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Database storage management at data centers is a manual, time-consuming, and error-prone task.

Such management involves regular movement of database objects across storage nodes in an at-

tempt to balance the I/O bandwidth utilization across disk drives. Achieving such balance is critical

for avoiding I/O bottlenecks and thereby maximizing the utilization of the storage system. However,

manual management of the aforesaid task, apart from increasing administrative costs, encumbers

the greater risks of untimely and erroneous operations. We address the preceding concerns with

STORM, an automated approach that combines low-overhead information gathering of database

access and storage usage patterns with efficient analysis to generate accurate and timely hints for

the administrator regarding data movement operations. STORM’s primary objective is minimizing

the volume of data movement required (to minimize potential down-time or reduction in perfor-

mance) during the reconfiguration operation, with the secondary constraints of space and balanced

I/O-bandwidth-utilization across the storage devices. We analyze and evaluate STORM theoreti-

cally, using a simulation framework, as well as experimentally. We show that the dynamic data

layout reconfiguration problem is NP-hard and we present a heuristic that provides an approxi-

mate solution in O(Nlog( N
M ) + ( N

M )2) time, where M is the number of storage devices and N is the

total number of database objects residing in the storage devices. A simulation study shows that the

heuristic converges to an acceptable solution that is successful in balancing storage utilization with

an accuracy that lies within 7% of the ideal solution. Finally, an experimental study demonstrates

that the STORM approach can improve the overall performance of the TPC-C benchmark by as

much as 22%, by reconfiguring an initial random, but evenly distributed, placement of database

objects.
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1. INTRODUCTION

Data center services for medium-to-large enterprises typically host several
petabytes of data on disk drives. Most of this storage houses data residing in
tens to hundreds of databases. This data landscape is both growing as well as
dynamic; new data-centric applications are constantly added at data centers,
while regulatory requirements such as SOX [Karl Nagel Corporation 2006]
prevent old and unused data from being deleted. Further, the data access char-
acteristics of these applications change constantly. Ensuring peak application
throughput at data centers is incumbent upon addressing this dynamic data
management problem in a comprehensive fashion.

IT managers have various storage options, ranging from low-cost SATA, and
multidisk RAIDs to high-end custom storage solutions. To accommodate the
rapid growth in the number of storage devices across data centers and their
associated management overhead,1 data center managers are more and more
inclined toward isolating storage management at data centers using storage
area networks (SANs [IBM 2006]): a network whose primary purpose is the
transfer of data between computer systems and storage elements. Applica-
tion or database servers connect to storage devices through SAN switches or
routers [McDATA Corporation 2006].

Although SANs allow significant isolation of storage management from
server management, the storage management problem is still complex. Due to
the dynamic nature of modern enterprises, the interaction and use of applica-
tions, and even the data associated with a single application, changes over time.
Dynamic changes in the set of “popular” data results in a skewed utilization of
network storage devices, both in terms of storage space and I/O bandwidth. In
statically allocated storage systems, such skewed storage utilization eventually
degrades the performance of applications, creating the necessity to buy more
storage (when existing storage is not fully utilized), thereby resulting in overall
cost increment.

The disadvantages of an static storage allocation have been long recognized
by data center administrators. They regularly spend copious amounts of time
moving data between storage devices to avoid such skewness. However, optimal
data movement is a complex problem that entails obtaining accurate knowledge
of data popularity at the right granularity and choosing from an exponential
number of possible target solutions, while ensuring that the volume of data

1Recent estimates put expenditure on storage management at approximately one person per 1–10

TB and these estimates a state that storage cost is dominated by storage management cost rather

than hardware cost over the long term [Allen 2001; Lamb 2001].
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moved is minimal. As a result, manual decision making in large data centers
containing several terabytes of data and hundreds of storage devices (if not
thousands) is time consuming, inefficient, and at best results in suboptimal de-
cisions. Off-the-shelf relational databases contribute to a large portion of these
terabytes of data, and the manual data management tasks of system admin-
istrators mostly involve the remapping of database elements (tables, indexes,
logs, etc.) to storage devices.

In this article, we present the architecture and design of Storm, a system
that performs timely and automatic identification of skewness in database stor-
age utilization in a data center environment and that accordingly proposes a
near that optimal data movement strategy. Moving a large amount of data be-
tween storage devices requires considerable storage bandwidth and time, and
although such movement is typically done in periods of low activity such as
night-time, it nevertheless runs the risk of affecting the performance of appli-
cations. Moreover, such data movement operations are so critical that they are
seldom done in unsupervised mode; a longer time implies greater administrator
cost. A longer time requirement for the data movement also prompts data cen-
ter managers to postpone such activities and to live with skewed usage for as
long as possible. It is therefore critical to minimize the overall data movement
in any reconfiguration operation. Storm addresses the problem of reconfigura-
tion with the primary objective of minimizing total data movement, with the
secondary objective of balancing the I/O-bandwidth utilization of the storage
devices in a SAN system, given storage-device-capacity constraints.

The specific contributions of this article are as follows.

1. We present the architecture, design, and implementation of Storm, an au-
tomated tool that aids system administrators in the database management
task of optimizing storage utilization.

2. We mathematically model the aforementioned problem with the objective of
minimizing the total data movement, given storage-device constraints, and
show that it is NP-hard;

3. We propose a two stage greedy heuristic algorithm that provides an accept-
able approximate solution. The heuristic tries to move objects of smaller
size before choosing to move larger objects (i.e., greedy on size) from stor-
age nodes with higher bandwidth utilizations to storage nodes with lower
bandwidth utilization (i.e., greedy on I/O bandwidth utilization).

4. We conduct a simulation study to demonstrate the efficiency and accuracy
of the heuristic algorithm across a wide range of database and storage
configurations.

5. We conduct an experimental study using the TPC-C benchmark to evaluate
the impact of Storm on the overall performance of the database system.

The rest of the article is organized as follows. We examine related research
in Section 2. We then present a practical system architecture that incorporates
Storm within typical NAS-based database storage environments in Section 3.
In Section 4, we theoretically model the problem of dynamic database stor-
age management and present a heuristic solution to this problem in Section 5.

ACM Transactions on Storage, Vol. 3, No. 4, Article 16, Publication date: February 2008.



16:4 • K. Dutta et al.

Section 6 presents techniques used in Storm for monitoring database and stor-
age usage patterns. Section 7 presents an evaluation of Storm using a simula-
tion study, comparing it against a baseline optimal solution. In Section 8, using
the TPC-C benchmark, we evaluate an implementation of Storm in its ability to
improve both the I/O-bandwidth utilization of the storage system and the over-
all performance of the database system. We make final remarks in Section 9.

2. RELATED WORK

In the research literature, there has been substantial work on automated stor-
age management—too many to list comprehensively here—several of which do
suggest databases as a target application. To follow, we list work in the areas of
database-aware storage, parallel and distributed databases, and application-
independent techniques for storage management, including online data recon-
figuration and load balancing.

Sivathanu et al. [2005] propose building database-aware semantically-smart
storage systems to improve fault tolerance, availability, and reliability. To ac-
complish this goal, the authors suggest minimally modifying database imple-
mentations to export access statistics. Our work shares the general philosophy
of building database-aware storage systems, with the difference that we ad-
dress a different problem of automatic data movement for improving storage
utilization. Further, our techniques derive richer intelligence than the afore-
mentioned work, using explicit querying and passive monitoring that do not
require any modifications to existing database systems.

