
ProvUSB: Block-level Provenance-Based Data Protection
for USB Storage Devices

Dave (Jing) Tian
University of Florida

daveti@ufl.edu

Adam Bates
University of Illinois at
Urbana-Champaign
batesa@illinois.edu

Kevin R. B. Butler
University of Florida

butler@ufl.edu

Raju Rangaswami
Florida International University

raju@cs.fiu.edu

ABSTRACT
Defenders of enterprise networks have a critical need to
quickly identify the root causes of malware and data leak-
age. Increasingly, USB storage devices are the media of
choice for data exfiltration, malware propagation, and even
cyber-warfare. We observe that a critical aspect of ex-
plaining and preventing such attacks is understanding the
provenance of data (i.e., the lineage of data from its creation
to current state) on USB devices as a means of ensuring
their safe usage. Unfortunately, provenance tracking is
not offered by even sophisticated modern devices. This
work presents ProvUSB, an architecture for fine-grained
provenance collection and tracking on smart USB devices.
ProvUSB maintains data provenance by recording reads
and writes at the block layer and reliably identifying hosts
editing those blocks through attestation over the USB chan-
nel. Our evaluation finds that ProvUSB imposes a one-time
850 ms overhead during USB enumeration, but approaches
nearly-bare-metal runtime performance (90% of through-
put) on larger files during normal execution, and less than
0.1% storage overhead for provenance in real-world work-
loads. ProvUSB thus provides essential new techniques in
the defense of computer systems and USB storage devices.

1. INTRODUCTION
When securing computer systems and data, a great deal

of effort is put into ensuring that the perimeter of an or-
ganization is secure. For example, firewalls and DMZs are
designed to keep malicious outsiders from gaining access to,
and exfiltrating, sensitive information. However, it is sub-
stantially more difficult to ensure that information is secure
from a trusted insider within an organization. In some cases,
the insider may be an active adversary, as with the Manning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978398

case where classified data was exfiltrated on portable media
[37]. In other cases, the insiders may be unwitting vectors for
attack, such as in 2008 when CENTCOM employees inad-
vertently loaded malware on to SIPRnet through an insecure
USB drive [34].

USB devices are ubiquitous within organizations and en-
terprises, but because of their potential for propagating mal-
ware and becoming a medium for data exfiltration, their use
has been curtailed or altogether banned [1, 73, 57]. While
enterprise-level solutions to USB device security can poten-
tially detect malware contained within these devices [49],
they require centralized authentication mechanisms in addi-
tion to hardware crypto coprocessors [32]. Most important,
these solutions are incomplete. No signature-based malware
scheme is perfect: new and previously-undisclosed zero-day
attacks, such as those used by the Stuxnet worm [18] and
the Havex trojan [55], render these defenses moot. Further-
more, there are no mechanisms to determine how malicious
software was loaded onto the USB device, nor any means of
determining where this data has been disseminated; conse-
quently, there is no method for understanding the spread of
malware after an attack. After storage is compromised, it is
non-trivial to determine even with hardware forensics where
malware has originated and migrated [9]. Finally, there are
minimal protections for data integrity within the storage.
While filesystem encryption provides confidentiality, data
integrity can still be violated by malicious but authorized
I/O operations as the result of compromising or bypassing
the authentication mechanisms.

Data provenance represents a powerful technique allowing
us to address these shortcomings. The provenance of a data
object characterizes its lineage from the time it was gener-
ated, describing all modifications made that result in the
object’s current state. With provenance mechanisms incor-
porated into storage devices, we would possess the means to
carry out forensic analysis and even to thwart attacks based
on information collected within the device itself.

