StepAhead: Rethinking Filesystem Namespace Translations

Debadatta Mishra

Indian Institute of Technology
Bombay

deba@cse.iitb.ac.in

Abstract

A hierarchical namespace is a common abstraction used for
data organization within modern file systems. Fast transla-
tion of namespace objects to physical locations is necessary
to carry out efficient file system operations. For reasons at-
tributed to modularity, security, and to some extent legacy,
namespace translations involves iterative translation of in-
tervening directory objects from the root of the namespace.
Namespace resolution is typically a multi-step process, po-
tentially involving serialized I/O operations at each step.

In this paper, we propose a rethink of the strategy to fetch
pathname entries. Our technique, StepAhead, proactively
utilizes hints about namespace translation lookup failures to
enable parallel and just-in-time fetching of necessary path
translation data into memory to increase cache hits signifi-
cantly. With StepAhead, we measure an increase in cache
hit rates for path translation data across a set of six work-
loads by as much as 51%, which in turn results in application
speed-up of as much as 20%.

1. Introduction

File systems provide a hierarchical namespace abstraction
consisting of directories and files. The resolution of path-
name targets involves fetching file system meta data and data
blocks. This resolution is a multi-step process. Each direc-
tory entry in the path (from root of the namespace tree to
the target file system object) is first translated to an inode
object, access permissions are checked, and the contents of
the directory are fetched in order to resolve the next entry in
the path; this continues in a serial manner for subsequent di-
rectory entries until the target’s meta data is resolved. Thus,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

APSys 2016,, August 04-05, 2016, Hong Kong, Hong Kong..

Copyright (© 2016 ACM ISBN 978-1-4503-4265-0/16/08. .. $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2967360.2967370

Purushottam Kulkarni

Indian Institute of Technology
Bombay

Raju Rangaswami

Florida International University
raju@cs.fiu.edu

puru@cse.iitb.ac.in

pathname translation potentially requires serialized I/O op-
erations for translating each entry of the target’s path.

The costs involved in pathname resolution within file sys-
tems have been dominated by meta data related operations
as documented in prior works [13} 22} 26, 28]]. For exam-
ple, Lensing et al. reported up to two times improvement in
application performance when all meta data was cached in
memory.

To minimize I/O operations during pathname resolution,
most operating systems employ translation caches [26] (e.g.,
the Linux dentry cache) to store the recently resolved en-
tries. However, such caches have limited effectiveness. First,
while the translation cache can reduce the translation over-
heads for the frequently accessed path entries, cache size
limitations restrict such efficacy to extend to all path trans-
lations. Further, a translation entry’s lifetime in the cache is
dependent on presence of the associated file system object
in memory (elaborated in §2). To improve effectiveness of
the cache and to reduce the probability of I/O required for
translation lookups, translation mechanisms also implement
storage-local prefetching [5. 7] of spatially co-located trans-
lation meta data [16, [19]]. Benefits of such prefetching are
based on two fundamental assumptions: (i) file translation
meta data for spatially located files in the namespace tree
exhibit spatial locality on storage, and (ii) namespace entries
that exhibit spatial locality in the namespace tree also ex-
hibit temporal locality of access. The first assumption may
fail for a sufficiently aged file system [2| 23] name space
and the second is highly workload dependent. We demon-
strate the limited effectiveness of existing translation caches
and conventional storage-locality based meta data prefetch
techniques in

In this paper, we explore an alternate proposition:
Can pathname lookups be made efficient through parallel
prefetch of necessary disk data required for successful trans-
lation? To enable parallel prefetch of translation data, the file
system can determine the disk blocks required for the com-
plete path translation to fill the cache before the correspond-
ing pathname entries are requested. Doing so, however, is
non-trivial. In most Unix-like operating systems, the generic
path translation layer (e.g., VFS layer of Linux) is decoupled
from the file system implementation. Traditionally, the seri-

alized path resolution never requires meta data correspond-
ing to more than one path entry at every step. We propose a
space efficient file system knowledge base which can be used
by the path translation layer to fetch the required disk blocks
of multiple path entries. We demonstrate that the benefits of
using such knowledge is significant; the cache hit ratio of
translations is improved by up to 50% hit resulting in work-
load speed ups of 8-20%.

