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Abstract: Power consumption within the disk-based storage subsystem forms a substantial

portion of the overall energy footprint in commodity systems. Researchers have proposed external

caching on a persistent, low-power storage device which we term external caching device (ECD),

to minimize disk activity and conserve energy. While recent simulation-based studies have argued

in favor of this approach, the lack of an actual system implementation has precluded answering

several key questions about external caching systems. We present the design and implementation

of EXCES, an external caching system that employs prefetching, caching, and buffering of disk

data for reducing disk activity. EXCES addresses important questions relating to external caching,

including the estimation of future data popularity, I/O indirection, continuous reconfiguration of

the ECD contents, and data consistency. We evaluated EXCES with both micro- and macro-

benchmarks that address idle, I/O intensive, and real-world workloads. While earlier studies had

focused on disk energy savings alone and had predicted as much as 90% savings, our experiments

with EXCES revealed that the overall system energy savings, which accounts for the additional

energy consumed by the ECD, is a more modest 2-14%, depending on the workload. Further,

while the CPU and memory overheads of EXCES were well within acceptable limits, we found that

flash-based external caching can substantially degrade I/O performance. We believe that external

caching systems hold promise. However, substantial improvements in ECD technology, both in

terms of power consumption and performance, must ensue before the full potential of such systems

are realized.

1 Introduction

The need for energy-efficient storage systems for both personal computing and data center environ-

ments has been well established in the research literature. The key argument is that the disk drive,

the sole mechanical device in modern computers, is also one of its most power consuming [13]. The

varied proposals for addressing this problem include adaptive disk spin down policies [9, 12, 15],
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exploiting multi-speed drives [11, 21, 26, 27], using data migration across drives [6, 8], and energy-

aware prefetching and caching techniques [20, 23, 25].

A different approach, complementary to most of the above techniques, is external caching1 on

a non-volatile storage device, which we shall henceforth refer to as external caching device (ECD).

Recent technological advancements, adoption trends, and economy-of-scale benefits have brought

the non-volatile flash-based storage devices into the mainstream. While non-volatile caches have

been proposed to improve performance in storage servers for more than a decade, their use in

reducing power consumption has been relatively less explored.

Recent work on external caching have demonstrated the potential for substantial disk energy

savings, primarily via simulation studies [3, 7, 16]. While these studies serve to make the case

for further research in external caching systems, they still leave several key questions unanswered.

First, these studies do not evaluate the power consumption of the system as a whole, but only focus

on the reduction in disk power consumption. It is extremely important to refine this evaluation

criteria to include the power consumption of the entire system, including the ECD subsystem

which can use a considerable amount of energy [23]. Consequently, the results of existing work may

inadvertently overestimate the gain due to external caching. Second, existing studies fail to evaluate

an important artifact of external caching, which is the impact on application performance. This

gains critical importance amidst recent concerns that while flash-based devices handle random

reads much better than disk drives, they perform slightly worse than disk drives for sequential

accesses and substantially worse for random writes [2, 10]. Third, the existing approaches base

their evaluation of external caching on simulation-based studies. While simulation techniques may

be well-suited for an approximate evaluation of a system, they also serve to sidestep key design and

implementation complexities. Further, in the absence of a fully-functional system implementation,

these approaches preclude evaluating the overhead contributed by the system itself. Finally, since

the disk energy savings estimates of these studies are based on a specific simulated model of disk

power consumption, they are at best approximate indicators.

In this paper, we present EXCES, an external caching system for energy savings, that compre-

hensively addresses the above questions and advances the state of our understanding of external

caching systems. EXCES operates by utilizing an ECD for prefetching, caching, and buffering of

1We term this as “external caching” to primarily differentiate it from in-memory caching.
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disk data to enable the disk to be spun-down for large periods of time and saving power. EXCES

is an online system, it adapts to the changing workload by identifying popular data continuously,

and reconfiguring the contents of the ECD (as and when appropriate) to maximize ECD hits on

both read and write operations. Prediction of future popularity in EXCES is based on a novel

technique that accounts for both the recency and frequency of accesses along the time line. To

prefetch popular data which are not present in the ECD, EXCES opportunistically reconfigures

the ECD contents, when the disk is woken up on an ECD read miss. EXCES always redirects

writes to the ECD, regardless of whether the written blocks were prefetched/cached in the ECD;

this is particularly important since most systems perform background IO operations, even when

idle [7, 22, 23]. All of the above optimizations minimize disk accesses and prolong disk idle periods,

and consequently contribute to conserve energy.

The contribution of EXCES is not only in its design, but also in its implementation in the Linux

kernel I/O stack as a module which realistically demonstrates the capability of this approach and

its suitability in production systems. EXCES operates between the file system and I/O scheduler

layers in the storage stack which makes it independent of the filesystem. As a result, it can work

with multiple heterogeneous file systems and mount points simultaneously. EXCES provides strong

block-layer data consistency for all blocks managed by upper layers, by maintaining a persistent

page-level indirection map. It successfully addresses the challenges of page indirection, including

partial/multiple block reads and writes, optimally flushing dirty pages to the disk drive during re-

configuration, correctly handling foreground accesses to pages that are undergoing reconfiguration,

and ensuring “up-to-datedness” of the indirection map under all these conditions.

