
STORM: An Approach to Database Storage Management in
Clustered Storage Environments

Kaushik Dutta
College of Business

Florida International University
Miami, FL - 33199, USA
Kaushik.Dutta@fiu.edu

Raju Rangaswami
School of Computing and Information Sciences

Florida International University
Miami, FL - 33199, USA

raju@cs.fiu.edu

Abstract

Database storage management in clustered storage en-
vironments is a manual, time-consuming, and error-prone
task. Such management involves regular movement of
database objects across nodes in the storage cluster so
that storage utilization is maximized. We present STORM,
an automated approach that guides this task by combining
low-overhead information gathering about database access
and storage usage patterns, efficient analysis of gathered
information, and effective decision-making for reconfigur-
ing data layout. The reconfiguration process is guided by
the primary optimization objective of minimizing the to-
tal data movement required for the reconfiguration, with
the secondary constraints of space and balanced I/O band-
width utilizations across the storage nodes in the cluster.
We model the reconfiguration decision-making as a multi-
constraint optimization problem which isNP-hard. We
then present a heuristic that provides an approximate so-
lution in O(Nlog(N

M
) + (N

M
)2) time, whereM is the num-

ber of storage nodes andN is the total number of database
objects. A simulation study shows that the heuristic con-
verges to an acceptable solution that is successful in bal-
ancing storage utilization with an accuracy that lies within
7% of the ideal solution.

1 Introduction

Data center services for medium to large enterprises typ-
ically host several petabytes of data on disk drives. Most of
this storage houses data residing in hundreds to thousands
of databases. This data landscape is both growing as well
as dynamic; new data-centric applications are constantly
added at data centers, while restrictions such as SOX [12]
prevent old and unused data from being deleted. Further, the
data access characteristics of these applications change con-

stantly. Ensuring peak application throughput at data cen-
ters is incumbent upon addressing this dynamic data man-
agement problem in a comprehensive fashion.

Today’s IT managers have various storage options rang-
ing from low cost SATA, iSCSI, to high performance RAID
storage. Due to the exponential growth in the number
of storage devices across data centers and their associated
management overhead1, data center managers are inclining
more and more toward isolating storage management at data
centers using Storage Area Networks (SAN [9]) - a network
whose primary purpose is the transfer of data between com-
puter systems and a cluster of storage nodes. Applications
read from and write to a storage node in the cluster through
SAN switches or routers [17].

Although SANs and storage clusters allow significant
isolation of storage management from server management,
the storage management problem is still complex. Due to
the dynamic nature of modern enterprises, the interaction
and use of applications changes over time. The dynamic
changes in the set of “popular” data results in skewed uti-
lization of storage nodes, both in terms of storage space and
I/O bandwidth. Such skewed storage utilization eventually
degrades the performance of applications and creates the
necessity to buy more storage (when existing storage is not
fully utilized), thereby resulting in overall cost increment.

IT managers spend copious amounts of time moving data
between storage nodes to avoid such skewness in the stor-
age cluster. However, manual decision making in large
data centers containing several terabytes of data and hun-
dreds of storage nodes (if not thousands) is time-consuming,
inefficient, and at best sub-optimal. Off-the-shelf rela-
tional databases contribute to a large portion of these ter-
abytes of data. Consequently, the manual data management
tasks of system administrators mostly involve remapping of

1Current estimates put expenditure on storage management atapprox-
imately one person per1 − 10TB and state that storage cost is domi-
nated by storage management cost rather than hardware cost over the long
term [2, 16].

database elements (tables, indexes, logs, etc.) to the appro-
priate storage node in the cluster.

In this paper, we present the architecture and design of
STORM, a system that enables automatic identification of
skewness in database storage utilization in a storage cluster
environment and accordingly proposes a near optimal data
movement strategy. Moving a large amount of data between
storage nodes requires considerable storage bandwidth and
time. Though such movement is typically done in periods
of low activity, such as night-time, it nevertheless runs the
risk of affecting the performance of applications. Moreover,
such data movement operations are so critical that they are
seldom done in unsupervised mode; a longer time implies
greater administrator cost. A longer time requirement for
the data movement also prompts data center managers to
postpone such activities and live with skewed usage for as
long as possible. It is therefore critical to minimize the over-
all data movement in any reconfiguration operation.

Paper contributions:
1. We present the architecture of STORM, a database stor-
age management system in a clustered storage environ-
ment.

2. We present a mathematical model (which isNP hard)
for the problem of balancing the I/O bandwidth utilization
across the storage nodes in the storage cluster with the
objective of minimizing data movement, given the storage
node capacity constraints.