Research on data placement in parallel database systems [Hua and Lee 1990;
Mehta and DeWitt 1997; Furtado 2004] may seem related at first glance. How-
ever, data placement in a parallel database system is designed with the moti-
vation of achieving maximum query parallelism for a single database system.
The goal in our work is to balance the utilization of shared storage devices in a
SAN across multiple database systems as typical in a data center setting. We
accomplish this by automatically identifying skewness in storage utilization as
well as database object popularity, and by utilizing this information to suggest
optimal data movement.

Distributed data storage systems such as Mariposa [Stonebraker et al. 1994]
have developed ways to place data that is distributed in geographical locations
based on access patterns and other cost factors, such as network cost. The basic
objectives of Mariposa and our system are different in that Mariposa works
on a single distributed database system, while our system works on multiple
centralized database systems that store data in a shared SAN environment.
Further, Mariposa optimizes for a WAN setting, where network bandwidth is
scarce and data are allocated based on optimal network usage. In our system,
database servers are connected to SAN devices over a high-speed network.
In such a scenario we can assume all storage-devices are equally accessible
by database servers. We address the problem of balancing the storage-device
utilization which is more applicable in a data center environment.

Several researchers have addressed orthogonal problems related to online
reconfiguration of data on disk drives. Most of the proposed solutions in this
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space can be used in conjunction with Storm, or during the reconfiguration op-
eration following Storm hints. In Petal [Lee and Thekkath 1996], the idea of
logically separating virtual disk addresses to physical locations was proposed
to address transparency in scaling capacity and performance as well as for
dynamic load-balancing. Zhang et al. [2007] also propose scaling round-robin
striped volumes efficiently with reduced impact on foreground workload. Wu
and Burns [2005] address the problem of load-balancing data access on storage
servers using hashing-based randomized mapping of the source domain to dy-
namically reconfigurable target domains that map directly to storage servers.
Khuller et al. [2003] provide load balance across storage devices by migrating
data at the block level. In comparison to these efforts, Storm proposes data
movement at the application granularity of data objects, whereby future uti-
lization can be estimated with greater accuracy and storage administrators can
enjoy a greater control on the location of such database objects.

Chenyang et al. address reconfiguration-related issues and advocate a
control-theoretic approach for achieving a statistical bound on the impact of
reconfiguration on foreground I/Os. Lu et al. [2002]; Feng and Zhang [2005]
address consistency issues during reconfiguration. Qiao et al. [2006] address
the problem of delivering QoS for foreground I/Os during reconfiguration by
proposing an optimal schedule for data movement between disk drives. Storm
implicitly reduces the impact on foreground workload by minimizing the total
data movement during reconfiguration as a primary objective.

Among industry efforts, storage management vendors such as Veritas [2005],
Computer Associates [2005], and BMC Software [2005] provide application-
independent software for storage management. These solutions typically work
at the block level and involve moving blocks of data from one storage device
to another to achieve balanced utilization. However, such movement is carried
out without semantic knowledge of block content or utilization. Further, such
movement may lead to a single database table being arbitrarily split across
several drives, severely complicating the task of a database administrator. Our
research focuses on data movement at its application-level granularity such as
database tables or indices, thereby also utilizing the semantic knowledge of the
data being moved. With Storm, system administrators have full control on the
location of each database object in the storage system.

Oracle’s automatic storage manager (ASM) solution [Transaction Processing
Performance Council (TPC) 2006] proposes a different approach to database
storage management, by striping each file within a single database across all
the available storage using a 1MB stripe size. The claim with ASM is that it
eliminates the need to move data dynamically because the striped layout of each
file across all drives implicitly balances I/O load. However, this solution works
on a per-DB level, requiring a dedicated “disk group” to be allocated to each
database. Our solution works in an environment where sharing storage across
multiple databases is critical, thereby ensuring better utilization of storage
resources.

Lastly, load-balancing server resource usage has been an active area of re-
search for over a decade, since early work on web servers [Kwan et al. 1995]. In
the storage domain, disk striping and replication [Patterson et al. 1988; Ganger
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et al. 1993] to distribute disk accesses across a set of drives has been popular
for quite some time. Traditional load balancers work in dynamic fashion, oper-
ating at a per-request level. Further, they have a single objective, namely that
of balancing the request load of a set of servers/disk drives. We address data
movement for balancing data-access load with the dual objectives of minimiz-
ing data movement and nullifying skewness in storage utilization, all while
meeting the projected capacity requirement based on future growth of data.
Further, such data movement is performed periodically with a much coarser
time interval, rather than in a continuous fashion.

3. SYSTEM DESIGN AND ARCHITECTURE

We consider a data center environment with a tiered architecture for providing
services, comprised of application servers, database servers, and storage nodes.
At the head are the application servers, which service user requests. Application
servers use the database servers to query the databases, which in turn access
data from the tables stored in the SAN device pool. Further, we assume that
the data center comprises several database server clusters; these clusters share
the storage space provided by the SAN device pool.

Our work focuses on the interaction between database servers and SAN
devices. Database servers allocate storage space in the SAN devices to store
database objects such as tables, indexes, logs, etc. The access patterns for in-
dividual objects managed by the database servers are application dependent
and can vary widely over time. Consequently, one of the key problems in man-
aging SAN devices in a database-centric system is that of moving data from
one storage device to another to accommodate the future growth of objects and
to balance the utilization of individual devices in the SAN. This primarily in-
cludes reconfiguring the storage allocation and data placement on a per-object
basis, based on application access patterns. Successful reconfiguration leads to
more balanced access to the SAN device pool by the database servers, thereby
preventing bottlenecks at individual storage nodes.

The storage management tasks required for such reconfiguration include in-
formation gathering, analysis, decision making, and execution, conforming to
the monitor-analyze-plan-execute loop proposed in the IBM’s Autonomic Com-
puting intiative [Kephart and Chess 2003]. Currently, each of these tasks are
performed manually by system administrators based on human intuition and
experience. Storm performs data gathering, analysis, and decision making au-
tomatically, based on which data center managers can choose to reconfigure
the layout of objects to improve the storage utilization. It is important to point
out that the reconfiguration process could be automated as well, but doing so
would require additional mechanisms to ensure data and operational consis-
tency during the reconfiguration operation. Another psychological hurdle is that
administrators are typically reluctant to accept automatic and unsupervised
data reconfiguration. Hence, Storm merely suggests favorable data movement
operations and leaves the decisions of “if” and “when” to the administrator.

The key component of our system is the TableMapper, which has access
to the database servers as well as to the SAN device pool. Figure 1 depicts
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Fig. 1. Storm in a SAN configuration connecting the database servers and SAN devices.

the TableMapper in a SAN configuration that connects the DB server clus-
ters to storage devices in the SAN. In NAS/SAN/object-based storage systems
[Mesnier et al. 2003] and even in specialized large-scale systems such as the
IBM Storage Tank [Menon et al. 2003], the TableMapper could be colocated with
the metadata server so that partial information can be obtained locally with
minimum overhead. The TableMapper gathers object access and storage usage
data (elaborated in Section 6) using the database monitor (DBMON) and stor-
age monitor (STMON) modules, analyzes the data, and makes reconfiguration
decisions within its decision maker module. The STMON component gathers
data related to storage devices such as storage capacity and I/O bandwidth.
These items of storage data are static in nature and can be adjusted manu-
ally when a new storage is added, or existing storage is taken out from SAN.
The storage utilization, that is, which database object is using which storage
node and how much space it is consuming, is also gathered by the STMON
from database systems. The DBMON component gathers usage information of
key database objects (tables and indices). The data gathering mechanism of
both the DBMON and STMON components are described in detail in Section 6.
Based on this data, the decision maker analyzes and makes reconfiguration
decisions. This analysis and the decision making process are elaborated in
Sections 4 and 5. In case a reconfiguration is deemed appropriate by the deci-
sion maker, it notifies the system administrator, who may choose to act upon
the recommendation.

