies when two possible trump suits have been identified. Given a known double fit:
$>$ There are 6 Keycards, 4 Aces and the 2 Kings of the lower and higher trump suits
$>$ There are 2 trump Queens, of the lower and higher agreed trump suits
$>$ There are 2 "outside" Kings, of the lower and higher residual (non-trump) suits.
Both-Wood employs a bid of 4 of the lower agreed trump suit as the Keycard-ask. The Keycard response structure is defined as:

| $1^{\text {st }}$ Step: | 0 or 3 Keycards |
| :--- | :--- |
| $2^{\text {nd }}$ Step: | 1 or 4 Keycards |
| $3^{\text {rd }}$ Step: | 2 Keycards but neither trump Queen |
| $4^{\text {th }}$ Step: | 2 Keycards + the lower trump Queen only |
| $5^{\text {th }}$ Step: | 2 Keycards + the higher trump Queen only |
| $6^{\text {th }}$ Step: | 2 Keycards + both trump Queens |

Following the Keycard response, the King-ask is the (would-be) $7^{\text {th }}$ Step, 5 N when the lower trump suit is $\vee$, $5 \boldsymbol{\$}$ when the lower trump suit is $\geqslant, 5 \geqslant$ when the lower trump suit is $\%$. The responses identify the specific residual Kings and, initially, keep the bidding no higher than 6 of the lower trump suit by making the $1^{\text {st }}$ Step response ambiguous:

| $1^{\text {st }}$ Step: | zero or both residual Kings |
| :--- | :--- |
| $2^{\text {nd }}$ Step: | lower residual King only |
| $3^{\text {rd }}$ Step: | higher residual King only |

Following a $1^{\text {st }}$ Step response to the Keycard-ask, the next available bid is the Queen-ask. Responses to the $1^{\text {st }}$ Step Queen-ask are identical to the Queen-showing responses to the Keycard-ask (above). Following a $2^{\text {nd }}$ Step response to the Keycard-ask, the next available bid is the Queen-ask. However, there are only 3 steps available for the response, so a modified response-structure, somewhat similar to the King-ask, can be adopted.