3. We propose a heuristic algorithm that provides an ac-
ceptable approximate solution.

4. We conduct a simulation study to demonstrate the effi-
ciency and accuracy of the heuristic algorithm.

The rest of the paper is organized as follows. We present
related research in Section 2. We present a practical data
center architecture that incorporates STORM in Section 3.
In Section 4, we model the problem of dynamic database
storage management in a data center environment. Sec-
tion 5 presents a heuristic algorithm that provides an ap-
proximate solution to this problem, while Section 6 details
online techniques for monitoring database and storage us-
age patterns. Section 7 presents an evaluation of STORM
using a simulation study compared against a lower-bound
solution. We make final remarks in Section 8.

2 Related Work

Research on data-placement in parallel database sys-
tems [8, 18, 7] may seem related at the first glance. However
data placement in a parallel database system is designed
with the motivation of achieving maximum query paral-
lelism for a single database system. Our goal is to balance
the utilization of shared storage nodes in a storage cluster

across multiple database systems, and ensure the physical
disk-space for future growth of database objects.

Distributed data storage systems such as Mariposa [20]
have developed ways to place data in geographically dis-
tributed locations based on access pattern and other cost fac-
tors such as network cost. The basic objective of Mariposa
and our system are different in that Mariposa works on a
single distributed database system, while our system works
on multiple centralized database systems that store data in
a shared clustered storage environment. Further, Mariposa
optimizes for a WAN setting where network bandwidth is
scarce and data are allocated based on optimal network us-
age. In our system database servers are connected to stor-
age nodes over a high-speed network, which is typically the
case in enterprise data centers. In such a scenario we can
assume all storage nodes are equally accessible by database
servers. We address the problem of balancing the storage
node utilization, also allowing the future growth of database
objects.

Storage management vendors such as Veritas [21], Com-
puter Associates [6], and BMC [3] provide application-
independent software for storage management. These so-
lutions typically work at the block level. Any allocation
of blocks without application-level knowledge of what the
blocks store and how they are being utilized, are likely to
result in suboptimal use of storage resources. Further, these
solutions involve moving blocks of data from one storage
node to another to achieve balanced utilization. However,
such movement may lead to a single database table being
split across several drives, severely complicating the task
of a database administrator. As a result, such storage man-
agement is seldom used for databases. A similar argument
can also be made for research related to data migration [14]
across storage nodes at the block level. Our research fo-
cuses on data movement at its application-level granularity
such as database tables or indexes, thereby also utilizing the
semantic knowledge of the data being moved.

Oracle’s Automatic Storage Manager (ASM) solu-
tion [19] proposes a different approach to database storage
management by striping each file within a single database
across all the available storage using a 1MB stripe size. The
claim with ASM is that it eliminates the need to move data
dynamically because the striped layout of each file across
all drives implicitly balances I/O load. However, this ap-
proach may fragment any table or index over the stripe size
(which is a global setting), i.e. different parts of the same
table or index may reside in different storage nodes. Our
approach is general enough to be applicable not only in Or-
acle but also in most of the off-the-shelf database systems
such as SQL-Server, MY-SQL and DB2. It can be applied in
a heterogenous environment where a single data center has
multiple heterogenous database systems sharing the same
storage cluster, a typical case in enterprise data centers.

Finally, load balancing of server resource usage has been
an active area of research for over a decade since early work
on webservers [15]. Traditional load balancers work in a
dynamic fashion, operating at a per-request level. Further,
they have a single objective, i.e. balancing the request load
of a set of servers. We address data movement for balanc-
ing data-access load with the dual objectives of minimizing
the data movement and nullifying the skewness in storage
utilization, all while meeting the projected capacity require-
ment based on future growth of data.

3 System Design and Architecture

We consider a data center environment with a tiered ar-
chitecture for providing services, comprising of application
servers, database servers, and storage nodes. At the head
are the application servers which service user requests. The
application servers use the database servers to query the
databases, which in turn access data from the tables stored
in the cluster of storage nodes. Further, as typically the
case, we assume that the data center comprises of several
database server clusters; these clusters share the storage
space provided by the storage node cluster.

Our work focuses on the interaction between the
database servers and the cluster of storage nodes. Database
servers allocate storage space in the storage nodes to store
database objects such as tables, indexes, logs, etc. The ac-
cess patterns for individual objects managed by the database
servers are application-dependent and can vary widely over
time. Consequently, one of the key problems in managing
a cluster of storage nodes in a database-centric system is
to move data from one storage node to another to accom-
modate the future growth of objects and to balance the uti-
lization of the individual node in the storage cluster. This
primarily includes reconfiguring the storage allocation and
data placement on a per-object basis based on application
access patterns. Successful reconfiguration leads to a more
balanced access to the storage node cluster by the database
servers, thereby preventing bottlenecks at individual storage
nodes.