In realizing the TableMapper we had to consider two key factors. First, the
TableMapper must be nonintrusive in collecting object and storage usage infor-
mation from the database servers. Since this operation is performed periodically
and infrequently, it can be performed during system idle-time. The second chal-
lenge is to avoid a bottleneck at the TableMapper itself. We argue that since
the TableMapper only manages metadata and the actual dataflow bypasses
the TableMapper, it is unlikely to become a bottleneck. Further, following our
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architecture, we envision no significant hurdles to using multiple DBMONs to
collect data from a number of database servers and storage nodes.

The decision maker module of the TableMapper is its most complex compo-
nent. Based on gathered database-object and storage usage data, the decision
maker proposes a reconfiguration of object layout on storage devices. In doing so,
it must balance multiple optimization objectives. First, the new configuration
should be achievable with minimal data movement. Reducing the total amount
of data movement will contribute to realizing the new configuration in less time
and thus at lower cost. This will result in reducing the amount of network traf-
fic, and also reducing the volume of data which may be potentially rendered
unavailable during the move. These factors would also encourage data cen-
ter IT managers to perform more frequent reconfiguration, leading to reduced
skewness in storage usage over time. Second, it must ensure that none of the
storage devices is overly utilized in terms of I/O bandwidth. This is addressed
by posing a reconfiguration constraint so that the percentage of I/O-bandwidth
utilization for each device is below the average percentage I/O-bandwidth uti-
lization across all storage devices plus a small configurable threshold. Finally,
the new configuration should support future table growth until the storage
managers decide for another round of reconfiguration.

In the next section, we formally describe the dynamic storage reconfiguration
decision making problem, followed by a heuristic solution (in Section 5) for such
decisions that will help data center storage managers.

4. MODEL

We describe the configuration decision-making problem formally as “Given a set
of database objects J with their present growth rate g j , usage characteristic r j

and size sj , given a set of network storage I with allowable I/O-bandwidth U m
i

and capacity Bi specifications, and given the present assignment cij of database
objects to storage nodes, determine a new assignment xij of objects to storage
nodes that: (i) will result in minimal physical movement of data across storage
devices to realize the new assignment; (ii) will balance the I/O-bandwidth uti-
lization of storage nodes; and (iii) that will meet the future size growth of objects
for certain time T.”

Table I describes the parameters of the proposed model. Based on these we
formulate the dynamic data layout reconfiguration problem P, as follows.

Problem P.

Z(P) = min
∑

i
∑

j (cij − xij)cijsj (1)

subject to
∑

j

(sj + T g j )xij ≤ Bi ∀i (2)

Ū = 100

∑
j
∑

i cijr j∑
i U m

i
(3)
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Table I. Model Parameters

Parameter Description

i Index for set of physical storage devices (I )

j Index for set of database objects, tables and indices (J )

cij Equals 1, if j is currently located in storage i
0, otherwise

sj Current size of object j in bytes

g j Current growth rate of object j in bytes/days

Um
i Maximum I/O bandwidth utilization of the storage in bytes/sec

Bi Storage capacity in bytes for storage i
r j The average bytes/sec retrieved from object j

j to serve database requests related to object j
Uth Threshold in percentage that can be allowed for a

storage to be over-utilized than the average utilization

T Validity duration of new object location in days

Ū Average percent utilization of all storages

xij Equals 1, if the new allocation of object j is to storage i
0, otherwise

100

∑
j xijr j

U m
i

≤ Ū + Uth ∀i (4)

∑

i

xij =
∑

i

cij ∀ j (5)

xij ∈ {0, 1} ∀i, j

cij ∈ {0, 1} ∀i, j ,

where Z(P) is the optimal value of data movement.
The objective function (1) minimizes the total data movement across storage

devices. Constraint (2) ensures that allocated objects have the flexibility to
accomodate projected future growth without relocating it to another storage
device in the future (for T days). Eq. (3) computes the average percentage of
utilization across all storage devices. Constraint (2) ensures that the utilization
of each storage node is below the average utilization with a leeway threshold of
Uth. Constraint (5) ensures that each and every object is assigned to a storage
node under the new allocation scheme.

In the current formulation of the problem, we try to balance the I/O band-
width utilization across storage nodes within the available storage limitation of
each node. However, this may lead to unbalanced utilization of storage spaces
across various storage nodes. This may easily be addressed by another set of
constraints very similar to Constraints 4 for storage sizes. However, to keep the
focus of the paper and discussion simple, we do not address this issue in this
paper.

THEOREM 1. The problem P is NP-hard.

PROOF. We show that problem P is NP-hard by showing that a special
case of the problem reduces to the multidemand constraint, multidimensional
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knapsack problem (MDMKP) [Chu and Beasley 1998; Cappanera and Trubian
2005], which is known to be NP-hard.

The MDMKP problem can be stated in math-programming form as

max
∑

j=1,... ,n

pj wj (6)

subject to

∑

j=1,... ,n

aijw j ≤ bi, ∀i = 1, . . . , ∀ j = 1, . . . , n (7)

∑

j=1,... ,n

aijw j ≥ bi, ∀i = m + 1, . . . , m + q, ∀ j = 1, . . . , n (8)

wj ∈ 0, 1, (9)

where pj , aij, and bi are some positive real numbers.
Let us assume, yij = xij − cij, then the problem P can be written as that.

max
∑

i

∑

j

yijcijsj

subject to
∑

j

a1
j yij ≤ b1

i ∀i,

where a1
j = sj + T g j and b1

i = Bi − ∑
j sj T g j and

∑

j

a2
j yij ≤ b2

i ∀i,

where a2
j = r j and b2

j = (Ū + Uth)U m
i /100 + ∑

j cijr j and

yij ≤ 0, yij ≥ 0 ∀i, j .

The preceding form of the problem P clearly maps to the MDMKP. Thus we can
say that the problem can be reduced to an MDMKP in polynomial time. So the
problem P is also NP-hard.

Note that the previous problem P is an integer programming (IP) problem.
Typically, IP for large-size problems (e.g., thousands of database objects and
hundreds of storage devices in a data center) are hard to solve using standard
solvers like CPLEX [Ilog 2006] due to computational complexity and the re-
sources required. Further, the NP-hardness of the problem P makes it harder
to obtain exact solutions. In the next section, we develop a simple heuristic al-
gorithm that provides an acceptable approximate solution to the problem with
an acceptable time complexity. Moreover, unlike CPLEX and the model-based
approach where we cannot get a solution when the problem is infeasible, our
heuristic algorithm will provide a solution that will balance the utilization of
I/O bandwidth across storage nodes while also meeting the capacity constraint.
In Section 7, we evaluate the accuracy of our heuristic.
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5. A HEURISTIC ALGORITHM

In this section, we present a heuristic algorithm that provides an approximate
solution to the problem P with an acceptable time complexity. Given the current
storage configuration (i.e., assignment of database objects to individual storage
nodes), the heuristic aims at finding a new storage configuration that is better
suited to serve the current request load.