We present StepAhead, a solution that populates the in-
memory cache with path translation data just-in-time. All the
required data block read requests are queued simultaneously
to enable parallel fetching of meta data. StepAhead extends
the generic VFS abstractions to enable file system specific
accurate parallel prefetch implementations and improve the
VES path translation performance (§3). We evaluate differ-
ent filesystem workloads (§4) to explore the extent of bene-
fits and overheads.

Our prototype implementation leverages the flexibilities
of virtualized systems to provide a minimally intrusive so-
lution using virtual machines (VMs). The hypervisor builds
the knowledge base for the guest VM file system through vir-
tual disk image introspection [[17, [24]]. The VFS extensions
are implemented through hypercalls, initiated from within
the virtual machine.

2. Inefficiency of Pathname Lookups

Most POSIX compliant filesystems represent and expose
files and directories within a hierarchical namespace in the
form of a tree. This hierarchical structure induces transla-
tion dependencies across objects in the hierarchy leading to
inefficiencies in pathname lookup operations.

2.1 Anatomy of a Pathname Lookup

With UNIX-like operating systems, a virtual file system
(VES) layer acts as the interface between the user space
API and the actual implementation of the filesystem. Trans-
lation of a VFS path to a file system object—file or direc-
tory, requires translation of each intermediate entry of the
path until the entry containing the target object. Most sig-
nificantly, the translation of intermediate components of the
path is serialized as each path entry has to be validated and
the corresponding inode or data block location has to be
identified. This verification involves retrieving the data as-
sociated with intermediate (directory) objects, which in turn
may require access to the disk through the filesystem. To
minimize the translation overheads due to disk access, most
UNIX-like systems cache the frequently accessed interme-
diate directories as memory objects (e.g., dentry objects in
Linux) [3.26] [1]

An illustration of the VFS and filesystem
operations corresponding to opening the file
/home/userB/images/2. jpg (for a filesystem mounted

'In this paper dentry is used to denote an in-memory directory or file
translation entry.

Dentry cache

/, home, userB
(START)

Translate(/home/userB/images/2.jpg)

1. | dentryLookup (/):Success
dentryLookup (home):Success
dentryLookup (userB)Success

2. | dentrylLookup (images):Failed
dentryCreate (images, userB)

i (i) fs_fetch_dir (userB) !
1 (i) fs_fetch_inode (images),

dentryLookup (2.jp9): Failed
dentryCreate (2.jpg, images)

(iii) fs_fetch_dir (images)
(iv) fs_fetch_inode (2.jpg)

Figure 1: Serial I/O operations required to translate
/home/userB/images/2. jpg with initial valid dentries for
/, home, userB in the dentry cache. images, not found
in the dentry cache, triggers four I/O operations in total,
two involving directory data and two involving inodes.

at /) is shown in Figure |1} Assuming that the entries for
/, home and userB are available in the dentry cache, the
sequence of serial I/O operations needed for remainder of
the path translation are shown. When the dentry lookup
for images is unsuccessful, the VFS subsystem requests the
filesystem to create a dentry object for images. A typical
filesystem like EXT4 [16] would require two I/O operations,
(i) fetch the necessary directory content of the directory
userB to translate the name (i.e., images) to an inode,
and (ii) fetch the disk inode object for images. The name
resolution of 2. jpg cannot start until the name resolution
for images is complete. Resolution of 2. jpg also requires
two accesses to disk, as shown in part 3 of Figure [I] This
serialized execution can result in significant overheads with
each step requiring possible disk-access for resolution.

2.2 Effectiveness of Translation Caches

Translation caches [3| 26] serve limited purpose because of
the following reasons. First, the translation caches can not
serve first time lookups in a cold cache scenario. Second,
translation caches compete for memory in the system against
other caches [[18} [30] (e.g., disk block cache or page cache)
and may be evicted due to memory pressure over the appli-
cation’s life time. Third, even though the memory footprint
of dentry cache is small, a dentry is tightly coupled with
file system objects of significant size. The tight coupling is a
result of inherent dependencies across multiple independent
OS software layers performing pathname resolution, man-

Workload % of failed % of prefetched
dentry-lookups | inodes un-used
boot 17 22
webserver 73 92
find 33 54
ccode 64 27
fileserver 60 72

Table 1: Performance of dentry cache and static storage-
local prefetching.

age retrieved pathname objects, and cache pathname objects.
For example, in Linux, a dentry-cache entry for a file de-
pends on the parent directory data (content) block and the in-
ode corresponding to the file dentry, cached and managed
by the file system. If an inode memory object is evicted
out of memory, the translation entries of paths containing
the inode will need to be evicted as well to ensure meta
data/data consistency of files.