The storage management tasks required for such recon-
figuration includes information gathering, analysis, deci-
sion making, and execution, akin to the Monitor-Analyze-
Plan-Execute loop proposed in the IBM’s Autonomic Com-
puting intiative [13]. Currently, each of these tasks are per-
formed manually by system administrators based on human
intuition and experience. We propose comprehensive au-
tomation of these management tasks in a data center envi-
ronment. Our system will perform data gathering, analysis,
and decision making automatically. Data center managers
can choose to reconfigure the layout of objects to improve
the storage utilization by using these decisions as hints.

Figure 1 depicts the architecture of STORM. Database

.. ..

Decision
Maker

DB Server
Cluster

DB Server
Cluster

DB Server
Cluster

Node
Storage
Node

SAN Interconnect

Administrator

Recommendations

DBMON

STMON

TableMapper

Storage
Node

Storage

Figure 1. The STORM Architecture

servers are connected to storage nodes of the clustered stor-
age environment through SAN interconnect (SAN router,
switches etc.) The key component of our system is the
TableMapper, which has access to the database servers as
well as the cluster of storage nodes through SAN devices.
The TableMapper gathers object-access and storage-usage
data (elaborated in Section 6) using thedatabase monitor
(DBMON) andstorage monitor(STMON) modules, ana-
lyzes the data, and makes reconfiguration decisions within
its decision makermodule. The STMON component gath-
ers data related to storage nodes such as storage capacity
and I/O bandwidth. These storage data are mostly static and
updated only when new storage is added or existing stor-
age is taken out from the cluster. The storage utilization,
i.e. which database object is using which storage node and
how much space it is consuming, is dynamic information
and is gathered by the STMON from the database servers.
The DBMON component gathers usage information of key
database objects (tables and indexes). The data gathering
mechanism of both the DBMON and STMON components
are described in Section 6. The decision maker analyzes
this data and makes reconfiguration decisions (described in
Sections 4 and 5). In case a reconfiguration is deemed ap-
propriate by the decision maker, it notifies the system ad-
ministrator, who may choose to act upon the recommenda-
tion.

In realizing the TableMapper, there are two key issues
to consider. First, the TableMapper must be non-intrusive
in collecting object and storage usage information from the
database servers. Since this operation is performed only pe-
riodically, it can be performed during system idle time. The
second challenge is to avoid a bottleneck at the TableMap-
per. We argue that since the TableMapper only manages
metadata and the actual dataflow bypasses the TableMap-
per, it is unlikely to become a bottleneck. Further, follow-
ing our architecture, we envision no significant hurdles to

using multiple DBMONs (for load distribution) to collect
data from a large number of database servers and storage
nodes.

The decision maker module of the TableMapper is its
most complex component. Based on gathered database ob-
ject and storage usage data, the decision maker proposes a
reconfiguration of database object layout on storage nodes.
In doing so, it must balance multiple optimization objec-
tives. First, the new configuration should be achievable with
minimal data movement. We believe that this is the primary
optimization objective due to the following reasons. Reduc-
ing the total amount of data movement will contribute to
realizing the new configuration in less time and thus lower
cost. It will reduce network traffic, and also the volume of
data that could potentially be rendered unavailable during
the move. These factors would also encourage data center
IT managers to perform more frequent reconfiguration op-
erations leading to reduced skewness in storage usage over
time. Second, the new configuration must ensure that none
of the storage nodes is overly utilized in terms of I/O band-
width. This can be addressed by posing a secondary recon-
figuration constraint so that the percentage I/O bandwidth
utilization for each storage node is below the average per-
centage I/O bandwidth utilization across all storage nodes
plus a small configurable threshold. Finally, the new con-
figuration should support the future growth of database ob-
jects till the storage managers decide for another round of
reconfiguration.

In the next section, we formally model and describe the
dynamic storage reconfiguration decision-making problem
and show that it is a hard problem to solve exactly. Sub-
sequently, we present a heuristic algorithm (in Section 5)
for such decision-making that provides good approximate
solutions within an acceptable time bound.

