

Register Window

Architecture Comparison of MIPS, ARM and SPARC

https://en.wikipedia.org/wiki/Register_window
https://pdfs.semanticscholar.org/070e/64574ba00314fb49661534e289e3c0664345.pdf

8.1.5. An Example RISC Architecture: SPARC

In 1987, Sun Microsystems announced an 0

SPARC (Scalable Processor ARChitecture), that
SUn products (e.g., Sun-4 series and SPARCstati
not a chip. The SPARe architecture reference maIIB~o;:scn::s
looks like to the assembly language programmer
specify how it is implemented. Sun also defined
unit for use with SPARe chips.

About half a dozen semiconductor ven to produce
SPARe chips using different technologies (gate array, custom
VLSI, etc.). The intention was to encourage COi:;:J;;li!tiIro z::::lICI!gchip vendors, in

order to improve performance, reduce prices, and make an attempt at establishing
the SPARC architecture as an industry standard.

For our purposes, SPARC is an interesting example because it is closely based
on the pioneering RISC I, RISC II, and SOAR work of Patterson and Sequin at
Berkeley. In this section we will describe the SPARC in some detail, starting with
anoverview, and then covering the registers, instructions, floating-point unit, inter-
rupts, and memory management. After that we will give a simple example program
for the SPARe. We will conclude by comparing the SPARC to the 80386 and
68030.

Technical Overview of the SPARC

The SPARC definition includes not only the CPU, called theJU (Integer Unit),
but also the FPU (Floating Point Unit) and an optional user-supplied ~p (CoPro-
cesser). In addition, most SPARC-based systems will have also a memory
management unit and cache, as illustrated in Fig. 8-14.

FPU

t
Executes

floating-point
instructions

CPU
(lU)

CPI-- --

Executes
integer

instructions

One user-supplied
coprocessor
is permitted

Fig. 8-14. A SPARe system may have an IV, FPU, and coprocessor.

The SPARe is basically a,,32-bit design. It has a (paged) linear address space,
consisting of 232 individually addressable 8-bit bytes. Words are 32 bits long and
must be aligned on word boundaries (i.e., addresses that are multiples of four).
This alignment requirement not only improves performance, but allows certain use-
ful optimizations in the instruction set. Memory is big endian, like the 680xOfam-
ily, with byte 0 on the left-hand (high-order) end of a 32-bit word.

All instructions and registers are 32 bits, even the floating-point registers.
However, instructions are provided for loading and storing 8-, 16-, 32-, and 64-bit
quantities into the 32-bit registers, the latter using two consecutive registers. Like
other RISe machines, the SPARe is a LOAD/STORE architecture, so all opera-
tions take place on operands located in the 32-bit registers.

The SPARC is itself a uniprocessor arcbjtecmre, but provision has been made
for connecting up multiple SPARe cbjps to form a multiprocessor. Special instruc-
tions have been included for multiprocessor synchronization, for example.

The SPARC architecture has been carefully specified to allow for highly pipe-
lined implementations. Among other aspects, it defines delayed loads, stores,

branches, calls, and returns. A typical implementation has a four-stage pipeline, as
shown in Fig. 8-15. During the first cycle, the instruction word is fetched from
memory. During the second, it is decoded. During the third, it is executed.
Finally, during the fourth, the results are written back.

Cycle 2 3 4 5 6 7

Instruction 1: Fetch II Decode II Exec II Write I
Instruction 2: I Fetch II Decode II Exec II Write

Instruction 3: I Fetch II Decode II Exec II Write I
Instruction 4: Fetch II Decode II Exec II Write I

Time •.

Fig. 8-15. Four-stage pipelining.

SPARe Registers

The SPARC has an overlapping re ister wind , very similar to the
one described in Sec. 8.1.. t any instant, 32 32-bit registers are visible. A CWP
variable in the hardware points to the current set. The total size of the register file
is not part of the architecture, allowing more registers to be added as the technology
improves, up to a maximum of 32 windows C<;WP is 5 bits). A maximum-length
re~ster file is then 32 x 16 for ibe windows pIllS eight for the globa,Js,for a max-
imum of $0 registers. The initial implementations have about one-quarter of that.

