
Signed Integer Representations

 All representations: 0/1 in the high bit position indicates +/-

Sign-Magnitude Representation

 High bit stores 0/1 to represent +/-

 Remaining n-1 bits store the magnitude of the integer

 Example (1 Byte): 59 = b0011 1011 = x3B

 -59 = b1011 1011 = xBB

One's Complement Representation

 1Cn(X) = (2n - 1) – X Equivalent to complementing the bits of X

 Example (1 Byte): 59 = b0011 1011 = x3B

 -59 = b1100 0100 = xC4

Two's Complement Representation

 2Cn(X) = 2n – X Equivalent to 1Cn(X) + 1 Complement and Increment

 Example (1 Byte) 59 = b0011 1011 = x3B

 -59 = b1100 0101 = xC5

 In practice, Sign-Magnitude representation is seldom used.

 1’s Complement was used in some older machines. What is b1111 1111 ?

 2’s Complement is pretty much standard

2’s Complement Arithmetic

 Evaluate 30 – 59 (signed byte arithmetic)

 30 b0001 1110 x1E

 -59 b1100 0101 xC5

 ==== ============ ===

 -29 b1110 0011 xE3

 Check: - (-59) = 59?

 Check: 59 + (-59) = 0?

 59 b0011 1011 x3B
 -59 b1100 0101 xC5

 ==== ============ ===

 b1 0000 0000 x100

 In signed addition, a high-end carry has no significance

Important to know:

 The range of unsigned integer values that can be stored in n bits is 0..2n-1

Byte : 0 .. 28 – 1 = 255 Word : 0 .. 216 – 1 = 65535.

 The range of signed integer values that can be stored in n bits is –2n-1..2n-1-1

Byte : –27..27-1 = -128..127 Word : –215..215-1 = -32768..32767.

Overflow
When performing integer arithmetic, overflow occurs if the arithmetic produces a result that is
outside of the range of the intended storage (see above). For example, suppose that we are
performing byte arithmetic. The sum 125 + 125 will produce signed overflow but not unsigned
overflow. The sum, 250, is within the unsigned byte range, but outside the signed byte range.

 Binary Hex Condition Codes Unsigned Signed
 Carry oVerflow

(1) b1010 1000 xA8 168 -88

 b0010 1101 x2D 45 45

 ============= ==== === ===

 b1101 0101 xD5 C = 0 V = 0 213 -43

(2) b1101 0011 xD3 211 -45

 b1111 0100 xF4 244 -12

 ============= ==== === ===

 b1 1100 0111 x1C7 C = 1 V = 0 455 -57

(3) b0010 1101 x2D 45 45

 b0101 1000 x58 88 88

 ============= ==== === ===

 b1000 0101 x85 C = 0 V = 1 133 133

(4) b1101 0011 xD3 211 -45

 b1010 1000 xA8 168 -88

 ============= ==== === ===

 b1 0111 1011 x17B C = 1 V = 1 379 -133

 Producing a carry, C = 1, indicates unsigned overflow.
 Producing a carry, C = 1, does not indicate signed overflow.
 To recognize signed overflow, two conditions must be present:

1. the augend and addend must have the same sign, and
2. the sum must have the opposite sign.