4 Model

We describe the configuration decision making problem
formally as“given a set of database objects (J) with their
present growth rate (gj), usage characteristic (rj) and size
(sj), given a set of storage nodes (I) with availble I/O
bandwidth (Um

i) and capacity (Bi) specifications and given
the present assignment (cij) of database objects to stor-
age nodes - determine a new assignment (xij) of objects to
storage nodes that (i) will result in minimal physical move-
ment of data across storage nodes to realize the new as-
signment, (ii) will balance the I/O bandwidth utilization of
storage nodes, and (iii) that will meet the future size growth
of database objects for certain time (T).”

Table 1 describes the parameters of the proposed model.
Based on these we formulate the dynamic data layout
reconfiguration problem,P, as follows.

Parameter Description

i Index for set of physical storage nodes (I)
j Index for set of database objects, tables and indices

(J)
cij Equals 1, ifj is currently located in storage nodei

0, otherwise
sj Current size of objectj in bytes
gj Current growth rate of objectj in bytes/days
Um

i Maximum I/O bandwidth utilization of the storage
nodei in Bytes/sec

Bi Storage capacity in bytes for storage nodei

rj The average bytes/sec retrieved from objectj

to serve database requests related to objectj

Uth Toleration threshold in percentage for storage node
over-utilization beyond the average utilization

T Validity duration of new object location in days
Ū Average percent utilization of all storages
xij Equals 1, if the new allocation of objectj is to stor-

agei

0, otherwise

Table 1. Model parameters.

Problem P:

Z(P) = min
∑

i

∑
j(cij − xij)cijsj (1)

subject to,

∑
j(sj + Tgj)xij ≤ Bi ∀i (2)

Ū = 100
P

j

P

i cijrj
P

i
Um

i

(3)

100
P

j
xijrj

Um
i

≤ Ū + Uth ∀i (4)
∑

i xij =
∑

i cij ∀j (5)

xij ∈ {0, 1}, cij ∈ {0, 1} ∀i, j

where Z(P) is the optimal value of the amount of data
moved.

The objective function 1 minimizes the total data move-
ment across storage nodes, subject to secondary constraints.
Constraint (2) ensures that allocated objects have the flex-
ibility to accomodate projected future growth without re-
locating it to another storage node in future (forT days).
Equation 3 computes the average percentage utilization
across all storage nodes in the cluster. Constraint (4) en-
sures that the utilization of each storage node is below the
average utilization of the cluster with a leeway threshold of
Uth. Constraint (5) ensures that each object is assigned to a
storage node under the new allocation scheme.

Theorem 1 The problemP is NP-Hard.

It can be shown that problemP isNP-Hard by showing that
a special case of the problem reduces to the multi-demand
constraint multi-dimensional knapsack problem (MDMKP)

[5, 4], which is known to beNP-Hard. Details of the re-
duction are presented in [1].

Note that the above problemP is an integer programming
(IP) problem. Due to computational complexity typically IP
for large size problems (e.g., thousands of database objects
and hundreds of storage nodes in a data center) are hard
to solve using standard solvers like CPLEX [10]. Further
theNP-hardness ofP makes it harder to obtain exact so-
lutions. In the next section, we develop a simple heuristic
algorithm that provides an approximate solution to the prob-
lem with an acceptable time complexity. Moreover, unlike
CPLEX and the model based approach which do not pro-
vide any solution in case no exact solution to the problem
exists, our heuristic algorithm will provide a solution that
will reduce over-utilization of I/O bandwidth across storage
nodes while also meeting the capacity constraint. In Sec-
tion 7, we evaluate the accuracy of our heuristic.

5 A Heuristic Algorithm

In this section, we present a heuristic algorithm that pro-
vides an approximate solution to the problemP with an ac-
ceptable time complexity. Given the current storage config-
uration (i.e., the assignment of database objects to storage
nodes), the heuristic aims at finding a new storage configu-
ration that is better suited to serve the current request load.

Here we briefly describe the algorithm. The detailed
psuedocode for the heuristic algorithm is given in [1]. The
algorithm takes as input the current object assignment to
storage nodes (cij), the current bandwidth utilization of
each storage node (Ui), and the current I/O bandwidth con-
sumed due to each object (ri). The algorithm produces as
output a new assignment of objects to storage nodes (xij).
Bootstrapping the system can be performed with a random
assignment of objects to storage nodes.