Serialized name resolution occurs upon misses of inter-
mediate objects in the dentry cache. To understand the
significance of dentry cache misses, we executed several
workloads and measured the occurrences of name resolu-
tion failures. To cover the cold cache situation, we used the
system boot and find workloads with an empty dentry
cache. The webserver and fileserver workloads are load
profiles of the Filebench [1]] benchmark. ccode is a multi-
threaded file read workload where every thread picks a ran-
dom file within the Linux source tree to open and read. The
experiment was conducted on a Linux machine with 512
MB RAM using the EXT4 filesystem. Table [I] shows the
number of name resolution failures (at any level of trans-
lation). The total number of path translations requested for
boot, webserver, find, ccode and fileserver are 42K,
378K, 12.5K, 174K and 239K, respectively. On average,
across these workloads, 50% of the name resolution oper-
ations fail. The number of failed lookups is significant for
the webserver, fileserver and ccode workloads. The
dentry failures of webserver, fileserver and ccode
workloads were not only due to the dentry cache miss for
the first time access but because of the cache contention be-
tween the data and meta data in the steady state.

2.3 Effectiveness of Storage-local Prefetch

Some filesystems try to localize the inodes of a directory tree
in the disk block space at the time of creation. The exist-
ing prefetching mechanisms for file block caches, therefore,
apply spatial locality based prefetching to improve sequen-
tial reads. Upon an inode read from the disk, the surround-
ing blocks containing inodes are prefetched to expedite fu-
ture inode lookups in the same directory tree [16]. This ap-
proach can be effective if the data access pattern is sequential
or accessed in chunks in a relatively young file system.

The effectiveness of such static prefetching for path
lookups, however, is limited because it relies on two addi-
tional assumptions. First, the built-in assumptions that (i)
there is significant temporal and spatial locality of creation
time of files and directories within a directory tree, and (ii)
second, that false positives due to the application usage pat-
tern, do not result in significant wasted memory space and
do not induce I/O congestion. Table[T] demonstrates that the
extent of memory wasted in prefetching inodes that would
not be eventually used is between 10 and 80% across the five
workloads. Even more significantly, since inode grouping is
preferentially sibling-oriented, static prefetching may not di-
rectly expedite future inode lookups of inodes at lower lev-
els of the namespace hierarchy, thereby compromising its ef-
fectiveness for path lookups. Furthermore, directory content
access in the process of the path resolution does not benefit
from spatial locality based prefetching because (i) it is diffi-
cult and restrictive to organize directory data in consecutive
storage blocks, and (ii) the exact access path is not known at
the time of creation of the directory tree.

Optimizations to address the limitations of dentry cache
and storage local prefetching should, (i) improve the path
translation performance while preserving the benefits of
dentry cache, (ii) perform targeted (pre)fetch of disk blocks
before they are required by the path translation process. To
meet the above objectives, StepAhead performs parallel
fetch of disk blocks [27] in a targeted manner in the event
of dentry lookup failures.

3. The StepAhead Approach

StepAhead is designed to perform targeted prefetching of
only the disk blocks necessary for invoked namespace trans-
lation operations. It is designed for zero cache pollution and
efficient cache population via parallel prefetching of filesys-
tem meta data necessary for namespace translations. In this
section, we discuss aspects of StepAhead’s design and chal-
lenges to realize them.

3.1 Design and Architecture

Figure 2| presents the architecture of StepAhead. At its core,
StepAhead enables the parallel fetch of disk blocks required
for translating the residual path fragment of a requested
namespace object when the first namespace object lookup
failure is encountered. While we use Linux/UNIX specific
terms to make our discussion of the design more concrete,
StepAhead’s design principles apply more broadly.

The Virtual File System (VFS) interface provides abstract
methods, implemented by actual file systems, to perform low
level file and directory operations. StepAhead proposes ex-
tensions to the VFES interfaces to provide dentry cache look
up failure hints to the file system. With StepAhead, the file
system layer uses the VFS layer hint to fetch necessary disk
blocks corresponding to the file system objects (inodes and

User processes

A

Linux OS
\ 4
VFS
Path translation I:rl
failure
hints
Filesystem
VFS interface
Namespace
knowledge
base Y
| Parallel prefetcher |

Page cache

StepAhead
cache

Block 10 layer

Figure 2: File system parallel prefetching with VFS layer
hints on dentry cache lookup failure. Shaded components
represent StepAhead additions/modifications.

directory data blocks) required for successful transla-
tion of the residual path.