We evaluated EXCES for different workloads including both micro-benchmarks and laptop-

specific benchmarks. In most cases, EXCES was able to save a modest amount of energy (∼2-

14%). Additionally, we found that using a flash-based ECD can substantially degrade performance

for certain workloads. This suggests that use of an external caching system must be judiciously

made, especially when using such systems in performance-centric data center environments [10].

Finally, we measured the system CPU/memory overheads incurred due to EXCES and found that

these are well within acceptable limits.

The rest of this paper is organized as follows. In Section 2, we profile the power consumption of

disk drives, ECDs and ECD interfaces, on two different systems. Section 3 presents the architecture
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Configuration Disk State Iozone Data ECD Specification ECD Interface

No Disk Standby N/A N/A N/A
Disk Active On disk N/A N/A

ECD 1 Standby On ECD SanDisk Cruzer Micro USB USB interface
ECD 2 Standby On ECD SanDisk Ultra CF Type II eFilm Express Card 34 CF Adapter
ECD 3 Standby On ECD SanDisk Ultra CF Type II SanDisk Ultra PC Card Adapter

Table 1: Various laptop configurations used in profiling experiments.
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Figure 1: Power consumption profiles of various ECD types and interfaces.

of EXCES. Section 4 presents the detailed design and Section 5 overviews our Linux kernel imple-

mentation of EXCES. In Section 6, we conduct an extensive evaluation of EXCES. Related research

is discussed in Section 7. We make concluding remarks and outline future work in Section 8.

2 Profiling Disk and ECD Power Consumption

To understand the power consumption characteristics of ECD relative to disk drives, we exper-

imented with two different NAND-flash ECDs and three different ECD interfaces on two laptop

systems. Table 1 shows the different configurations of the devices used in the profiling experiments.2

All ECD devices were 2GB in size. We measured the overall system power consumption for four

states: when the system was idle with each device merely being active, and with the Iozone [18],

an I/O intensive benchmark, generating a read intensive, write intensive, and read-write workload.

Figure 1 depicts the individual power consumption profiles for each storage device on two

different laptops: shiriu and beer. A detailed setup of each machine is given in Section 6 (Please

see Table 2. During each experiment exactly one device is turned on. These experiments were

conducted using a Knoppix Live CD to enable complete shutdown of the disk when not being

tested.

It can be observed that each machine has a distinct behavior. On the shiriu system, the USB

subsystem consumes substantially more energy than the disk subsystem when the system is idle;

we believe this is partly due to an unoptimized driver for the Linux kernel [5]. However, both

2We also tried using an SD NAND flash device. Unfortunately its Linux driver is still under development and
performs extremely poorly (<4 KB/s) for writes; consequently, we discontinued experiments with that device.
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Figure 2: EXCES system architecture.

types of flash memory consume less power than the disk in all the Iozone benchmarks. On the

beer system, the findings were somewhat surprising. Although the exact same flash device was

used in the ECD 2 and ECD 3 configurations, the PC Card interface in the ECD 3 configuration

negatively impacted power consumption in all the Iozone benchmarks. While we do not know the

exact cause, we postulate this could be due to an unoptimized device driver.

More importantly, for both systems, even in configurations when the disk is powered down com-

pletely, we observe that the power savings are bound within 10% for an I/O intensive benchmark.

Further, when the system is idle, the ECD subsystems consumes as much power as the disk drive.

While the laptop workload would be somewhere in between idle and I/O intensive, these findings

nevertheless call to question the effectiveness of external caching systems in saving power. Our goal

in this study is to address this question comprehensively.

3 EXCES System Architecture

Figure 2 presents the architecture of EXCES in relation to the storage stack within the operating

system. Positioning EXCES at the block layer is important for several reasons. First, this allows

EXCES coarse-grained monitoring and control over system devices, at the block device abstraction.

Additionally, the relatively simple block layer interface allows easy I/O interception and indirection,

and also allows EXCES to be designed as a dynamically loadable kernel module. Second, by

operating at the block layer, EXCES becomes independent of the file system, and can thereby

work seamlessly with any file system type, and support multiple active file systems and mount-

points simultaneously. Third, internal I/Os generated by EXCES itself leverage the I/O scheduler,

automatically addressing the complexities of block request merging and reordering.

EXCES consists of five major components as shown in Figure 2 . Every block I/O request issued
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by the upper layer to the disk drive is intercepted by EXCES. The page access tracker receives

each request and maintains updated popularity information at a 4KB page granularity. Control

subsequently passes to the indirector component which redirects the I/O request to the ECD as

necessary. Read requests to ECD cached blocks and all write requests are indirected to the ECD.