The psuedocode for the heuristic algorithm is shown in Table II. The al-
gorithm takes as input the current object assignment to storage nodes cij, the
current bandwidth utilization of each storage node Ui, and the current I/O band-
width consumed due to each object ri. The algorithm produces as output a new
assignment of objects to storage nodes, namely (xij). Although this algorithm
requires an existing assignment of objects to storage nodes, bootstrapping the
system can still be performed by starting with a random assignment of objects
to storage nodes.

Greedy heuristics are known to give a good heuristic solution for various
kinds of knapsack problems [Kan et al. 1993]. Also, a greedy heuristic allows
us to develop a simple algorithm that can be easily adapted by data center
managers. We develop a two stage greedy heuristic algorithm. In the first stage,
the algorithm is greedy towards smaller size of objects, in the second stage
the algorithm is greedy towards I/O bandwidth utilization. Following this, in
our algorithm, we try to move the smaller objects across storage nodes first to
achieve the objective goal, before choosing to move the larger ones, that is, ones
greedy on size. In moving the objects we first try to assign objects with higher
bandwidth utilization r j to storage nodes that have lower overall percentage
bandwidth utilization Ui

U m
i

, namely those, greedy on I/O-bandwidth utilization.

To begin, the algorithm chooses a set S of storage nodes whose bandwidth
utilizations are above the threshold set in Eq. (4), or with storage sizes that
do not allow future growth of the database objects that they house (line 1 of
Table II). It then creates a list of objects currently residing in the node set S
such that removing these objects from S will decrease the utilization of each
node in S to an acceptable level. Further, in choosing the objects to place in L,
the algorithm ensures that the minimum amount of data is moved from the set
S of nodes. The creation of L occurs in lines 8 through 17 of the psuedocode. Ad-
ditionally, for each storage i ∈ I , the Oi keeps track of the objects have already
been considered for moving into another storage from storage i. This tracking
eliminates the reconsideration of the same object, and chooses other objects if
the attempt to move a smaller object did not succeed in the previous iteration.

In the next phase (lines 18 through 45 of the table), the algorithm places
each object in list L in a storage node such that the variance in bandwidth
utilization is reduced, while considering node capacity with object size and
growth requirements as specified in Eq. (2). To do so, it maintains the objects in
L sorted by their bandwidth utilizations, choosing first the object n with highest
utilization (line 19). It then creates a target set P of nodes that can house object
n, given the node-utilization-threshold constraint according to Eq. (4) (line 20).
Lines 21 through 39 address the case when P is an empty set (described to
follow). Otherwise, a node with least percentage I/O-bandwidth utilization in
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Table II. Dynamic Data Movement Heuristic for Load-Balancing Storage Node Accesses

Input: Storage node set (I ) and database object set (J ),

Current configurations (cij, Ui , sj , and r j )

Output: The new assignment of objects to storage nodes (xij)

Constants: MAX NUMBER

Begin Algorithm:

1: Let S ← { i | i ∈ I and 100 Ui
Um

i
> Ū + Uth

or
∑

j∈J xij(sj + T g j ) > Bi}
2: Let Oi ← empty, ∀i ∈ I
3: Let prevDivergence ← MAX NUMBER

4: Let Ū ← 100

∑
j
∑

i cijr j
∑

i Um
i

5: Let current Diver gence = computeDiver gence(cij)

6: Let xij ← cij ∀ j ∈ J, i ∈ I
7: While (S �= empty and prevDivergence �= currentDivergence) {
8: List L ← empty, yij ← xij, ∀i ∈ I, ∀ j ∈ J
9: ∀i ∈ S {
10: While (100 Ui

Um
i

> Ū + Uth or
∑

j∈J xij(sj + T g j ) > Bi) {
11: Choose j ∈ J such that xij = 1, sj /∈ Oi , and sj ≤ sa,

∀ a ∈ J such that xia = 1 and a /∈ Oi
12: L ← L + { j }
13: xij ← 0

14: Oi ← Oi + {n}
15: Ui ← Ui − r j
16: }
17: }
18: While (L �= empt y) {
19: Choose n ∈ L such that rn ≥ ra, ∀ a ∈ L
20: Let P ← { k | ∑ j (sj + T g j )xkj + sn + T gn ≤ Bk ,

100 Uk+rn
Um

k
≤ (Ū + Uth)}

21: If (P is empty) {
22: Choose k such that Uk+rn

Um
k

≤ Ul +rn
Um

l
, ∀ l ∈ J and n /∈ Ok

23: If ( k = null ) {
24: L ← L − {n}
25: xin ← yin ∀i ∈ I
26: goto 18

27: }
28: If (ckn = 1) {
29: Ok ← Ok + {n}
30: Choose o ∈ I such that xko = 1, o /∈ Ok , and so ≤ sa,

∀ a ∈ I such that xka = 1 and a /∈ Ok
31: If ( o �= null ) {
32: L ← L − {n} + {o}
33: xkn ← 1

34: xko ← 0

35: Uk ← Uk + rn − ro
36: }
37: goto 18

38: }
39: }

(Continues)
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Table II. Dynamic Data Movement Heuristic for Load-Balancing Storage Node

Accesses (Continued)

40: Else { Choose k ∈ P such that Uk
Um

k
≤ Ua

Um
a

, ∀ a ∈ P }
41: L ← L − {n}
42: xkn ← 1

43: Uk ← Uk + rn
44: Ok ← Ok + {n}
45: }
46: S ← { i | i ∈ I and 100 Ui

Um
i

> Ū + Uth

or
∑

j∈J xij(sj + T g j ) > Bi}
47: prevDivergence ← currentDivergence
48: currentDivergence ← computeDivergence(xij)

49: }
End Algorithm

P is chosen to house object n (line 40) and requisite bookkeeping is performed
(lines 41 through 44). After all elements in L have been placed, S and the
divergence (explained later) of the I/O-bandwidth utilization of storage nodes
are recomputed. If S is found to be nonempty and the divergence of bandwidth
utilization is different than in the previous iteration, this process is repeated.
Otherwise the algorithm terminates with the new assignment given by xij.

To handle the case when P is empty, we choose a storage node k such that:
(i) k can accomodate object n, given the size constraint; and (ii) placing object n
in storage node k causes the least increase in percentage bandwidth utilization
across all the storage nodes where the object n was not considered before for
storage node k (line 22). If no such storage node k is found, we leave the object
n where it was initially assigned at the beginning of the iteration and go back
to the beginning of the while-loop to start iterating for the other objects in L.
If node k currently houses object n (ckn = 1), the algorithm removes n from list
L and chooses a different object o, (which has the least size of the remaining
objects in k) to place in L, and performs requisite bookkeeping (lines 28 through
38). To avoid reconsideration of n in the future, it puts the object n into the list
Ok of storage node k.

Computing divergence. The algorithm presented in Figure 2 computes the
total divergence of I/O-bandwidth utilization across all storage nodes for which
the percentage I/O-bandwidth utilization exceeds the average percentage uti-
lization by more than the utilization threshold Uth. We use this value to observe
how the overutilization of storage bandwidth decreases in each iteration of the
algorithm.