StepAhead builds and utilizes a namespace knowledge
base (as shown in Figure [2) to prefetch the necessary disk
blocks required for namespace translation. The namespace
knowledge base identifies the mapping between a names-
pace object and the corresponding disk blocks as maintained
by the file system. The knowledge base can be created ei-
ther by a walk of the name space tree during the file system
initialization or can be progressively built by observing the
name space object translation operations throughout the life
time of the file system. We use the former approach in a non-
intrusive prototype implementation explained in (§3.2). The
name space knowledge base tree maintains block address
information pertinent to each name space entry (files and
directories). More specifically, block addresses of the fol-
lowing types of entries are stored in the knowledge base: (i)
file system storage primitives like super blocks and inodes,
(ii) file or directory translation information (e.g., indirect
blocks), and (iii) directory data.

The parallel prefetcher issues all the required block
I/O requests through the page cache layer to the block
I/0 layer. Upon successful prefetch, file system objects
for the residual path requested by the VFES step-wise
translation can be served from the page cache. Con-
sider the example path translation presented in Figure [I]

VFS

dentryLookup (images): Failed

pmommmmmmm-s------------oa) FajlureHint {</home
: dentryCreate(lmages,userB): /userB/images/2.jpg>
1 dentryCreate(2.jpg, images) :| < images>}
| I - = e e e e)

K

' | FileSystem

! i StepAhead |«

! : ReadBlock {DIR_BLK(UserB),

Yo INODE_BLK(Images), DIR_BLK(images),

L INODE_BLK (2.jpg) }

TNt PN Block

Disk Block Cache [~ 7~ device

Figure 3: StepAhead optimizations in translation of
/home/userB/images/2. jpg when images not found in
dentry cache. INODE_BLK and DIR_BLK represent the
disk blocks containing the inode data and the directory con-
tent, respectively.

for path /home/userB/images/2.jpg where the first
dentry lookup failure occurs for images. The corre-
sponding StepAhead processing in such a scenario is
shown in Figure [3] The VFS layer provides a failure
hint with the complete path and the lookup entry that
failed, e.g., in the example above, the hint is the tuple
{</home/userB/images/2.jpg>, <images>}.

The sequence of dentry lookup (and create) operations
in the VFS layer remain unaltered while the StepAhead
extension of the file system issues block IO read requests
for—directory data block(s) for userB, block containing the
inode for images, directory data block(s) for images and
the block containing the inode for 2. jpg. All these IO re-
quests are serviced in a parallel and asynchronous manner
w.r.t. the dentry operations during the path lookup. There-
fore, in an ideal scenario, I/O requests after the userB di-
rectory data block read can be served from the page cache
(as shown by a dotted round trip in Figure [3) resulting in
efficient VES path translation.

Effectiveness of the prefetch operation in improving
namespace translation cache hit rates depends on the accu-
racy of the namespace knowledge base. One challenge in-
volves keeping the namespace knowledge base up-to-date in
presence of namespace updates. However, it is important to
note that the correctness of the namespace knowledge base is
desirable but not mandatory; it improves translation perfor-
mance when accurate but does not affect the correctness of
file system operations when the knowledge base in not accu-
rate. In the worst case, the parallel prefetch operations based
on out-of-date namespace knowledge base information may
be inaccurate. In such cases, namespace translation would

simply fetch the correct disk blocks corresponding to file
system objects when they are not found in the StepAhead
cache, without compromising correctness.

3.2 Implementation Details

We implemented a prototype of StepAhead for virtualized
systems using the Linux-K'VM virtualization solution. Flexi-
bilities enabled due to virtualization are useful to implement
StepAhead in virtualized systems to realize a quick initial
prototype. Our implementation avoids any intrusive changes
in the file system (of the virtual machine) and implements
the StepAhead functionalities for the virtual machine at the
hypervisor using virtual machine image introspection and
the host machine’s (filesystem) page cache.

In a virtualized platform, the virtual machine disk devices
are backed by virtual machine image files in the hypervisor.
From the hypervisor, the virtual machine image files (or
logical disk partition) can be accessed and analyzed [17} 24,
25]] using simple user level file IO libraries and system calls.
Virtual disk image introspection [17, 23] is used to extract
name space knowledge from the virtual machine disk image.
Given the knowledge of the format for storing image files
and the filesystem used by guest OS to manage files, the
hypervisor can build the namespace knowledge base for the
guest OS’s filesystem. We have implemented name space
knowledge extraction for the EXT4 file system [16] from
the virtual machine disk image files. The knowledge base
is created and periodically refreshed for the virtual machine
under test.

