Tuning Queries

Frequency of a search (retrieval) on an attribute (zip code) is very high, build an index for that attribute.

<table>
<thead>
<tr>
<th>Acct #</th>
<th>Name</th>
<th>Address</th>
<th>zip</th>
<th>tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>35</td>
<td>Z2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Z3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Z1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Z3</td>
<td></td>
</tr>
</tbody>
</table>

When the index attribute value gets modified (insert/delete/update) operations on the original table, the index entries need to be corrected accordingly.

? Frequency of changes to the attribute (zip) values.

Index Tuning wizard: Creation/Deletion of an index.

Statistics on attributes: number of unique values

no. of retrieval

no. of update
DB Objects
 Tables
 Views
 Index

 \{ one master data file * mdf
 one transaction log file * ldf

 one master data file * mdf
 several secondary data files * ndf
 one transaction log file * ldf

 Grouped into filegroups

 By placing different secondary files (or filegroups)
 in different disks,
 disk access on multiple objects from different disks
 will improve query performance.

De Normalization

 \{ Merging (Joining) several base tables
 to provide a join result of frequently used queries

 Denormalized table is temporary.

 When a base table gets modified,
 the denormalized table must be revised or recreated.
Partitioning Tables

Horizontal Partitioning

Virtual Table
Customer

Partition 1
Partition 2
Partition 3

Queries
Site A

Site B

Site C

Vertical Partitioning

Virtual Student Table

PID Name Address major GPA

Partition 1
Partition 2

Queries
Site A
Site B

Both must include
Primary key PID