In this paper, we propose ProvUSB, block-level prove-
nance for USB storage devices. When plugged into a ma-
chine, the ProvUSB device uniquely identifies the host
through trusted hardware, then generates provenance
records describing each I/O operation that is performed
by the host on the device storage partition. Extending
this mechanism, we present a provenance-based integrity

http://dx.doi.org/10.1145/2976749.2978398

protection scheme, providing fine-grained authorization of
access attempts based on the Biba [11] and Low Water-
Mark Access Control (LOMAC) [19, 20] integrity models.
We fully implement the ProvUSB device using an embedded
USB development board and perform a thorough evaluation
covering enumeration overhead, I/O micro benchmarks,
realistic workloads, storage overheads, and two forensic
investigation case studies. The results show that ProvUSB
imposes a once-per-session overhead of less than a second
during device enumeration (the USB protocol handshake),
but throughput and latency for normal device usage is close
to bare metal performance (90% of the original throughput
with a 17% latency overhead) when considering a mean file
size of 10 MB. The overhead of provenance storage is less
than 0.1% in real-world workloads.

Our contributions can be summarized as follows:

• Block-level provenance: ProvUSB leverages Trusted
Platform Modules (TPMs) to authenticate host ma-
chines and collect provenance automatically for each
I/O operation at the block level. To the best of our
knowledge, ProvUSB is the first USB storage solution
to support provenance natively.

• Block-level policy control: We extend ProvUSB
with a policy mechanism that enforces integrity protec-
tions for USB storage at the block layer. This unprece-
dented granularity allows ProvUSB to remain useful in
MLS environments in which devices may pass between
machines of different integrity levels.

• Comprehensive evaluation and analysis: we eval-
uate ProvUSB’s TPM attestation, USB enumeration,
and I/O overhead, using micro and macro benchmarks,
and real-world workloads, demonstrating that over-
head is sufficiently low for practical usage.

The paper is organized as follows: Section 2 provides back-
ground on USB storage, data provenance and TPM attes-
tation. Section 3 describes how ProvUSB works in general,
identifies key challenges of block-level provenance and pol-
icy control, and presents our solution. Section 4 presents
technical details of ProvUSB’s implementation. We evaluate
ProvUSB in Section 5. Section 6 discusses the trade-offs and
limitations, as well as potential mitigations, of ProvUSB.
Section 7 provides an overview of related work, and Section
8 concludes.

2. BACKGROUND
USB Storage: The USB (Universal Serial Bus) specifica-
tion [16] defines protocols used in communication between
a host machine and a device across a serial bus. When a
USB device is plugged into a host machine, the host initi-
ates an enumeration process that identifies the device and
loads drivers on its behalf. During this procedure, the device
reports hardware information (e.g., product ID, vendor ID)
and supported configurations, and requests a specific con-
figuration and set of device interfaces (e.g., Storage, Human
Interface, etc.). Based on this information, the host USB
controller loads and configures the appropriate drivers for
the device to function. To further regulate the standards of
USB devices, the USB DWG (Device Working Group) de-
fines sub standards, categorizing USB devices into different
classes, promoting increased interoperability and reliability

Host D

Host E

USB Object A
Version 0

Host B

Host C

Host AUsed

Used

Used

WasGeneratedBy

Used

Used

UsedUSB Object B
Version 0

USB Object A
Version 1

Figure 1: An example provenance graph from the perspec-
tive of a USB device capture agent. As the device lacks
insight into the internal state of the connected host, hosts
are represented as opaque, monolithic activities.

among devices in the same class [66]. After the normal
USB enumeration, the corresponding storage class driver,
e.g., usb-storage in the Linux kernel, is loaded as a glue
layer between the lower USB transportation layer and the
higher block layer. The USB mass storage protocol provides
support for a subset of SCSI commands, and every device
implementing the standard supports these. When a USB
mass storage device is connected, the host starts scanning
the SCSI LUNs (logical unit numbers) on the device, which
collects the corresponding filesystem information before the
device or partition can be mounted correctly.
Data Provenance: Data provenance describes the history
of manipulations performed on a data object from its cre-
ation up to the present. As such, provenance is a powerful
means of reasoning about the value of a piece of data. Tra-
ditionally, provenance capture has been proposed on hosts
at the system call layer, which requires changes to system
libraries [27] or the operating system [8, 22, 46]. Such sys-
tems require provenance to be saved in the host machine or
relayed to a remote server, placing trust in the software run-
ning on the host. Due to the fine granularity of provenance
collection, these approaches are also prone to requiring stor-
age overheads of gigabytes per day [8, 47].