The VFS layer of the guest operating system is modified
to invoke a hypercall on a dentry lookup failure to realize
the failure hint notification (§3.1)). The hypercall handler of
the KVM hypervisor implements the parallel fetch through
namespace knowledge lookup to populate the hypervisor
page cache. In steady state, VFS dentry lookup failures are
passed to the KVM hypervisor, the namespace knowledge
base is consulted for the block mappings and disk blocks are
fetched in parallel. A dedicated Linux host process receives
information about lookup failures via the hypercall han-
dler inside the kernel and implements StepAhead’s parallel
prefetching. The fetched disk blocks are stored in the host
machine’s page cache and are used to serve the guest OS’s
serialized VFS translation requests. This is possible because
the disk accesses from within the virtual machine traverse
via the host page cache which is used as the StepAhead
cache (Figure[2)) in our implementation.

4. Evaluation

We evaluated StepAhead using a machine equipped with an
Intel Xeon E5507 processor (8 cores) and 8 GB of physi-
cal memory running Ubuntu 12.04 Linux server with ker-
nel version 3.10. We used the KVM hypervisor to create a
virtual machine with 512MB RAM, 1 VCPU and a virtual
disk of size 24 GB with two EXT4 partitions. We used well

Workload | #of files | # of directories
find 365000 31751
du,stat and touch | 260042 17507
readdir 0 25788
grep 2250 95

Table 2: Workloads and the operation domains.

n
(&}

- - N
o (6] o

Application speedup (%)
(6]

L

find du readdir stat touch grep
Workload

Figure 4: Application speedup with StepAhead.

known file system utilities—find, du, stat, touch, grep
and reading of directories (referred to as readdir), as work-
loads operating on different segments of the virtual machine
namespace (Table [2). The host machine’s page cache (oper-
ating as a second chance cache underneath the guest) cached
the disk blocks fetched by StepAhead.

4.1 Effectiveness of StepAhead

Workload speedup with a cold cache is shown in Figure [
and is compared against a baseline system with same con-
figurations for the guest and hypervisor page caches with-
out StepAhead optimizations. Relative to the baseline sys-
tem, StepAhead improved application performance by 19%,
18% and 15% for find, readdir and du, respectively. For
a data intensive application like (grep), StepAhead did
not result in any noticeable application improvements due
to the minimal presence of namespace translation opera-
tions relative to file data fetch operations. Namespace trans-
lation cache hit ratio improvements with StepAhead over
the baseline are shown in Figure [5] We verified that appli-
cation speed up improvements for find, du and readdir
were on account of StepAhead’s effectiveness in improv-
ing namespace translation cache hit rates by 51%, 50%
and 43%, respectively. These improvements are attributed to
VES layer hints which in turn resulted in fetching the trans-
lation data in one go. For example, for readdir-workload,
~21000 blocks containing inodes and ~36000 directory
data blocks were fetched using parallel prefetching tech-
nique of StepAhead.

60

40

30

20

Cache hit improvement

find du readdir stat touch grep
Workload

Figure 5: Cache hit improvement with StepAhead.

Disk image | #of files and | dentry cache StepAhead
size (GB) directories size (MB) knowledge
base size (MB)
8 80K 152 5
16 200K 259 10
24 275K 412 14
40 470K 662 23

Table 3: Memory requirements to store all entries in dentry
cache vs. size of the StepAhead knowledge base.

4.2 Overhead Comparisons

The overheads of StepAhead involve two resources, the
memory required to store the namespace knowledge base
and the CPU cycles required for path matching in order
to identify the blocks to prefetch. In Table [3] memory re-
quirements of StepAhead’s knowledge base for different
disk image sizes and varying number of files and direc-
tory are shown. The memory requirement for the names-
pace knowledge base is directly proportional to the number
of files in the disk partition. On the other hand, to main-
tain entries in dentry cache for in-memory translation of
every file and directory, the memory requirement is signif-
icantly more (~25x) compared to the StepAhead knowl-
edge base size. For workloads used in this experiment (§4.1)),
the CPU overhead of the StepAhead process was negligible
(5% CPU utilization in the worst case). We expect the CPU
overheads to further reduce for a native system implementa-
tion of StepAhead.