The algorithm is a two-stage greedy algorithm. It first
tries to move the smaller objects across storage nodes to
achieve the objective goal before choosing to move the
larger ones, i.e., greedy on size. In moving the objects it first
tries to assign objects with higher bandwidth utilization (rj)
to storage nodes that have lower overall percentage band-
width utilization (Ui

Um
i

), i.e., greedy on I/O bandwidth uti-
lization. Greedy heuristics are known to give good heuris-
tic solution for various kinds of knapsack problems [11].
A greedy heuristic also allows us to develop a simple al-
gorithm that can be easily adapted by database administra-
tors.2

A key feature of the proposed algorithm is that it obtains
a solution even in case it is infeasible to achieve an allo-
cation scheme based on the model. In case a feasible solu-
tion (wherein the percentage I/O bandwidth utilization of all

2Due to space limitations, we elaborate the algorithm further else-
where [1].

storage nodes are below that threshold value) does not ex-
ist, the algorithm terminates when thedeviations(total de-
viationof I/O bandwidth utilization across all storage nodes
for which the percentage I/O bandwidth utilization exceeds
the average percentage utilization by more than the utiliza-
tion thresholdUth) in storage utilization in two consecutive
iterations remain unchanged. Thereby, the heuristic still
provides a solution that reduces (not nullify as in the case
of a feasible solution) the over-utilization of I/O bandwidth
(i.e. deviation) across the storage nodes.
Heuristic complexity. It can be shown that the total time
complexity of the heuristic algorithm isO(|J |log(|J|

|I| +

(|J|
|I|)

2).3 Thus, our heuristic algorithm is low order polyno-
mial and can be run quickly for a large number of database
objects and storage nodes.

6 Monitoring Usage Patterns

In this section we describe how STORM collects usage
statistics of database objects and their storage consumptions
from commercially available databases. These statistics
capture the usage behavior of standard classes of database
objects (tables and indexes) found in DBMSs. Note that
these usage patterns are very often the objects of inquiry
for DBAs because they lend significant insight into how
database objects should be placed in various storage nodes
in the storage cluster. Specifically, STORM collects three
base usage statisticsautomatically, i.e.,

1. Frequency of access of database objects.

2. Average data access size of queries for a database ob-
ject.

3. Storage consumption and growth estimate of objects.

In the STORM architecture, as presented in Figure 1,
the DBMON and STMON are profiling modules for the
database and storage system, respectively. Each profiling
module is configured with a list of database servers to be
monitored. For simplicity, we assume that the database
servers have exclusive access to the storage nodes. For mon-
itoring database access patterns, the DBMON submits a set
of monitoring queries to the database servers, and processes
the results to yield the monitoring information of interest.
The STMON also queries the database servers and the stor-
age nodes respectively to obtain dynamic information about
space usage for individual database objects and static infor-
mation such as storage capacity of individual storage nodes.

The data queried in the above monitoring process is not
application data, but rather system meta-data. As a result,
the total volume of data collected is small and the con-
tention with application data access is minimal. Further,

3[1] presents a detailed derivation, which we omit here due tospace
limitations.

the query interval is typically large and configurable; it can
be made sensitive to database server availability (e.g., dur-
ing off-peak hours or service down-time). Finally, once the
query results have been received, all other processing takes
place outside the system datapath.

Next, we describe specific practical techniques to gather
the above information that apply to most commercial off-the
shelf (COTS) databases. We specifically describe our ap-
proach for Oracle and SQL-Server databases, but note that
our scheme can easily be extended to other COTS databases
such as MySQL, DB2, and Sybase.

6.1 Database Object Access Patterns

DBMS Query

Q1 Oracle SELECT TABLE NAME COLUMN NAME FROM DBA ALL TABLES
Q1 SQL-

Server
SELECT DATABASE NAME.DBO.SYSOBJECTS.NAME TA-
BLE NAME, DATABASE NAME.DBO.SYSCOLUMNS.NAME, COL-
UMN NAME FROM DATABASE NAME.DBO.SYSOBJECTS,
DATABASE NAME.DBO.SYSCOLUMNS WHERE
DATABASE NAME.DBO.SYSOBJECTS.ID=
DATABASE NAME.DBO.SYSCOLUMNS.ID AND
DATABASE NAME.DBO.SYSOBJECTS.XTYPE = ‘U’

Q2 Oracle SELECT c.INDEXNAME, c.COLUMN NAME, c.TABLE NAME i.NUM ROWS
FROM DBA IND COLUMNS c,
DBA INDEXES i WHERE c.INDEXNAME=i.INDEX NAME

Q2 SQL
Server

SELECT I.NAME INDEX NAME, I.INDID, O.NAME TABLE NAME FROM
DATABASE NAME.DBO.SYSINDEXES I,
DATABASE NAME.DBO.SYSOBJECTS O WHERE I.ID = O.ID AND INDID> 0

AND INDID < 255 AND O.TYPE =
‘U’ ORDER BY O.NAME INDEX COL (TABLE NAME , I.INDID , key id) /* re-
turns the column name where keyid
is the ID of the key*/