A key feature of the proposed algorithm is that it obtains a solution even
in the case where it is infeasible to achieve an allocation scheme based on the
model. In case the algorithm does not find a feasible solution wherein the per-
centage of I/O-bandwidth utilization of all storage nodes is below that threshold
value, the algorithm terminates when the divergences in storage utilization in
two consecutive iterations remain unchanged. Thereby, in cases when the per-
centage utilization of I/O bandwidth for each storage node cannot be reduced
to satisfy the utilization bound of Eq. (4) and to meet the capacity constraint of
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Fig. 2. Computing the divergence between successive solutions of the heuristic.

Eq. (2), the heuristic still provides a solution that reduces the overutilization
of I/O bandwidth (i.e., divergence) across the storage nodes.

Heuristic complexity. Without exploring every detail of the algorithm, we
provide only a synopsis of the complexity calculation here, focusing on the dom-
inant computations in the algorithm. The outer loop (line 7) is repeated at most
C times, a positive integer value that depends on the convergence rate of the
algorithm. We demonstrate in Section 7 that typical values of C range within 5
to 6 for a few thousands of objects and about a hundred storage nodes. The outer
loop at line 9 will be executed in O(|I |) time. The loop at line 10 is executed
on average |J |

|I | times (average number of objects per storage). Line 11 can be

executed in O(log( |J |
|I | )). Thus the average order of complexity for the loop at line

10 for each iteration of the loop at line 7 is O(|I | |J |
|I | log( |J |

|I | )). The inner loop (line

18) is repeated on average |J |
|I | times. Further, for each iteration of the inner loop

(line 18), line 19 has the average time complexity of O( J
I ). Line 20 has the com-

plexity of O(log(|I |)). One of line 22 or line 40 is executed in each iteration of the
inner loop (line 18), both of which have complexity of O(|I |). Line 30 is executed
in the small percentage of cases where ckn = 1. Let us assume that it is executed
for a δ-fraction of the total execution of the outer loop (line 18). Line 30 has a
complexity of O(log( |J |

|I | )). Line 46, which belongs to the outer loop, has time

complexity of O(|I |). The total average time complexity of the algorithm is thus
computed to be O(C × (|I | |J |

|I | log( |J |
|I | )+ |J |

|I | (
|J |
|I | + |I |+ δlog( |J |

|I | )+|I |)). Considering

that C is a small number (typically around 5 to 6, based on experimental data)
and that |J | > |I | (i.e., the number of database objects is larger than number
of storage nodes, a typical case), we conclude that the total time complexity of
the heuristic algorithm is O(|J |log( |J |

|I | + ( |J |
|I | )

2). Thus, our heuristic algorithm

is low-order polynomial and can be run quickly for a large number of database
objects and storage nodes.

6. MONITORING USAGE PATTERNS

In this section we describe how STORM collects the usage statistics of database
objects and their storage consumptions from commercially available databases.
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These statistics capture the usage behavior of standard classes of database
objects (tables and indices) found in DBMSs. Note that these usage patterns are
very often the objects of enquiry for DBAs becuase they lend significant insight
into how database objects should be placed in various storage devices across the
network. Specifically, Storm collects three base usage statistics automatically,
namely:

1. frequency of access of database objects;

2. average data-access size of queries for a database object; and

3. storage consumption and growth estimate of objects.

In the Storm architecture, as presented in Figure 1, the DBMON and STMON
are profiling modules for the database and storage system, respectively. Both
processes are configured with a list of database servers (encompassing all the
database server clusters) to be monitored. For monitoring database access pat-
terns, the DBMON submits a set of monitoring queries to the database servers,
and receives the results. The DBMON then processes these results to yield
the monitoring information of interest. The STMON also queries the database
servers and storage devices to obtain dynamic information about space usage
for individual database objects by each database server, and static information
such as the storage capacity of individual devices.

The aforesaid modules are designed so that they are nonintrusive. The data
queried in the monitoring process is not application data, but rather system
metadata. As a result, not only is the total volume of data collected small,
but also there is minimal contention with application data access. Further, the
query interval is typically large and also configurable; it can be made sensitive
to database resource availability (e.g., can be done during off-peak hours or
service down-time). Finally, once the query results have been received, all other
processing takes place outside the database process.

Next, we describe specific practical techniques to gather the previ-
ously described information, which apply to most commercial off-the-shelf
(COTS) databases. We specifically describe our approach for Oracle and SQL-
Server databases, but note that our scheme can easily be extended to other
COTS databases such as MySQL, DB2, and Sybase.

6.1 Details of Data Gathering Technology

We now describe a specific set of SQL queries that can be used by DBMON
and STMON to derive usage statistics of database objects and their storage
consumption. This approach is applicable for all COTS databases; however, the
specific SQL queries needed to gather are dependent on the metadata architec-
ture of each vendor’s DBMS.

6.1.1 Database-Object Access Patterns. Table III lists specific queries that
DBMON uses to obtain the frequency of accesses of database table and index
objects. From the output of Query Q1, DBMON can generate a list of tables (e.g.,
CUSTOMER) and columns, prefaced with their associated table names (e.g.,
CUSTOMER.ZIPCODE) in the database. We call these two lists the TableList
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Table III. Database Object-Usage Monitoring Queries

DBMS Query

Q1 Oracle SELECT TABLE NAME COLUMN NAME FROM DBA ALL TABLES

Q1 SQL-Server SELECT DATABASE NAME.DBO.SYSOBJECTS.NAME TABLE NAME,

DATABASE NAME.DBO.SYSCOLUMNS.NAME, COLUMN NAME FROM

DATABASE NAME.DBO.SYSOBJECTS,

DATABASE NAME.DBO.SYSCOLUMNS WHERE

DATABASE NAME.DBO.SYSOBJECTS.ID=DATABASE NAME.DBO.SYSCOLUMNS.

ID AND DATABASE NAME.DBO.SYSOBJECTS.XTYPE = ‘U’

Q2 Oracle SELECT c.INDEX NAME, c.COLUMN NAME, c.TABLE NAME i.NUM ROWS

FROM DBA IND COLUMNS c,

DBA INDEXES i WHERE c.INDEX NAME=i.INDEX NAME

Q2 SQL Server SELECT I.NAME INDEX NAME, I.INDID, O.NAME TABLE NAME FROM

DATABASE NAME.DBO.SYSINDEXES I,

DATABASE NAME.DBO.SYSOBJECTS O WHERE I.ID = O.ID AND INDID > 0

AND INDID < 255 AND O.TYPE =

‘U’ ORDER BY O.NAME INDEX COL ( TABLE NAME , I.INDID , key id ) /* returns

the column name where key id

is the ID of the key*/

Q3 Oracle SELECT DISTINCT s.SQL TEXT SQL TEXT, s.EXECUTIONS

EXECUTION COUNT FROM V$SQL s

Q3 SQL Server SELECT SQL SQL TEXT, USECOUNTS EXECUTION COUNT FROM

MASTER.DBO.SYSCACHEOBJECTS,

MASTER.DBO.SYSDATABASES WHERE UID >1 AND ((CACHEOBJTYPE=

‘EXECUTABLE PLAN’ AND

OBJTYPE=‘PREPARED’) OR (CACHEOBJTYPE=‘EXECUTABLE PLAN’ AND

OBJTYPE=‘PROC’ AND SQL NOT

LIKE ‘SP %’)) AND SYSCACHEOBJECTS.DBID = SYSDATABASES.DBID AND

MASTER.DBO.SYSCACHEOBJECTS.DBID=DB ID(‘DATABASE NAME’)

and ColumnList, respectively. From the output of Query Q2, DBMON generates
a list of indices, where each index is identified by the table and column it indexes
(e.g., CUSTOMER.ZIPCODE INDEX). We call this the IndexList.

