
External Merge Sort

Purpose: The size of the file is too big to be held in the memory during sorting. This
algorithm minimizes the number of disk accesses and improves the sorting performance.

Example:
 No. of rows (records) to be sorted = 110, 814
 Size of each record = 1500 bytes

 Size of each disk block (database page) = 8 KB (8,192 bytes with data size 8060 bytes)
 Each record is to be stored in only one disk block

 No. of records / diskBlock = 8060/1500 = 5 records/block

 Total no. of disk blocks for the entire file = 110,814 / 5 = 22,162.8 = 22,163 blocks

 The amount of memory available for the sorting = 10 blocks (buffer size)

Sorting algorithm consists of two phases: Sort phase followed by Merge phase

Sort phase:

- Divide the entire file into groups of 10 blocks (memory buffer capacity)
- No. of groups = 22,163 / 10 = 2216.3 = 2217 groups
- The sort phase code will run 2217 times
- In each run, read one group of disk blocks into the memory buffer (10 x 5 = 50

records), sort the records in the memory buffer, save the sorted records in a
temporary sub file.

 At the end of this phase, 2217 temporary sorted sub files will be created.

 Code:
 k – the no disk blocks the memory buffer can hold
 m – the total no. of runs (groups)
 i – the run index value (1 to 2217)

Merge phase: 2217 sorted sub files will be merged into a single sorted file in several
passes.
Pass 1:
 Input: 2217 sorted sub files each with 10 disk blocks (50 sorted records)
 Perform several runs (uses 10 block space of the memory buffer) for the merge
 Run 1: Read the first 9 sorted sub files (one disk block from each file)

Write 1 big merged sub file (final size = 90 blocks = 450 records)
 Run 2: Read the next 9 sorted sub files
 Write 1 big merged sub file (90 blocks)
 …..
 Run 246: process 9 sorted sub files
 Run 247: process the last remaining 3 sorted sub files (output 23 blocks)

Prabakar 5/15/2015

 Total number of runs in Pass 1: 2217 / 9 = 246.33 = 247 runs

Pass 2:
 Input: 247 sorted big sub files each with 90 disk block (450 sorted records)
 Perform several runs (uses 10 block space of the memory buffer) for the merge
 Run 1: Read the first 9 sorted big sub files (one disk block from each file)

Write 1 big merged sub file (final size = 810 blocks = 4050 rec)
 Run 2: Read the next 9 sorted big sub files
 Write 1 big merged sub file (810 blocks)
 …..
 Run 27: process 9 sorted big sub files
 Run 28: process the last remaining 4 sorted big sub files (output 293 blks)
 Total number of runs in Pass 2: 247 / 9 = 27.44 = 28 runs

Pass 3:
 Input: 28 sorted big sub files each with 810 disk block (4050 sorted records)
 Perform several runs (uses 10 block space of the memory buffer) for the merge
 Run 1: Read the first 9 sorted big sub files (one disk block from each file)

Write 1 big merged sub file (final size = 7290 blocks = 36450 rec)
 Run 2: Read the next 9 sorted big sub files
 Write 1 big merged sub file (7290 blocks)
 Run 3: process 9 sorted big sub files
 Run 4: process the last remaining 1 sorted big sub file (output 293 blocks)
 Total number of runs in Pass 3: 28 / 9 = 3.11 = 4 runs

Pass 4:
 Input: 4 sorted big sub files each with 7290 disk block (36450 sorted records)
 Perform several runs (uses 10 block space of the memory buffer) for the merge
 Run 1: Read the 4 sorted big sub files (one disk block from each file)

Write 1 big merged sub file (final size = 22163 blocks = 110,814
rec)

 Total number of runs in Pass 4: 4 / 9 = 0.44 = 1 run

Initial runs in the sort phase NR = 2217

Degree of merging DM = 9

Number of passes = log DM NR = log 9 2217 = (ln 2217) / (ln 9) = 3.506
 = 4
 Code:
 i – the pass index value (1 to 4)
 p – the number of passes
 n – run index for the current pass
 q – the total no. of runs for the current pass

Prabakar 5/15/2015