Q3 Oracle SELECT DISTINCT s.SQLTEXT SQL TEXT, s.EXECUTIONS EXECU-
TION COUNT FROM V$SQL s

Q3 SQL
Server

SELECT SQL SQLTEXT, USECOUNTS EXECUTIONCOUNT FROM MAS-
TER.DBO.SYSCACHEOBJECTS,
MASTER.DBO.SYSDATABASES WHERE UID >1 AND ((CACHEOBJ-
TYPE=‘EXECUTABLE PLAN’ AND
OBJTYPE=‘PREPARED’) OR (CACHEOBJTYPE=‘EXECUTABLE PLAN’AND
OBJTYPE=‘PROC’ AND SQL NOT
LIKE ‘SP %’)) AND SYSCACHEOBJECTS.DBID = SYSDATABASES.DBID AND
MASTER.DBO.SYSCACHEOBJECTS.DBID=DBID(‘DATABASE NAME’)

Table 2. Object-usage monitoring queries.

Table 2 lists specific queries that DBMON uses to ob-
tain the frequency of accesses of databasetable and in-
dexobjects. From the output of Query Q1, DBMON can
generate a list of tables (e.g., CUSTOMER) and columns
prefaced with their associated table names (e.g., CUS-
TOMER.ZIPCODE) in the database. Q2 returns indexes
and columns on which indexes are defined. Q3 returns
a list of SQL statements executed on the database, and
each statement’s execution count. The tables in Oracle and
SQL Server that store executed statements and execution
counts are part of the DBMS’s caching infrastructure, and
are flushed at an administrator-determined interval. There-
fore, the query submission interval for Q3 must be chosen
carefully. DBMON can determine database object usage
statistics (base usage statistic #1) by aggregating execution
counts.
Cache considerations. Modern database systems cache
frequently accessed objects in memory. Table 3 shows the
query and the system stored procedures in Oracle and SQL-
servers respectively that provide specific statistics about

cache hits. These can be used by DBMON along with pre-
viously obtained information to accurately compute the av-
erage bytes/sec retrieved (rj) from various database objects
(base usage statistic #2), taking into account the effect of
the database buffer cache.

DBMS Query

Oracle SELECT executions, buffergets, diskreads, firstload time, sql text FROM v$sqlarea OR-
DER BY disk reads

SQL-
Server

DBCC MEMUSAGE

Table 3. Cache usage queries.

6.2 Storage Consumption Patterns

DBMS Query Descrip-
tion

Query

Q4a Oracle Table-space con-
sumption

SELECT df.TABLESPACENAME, SUM(df.BYTES)
TOTAL SPACE, SUM(fs.BYTES) FREESPACE,
ROUND(((NVL(SUM(fs.BYTES),0)/SUM(df.BYTES))*100),2)
PCT FREE FROM DBAFREE SPACE fs,
DBA DATA FILES df WHERE df.TABLESPACENAME
= fs.TABLESPACENAME (+) GROUP
BY df.TABLESPACE NAME ORDER BY
df.TABLESPACENAME

Q4b Oracle Physical files as-
sociated with a
Tablespace

SELECT FILENAME, TABLESPACE NAME FROM
DBA DATA FILES WHERE STATUS=’AVAILABLE’;

Q4 SQL
Server

Physical files as-
sociated with a
Filegroup

SELECT FILEGROUPNAME(GROUPID), GROUPNAME,
FILESIZE TOTAL SPACE, FILEMAXSIZE-FILESIZE
FREESPACE, FILEMAXSIZE, GROWTH = (CASE SYS-
FILES.STATUS & 0X100000 WHEN 0X100000 THEN
CONVERT(NVARCHAR(3), GROWTH) + N‘%’ ELSE
CONVERT(NVARCHAR(15), GROWTH * 8) + N’ KB’
END), NAME LOGICAL FILENAME ,FILENAME FROM
DATABASENAME.DBO.SYSFILES WHERE GROUPID
<> 0

Q5 Oracle Size of index and
tables

SELECT sum(bytes)/1048576 Megs, segmentname FROM
userextents WHERE segmentname = ’objectname’ GROUP
BY segmentname

Q5 SQL
Server

Size of index and
tables

EXEC spspaceused ’tablename’ @updateusage = ’true’;

Table 4. Storage consumption queries.

Table 4 lists queries used by STMON to obtain infor-
mation about object storage consumption and growth (base
usage statistic #3). The query Q4 gives us the physical loca-
tion of a database table or index i.e.,cij (current assignment
of database object to storage nodes). The query Q5 gives us
the size of database objects tables and indexes (sj) in Oracle
and SQL-Server (base usage statistics3). Taking a series of
these values over time provides data points which STMON
uses to forecast growth of table size(gj).