The SPARC registers are shown in Fig. 8-16. The registers are numbered in the
reverse order from Fig. 8-8 because CWP is decremented rather than incremented
\Y!lena procedure js Called Thus the calling procedure puts the parameters in R8
through R15, and these registers become R24 through R31 in the called procedure.
In other words, when a procedure is called, the window slides "upwards" rather
than "downwards."

Some of the SPARC registers have specific functions, as shown in Fig. 8-16.
All of them have alternative names, which are used by the compilers and assembly
language programmers. GO is hardwired to O. Stores into it do not change its
value. G1 through G7 are global, and may contain integer variables, pointers to
tables, or other important data items.

00 through 07 are the output registers, used by procedures to pass parameters
to procedures being called. The first parameter goes in 00, the next in 01, and so
on. 06 (SP) is used as a pointer to the memory stack. The stack is used for excess
parameters, windows that have been spilled into memory due to register file
overflow, dynamically allocated stack space, saved floating-point registers, pointers

RO
R1

R7

Alternative name

R13
R14
R15
R16

R29
R30
R31L12:2i2B.~IJl.ilHill~

(a)

RO
R1

R7

CWP=6

r
CWP

decremented
on call in

this direction
Part of

previous window

Part of
previous window

Fig. 8-16. SPARe registers. (a) Before call. (b) After call.

(b)

to buffers where called procedures can return structures and arrays, and so on. The
CALL instruction deposits the return address in 07.

The eight registers for local variable, LOthrough L7, can be used any way the
programmer or compiler sees fit. The eight input variables, 10 through 17, are the
parameters passed to the current procedure by its caller. Unused registers may be
used for additional local variables. 16 (FP) is the frame pointer and is used to

address variables in the stack frame. Unlike SP, which may.change.as the pro-
cedure executes, Ff-. oints at the same memor word durin the entire uocedure
execution, thus making it more suitable for indexing from than SP. 17contains the
address to return to when the rocedure has finished.

When a program first starts up, all the regISter'windows are available for it to
use. As procedures are called, windows are used up. Suppose that after a while,
the program is so deep in calls that it has managed to use up all n windows. If
another call has to be made, the oldest register window has to be saved to the stack.
The question arises how the computer knows that all the windows are in use.

The solution lies in a special register, the WIM (Window Invalid Mask) that is
visible onl to the kernel. The WIM has one bit per window. When file CWP is
decremented to advance to a new window, the hardware checks to see if the WIM
bit for the new window is set. If so a trap occurs. The trap.handler then saves the

-; w~d~ In this manner, no software checking is needed on each call.
,Wlr'1 Normally, the WIM contains all 0 bits except for a single I bit marking the old-

e.!t register window currently in use. When that window is reached, a trap occurs,
the oldest register window is saved on the stack, and the WIM is rotated one bit, to
mark the next lowest window as the oldest.

A nontrivial amount of overhead is incurred when the windows_wrap_ar~d. ~_
tra occurs, registers must be saved, and the WIM must be ugdated. It is therefore
useful to restrict window usage wherever possible.

One optimization that many SPARe compilers make is handling leaf pro-
cedures in a specjal WilY. A leaf procedure is one that does not call any other pro-
cedures (i.e., is a leaf of the call graph). If a leaf procedure can live with 6 regis-
ters for input parameters and locals cgmbined. the compiler can cheat and have it
use what is left of 00 through 05 for locals.

When this optimization is used, the caller puts the parameters in 00 through
05, as usual, and then issues a normal CALL, which deposits the retum address in
07. The SAVE instruction, which is what actually advances the window, is omit-
ted. The leaf procedure runs in the usual way, except that its local variables go in
05, 04, and so on, instead of in LOthrough L7. When it is done, it jumps indirectly
through 07, but does not execute the RESTORE instruction that normally incre-
ments CWP. Measurements have shown that something like 40 percent of all pro-
cedures are leaf procedures, so this optimization is frequently applicable.

	new
	RISC_OverlappingRegisterWindow
	Scan_Doc0001
	Scan_Doc0002
	Scan_Doc0003
	Scan_Doc0004
	Scan_Doc0005