5. Related work

Several research efforts have proposed hashing based tech-
niques [14} [15} 26] to reduce meta data lookup latencies.
Full path hashing based resolution techniques present chal-
lenging issues like access control and prefix checks requir-
ing intrusive changes to VFS functionalities. Our approach is
transparent to the VFS layer functionalities (e.g., access con-
trol mechanisms) and is complimentary to translation cache
optimizations. Meta data storage and management in spe-
cialized structures (e.g., key-value stores) for large scale dis-

tributed systems [3} 14} 104, 29,133]] operate at a higher level of
abstraction (on top of the local file systems). StepAhead is
orthogonal to these solutions.

File system organization improvements like multi-level
directory partitioning [30], coalition of meta data object
for—files in a directory [11] and semantically related
files [29, 131} 132], have been proposed to improve the ef-
ficiency of meta data operations. While in principle these
are sound optimizations, ubiquitous file systems are slow in
adopting the proposed changes because of the inherent com-
plexities and lack of generality. Extent of StepAhead ben-
efits will depend on the meta data placement strategy and
therefore will be an interesting evaluation of StepAhead.

Preferential treatment of meta data using differentiated
caching strategies [18} [19] [30] and usage of faster persis-
tent storage devices (like SSD devices [6]]) can improve ac-
cess speeds of file system meta data. Effects of these opti-
mizations are dependent on the file system size and individ-
ual memory load scenarios. StepAhead is complementary
to these efforts. Our approach is similar to optimistic path
resolution [8] and meta data prefetch [25] at NFS clients
to address the overheads of multiple network round trips.
StepAhead’s basic proposition borrows from these ideas
and proposes a generalized solution for local file systems.

Prefetching techniques exploring spatial locality of ac-
cess [5, 9], multiple file stream correlations [7, [12]], appli-
cation directed prefetching [12| [27] and parallel prefetch-
ing [27]] are interesting optimizations with respect to improv-
ing file read performance. StepAhead is capable of going
beyond the meta data related optimizations to incorporate
some of the above functionalities.

Virtual machine introspection has been used for robust
VM image management [17] and monitoring [21]], to study
and exploit sharing opportunities [13| 24] and locating meta
data [25] in a VM image. Privacy sensitive requirements
for virtual machine image introspection have also been pro-
posed [20]. StepAhead’s usage of VM image introspection
is limited to verification of the proposed file system opti-
mizations in a file system non-intrusive manner.

6. Discussion

Namespace knowledge management: File systems can
create and manage the knowledge space by—explicit name
space tree walk, or by iterative knowledge gathering over a
period of time. Namespace updating can be tricky to man-
age but can be addressed through periodic knowledge re-
building or targeted updates to the changed namespace sub
trees. Since the file system manages all meta-data updates,
a targeted in-band update of the knowledge base also seems
feasible. For a virtualized system implementation (as is the
case for this implementation), monitoring writes to meta data
blocks (e.g., directory content) from the host to selectively
update the knowledge base in-band can be implemented.

Overhead considerations: StepAhead is designed as an
out-of-band optimization to ensure correctness. Incorrect
path name lookups in the VFS are detected only when the
first incorrect entry in the path is encountered. StepAhead
complements the VFS operations by fetching the meta-data
for path components only till the first incorrect entry in the
path. Access permissions related issues could reduce the util-
ity of parallel fetching, which we believe is usage dependent
and needs to be characterized. StepAhead is cognizant of
disk bottlenecks and disable the prefetch optimizations in the
event of disk congestion (determined by checking the device
state information).

Extensions for just-in-time data fetching: The VFS layer
hints can also be used to fetch starting data blocks along
with the meta data blocks, of the file pointed to by a path.
A VEFS dentry path lookup failure provides an indication
regarding the absence of data blocks of the file pointed to
by the path in the page cache. This intuition can be used to
guide the prefetching related extensions within StepAhead,
i.e., prefetch data blocks as well as meta data blocks. Further,
StepAhead can be used to estimate access patterns and their
correlations across files and design prefetching techniques
beyond sequential single file prefetching [7].