Q3 returns a list of SQL statements executed on the database, and each
statement’s execution count. We call this list the ExecutedStatementList. Specif-
ically, each item in this list represents a single statement, and contains the
StatmementText (e.g., “select distinct ZIPCODE from CUSTOMER”) and an
integer StatmentExecCount. For Q3, we note that some consideration must be
given to the query submission interval. The tables in Oracle and SQL-Server
that store executed statements and execution counts are part of the DBMS’s
caching infrastructure, and are flushed at an administrator-determined inter-
val. The interval between issuing Q3 queries must be smaller than this interval.

DBMON can determine database-object usage statistics by aggregating ac-
cess counts. The pseudocode in Algorithm 1 describes this aggregation process.

Algorithm 1. Aggregate Usage Statistics

1: for all tables t in TableList do
2: Create a countt variable, and initialize it to 0
3: Create a RetDataSizet variable and initialize it to 0
4: for all columns c in ColumnList do
5: Create a countIndexUsec variable, and initialize it to 0
6: Create a countIndexNeededc variable, and initialize it to 0
7: Create an empty restrictionUseHashTable
8: for all statement s in ExecutedStatementList do
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9: Create three empty lists, tableAccessList, columnAccessList, and
columnValueList

10: Parse s’s StatementText. Add all table names accessed in the WHERE clause
to the tableAccessList, and all column names accessed in the WHERE clause
to the columnAccessList. Add column name-value pairs for all column values
accessed in the WHERE clause to the columnValueList

11: Based on the range values and selectivity analysis ([Aoki 1999; An et al. 2003;
Aboulnaga and Chaudhuri 1999] DBMON estimates the size of return data
set for each table in tableAccessList

12: Update RetDataSizet based on computed return data size and StatementExecCount
13: for all tables in the tableAccessList do
14: Increment countt by s’s StatementExecCount
15: for all columns in the columnList do
16: if the column name matches an index in the IndexList then
17: Increment countIndexUsedc by s’s StatementExecCount
18: else
19: Increment countIndexNeededc by s’s StatementExecCount
20: for all items in the columnValueList do
21: if the column-value pair does not exist in the restrictionUseHashTable then
22: Create a new hash element, with the column-value pair as the key, and s’s

StatementExecCount as the value
23: else
24: Increment the hash element value for the column-value pair by s’s

StatementExecCount
25: Return the restrictionUseHashTable, countt for all tables, as well as

restrictionUsec, countIndexUsedc and countIndexNeededc for all columns

Lines 1 to 6 create a set of aggregation structures: the set of countt variables
store the number of accesses to each table, and the sets of column variables
countIndexUsedc and countIndexNeededc represent the number of accesses to
columns for restriction purposes, where an index would be used if available.
The restrictionUseHashTable structure stores restriction uses for specific col-
umn values and RetDataSizet represents the total amount of data returned from
a table on a set of queries. Lines 8 to 9 parse the query into tables, restriction
columns, and column-values accessed, while lines 12 to 23 update the countt ,
countIndexUsedc, countIndexNeededc, and restrictionUseHashTable with the
execution counts for each query. With this information, DBMON is now pre-
pared to compute the usage statistics that will be required by our approach (as
described in Section 5) for the decision maker of Storm.

Frequency of access of database objects. The countt and countIndexUsedc

values give us the usage statistics for database objects, tables and indices.

Average data return size of queries for a database object. Combining the
countt along with RetDataSizet , DBMON can accurately compute r j , the aver-
age bytes/sec retrieved from the object (table).

Cache considerations. Modern database systems cache frequently accessed
objects in memory. This introduces an error into our original calculations where
we assume that all data retrieved for query computations is from storage de-
vices. The effect of cache accesses can be taken into account in the exact compu-
tation of the usage statistics in the following way. Table IV shows the query and
system stored procedures in Oracle and SQL-Servers, respectively, that provide
specific statistics about cache hits. The Oracle query returns a list of queries
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Table IV. Cache Usage Queries

DBMS Query

Oracle SELECT executions, buffer gets, disk reads, first load time,

sql text FROM v$sqlarea ORDER BY disk reads

SQL-Server DBCC MEMUSAGE

Table V. Storage Consumption Queries

DBMS Query Description Query

Q4a Oracle Table-space

consumption

SELECT df.TABLESPACE NAME, SUM

(df.BYTES) TOTAL SPACE, SUM(fs.BYTES)

FREE SPACE, ROUND(((NVL(SUM

(fs.BYTES),0)/SUM(df.BYTES))*100),2)

PCT FREE FROM DBA FREE SPACE fs,

DBA DATA FILES df WHERE

df.TABLESPACE NAME =

fs.TABLESPACE NAME (+) GROUP BY

df.TABLESPACE NAME ORDER BY

df.TABLESPACE NAME

Q4b Oracle Physical files

associated with a

Tablespace

SELECT FILE NAME, TABLESPACE NAME

FROM DBA DATA FILES WHERE

STATUS=‘AVAILABLE’;

Q4 SQL Server Physical files

associated with a

Filegroup

SELECT FILEGROUP NAME(GROUPID),

GROUP NAME, FILESIZE TOTAL SPACE,

FILEMAXSIZE-FILESIZE FREE SPACE,

FILEMAXSIZE, GROWTH = (CASE

SYSFILES.STATUS & 0X100000 WHEN

0X100000 THEN CONVERT(NVARCHAR(3),

GROWTH) + N‘%’ ELSE

CONVERT(NVARCHAR(15), GROWTH * 8) +

N’ KB’ END), NAME LOGICAL FILENAME

,FILENAME FROM

DATABASENAME.DBO.SYSFILES WHERE

GROUPID <> 0

Q5 Oracle Size of index and

tables

SELECT sum(bytes)/1048576 Megs,

segment name FROM user extents WHERE

segment name = ‘object name’ GROUP BY

segment name

Q5 SQL Server Size of index and

tables

EXEC sp spaceused ‘table name’ @updateusage

= ‘true’;

that required disk access, along with the number of such disk accesses. The
SQL-Server stored procedure gives information about queries that are being
served from the buffer cache, that is, where disk access is not required. This
information can then be used by DBMON, along with previously obtained infor-
mation, to accurately compute the average bytes/sec retrieved r j from various
database objects, taking into account the effect of the database buffer cache.

6.1.2 Storage Consumption Patterns. Table V lists queries used by
STMON to obtain information about object storage consumption and storage
consumption growth (base usage pattern 3). For Oracle, STMON generates a
list of table spaces, where each table space is associated with the total space
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for the table space, free space, and the percentage of free space from the output
of Query Q4a in Table V. We can add the filename(s) associated with the table
space from the output of Query Q4b. For SQL-Server, all these data elements
can be obtained for filegroups from Q4 for SQL-Server. Note that the expression
in parentheses (CASE...END) in this query is an embedded stored procedure
designed to convert binary-format numbers into integer format. With this in-
formation STMON can compute cij (i.e., the current assignment of a database
object to storage nodes).

Query Q5 gives us the size of database-object tables and indices sj in Oracle
and SQL-Server. Taking a series of these values over time provides data points
which STMON uses to forecast the growth of table size over time g j .

7. SIMULATION RESULTS

In this section, we demonstrate the efficacy of our heuristic algorithm in terms
of two key metrics: (i) accuracy, and (ii) convergence. We do so, using simulation
techniques.