In this work, we conceptualize data provenance from the
perspective of a USB storage device in order to overcome
the obstacles of storage overhead and trust in the host plat-
form. A visualization of USB storage provenance is shown
in Figure 1, shown here as a directed acyclic graph that is
compliant with the W3C PROV data model [17]. The prin-
cipals we consider are USB storage data objects and host
machines, treating the internal state of the host machine as
opaque. These entities are represented as vertices in Figure
1, while edges encode relationships between the principals
and flow backwards into the history of system execution.
Here, “Used” corresponds to object reads, and “WasGener-
atedBy” to object writes. To prevent cycles from forming in
the graph, a versioning system is used in which a new ver-
sion node is created every time an object is written to. In
this case, we see that Host B used USB Object A, Version 0
and subsequently generated USB Object A, Version 1.
TPM Attestation: A Trusted Platform Module (TPM)
is a tamper-resistant cryptographic module embedded in
the motherboards of many commodity systems. It pro-
vides a hardware root of trust for storing cryptographic keys
and measurements that represent the current system state.
These measurements begin by hashing over the system BIOS
and then successively storing hashes of all software in the
stack, including boot loaders, operating systems and ap-

plications [33, 36, 51, 56]. All measurements are stored
in dedicated Platform Configuration Registers (PCRs) that
reside inside the TPM. The TPM enables third parties to
remotely validate a system’s state using an attestation pro-
tocol. A host’s TPM enrolls keys with a Privacy Certifica-
tion Authority (PCA) or Attestation Certification Authority
(ACA), and acquires an Attestation Identity Key (AIK) cre-
dential key pair. To start TPM attestation, the challenger
sends a nonce (to counter replay attacks) to the target TPM.
The target TPM executes a quote command, which returns a
report of the current PCR values signed with the AIK. Upon
receiving the quote result, the challenger verifies it using the
public AIK and compares the PCR values within the quote
against known good values, which can be obtained from a
factory installation or PCA. A successful attestation implies
that the challenger is communicating with the correct host
and that the system is in a known good state. While TPM
attestations are usually performed remotely over a network,
in this work we enhance the host operating system to sup-
port TPM attestations over the USB channel.

3. DESIGN

3.1 Threat Model & Assumptions
This work considers an enterprise environment that wishes

to protect itself from USB-based threats. For portable stor-
age, we assume that such an organization is willing to make
exclusive use of advanced USB technologies such as Iron-
Keys [32], which is already a common practice in many high-
security environments. We assume that these devices are
distributed within the organization similarly to the way that
“loaner” devices are distributed for the purposes of business
travel: in order to to check-out a device, an employee reg-
isters with a technology office; after a pre-defined length of
time (epoch), the employee is required to return the equip-
ment to the technology office; upon receiving the piece of
equipment, the technology office will perform forensic anal-
ysis and then re-image the device.

Although firewalls, IDS, and security training seminars for
employees may be extensively deployed in such an organi-
zation, it is only a matter of time before powerful attackers
(e.g., APTs [45]) gain a foothold within the network. We
thus assume that any manner of software compromise is pos-
sible on hosts in the network. Therefore, our solution cannot
trust any software running on the host machine, including
the kernel and the entire USB stack. However, we do assume
that all hosts contain a TPM, and that because the attacker
does not have physical access, hardware or firmware attacks
against the TPM are not possible.1

USB storage is a known delivery mechanism for malware,
e.g., Stuxnet [18]. To mitigate the threat of USB-based mal-
ware propagation, we present a provenance-based integrity
protection scheme that prevents data originating within low
integrity sources from flowing to high-integrity targets. To
facilitate this, we make the assumption that all hosts in the
enterprise have been assigned integrity levels by a system
administrator. This process would be intuitive to adminis-
trators, as each host’s integrity level would likely correspond

1While any mechanism that ensures the security of the host
and underlying firmware and hardware may be used, we fo-
cus discussion here on the TPM due to its wide-spread de-
ployment and well-understood integrity semantics [52].

