Signed Integer Representations

> All representations: $0 / 1$ in the high bit position indicates +/-

Sign-Magnitude Representation

- High bit stores $0 / 1$ to represent $+/$ -
- Remaining $\mathrm{n}-1$ bits store the magnitude of the integer
- Example (1 Byte): $59=$ b0011 $1011=x 3 B$
$-59=$ b1011 $1011=x B B$

One's Complement Representation

- $1 C_{n}(X)=\left(2^{n}-1\right)-X \quad$ Equivalent to complementing the bits of X
- Example (1 Byte):
$59=$ b0011 $1011=x 3 B$
$-59=b 11000100=x C 4$

Two's Complement Representation

- $2 C_{n}(X)=2^{n}-X \quad$ Equivalent to $1 C_{n}(X)+1 \quad$ Complement and Increment
- Example (1 Byte) $59=$ b0011 $1011=x 3 B$
$-59=\mathrm{b} 11000101=\mathrm{xC5}$
$>$ In practice, Sign-Magnitude representation is seldom used.
$>$ 1's Complement was used in some older machines. What is b1111 1111 ?
> 2's Complement is pretty much standard

2's Complement Arithmetic

- Evaluate 30-59 (signed byte arithmetic)

30	$b 00011110$	$x 1 E$
-59	$b 11000101$	$x C 5$
$===$	$==========$	$===$
-29	$b 11100011$	$x E 3$

- Check: $-(-59)=59$?
- Check: $59+(-59)=0$?

59	$b 00111011$	$\times 3 B$
-59	$b 11000101$	$x C 5$
$====$	$=========$	$==$
	$b 100000000$	$\times 100$

In signed addition, a high-end carry has no significance

Important to know:

> The range of unsigned integer values that can be stored in n bits is $\mathbf{0 . . 2} \mathbf{2}^{n} \mathbf{- 1}$
Byte : $0 . .2^{8}-1=255$
Word : $0 . .2^{16}-1=65535$.
> The range of signed integer values that can be stored in n bits is $-\mathbf{2}^{\mathbf{n - 1}} . . \mathbf{2}^{\mathbf{n - 1}} \mathbf{- 1}$
Byte : $-2^{7} . .2^{7}-1=-128 . .127 \quad$ Word : $-2^{15} . .2^{15}-1=-32768 . .32767$.

Overflow

When performing integer arithmetic, overflow occurs if the arithmetic produces a result that is outside of the range of the intended storage (see above). For example, suppose that we are performing byte arithmetic. The sum $125+125$ will produce signed overflow but not unsigned overflow. The sum, 250, is within the unsigned byte range, but outside the signed byte range.

> Producing a carry, $\mathrm{C}=1$, indicates unsigned overflow.
$>$ Producing a carry, $\mathrm{C}=1$, does not indicate signed overflow.
$>$ To recognize signed overflow, two conditions must be present:

1. the augend and addend must have the same sign, and
2. the sum must have the opposite sign.