For blocks not present on the ECD the request is indirected to the disk drive and the reconfiguration

trigger module is invoked which decides if the state of the system necessitates a reconfiguration

operation. If a reconfiguration is called for, the reconfiguration planner component uses the page

rank information maintained by the page access tracker and generates a new “reconfiguration plan”

which contains the popular data based on recent activity. The reconfigurator uses this plan and

performs the corresponding operations to achieve the desired state of the ECD. EXCES continuously

iterates through this process until the EXCES module is disabled from the kernel.

4 EXCES System Design

In designing EXCES, we used the following behavioral goals as guidelines: (i) increase disk inac-

tivity periods through data prefetching, caching, and write buffering on the ECD, (ii) make more

effective use of the ECD by continuously adapting to workload changes, (iii) ensure block-level

data consistency under all system states, and (iv) minimize the system overhead introduced due to

EXCES itself. In the rest of this section, we describe how the various architectural components of

EXCES work towards realizing these design goals.

4.1 Page Access Tracker

The page access tracker continuously tracks the popularity of the pages accessed by applications.

We track popularity at the page granularity (instead of block granularity, the unit of disk data

access) to utilize the fact that file systems access the disk at the larger page granularity for most

operations. This reduces the amount of metadata by a factor of 8X in case of Linux file systems.

Page popularity is tracked by associating with each page a page rank. In our initial study we

found that while accounting for recency of access was important for a high ECD hit ratio, there were

certain pages that were accessed periodically. LRU-type main memory caching algorithms, tuned

to minimize the total number of disk accesses, typically end up evicting such pages prematurely for

large working-set sizes. In the case of external caching systems, if this page is not present in the

ECD the disk will need to be woken up to service it periodically, thereby leaving little opportunity

7



# accesses

time elapsed since access

value per access

Figure 3: Page rank decay function

Disk page ECD page Dirty bit

. . . . . . . . .
A A′ 1
B B′ 0
. . . . . . . . .

Figure 4: An example Indirection Map.

for energy savings. Consequently, the page ranking mechanism in EXCES provides importance to

both recency and frequency of accesses to determine the rank of a page.

For each page P , the page ranking mechanism splits time into discrete quanta (ti) and records

the number of accesses to the page within each quantum (aP
i
). When the rank for a page must be up-

dated, the page ranking mechanism weights page accesses over the time-line using an exponential de-

cay function (f) as shown in Figure 3. The rank of a page P is obtained as rank(P ) =
∑

aP
i
· f(ti).

The page ranking mechanism thus awards a higher value for recent accesses, but also takes into

account frequency of accesses, by retaining a non-trivial value for accesses in the past.

4.2 Indirector

The indirector is a central component of EXCES. Similar to the page access tracker, it gets activated

upon each I/O request to appropriately redirect it to the ECD if required.

The indirector maintains an indirection map data structure to keep track of disk pages that

have been prefetched, cached, or buffered in the ECD. Figure 4 depicts a fragment of an example

indirection map; each entry includes the disk page mapped, the corresponding ECD page where it

is mapped to, and whether the copy in the ECD is dirty or not. The data structure is implemented

so that we can find a specific entry, either given the page information on the ECD or the page on

disk. EXCES uses native kernel data structures that allow constant time operations for the above.

For each I/O request, the indirector component first checks to see if it is larger than a page.

If so, it splits it into multiple requests, one for each page. Each page request is handled based on

four factors: (i) type of operation (read or write), (ii) the disk power state, (iii) indirection map

entry, and (iv) presence of free/clean page in the ECD. Figure 5 shows the algorithm followed by

the indirector for each page request. The algorithm attempts to keep the disk in idle state as long

as possible, to maximize energy savings. This is feasible in two cases - if there is a free or clean

page in the ECD (line 5) to absorb a page write request, or if the page is already mapped (line 12).
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Require: Page Request: req, Indirection Map: map.
1: if req does not contain an entry in map then
2: if req is write then
3: if disk state is STANDBY then
4: find free (alternatively clean) page in ECD
5: if page in ECD is found then
6: add new entry in map (mark dirty)
7: change the req location as per map entry
8: end if
9: end if

10: end if
11: else
12: change the req location as per map entry
13: end if
14: send request req

Legend: : reads : writes
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Figure 5: Indirection algorithm and example.

In the rest of the cases, the disk is either active or would have to be spun up owing to an

ECD miss. In each such case, the ECD miss counter is incremented; this counter is used by the

reconfiguration trigger component of EXCES (described shortly). In the example of Figure 5, there

are three page requests: A, C and D. In the case of A, there is an entry in the indirection map;

consequently, it gets indirected to the corresponding page in the ECD. In the case of C, the page

does not have an entry in the indirection map; the indirector lets the request continue to the disk.

Finally, the write request D is handled differently than the above. There is no map entry for D.

However, having found a free page in the ECD, the indirector creates a new map entry and redirects

the request to the ECD, thereby avoiding spinning up the disk.