ProvUSB
Host

Attestation
Daemon

Device

USB USB BlocksProv. Tracker
Policy Engine

TPM Manager

TPM

Figure 2: The ProvUSB device contains several components:
a TPM manager, Provenance Tracker, and Policy Engine.
When plugged into the host, the device issues a TPM chal-
lenge to the Attestation Daemon over the USB channel,
which then responds with the signed quote.

to the privilege level of its users. Examples of Low Integrity
(LI) hosts might include unprivileged employee workstations
and machines outside of the demilitarized zone, while a High
Integrity (HI) level might be assigned to administrator hosts
or workstations handling highly sensitive data.
Attack Scenarios: Our architecture is designed to provide
provenance for two notorious forms of USB attack, malware
propagation and data exfiltration.

Malware Propagation. For malware, we specifically focus
on tracking infected hosts that inject payloads onto stor-
age devices, which are later read by other machines. This
pattern of behavior is consistent with live malware samples,
including ZeuS [64] and Stuxnet [18]. Antivirus software
may eventually detect such malware after new signatures
are generated and pushed to the client, but offer little foren-
sic insight into when and how the malware was initially in-
jected. This is usually true because most forensics rely on
the MAC (Modification, Access, Change) time provided by
the filesystem, which only provides the latest timestamps.

Data Exfiltration. In the case of data exfiltration, insider
attacks are particularly dangerous. With a USB storage de-
vice, an attacker can easily exit the physical premises with
large amounts of sensitive data secreted away in their pock-
ets. Most secure USB storage devices constrain the I/O
operations via authenticating the user, either using central-
ized authentication servers or local passwords [31], but do
not address the problem of malicious users with legitimate
access credentials. We aim to ensure that exfiltration events
can be traced back to the host that acted as a source of
the data leak, even if that host has been compromised to
wipe traces of the exfiltration. Additionally, device pol-
icy can be configured such that the storage device erases
all of its blocks (while maintaining provenance metadata)
if it is plugged into an unrecognized or unauthorized host,
substantially limiting the damage from a malicious insider
absconding with the device from an enterprise. In both of
these scenarios, forensic analysis requires that the attacker’s
actions be tracked prior to detection and without requiring
trust in software running on the host.

3.2 Security Goals
Critically, in both of the above attacker scenarios, the

ability to reliably track read and write operations to the
USB storage device is sufficient to explain the actions of the

attacker. With the above considerations in mind, ProvUSB
sets out to provide the following capabilities:

G1 Minimal Trusted Computing Base. ProvUSB’s
TCB must be limited to software running on the de-
vice. ProvUSB must verify the identity of host ma-
chines prior to granting access to the storage partition.
Additionally, ProvUSB must verify both the identity
and the software configuration of privileged machines
prior to exposing provenance information.

G2 Forensic Validity. ProvUSB must provide a com-
plete and exhaustive provenance description of the de-
vice’s interactions with host machines. If provenance
loss occurs it must be detectable by the administrator.

G3 Tamperproof. The host machine should not be able
to disable ProvUSB’s provenance collection logic.

G4 Track Malware Propagation. Given out-of-band
knowledge that host A is known to be infected at time
t (e.g., Antivirus alert), ProvUSB must 1) identify the
hosts that contributed to A’s internal state prior to
time t, and 2) identify the hosts that used A’s internal
state between time t and the present.

G5 Explain Data Leaks. Given out-of-band knowledge
that file f was leaked prior to time t (e.g., f ’s con-
tents were published online), ProvUSB must identify
the hosts that had knowledge of f prior to time t.

G6 Integrity Assurance. For data in the storage par-
tition, ProvUSB must prevent all integrity violations
in which data from a lower integrity host flows to a
higher integrity host.