7. Conclusions

StepAhead is a new approach to speed up namespace trans-
lations within modern file systems via file system introspec-
tion. It is based on the observation that the serialized I/O
involved in pathname translations can be eliminated and re-
placed with targeted, parallel, just-in-time fetching of all
meta-data required for successful translation. StepAhead
builds and utilizes its namespace knowledge base to iden-
tify and prefetch in parallel the disk blocks required for
namespace translation at the first instance of a lookup failure
during a translation operation. While the initial results with
StepAhead are promising, much work remains to be done in
fully exploring and evaluating this direction for applicability
in production systems.

Acknowledgements

We would like to thank our shepherd, Yunxin Liu, and the
anonymous referees for their helpful comments. This work
is supported in part by NSF awards CNS-1448747 and CNS-
1563883, and an Intel ISRA award.

References
[1] Filebench. www.filebench.sourceforge.net/wiki/
index.php/Main_Page.

[2] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND
LorcH, J. R. A five-year study of file-system metadata.
Transaction on Storage 3, 3 (2007).

[3] BEAVER, D., KUMAR, S., L1, H. C., SOBEL, J., AND VA-
JGEL, P. Finding a needle in haystack: Facebook’s photo stor-

age. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI) (2010), pp. 1-8.

[4] BRANDT, S. A., MILLER, E. L., LONG, D. D. E., AND
XUE, L. Efficient metadata management in large distributed
storage systems. In Proceedings of IEEE conference on Mass
Storage Systems and Technologies (MSST) (2003), pp. 290—
298.

[5] Cao, P., FELTEN, E. W., KARLIN, A. R., AND L1, K. A
study of integrated prefetching and caching strategies. SIG-
METRICS Performance Evaluation Review 23,1 (1995), 188—
197.

[6] CLOUDBYTE. Moving metadata to flash memory.
http://www.cloudbyte.com/wp-content/uploads/
2015/05/Metadata-acceleration-CloudByte.pdf,

[7] DING, X., JIANG, S., CHEN, F., Davis, K., AND ZHANG,
X. Diskseen: Exploiting disk layout and access history to
enhance i/o prefetch. In Proceedings of the USENIX Annual
Technical Conference (2007), pp. 20:1-20:14.

[8] DucHAMP, D. Optimistic lookup of whole nfs paths in a
single operation. In Proceedings of the USENIX Summer
Technical Conference (UTSC) (1994).

[9] FENGGUANG WU, H. X., AND LI, J. Linux readahead: less
tricks for more. In Proceedings of Ottawa Linux Symposium
(2007).

[10] Fu, S., HE, L., HUANG, C., L1A0O, X., AND LI, K. Perfor-
mance optimization for managing massive numbers of small
files in distributed file systems. IEEE Transactions on Parallel
and Distributed Systems 26, 12 (2015), 3433-3448.

[11] GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes
and explicit grouping: Exploiting disk bandwidth for small
files. In Proceedings of the USENIX Annual Technical Con-
ference (1997).

[12] HE, J., BENT, J., TORRES, A., GRIDER, G., GIBSON, G.,
MALTZAHN, C., AND SUN, X.-H. Io acceleration with pat-
tern detection. In Proceedings of the International Sympo-
sium on High-performance Parallel and Distributed Comput-
ing (2013), pp. 25-36.

[13] JAYARAM, K. R., PENG, C., ZHANG, Z., KIM, M., CHEN,
H., AND LEI, H. An empirical analysis of similarity in virtual
machine images. In Proceedings of the Middleware Industry
Track Workshop (2011), pp. 6:1-6:6.

[14] LENSING, P., MEISTER, D., AND BRINKMANN, A. hashfs:
Applying hashing to optimize file systems for small file reads.
In IEEE workshop on Storage Network Architecture and Par-
allel I/Os (SNAPI) (2010), pp. 33-42.

[15] LENSING, P. H., CORTES, T., AND BRINKMANN, A. Di-
rect lookup and hash-based metadata placement for local file
systems. In Proceedings of Systems and Storage Conference
(SYSTOR) (2013), pp. 5:1-5:11.

[16] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,
ToMAsS, A., VIVIER, L., AND S, B. S. A. The new ext4
filesystem: current status and future plans. In Proceedings of
Ottawa Linux Symposium (2007).

[17] REIMER, D., THOMAS, A., AMMONS, G., MUMMERT, T.,
ALPERN, B., AND BALA, V. Opening black boxes: Using se-
mantic information to combat virtual machine image sprawl.

www.filebench.sourceforge.net/wiki/index.php/Main_Page
www.filebench.sourceforge.net/wiki/index.php/Main_Page
http://www.cloudbyte.com/wp-content/uploads/2015/05/Metadata-acceleration-CloudByte.pdf
http://www.cloudbyte.com/wp-content/uploads/2015/05/Metadata-acceleration-CloudByte.pdf

In Proceedings of the Conference on Virtual Execution Envi-
ronments (VEE) (2008), pp. 111-120.