4.3 Reconfiguration Trigger

Upon each ECD miss, the indirector invokes the reconfiguration trigger, which determines if a

reconfiguration of the ECD contents would be appropriate at the current time. If yes, it invokes

the reconfiguration planner component (described next); otherwise, it does nothing.

The appropriateness of a reconfiguration operation depends on three necessary conditions: (i)

the target state of the ECD contents is different than the current one; (ii) the current ECD miss rate

(per unit of time) has exceeded a threshold, and (iii) a threshold amount of time has elapsed since

the previous reconfiguration operation. If the above hold true, the reconfiguration trigger concludes

that the current state of ECD contents is not favorable to energy saving, and consequently must

be reconfigured to reflect recent changes in the workload.
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4.4 Reconfiguration Planner

The reconfiguration planner creates a list of operations, which constitute the reconfiguration plan, to

be performed during the next reconfiguration operation. To be able to create such a list whenever

invoked, it continuously maintains a top-k matrix data structure, that holds the “top k” ranked

pages. Choosing k as the size of the ECD in pages, this matrix can then be used to identify the

target contents for the ECD that the reconfiguration operation must achieve.

The top-k matrix continuously incorporates the page rank updates provided by the page access

tracker. The threshold for being inserted into the top-k matrix is set by its lowest ranked page.

(We present and analyze this data structure in detail in Section 5).

The reconfiguration plan is constructed in two parts. The first are the “outgoing” pages which

must be flushed to the disk; these are no longer popular enough to be in the ECD and are dirty.

The second are the “incoming” pages which now have a sufficiently high rank to be in the ECD

but are not currently in it. These constitute the pages to be prefetched to ensure a high ECD hit

ratio in the future.

Construction of the reconfiguration plan occurs upon invocation by the reconfiguration trigger.

The outgoing and incoming lists are then created based on the top-k matrix contents and the

indirection map. The reconfiguration planner walks through each page of the ECD, creating an

entry in the outgoing list for each page that is no longer in the top-k matrix. Next, it walks through

each entry in the top-k matrix, creating an entry in the incoming list for each page that is currently

not in the ECD. Once these two stages are completed, the new reconfiguration plan is obtained.

4.5 Reconfigurator

The reconfigurator component of EXCES performs the actual data movement between the disk and

ECD. Broadly, the goal of each reconfiguration operation is to reorganize the ECD contents based

on changes in the application I/O workload, so that disk idle periods are prolonged. This is done

simply by following the reconfiguration plan as created by the planner component.

The reconfiguration operation is managed in two distinct “phases”: ECD to Disk and Disk

to ECD. These two phases are treated differently, and are detailed in Figure 6. The first phase,

ECD to Disk, addresses operations in the outgoing list of the reconfiguration plan. For each entry

in the list, the data movement operation is followed by deleting the corresponding entry in the
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Require: Phase: phase, Origin: orig, Destination: dest, Indirection Map: map Table: map

1: if phase = DISK TO ED then
2: add a new entry [orig, dest] in the map

3: mark the new entry as “clean”
4: end if
5: issue read from orig

6: issue write to dest

7: if phase = ED TO DISK then
8: delete the entry for dest from the map

9: end if
Figure 6: Algorithm used for a single operation during reconfiguration.

indirection map. The second Disk to ECD phase, handles the incoming list in a similar way,

except that a new entry is added to the indirection map, prior to the actual data movement.

Indirection during reconfiguration. Indirecting I/O requests issued by applications during

the reconfiguration operation must be carefully handled due to implicit race conditions. A race

condition arises at Line 6 if an application accesses a page currently being reconfigured. While

it is perhaps simpler to postpone servicing the application I/O request until the reconfiguration

operation for the page is completed (to ensure data consistence), this delay can be avoided. We

designed separate policies to handle read and write operations issued by the application. If the

application issued a read request, the indirector issues the read to the origin page location so it

provides the most up-to-date data. For a write request by the application, the request is issued

to the dest location and the reconfiguration for the page is discontinued. These policies help to

alleviate the overhead the reconfiguration causes to the user level applications by minimizing I/O

wait time for foreground I/O operations.

4.6 Other Design Issues

Disk spin-down policy. Researcher have proposed two classes of policies: dynamic and static [12,

15, 16]. In dynamic policies, the system dynamically varies the time the disk needs to stay idle

before being put on standby. In EXCES we chose to use a static policy and chose a fixed timeout for

spin-down. In the evaluation section, we experiment with various values for this timeout parameter.

Data consistency in EXCES. Data consistency is always an important issue whenever multiple

copies of the same information exist. In EXCES, data is replicated in the ECD. We need to ensure

that the system reads up-to-date versions of data after rebooting the machine as well as in case

of system crash or sudden power failure. We reserve the first portion of the ECD to maintain a

persistent copy of the indirection map.
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typedef struct {

unsigned int rank;
unsigned int tmp rank;
unsigned short last acc[H SIZE];
unsigned int disk lbn;

} page ranker t
(a) The page ranker structure

20 12 7 5

18 11 10 4

16 14 8 3

15 13 7 6

1 3 2 4

(b) movements needed

20 12 11 5

18 15 10 4

17 14 8 7

16 13 7 6

1 2 1 3

(c) after insertion

Figure 7: Page rank data structure and the Top-k matrix. Figure 7(b) shows the matrix before the insertion and indicates the
necessary movements and the resulting matrix is shown in Figure 7(c).