7.1 Accuracy of Heuristic Algorithm

To evaluate the accuracy of the heuristic, we compare the data movement re-
quired by the heuristic solution to that required for the solution obtained by
solving the model P using CPLEX [Ilog 2006]. Due to the NP-hardness of P,
large-size problems (e.g., 100 storages and 3000 objects) cannot be solved using
CPLEX within an acceptable time bound. We therefore resort to the alternate
approach of calculating the accuracy using a lower bound of the problem P. We
obtain the lower-bound solution of the problem P by LP-relaxation (relaxing
the binary constraint of the variable xij and declaring it as a variable within
{0,1} range) and solving the LP-relaxed version of the problem P. We compute
the percentage gap between the data movement obtained by the heuristic and
this lower bound as follows.

PercentageGap = Heuristic − LowerBound
LowerBound

× 100

We generated feasible problems by varying the size of database objects j uni-
formly within 1–100MB. We varied the r j for database objects following a
Zipfian distribution (following the typical notion that 20% of database objects
are accessed in 80% of the cases) within 10–1000 bytes/sec. We varied the growth
rate of database objects uniformly between 0–1000 KBytes/days. For baseline,
we set the number of storage nodes to 100 and the number of objects to 200.
Then, fixing storage nodes to baseline value (100), we varied the number of ob-
jects (500, 1000, 1500, 2000, 2500, and 3000). Similarly, keeping the number of
objects to the baseline value of 2000 we varied the number of storage nodes (50,
75, 100, 125, 150, and 175). We thus obtained 11 cases in total. The value of T
is kept constant at 15 days (2 weeks) and the threshold value of utilization Uth

is kept at 5%. For each of these cases, we generated three problem instances by
varying the parameters as described earlier. In each case, the value of storage
node sizes Bi and maximum bandwidth U m

i are generated randomly within an
upper bound and lower bound computed so that feasible solutions of the model
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Fig. 3. Varying numbers of objects.

Fig. 4. Varying numbers of storage nodes.

exist. We then compute the average percentage gap in data movement for each
case.

Variation of the PercentageGap with varying numbers of objects and storage
nodes are shown in Figures 3 and 4, respectively. In both cases, the gap remains
within 7% of the lower bound. This also implies that in cases where a feasible
solution exists, the heuristic solution lies within 7% of the optimal solution.
Note, however, that here we compare against the lower-bound solution, which
may be worse than the optimal. So, the actual gap may be lower than those
shown in the figures.

7.2 Convergence of Heuristic Algorithm

To demonstrate the convergence of the heuristic, we plot in Figure 5 the value
of currentDivergence (as computed in the Figure 2) in each iteration. Note how
the currentDivergence reduces in each successive iteration. The graph shows
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Fig. 5. Convergence of heuristic algorithm.

this currentDivergence for three different values of number of objects 1000,
2000, and 3000; the number of storage nodes is kept constant at 50. The values
of other parameters are generated as described in Section 7.1. The values of
storage node sizes are generated based on feasibility of the solution. The value
of maximum bandwidth of storage nodes is generated as a random number
between 15 and 25 MBytes/sec in each of these three cases.

As can be seen from Figure 5, the algorithm converges in all three cases
within at most 5 iterations. In the case of 1000 and 2000 objects, the algorithm
produces a feasible solution with a final divergence of zero. In the case of 3000
objects, the algorithm is unable to produce any feasible solution. However, un-
like a model-based CPLEX approach that does not produce any solution in the
case of infeasibility, the heuristic actually reduces the divergence from 4500 to
about 600 and stabilizes before exiting within 5 iterations. Thus, our heuristic
not only generates a solution that is near optimal, but also does so within a very
small number of iterations. Further, the efficiency of the heuristic is excellent.
The heuristic required approximately 5 sec on an average for a run with 3000
objects and 175 storage nodes on a Pentium 2.4 GHz processor. We therefore
believe that the heuristic is practical and can easily be used for online database
storage management in a data center environment.

8. EXPERIMENTAL RESULTS

In this section, we evaluate a prototype implementation of Storm in its ability
to optimize the bandwidth utilization of multiple storage nodes. We evaluate
both the improvement in utilization of individual drives (by balancing such
utilization equally across the nodes) as well as the overall performance of the
database system in terms of transactions-per-minute-count (TPMC).

For the database server, we used PostgreSQL 8.2 [PostgreSQL Global Devel-
opment Group 2007] on Linux (2.6.18.1 kernel), running on a Pentium 4 2GHz
machine with 1GB RAM. The machine had five disk drives: hda, sda, sdb,
sdc, and sdd. We emulated multiple storage nodes within this single machine,
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using each disk drive as an independent storage node. The operating system
was installed on hda, while the other four drives were used for storing the
database objects of the PostgreSQL database.

For the workload, we used the TPC-C benchmark [Transaction Process-
ing Council 2003], a benchmark that mimics an online transaction processing
workload, running on a remote client machine. We used an open source imple-
mentation of the benchmark available at http://sourceforge.net/projects/
benchmarksql/. The TPC-C benchmark uses nine tables: Customer, Warehouse,
District, History, Neworder, Order, Orderline, Item and Stock. In addition to
primary key indices there are two additional indices on Customer and Order
tables. The PostgreSQL database also uses base and pg xlog directories for its
internal operation. The base directory contains the metadata information about
the database and the pg xlog directory contains transaction logs for transaction
recovery in the database. The read and write operations to these two directo-
ries were significant compared to the operations on tables and indices related
to TPC-C. In using Storm, we considered the base and pg xlog directories as
database objects as well.

The input to the benchmark is comprised of the number of terminals, num-
ber of warehouses, and the execution duration. The number of warehouses was
set to 100 to create a database of size 10GB. The duration of the experiment
was set to 30 minutes for each run. The number of terminals simulates parallel
execution of the online transactions from multiple clients, and was varied from
1 to 96. The benchmark reports the TPMC for each experiment. We also imple-
mented a Linux kernel module that reports the average bandwidth utilization
of each disk drive over the duration of the experiment by intercepting the block
I/O issued to each drive.

To demonstrate the advantages of the Storm approach, we compared three
different allocations of database objects to storage nodes. In the first, all
database objects were located in a single drive, representing a skewed allo-
cation, which we denote as “Single-Disk Allocation.” Next, the database ob-
jects were distributed manually across the four drives to approximately balance
storage-space utilization. With this setup, we attempt to mimic the behavior of
a database administrator who does not have access to per-object disk utiliza-
tion. We denote this as “Initial Allocation.” Next, assuming the initial allocation
as the starting state, we ran the Storm algorithm to determine an optimized
allocation of database objects to the four drives. We denote this as “Storm Allo-
cation.” In each of the three cases, we ran the benchmark for 30 minutes while
also varying the number of terminals (to vary the system load). In each case we
noted the transactions-per-minute-count (TPMC) reported by the benchmark
and the I/O-bandwidth utilization (KBytes/sec) for each of the drives.

8.1 Transactions Per Minute

Figure 6 demonstrates how TPMC varies with the number of terminals in the
benchmark. As expected, the single-disk allocation performance is substantially
worse than both the initial allocation and Storm allocation. This underscores
the benefit of distributing database objects across multiple storage nodes for
parallelized I/O.
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Fig. 6. Impact of increased query parallelism on TPMC.