3.3 Design Overview
An overview of the ProvUSB architecture is shown in Fig-

ure 2. ProvUSB requires host machines to be equipped with
a TPM chip, an Attestation Daemon in user space to commu-
nicate with the TPM, and an enhanced USB storage driver
in the kernel space to support TPM attestations. Several
components are introduced on the device side: a TPM Man-
ager, Provenance Tracker, and Policy Engine. The host ma-
chine and the device communicate exclusively over the USB
channel. When a ProvUSB device is connected to the host,
the host initiates a TPM attestation following normal enu-
meration. The TPM Manager verifies the attestation on
the device side, then permits the host to perform storage
operations. During normal usage, the Provenance Tracker
generates provenance for all I/O events performed on the
device. An optional Policy Engine can be enabled to autho-
rize access attempts. During device usage, all provenance
is created and managed within the ProvUSB device. While
the software stack within ProvUSB is included in the TCB,
no software running in the host system is trusted.

3.4 Identifying Host Machines
Before we can track device provenance, we need a means of

authenticating the hosts to which ProvUSB connects. The
identifier should be persistent over the host’s lifetime, mean-
ing volatile or spoofable values, such as the MAC address
of a NIC, will not work. The device must also be able to
obtain the identifier over the USB channel. While other ap-
proaches including host fingerprinting over USB exist [6],

Host Device
GetDescriptor(Interface)

Storage

end of normal device enumeration
…

Init TPM Attestation
nonce

TPM AIK public key

TPM Quote result

Ve
rif
y

At
te
st
at
io
n

end USB TPM attestation, begin normal operation

SCSI Scanning

…

Figure 3: In device enumeration with ProvUSB, the host
initiates an attestation procedure over the USB channel to
allow the device to authenticate the host.

our approach is to leverage TPMs, found in most current
commodity machines.

To allow TPM attestation over USB, we make use of a
technique introduced in the Kells framework [12]. Kells uses
TPM attestations to authenticate hosts prior to exposing
sensitive storage partitions. In the event that attestation
fails, Kells only exposes the public partition instead of the
private one. It accomplishes this functionality through the
introduction of a USB-based TPM attestation, as shown in
Figure 3. In ProvUSB, the TPM Manager is able to verify
the identity of the host using the following procedure: (1)
During normal device enumeration, the host USB storage
driver recognizes the device as ProvUSB-enabled based on
its vendor ID. (2) Following enumeration, the host sends out
a USB Accept Device Specific Command (ADSC) [72] to the
device asking for a 20 byte nonce, which marks the beginning
of the TPM attestation. (3) The device’s TPM Manager
sends a nonce to the host. (4) The host USB storage driver
sends the nonce to the Attestation Manager, which generates
a TPM quote and returns the TPM AIK public key and
quote to the storage driver. The host storage driver sends
the public key and quote to the device over ADSC. (5) On
the device, the TPM Manager validates the TPM AIK public
key, using it to verify the TPM quote.

If the verification succeeds, the device permits the SCSI
scanning request, allowing the host machine to mount the
partition, and the device moves into the provenance track-
ing phase. If verification fails, the storage partition is not
exposed to the host. As described above, depending on how
device policy is configured, a failed verification can also re-
sult in the device erasing all of its blocks to prevent exfil-
tration attempts. Furthermore, when ProvUSB devices are
deployed in enterprise environments, host machines should
also reject non-ProvUSB storage devices to avoid attacks
from uncertified devices.

3.5 Block-level Tracking and Protection
Provenance Tracking: When designing ProvUSB, we ini-
tially considered instrumenting a specific filesystem, as was
done in the past for host system provenance [27]. However,
this would constrain our approach to a particular filesys-
tem format, which was in conflict with the Plug and Play

(a) Read Operations (b) Write Operations

Figure 4: ProvUSB’s Integrity Model. High Integrity (HI)
hosts are not permitted to read Low Integrity (LI) data
blocks from USB storage. HI data blocks transition to an
LI state if written to by an LI host.

nature of USB devices. Even worse, filesystem layer moni-
toring could be bypassed using raw I/O [58, 70], leading to
incomplete provenance. Additionally, we wished to be able
to track storage operations at the finest possible granularity.