This persistent copy of the indirection map is updated periodically and gets invalidated if the

EXCES kernel module is unloaded cleanly. In case of a power failure or system crash, all entries

contained in the persistent indirection map are assumed to be dirty.

5 EXCES System Implementation

We implemented EXCES as a Linux kernel module that can be dynamically inserted and removed

without any changes to the kernel source. Since the block layer interface of the Linux kernel is very

stable, EXCES can run “out of the box” on the latest 2.6 series kernels. The current implementation

of EXCES utilizes native kernel data structures such as radix trees and red-black trees which are

very likely to be retained in the future kernel versions. In this section, we elaborate on key aspects

of the EXCES system implementation that are novel and those which were particularly challenging

to “get right”.

5.1 Maintaining the Top-k Ranked Pages

The EXCES page ranking mechanism (described in Section 4.1) considers both recency and fre-

quency of page accesses. Figure 7(a) shows the page ranker t structure that is used to encapsulate

the rank of a page. This structure allows us to efficiently capture the history of page rank values

updated due to accesses over time. disk lbn stores the starting on-disk logical block number of

the page and last acc array contains the timestamps of the last H SIZE accesses (default is 4).

Each time the last acc array is filled up, it is passed to the ranking decay function (Figure 3); the

resulting values are stored in tmp rank using a compact representation and the last acc array is

reset. Before overwriting the tmp rank, its previous value is decomposed and added to the historical

rank of the page contained in rank. The actual rank of a page at any time is given by the sum of

decomposed tmp rank and rank values.
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Figure 8: Alignment problem example

To be able to access the top-k ranked pages (whenever required by the reconfiguration planner),

we implemented the top-k matrix, a novel matrix data structure of dimensions
√

k×(
√

k+1), which

stores the top-k ranked pages. Since k can be large (as much as 108 for gigabyte-sized ECDs),

operations on the top-k matrix must be highly efficient. While regular sorted matrices are good

for lookups (O(log(
√

k)) using binary search in both columns and rows), insertions are expensive

at O(k) since all the lower (or upper) values must be shifted. To reduce the insertion cost, we use

an extra row to store an offset that indicates where the maximum value of the column is located;

all the elements of that column are also sorted according to that offset. (Please see Figure 7(c)

for an example.) By maintaining this extra information we retain O(log(
√

k)) lookups and can

also perform insertions in O(
√

k). This is because, in the worst case, we need to shift elements in

exactly one column and transfer its minimum to the next column where it becomes the maximum,

and so on, until we reach the last column. A detailed example of the worst-case insertion process

into the top-k matrix is presented in Figure 7.

Detecting if a page belongs in the top-k highest ranked pages is as easy as checking if its rank

is greater than the minimum rank in the topk matrix, in which case the page must be inserted, and

marked for inclusion in the next round of reconfiguration.

5.2 Indirector Implementation Issues

As mentioned earlier, in EXCES we chose to maintain metadata about data popularity and data

replication at the granularity of a page. While this optimization allows us to drastically cut down on

metadata memory requirement (by 8X for Linux file systems), it complicates the implementation

of the indirector component. Since I/Os may be issued at the block granularity, the indirector

component must carefully handle I/O requests whose sizes are not multiples of the page-size and/or

which are not page-aligned to the beginning of the target partition. In EXCES, we address this

issue via I/O request splitting and page-wise indirection.

Figure 8 shows an example of the alignment problem that the indirector must handle. Notice

that two pages on the disk mapped to the ECD. The first page on the disk that starts at block 0,

is mapped to the fifth page on the ECD that starts from block 40. Also, the third page in the disk
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(starting at block 16), is mapped to the fourth page of the ECD, starting at block 24 of the ECD.

The second page in the disk is not mapped to the ECD at all.

Consider an application I/O request as represented by the shaded region. This request covers

a part of the first, the entire second page, and a part of the third page on disk. The indirection

operation is complicated because the I/O request is not page-aligned. The indirector must indi-

vidually redirect each part of the request to their appropriate locations. The above can occur with

both read and write I/O requests.

In EXCES, to address I/O splitting, we create new requests using the Linux kernel block io

structure called bio, one per page. All attributes of the bio structure are automatically populated

based on lookups to the indirection map, including the sector, offset, and length within the page

that will be filled/emptied depending of the operation. After the splitting and issuing each “sub-

I/O”, the indirector waits for all sub-I/Os to complete before notifying the requester about the

completion of the original I/O operation.

There is a special case while handling write requests that are not already mapped to ECDand

that are not page-aligned. If EXCES buffers such writes in the ECD (as it does with other page-

aligned writes), there will be inconsistency since a portion of the page will hold invalid data. For

this special case, we let the request continue to disk.