[18] REN, K., AND GIBSON, G. Tablefs: Embedding a nosqgl
database inside the local file system. In APMRC Digest
(2012), pp. 1-6.

[19] REN, K., AND GIBSON, G. Tablefs: Enhancing metadata
efficiency in the local file system. In Proceedings of the
USENIX Annual Technical Conference (2013), pp. 145-156.

[20] RICHTER, W., AMMONS, G., HARKES, J., GOODE, A.,
BiLA, N., DE LARA, E., BALA, V., AND SATYA-
NARAYANAN, M. Privacy-sensitive vm retrospection. In Pro-
ceedings of the USENIX Conference on Hot Topics in Cloud
Computing (HotCloud) (2011).

[21] RICHTER, W., IscI, C., GILBERT, B., HARKES, J., BALA,
V., AND SATYANARAYANAN, M. Agentless cloud-wide
streaming of guest file system updates. In Proceedings of
the nternational Conference on Cloud Engineering (IC2E)
(2014), pp. 7-16.

[22] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A
comparison of file system workloads. In Proceedings of the
USENIX Annual Technical Conference (2000), pp. 1-15.

[23] SmITH, K. A., AND SELTZER, M. 1. File system aging—
increasing the relevance of file system benchmarks. SIGMET-
RICS Performance Evaluation Review 25, 1 (1997), 203-213.

[24] SUNEJA, S., Isc1, C., DE LARA, E., AND BALA, V. Explor-
ing vm introspection: Techniques and trade-offs. In Proceed-
ings of the Conference on Virtual Execution Environments
(VEE) (2015), pp. 133-146.

[25] TARASOV, V., JAIN, D., HILDEBRAND, D., TEWARI, R.,
KUENNING, G., AND ZADOK, E. Improving i/o perfor-
mance using virtual disk introspection. In Proceedings of the
USENIX Conference on HotStorage (2013), pp. 1-5.

[26] TsAl, C.-C., ZHAN, Y., REDDY, J., J1AO, Y., ZHANG, T.,
AND PORTER, D. E. How to get more value from your file

system directory cache. In Proceedings of Symposium on
Operating Systems Principles (SOSP) (2015), pp. 441-456.

[27] VANDEBOGART, S., FROST, C., AND KOHLER, E. Re-
ducing seek overhead with application-directed prefetching.
In Proceedings of the USENIX Annual Technical Conference
(2009).

[28] VoLos, H., NALLI, S., PANNEERSELVAM, S., VARADARA-
JAN, V., SAXENA, P., AND SWIFT, M. M. Aerie: Flexible
file-system interfaces to storage-class memory. In Proceed-
ings of EuroSys (2014), pp. 14:1-14:14.

[29] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the
Symposium on Operating Systems Design and Implementation
(OSDI) (2006), pp. 307-320.

[30] XING, J., XIONG, J., SUN, N., AND MA, J. Adaptive and
scalable metadata management to support a trillion files. In
Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis (2009), pp. 26:1-26:11.

[31] ZHANG, S., CATANESE, H., AND WANG, A.-I. A. The
composite-file file system: Decoupling the one-to-one map-
ping of files and metadata for better performance. In Proceed-
ings of the Usenix Conference on File and Storage Technolo-
gies (FAST) (2016), pp. 15-22.

[32] ZHANG, Z., AND GHOSE, K. hfs: A hybrid file system
prototype for improving small file and metadata performance.
SIGOPS Operating Systems Review 41, 3 (2007), 175-187.

[33] ZHU, Y., JIANG, H., WANG, J., AND XIAN, F. Hba: Dis-
tributed metadata management for large cluster-based storage
systems. IEEE Transactions on Parallel Distributed Systems
19, 6 (2008), 750-763.

	Introduction
	Inefficiency of Pathname Lookups
	Anatomy of a Pathname Lookup
	Effectiveness of Translation Caches
	Effectiveness of Storage-local Prefetch

	The StepAhead Approach
	Design and Architecture
	Implementation Details

	Evaluation
	Effectiveness of StepAhead
	Overhead Comparisons

	Related work
	Discussion
	Conclusions