In case of both Storm allocation and initial allocation, as we increase the
number of terminals, after an initial increase in the TPMC, it starts to degrade.
When the number of terminals is increased from 1 to 4, the incoming rate of
transactions goes up and this results in increased overall TPMC. However,
further increases in the number of terminals results in a decreased TPMC.
This behavior is an artifact of the benchmark, whose transactions progressively
increase the size of the database over the benchmark’s execution. With a larger
number of terminals, the rate at which the size of the database increases is
also greater. The resulting phenomenon is that successive transactions (even
of the same kind) take longer to complete as time progresses, thereby reducing
the TPMC. The acceleration of this phenomenon is greater for a larger number
of terminals. Interestingly, as we shall see shortly, the average disk utilization
for both Storm allocation and initial allocation continues to increase beyond no.
terminals = 4, and maximizes only at no. terminals = 64, when an upper bound
on the bandwidth utilization for the bottleneck drive(s) is reached.

Comparing the performance of the initial allocation and Storm allocation,
the TPMC is same for both at no. terminals = 1. As the number of terminal
increases, we see improved performance of the Storm allocation case compared
to the initial allocation. At no. terminals = 16, the TPMC in case of Storm
allocation is 453 compared to 378 in initial allocation, which is about, 20%
improvement. Note, in fact, that these percentages are underestimated due to
the benchmark artifact that we described earlier.

As the number of terminals is further increased, due to the reasons explained
before, the TPMC decreases further in all three cases. However, because the
TPMC values at higher numbers of terminals do not give much insight, we do
not present this data in Figure 6.

8.2 Storage Bandwidth Utilization

The primary reason for the improved performance in the Storm case is be-
cause of the effective utilization of I/O bandwidth across storage nodes. We
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Fig. 7. Average I/O-bandwidth utilization.

demonstrate this with two experiments that measure: (i) the average I/O-
bandwidth utilization and (ii) the percentage standard deviation in I/O-
bandwidth utilization across storage nodes. The latter measurement aims at
demonstrating how Storm is more effective in avoiding a bottleneck at a single
storage node.

In Figure 7, we present the average I/O-bandwidth utilization (KBytes/sec)
across four data drives for both the initial allocation and Storm allocation.
With increasing numbers of terminals, the average I/O-bandwidth utilization
increases for both the initial allocation and Storm allocation. In both case, the
average bandwidth utilization maximizes at no. terminals = 64. However, at
no. terminals = 96, the average bandwidth utilization decreases in the case
of initial allocation whereas in the case of Storm allocation remains constant.
This is because the Storm allocation algorithm is able to distribute the
I/O-bandwidth utilization across storage nodes more uniformly than the initial
allocation.

At all values of the terminals, the average I/O-bandwidth utilization across
storage nodes is higher in the case of Storm allocation. At no. terminal = 64,
the average I/O-bandwidth utilization in the case of Storm allocation is 14%
higher and at no. terminals = 96, it is 22% higher. Thus, Storm allocation
algorithm results in more efficient database-object distribution across various
drives increasing the overall I/O-bandwidth utilization across storage nodes.
We explore this aspect further by examining the standard deviation in I/O-
bandwidth utilization across storage nodes.

Figure 8 presents the percentage of standard deviation of I/O-bandwidth
utilization (KBytes/sec) across four data drives for both initial allocation and
the Storm allocation. In both cases, the percentage of standard deviation de-
creases initially with the increasing number of terminals in the benchmark.
Upon increasing the number of terminals, an increasing number of execution
threads issuing varying transactions simultaneously makes the access to var-
ious database objects more uniform, restricted only by the distribution of ob-
ject utilizations due to the benchmark. In both allocations, after initial rapid
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Fig. 8. Percentage of standard deviation in I/O-bandwidth utilization.

decrease, the standard deviation remains more or less constant. At this point
the standard deviation is due more to the imbalance in I/O-bandwidth uti-
lization across the four drives. At all values of no. of terminals, the standard
deviation is less in case of Storm allocation. At no. terminals = 4, the standard
deviation in Storm allocation is 20% less than that of the initial allocation.
At no. terminals = 16, the standard deviation in Storm allocation is 15% less,
and at no. terminals = 24, the standard deviation is 50% less. Thus the Storm
allocation algorithm results in more uniform I/O-bandwidth utilization across
storage nodes, which in turn results in improved end-to-end performance of the
database system. Moreover, Storm allocation does much better at higher levels
of parallelism due to greater pronunciation of the I/O bottlenecks.

8.3 Summary

We experimentally demonstrated herein that the Storm approach in databases
object allocation across multiple disks results in about 22% improvement in disk
I/O-bandwidth utilization, which in turn improves the overall transactions per
minute of the database by 20%. We want to note that due to the limited resources
available in an academic environment, we had to resort to a very small environ-
ment with just four storage drives and 13 database objects (9 tables, 2 indices,
and 2 database directories). We demonstrated that even within this small setup
(which is actually a very popular benchmark for database systems), we have
been able to improve the system performance by 22%. In large systems with
thousands of database objects (e.g., a PeopleSoft Enterprise system has 22,000
tables and an equivalent number of indices) and a few tens of storage nodes hold-
ing several hundreds GBytes of data, the complexity of distribution of database
objects across storage nodes will be much more complex. So, in large environ-
ments the manual effort of distributing database objects across storage nodes
will lead to very suboptimal performance. In such scenarios, the impact of our
Storm approach on the overall performance of the system is expected to be sub-
stantially greater, reflecting the simulation results we presented in Section 7.
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9. CONCLUSION

In this article we presented Storm, an automated approach that can guide ef-
fective the utilization of the storage nodes used for database storage in a data
center environment. We developed a math programming model of the problem
and showed that the the problem is NP-hard. For data center managers, we
developed a simple greedy heuristic that quickly provides approximate solu-
tions. By simulation study we have shown that the greedy heuristic generates
a solution for a feasible problem that lies within 7% of the optimal solution.
Further, even in cases where the actual formulation of the problem does not al-
low feasible solutions, the heuristic is still effective in significantly reducing the
imbalance in bandwidth utilization across storage nodes. The time complexity
of the heuristic algorithm is low-order polynomial, making it an efficient and
practical solution for large numbers of database objects (several thousands)
and storage nodes (few tens). Lastly, we demonstrated by experimental study
that we have been able to improve the performance of a database benchmark
by 22% with the Storm approach.

Currently, our system operates at the granularity of a database object such
as a table or an index. Therefore, we cannot accommodate splitting of tables or
indexes across multiple storage nodes. In the future, we intend to incorporate
techniques that can derive access and usage data information at the database
block level, whereby our technique can distribute various blocks of the same
database object (table or index) in multiple storage nodes. This approach will
achieve better distribution of I/O bandwidth in case of highly-skewed intra-
object utilization.

As another future research agenda, we intend to extend our work to other
storage systems such as mail systems and file systems. For file systems, we
can look at “files” as objects. For email systems, we can look at mailbox fold-
ers (both user-mail boxes and incoming message folders), as well as auxilliary
entities such as user address-books, calendars, etc. (if these are used) as ob-
jects. Similarly, in other storage systems, once we have identified the objects
and mechanisms to derive usage parameters of these objects (such as storage
space, I/O bandwidth utilizations due to each of these objects), we can apply our
heuristic algorithm (Table II) as-is to determine the desired allocation scheme.
In future, we intend to compare the performance derived by our algorithm with
that of OS level block allocation schemes across multiple storage nodes in the
case of file and mail systems.
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