5.3 Module Implementation and Consistency Handling

EXCES utilizes the design of the block layer inside the Linux kernel to enable its operation as a

dynamically loadable kernel module. Specifically, each instantiated block device registers a kernel

function called make request that is used to handle the requests to the device. EXCES is dy-

namically included in the I/O stack by substituting the make request function of the disk device

targeted for energy savings. This allows us to easily and directly modify any I/O requests before

they are forwarded to the disk.

While module insertion is simple enough, module removal/unload must bear the additional

responsibility of ensuring data consistency. Upon removal, EXCES must flush on-ECD dirty blocks

to their original positions on disk. In EXCES, the I/O operations required to flush dirty pages upon

module unload are handled using the reconfigurator through the ECD to Disk phase. In addition,

EXCES must address race conditions caused when an application issues an I/O request to a page
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that is being flushed to disk at that exact instant. To handle such races, EXCES stalls (via sleep)

the foreground I/O operation until the specific page(s) being flushed are committed to the disk.

Since we expect module unload to be a rare event and the probability that a request for a page at

the exact time it is being flushed to be low, the average response time for application I/O remains

virtually un-impacted.

6 Evaluation

In our evaluation of the EXCES system, we answer the following questions in sequence: (1) What

is an appropriate spin-down timeout for EXCES? (2) How much energy does EXCES save? (3)

What is the impact on application I/O performance when EXCES is used? and (4) What is the

overhead of the EXCES system in terms of memory and computation?

To assess the above, we conducted experiments on two laptops, shiriu and beer (Table 2),

both running Linux kernel 2.6.20. The experiments utilized the ECDs described in Table 1. The

hard drives on both laptops were running the Linux ext3 file system and the ECDs used ext2.

To quantify the system’s power dissipation we used the battery information provided by ACPI,

and took readings of the power level at 10 seconds intervals, the default ACPI update interval. The

display brightness was reduced to its minimum visible level in all experiments.

For comparison purposes, in each experiment we set up various configurations including a default

system with no optimizations, a system configured with the laptop-mode power saving solution [23],

a system configured with EXCES, and a system configured with both laptop-mode and EXCES.

Laptop-mode is a setting for the Linux kernel that forces much larger readaheads (default 4MB)

and holds off writes to the disk by buffering them in memory for a much longer time period. In all

experiments, EXCES was configured to use an ECD miss rate threshold of 1000 misses-per-minute

to trigger reconfiguration and a minimum duration of one minute between two reconfiguration

operations.3

We used the BLTK (Linux Battery Life Tool Kit) [4] as our primary benchmark for system eval-

uation. This benchmark focuses specifically on laptop-specific workloads, targetted for evaluating

battery life of laptop systems in realistic usage scenarios. Specifically, we use the BLTK Office and

the BLTK Developer benchmarks in our experiments. Additionally, we use the Postmark [14] file

3While we use these static values (based on preliminary experimentation) for simplicity, subsequent versions of
EXCES will be able to dynamically adapt these thresholds based on application workload.
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Name Model CPU RAM HD Specifications

shiriu Dell E1505 Intel Core 2 @ 1.83 GHz 1 GB Toshiba MK1234GSX (5400 RPM, 120 GB)
beer Dell 600m Intel Pentium M @ 1.6 GHz 512 MB Western Digital WD400VE (5400 RPM, 40 GB)

Table 2: Specifications of the machines used in the experiments.
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Figure 9: Effect of the disk spin-down timeout value on energy savings.

system benchmark, designed to simulate small file workloads, typical of an email server. While we

do not suggest the use of EXCES on the server-side (as yet), this benchmark allows us to evaluate

the impact of I/O intensive workloads on external caching systems.

6.1 Choosing the Disk Spin-down Timeout

While researchers have suggested the benefits of using adaptive disk spin-down timeouts [9, 12,

15], the current version of EXCES uses a static disk spin-down timeout value. We used two

benchmark workloads to determine the effect of the spin-down timeout on energy savings, using

the shiriu system. We compared the system when configured with EXCES, laptop mode [23],

and a combination of EXCES with laptop-mode. We used the ECD 2 configuration from Table 1

for this experiment. The BLTK Office benchmark, which automates the activities of opening and

editing OpenOffice.org documents, spreadsheets, and drawings, was our first workload. The second

workload used was the PostMark benchmark.

Figure 9 shows the results using timeout intervals of 5, 10, 15, 30 seconds and no timeout

(∞ seconds). We used hdparm to set the timeout intervals in the disk’s firmware, restricted to

a minimum value of 5 seconds. A general trend observed when using EXCES (with and without

laptop-mode) is that smaller timeout values allowed for greater energy savings, except for the

BLTK Office workload which reaches its optimum at 10 seconds. All subsequent experiments use

a 5 second disk spin-down timeout.
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Figure 10: Power consumption with different workloads.

