Bus Design Parameters

• Bus Width

Address Lines – n lines can address 2ⁿ memory locations Physical space on motherboard, Connector size
Data Lines Bandwidth – Cycle Time (Bus Skew), Data Width
Expansion and Backward Compatibility Multiplexing Address and Data

- <u>Bus Clocking</u> Synchronous – All bus operations are clocked and occur are predetermined times Asynchronous – Master/Slave coordination via handshaking
- <u>Bus Arbitration</u> Resolving simultaneous requests to control the bus *Centralized* – **daisy chaining** *Decentralized*
- <u>Bus Operations</u> Single Word Transfer Block Transfer Critical Section (Multiprocessor systems) Interrupt Requests

Figure 3-38. (a) Read timing on a synchronous bus.

CPU-Bus Memory Access

- CPU begins <u>initiates memory read</u> at the <u>rising edge</u> of a clock cycle T1 by latching address bits onto the bus. CPU asserts control signals MREQ & RD on the falling edge of cycle T1.
 - Output a memory address onto the bus
 TAD: Address Output Delay time for address lines to settle (Max 4 ns)

2.	Assert MREQ (Memory CS) and RD. Address bits must stabilize prior to MREQ.			
	TML:	time to wait before asserting control signals	(Min 2 ns)	
	TM:	MREQ Output delay - time for MREQ line to settle	(Max 3 ns)	
	TRL:	RD Output delay – time for RD line to settle	(Max 3 ns)	
Bu	s inserts	<u>Wait State(s)</u> to allow enough time for memory to pl	lace data onto DATA lines	

- When WAIT is asserted, CPU cannot strobe data. Negated when data available.
- CPU begins <u>strobing data</u> off the bus at the <u>falling edge</u> of a clock cycle

	TDS:	Time for data to settle before being strobed	(Min 2 ns)
•	CPU negat		
	TMH:	Time elapsed after date strobed until MREQ is negated	(Max 3 ns)

- **TRH**: Time elapsed after date strobed until RD is negated (Max 3 ns)
- **TDH**: Time data must be held on the bus after RD negated (Min 0 ns)