7 Simulation Results

In this section, we evaluate the efficacy of our heuristic
algorithm in terms of two key metrics (i) accuracy, and (ii)
convergence.

7.1 Accuracy of Heuristic Algorithm

To evaluate the accuracy of the heuristic, we compare
the data movement required by the heuristic solution to that
required for the solution obtained by solving the problem

P using CPLEX [10]. Due to theNP hardness ofP, large
size problems (e.g. 100 storage nodes and 3000 objects)
cannot be solved using CPLEX within an acceptable time
bound. We therefore resort to the alternate approach of cal-
culating the accuracy using a lower bound of the problem
P. We obtain the lower bound solution of the problemP by
LP-relaxation (relaxing the binary constraint of the variable
xij and declaring it a variable within{0,1} range) and solv-
ing the LP-relaxed version of the problemP using CPLEX.
We compute the percentage gap between the data movement
obtained by heuristic and this lower bound as follows.

PercentageGap =
Heuristic− LowerBound

LowerBound
× 100

We generated feasible problems by varying the size of
database objects (j) uniformly within 1-100 MB. We varied
therj for database objects following a Zipfian distribution
(with 20% of database objects being accessed in 80% of the
cases) within 10-1000 bytes/sec. We varied the growth rate
of database objects uniformly between 0-1000 KB/day. For
baseline, we set the number of storage nodes to 100 and
the number of objects to 200. Then, fixing storage nodes to
baseline value (100), we varied the number of objects (500,
1000, 1500, 2000, 2500 and 3000). Similarly keeping the
number of objects to the baseline value of 2000 we varied
the number of storage nodes (50, 75, 100, 125, 150 and
175). We thus obtained 11 cases in total. The value ofT is
kept constant at 15 days (2 weeks) and the threshold value
of utilization (Uth) is kept at 5%. For each of these cases,
we generated 3 problem instances by varying the parame-
ters as described above. In each case, the value of storage
node sizes (Bi) and maximum bandwidth (Um

i) are gener-
ated randomly within a upper bound and lower bound com-
puted so that feasible solutions of the model exist. We then
compute the average percentage gap in data movement.

The variation of thePercentageGapwith varying number
of objects and varying number of storage nodes are shown
in Figures 2 and 3 respectively. In both cases, the gap re-
mains within 7% of the lower bound. This also implies that
in cases where feasible solution exists, the heuristic solution
lies within 7% of the optimal solution. Note, however, that
here we compare against the lower bound solution which
may be worse than the optimal solution. So the actual gap
may be lesser than those shown in the figures.

7.2 Convergence of Heuristic Algorithm

To demonstrate the convergence of the heuristic we plot
in Figure 4 the value of currentdeviation (as presented in
section 5) in each iteration. Note how the deviation reduces

0

1

2

3

4

5

6

7

8

500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

G
ap

Number of Objects

#Storage = 100

Figure 2. Varying number of objects.

0

1

2

3

4

5

6

7

8

60 80 100 120 140 160

P
er

ce
nt

ag
e

G
ap

Number of Storage

#Object = 2000

Figure 3. Varying number of storage nodes.

in successive iterations. The graph shows this deviation for
three different values of number of objects: 1000, 2000 and
3000; the number of storage nodes is kept constant at 50.
The values of other parameters are generated as described
in Section 7.1. Storage node sizes are generated based on
feasibility of the solution. The value of maximum band-
width of storage nodes are generated as random numbers
between 15-25 MBytes/sec.

As can be seen from the Figure 4, the algorithm con-
verges in all three cases within at most 5 iterations. In the
case of 1000 and 2000 objects, the algorithm produces a fea-
sible solution with a final deviation of zero. In the case of
3000 objects the algorithm is unable to produce any feasible
solution. However, unlike a model-based CPLEX approach
that does not produce any solution in case of infeasibility,
the heuristic actually reduces the deviation from 4500 to
about 600 and stabilizes before exiting within 5 iterations.
Thus our heuristic not only generates a solution that is near
optimal but also does so within a very small number of it-
erations. Further, the efficiency of the heuristic is excellent.
The heuristic required approximately 5 seconds on an av-
erage for a run with 3000 objects and 175 storage nodes

on a Pentium 2.4 GHz processor. We therefore believe that
the heuristic is practical and can easily be used for online
database storage management.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5

D
ev

ia
tio

n

Number of Iterations

#Objects = 1000
#Objects = 2000
#Objects = 3000

Figure 4. Convergence of heuristic algorithm.