6.2 Energy Savings

To evaluate energy savings, we measure the power consumption with six different system config-

urations: the system “as is” with no power saving solution (Base), system running Laptop mode,

EXCES using a USB and CF as ECD respectively, and EXCES with Laptop mode activated, using

a USB and CF as ECD respectively. These experiments were conducted on the shiriu system, using

configurations ECD 1 for USB and ECD 2 for CF (per Table 1).

We evaluated four different workloads: (i) an idle system, (ii) the BLTK Developer benchmark,

(iii) the BLTK Office benchmark, and (iv) the Postmark benchmark. Figure 10 shows that on

an idle system, all energy saving systems consume more power that the Base configuration. The

laptop-mode configuration uses additional power because of its aggressive prefetching mechanism,

which ends up waking the disk for unnecessary data fetch operations. A similar behavior is observed

when using EXCES in combination with laptop mode. When EXCES is used by itself, since the

disk is mostly spun-down anyway, any small disk energy savings is negated by the extra power

consumed due to the ECD device itself.

The BLTK Developer benchmark performs a moderate amount of I/O. Its behavior mimics

the operations of a developer who creates new files, edits files using the vi editor, and compiles a

source tree, all of these interspersed with appropriate “human like” idle periods. We notice that

moderate power savings can be obtained for all the power-optimized solutions. The configuration

with EXCES alone provides the most power savings (∼14% with CF and ∼8% with USB). The

configurations that use laptop mode deliver relatively lesser power savings; we attribute this to a

fraction of the prefetching operations turning out to be ineffective.

For the BLTK Office benchmark, we note that there is no substantial energy saving in any of

the configurations, and power consumption is somewhat increased when using a USB device as a
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Figure 11: Performance impact of EXCES with various workloads.

ECD. We believe that this is due to the behavior of the benchmark which opens large executables

from the OpenOffice suite, typically stored sequentially on the disk drive. These are subsequently

cached in main memory, resulting in very few I/O operations after the executables have been loaded,

reducing the opportunity for energy saving.

Finally, power consumption for the Postmark benchmark follows a similar trend to the BLTK

Office. However, in this case, we believe the reasoning is different. Postmark is an I/O intensive

workload, with a large fraction of sequential write operations. These sequentially written blocks

to disk get absorbed as random writes in the ECD, owing to the current implementation of write

buffering which does not attempt to sequentialize buffered writes. Random writes on flash-based

storage are the least efficient, both in performance and power consumption [2]. We believe that a

better implementation of write buffering in EXCES which improves the sequentiality of buffered

writes, can result in better power savings for a write intensive workload.

It is interesting to note that in almost all the cases using the USB as ECD makes the power

saving system to consume more energy than the base case. On the other hand, using the CF leads

to a better results for EXCES. Further, contrasting with earlier simulation-based studies which

predicted large energy savings, our findings point to a more moderate range of 2-14% for the cases

when EXCES was indeed able to reduce power consumption.

6.3 Performance Impact of External Caching

While ECDs offer better performance than disk drives for random reads, they performs worse for

other workloads. To evaluate performance, we focus on two metrics: (i) the average I/O (comple-

tion) time, and (ii) overall benchmark execution time. These provide complementary information

and allow us insight into I/O performance. The average I/O time was obtained by using the

Linux kernel tool blktrace [1]. The benchmark execution time was measured using the Linux time

command. Each benchmark was run several times and the results averaged.
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Pages/gigabyte Dirty-bit array Indirection map Phase table Top-k matrix Page ranker

218 · S S

25 S 13·S
22 S + 1

218 22 · D

Table 3: Size in megabytes for each EXCES data structure. S and D are the ECD and the disk sizes in GB respectively. The
Phase Table is a temporary data structure used only during reconfiguration.

Figure 11 shows the results of these experiments. In both the BLTK benchmarks, the average

I/O time increases substantially for the ECD based solutions, due to a large fraction of the I/O

workload being sequential, allowing the disk drive to perform better. However, the increase in

the overall benchmark execution time is negligible, due to substantial idle periods between I/O

operations. This indicates that the impact to user perceived performance is minimal, thereby

making the case for using external caching with these laptop-oriented workloads. On the other hand,

an interesting anomaly is observed for the write intensive server-oriented Postmark benchmark.

While the average I/O times with most of the ECD based solutions are lower, the total execution

times are higher. We believe that this counter-intuitive result is because of writes being reported

as completed by the ECD when they are written to the cache on the ECD but before they are

actually committed to the flash medium. This reporting mechanism gives the false impression

of fast individual write operations, when in reality the overall write I/O performance is severely

throttled as the ECD commits these writes to the persistent flash with high latency.

6.4 EXCES Resource Overhead

In EXCES, we paid special attention to how we used the scarce kernel-space memory. The memory

usage for each of the EXCES’s data structures is presented in the Table 3. The calculated sizes

are for the worst case, i.e., when the ECD is completely filled of data. These formulas give us

permanent memory usage of 0.1% and a temporary usage of 0.3% (during reconfiguration) relative

to the size the ECD. We believe these values are well-within acceptable limits.

To measure the CPU overhead due to EXCES, we used the following microbenchmark on the

beer system. The microbenchmark issues a grep operation for a non-existent string on the EXCES

source directory 100 times, that created a total of 21264 I/O operations. We divide the CPU

overhead into two parts: the processing of the request before it is issued to the storage device (either

ECD or disk), and the processing after the completion of the request. On an average, for each I/O

operation, the corresponding numbers were 52 µs and 0.58 µs. Based on these, EXCES adds an

average latency of 0.05 ms to the processing of each I/O request, which is relatively small compared

to disk latency (≥ 1 ms) and ECD latency (≥ 0.5ms) [10]. While our current implementation of

19



EXCES optimizes several operations, we believe that there is room for further improving this

overhead time. Finally, we measured the reconfiguration overhead for the moderately I/O intensive

BLTK developer benchmark. The average per-page reconfiguration time was measured to be 722

µs, an acceptable value for an infrequent operation.

7 Related Work

We classify research related to EXCES into three categories: energy-saving external caching tech-

niques, energy-saving in-memory caching techniques, and other applications of external caching.

External caching for energy saving. Early work on external caching was pioneered by Marsh,

Douglis, and Krishnan [16], who proposed incorporating an ECD as part of the memory stack be-

tween the disk and memory. They proposed that all I/O traffic to the disk drive be cached/buffered

in the ECD before continuing on its normal path. This technique, while having the potential to

reduce the number of disk accesses, does not effectively utilize the ECD space by choosing care-

fully what to cache/buffer. Much more recently, Chen et. al [7] also propose to use the ECD to

buffer writes, as well as prefetch and cache popular data. Their solution divides the ECD into

zones dedicated for each optimization, as opposed to the unified buffer/cache technique of EXCES.

Additionally, since they propose using read-ahead values at the VFS layer to anticipate future

accesses, their solution does not have a clear presence in the I/O stack, with both block- and

file- level concerns. Similarly, Bisson and Brandt proposed NVCache, an external caching system

for power savings [3]. While the design of EXCES has some similarities to both NVCache and

SmartSaver, EXCES differs in its implementation-oriented techniques to efficiently ensure data

consistency under all conditions, its use of a novel page-rank algorithm tailored for increasing disk

inactivity periods, and continuous and timely reconfiguration capability. More importantly, while

all of the above studies evaluate their techniques on simulated models of disk operation and power

consumption, we evaluate an actual implementation of EXCES with real-world benchmarks that

realistically demonstrate the extent of power-savings as well as impact to application performance.

In-memory caching for energy saving. Weissel et. al [20] and Papathanasiou et. al

[25] propose to use cooperation/hints between the applications and the operating system. While

Weissel et al. propose hints at the system call API for read/write operations, Papathanasiou

propose using high-level hints about application I/O semantics such as sequentiality/randomness
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of access inside the operating system. Researchers have also looked at adaptive disk spin-down

policies to complement in-memory caching techniques [9, 12, 15]. We believe that all of the above

can complement EXCES to further improve energy savings. Specifically, in this study, we compared

EXCES against the open-source Laptop-mode tool [23], and demonstrate that the Laptop-mode

techniques complement EXCES well for most workloads to improve energy savings.

Other applications of external caching. External caching has been used to improve I/O perfor-

mance and reliability. Researchers have long argued for utilizing battery-backed caching (providing

similar functionality as an ECD) for improving both reliability and performance [19]. Wang et

al. [24] suggest using a Disk-ECD hybrid file system for improving application I/O performance

by partitioning file system data into two portions, one stored on disk and the other on an ECD.

More recently, the ReadyBoost [17] feature in the Windows Vista operating system utilizes an ECD

if available to cache data. Since its primary objective is performance improvement, ReadyBoost

directs small random read requests to the ECD and all other operations to the disk drive.

8 Conclusions and Future Work

We presented EXCES, an external caching system that reduces system power consumption by

prefetching, caching, and buffering disk data on a less power consuming, persistent, external caching

device. While external caching systems have been proposed in the past, EXCES is the first imple-

mentation and evaluation of such a system. We conducted a systematic evaluation of the EXCES

system to determine overall energy savings and the impact on application performance. While past

simulation-based studies have predicted that external caching systems can reduce disk power con-

sumption by as much as 90%, we used EXCES to investigate the overall system energy savings that

also accounts for the additional power expended due to the ECD. EXCES delivered overall system

energy savings in the modest range of 2-14% across the BLTK and Postmark benchmarks. Further,

we demonstrated that external caching systems can substantially impact application performance,

especially for a write-intensive workload. In summary, we believe that while external caching sys-

tems offer a new direction for building energy saving storage systems, substantial progress in ECD

technology must occur before a clear case for external caching systems can be made.

Future work on EXCES will primarily address the power consumption and performance of the

write buffering optimization in EXCES. We will investigate intelligent techniques for write buffering
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on the ECD, which will allow for more sequential write operations.
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