8 Conclusion

In this paper we presented STORM, an automated ap-
proach that guides effective utilization of nodes in a stor-
age cluster used for database storage. We presented auto-
mated techniques that can monitor the utilization of both
storage nodes as well as database objects such as tables
or indexes, while incurring low overhead. We developed
a math-programming model of the decision-making prob-
lem of optimal layout reconfiguration, which turns out to
be NP-hard. For database administrators, we developed
a simple two-stage greedy heuristic that provides approxi-
mate solutions quickly. Using a simulation study, we have
shown that the greedy heuristic generates a solution for
feasible problem that lies within 7% of the optimal solu-
tion. Further, even in cases where the actual formulation of
the problem does not allow feasible solution, the heuristic
is still effective in significantly reducing the imbalance in
bandwidth utilization across the storage nodes. The time-
complexity of the heuristic algorithm is low order polyno-
mial making it an efficient and practical solution for large
number of database objects and storage nodes. In the future,
we intend to extend our work to other storage systems such
as mail servers and file systems.

9 Acknowledgements

This work was supported by NSF grants IIS-0534530
and HRD-0317692, and a Department of Energy grant No.
DE-FG02-06ER25739.

References

[1] STORM: An Approach to Database Storage
Management in Data Center Environments.
http://www.cs.fiu.edu/ raju/WWW/publications/techreports/TR-
2006-09-02.pdf, September 2006.

[2] N. Allen. Don’t waste your storage dollars: What you need
to know. Research note, Gartner Group, March 2001.

[3] BMC Software. Capacity management and provisioning.
www.bmc.com, 2005.

[4] P. Cappanera and M. Trubian. A local search based heuris-
tic for the demand constrained multidimensional knapsack
problem.INFORMS Journal of Computing, 17:82–98, 2005.

[5] P. Chu and J. Beasley. A genetic algorithm for the multidi-
mensional knapsack problem.Journal of Heuristics, 4:63–
86, 1998.

[6] Computer Associates. Storage management.
www.ca.com/products, 2005.

[7] P. Furtado. Experimental evidence on partitioning in par-
allel data warehouses. InDOLAP ’04: Proceedings of the
7th ACM international workshop on Data warehousing and
OLAP, pages 23–30, New York, NY, USA, 2004. ACM
Press.

[8] K. A. Hua and C. Lee. An adaptive data placement scheme
for parallel database computer systems. InVLDB ’90: Pro-
ceedings of the 16th International Conference on Very Large
Data Bases, pages 493–506, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc.

[9] IBM Inc. Storage area network (san). http://www-
03.ibm.com/servers/storage/san/, 2006.

[10] Ilog Inc. ILOG CPLEX World’s lead-
ing mathematical programming optimizers.
http://www.ilog.com/products/cplex/, 2006.

[11] A. H. G. R. Kan, L. Stougie, and C. Vercellis. A class of
generalized greedy algorithms for the multi-knapsack prob-
lemm. Discrete Applied Mathematics, 42:279–290, 1993.

[12] Karl Nagel & Co. Sarbanes-oxley. http://www.sarbanes-
oxley.com/, 2006.

[13] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.IEEE Computer, 36(1):41–50, January 2003.

[14] S. Khullar, Y. Kim, and Y. Wan. Algorithms for data migra-
tion with cloning. InProceedings of 22nd ACM Conference
on Principal of Database Systems, 2003.

[15] T. T. Kwan, R. McCrath, and D. A. Reed. NCSA’s world
wide web server: Design and performance.IEEE Computer,
28(11):68–74, 1995.

[16] E. Lamb. Hardware spending spatters.Red Herring, pages
32–33, June 2001.

[17] McDATA Corporation. Storage network extension and rout-
ing. http://www.mcdata.com/products/hardware/srouter/,
2006.

[18] M. Mehta and D. J. DeWitt. Data placement in shared-
nothing parallel database systems.The VLDB Journal,
6(1):53–72, 1997.

[19] Oracle Corporation. Automatic storage management tech-
nical overview: An oracle white paper.Oracle Technol-
ogy Network (http://www.oracle.com/technology/), Novem-
ber 2003.

[20] M. Stonebraker, P. Aoki, R. Devine, W. Litwin, and M. Ol-
son. Mariposa: A new architecture for distributed data. In
Proceedings of 10th International Conference on Data En-
gineering, pages 54–65, 1994.

[21] Veritas. Storage and server automation.
http://www.symantec.com/Products/enterprise, 2005.