Instead, ProvUSB integrates provenance capture into the
lower layers of the storage device; provenance is generated
for all I/O operations at the SCSI layer. By designing the
provenance at the block level, we are able to make ProvUSB
filesystem agnostic. This means, although ProvUSB requires
specialized firmware or software running on the device, it can
be adopted without requiring any changes to the filesystem
format of the storage partition.

One consequence of this approach is that, in many
cases, block-level provenance will need to be translated
into human-readable filesystem semantics before it can be
interpreted by an investigator. Auxiliary tools that are
compatible with ProvUSB’s provenance store will therefore
be necessary to translate block-level activity to file level
information. Such tools can be built as straightforward
extensions of block reverse engineering mechanisms such as
filesystem checkers or even built as file-to-block mapping
services embedded within existing filesystems. In Section 4,
we implement a tool that correlates files with their blocks for
the FAT filesystem. By relegating this translation to a post-
processing step, we decouple provenance collection from
interpretation and ensure that our design is independent of
actual filesystem implementation.
Block-level Integrity Protection: While a variety of
USB devices appearing on the market [32, 38] and in the
literature [12] provide data confidentiality, less attention has
been paid to integrity assurance. We now discuss an exten-
sion to ProvUSB that provides provenance-based enforce-
ment of an MLS integrity lattice. For clarity, we intro-
duce simple lattice featuring Low Integrity (LI) and High
Integrity (HI) levels, although our system could accommo-
date arbitrarily many integrity levels. Although we choose
to focus on integrity assurance, the following could also be
easily adapted to provide fine-grained confidentiality in an
MLS model that provides Bell-LaPadula guarantees [10].

To provide a realistic operating environment for USB stor-
age, ProvUSB’s integrity model borrows from both Biba [11]
and LOMAC [19, 20] in that it assumes immutable host la-
bels and mutable data labels. Like Biba, hosts are assigned
an integrity level at creation time and subsequently have a
null transition state. Blocks on the storage device have a
stateful transition between integrity levels, like LOMAC. At
creation time, all blocks are in an HI state. Their current

level is equal to the lowest integrity class found in the ob-
ject’s provenance ancestry (e.g., the lowest integrity writer).

On access attempts, ProvUSB’s Policy engine applies the
enforcement rules pictured in Figure 4. For read operations,
ProvUSB grants the request only if the host machine’s in-
tegrity level is less than or equal to the data block’s integrity
level. For write operations, ProvUSB grants all requests. If
an LI host writes to an HI block, ProvUSB transitions the
block’s level to LI. An additional transition (not pictured) is
if ProvUSB detects that an entire block has been overwritten
by an HI host, the block returns to an HI state.
Optimization: Provenance Filtering: The automatic
capture of provenance is associated with high storage over-
heads. For example, several provenance-aware operating
systems generate more than 1 GB of provenance during ker-
nel compilation [8, 47]. While we expect the overall volume
of activity to be less for a USB device than an operating
system, the storage overhead imposed by provenance collec-
tion will nonetheless dictate the frequency with which de-
vices need to be collected and re-imaged by the technology
office (§3.1). We introduce the following filtering optimiza-
tion to the ProvUSB device provenance daemon to ensure
that provenance storage costs are minimized without loss of
expressivity, considering the following three scenarios:
(1) Consecutive Reads: A host reads the same block mul-
tiple times prior to a new write. After the initial read, we
assume this data already exists on the host.
(2) Consecutive Writes: A host writes to the same block
multiple times without intervening reads from another host.
Since this block is already tagged with the host’s integrity
level, recording a second write event provides no new infor-
mation except the latest timestamp.
(3) Write, then Read: A host reads from a block that it had
previously written. Here, the consumed data was already
assumed to be on the host, so recording the read event is
not necessary.
Our versioning algorithm filters the number of provenance
events recorded, maintaining an in-memory map structure
for the current version of each block in use. Each version is
a tuple consisting of:
< BlockNum, V ersionNum,HwGB , TSwGB , UsedBy >
where BlockNum is the block number, V ersionNum is a
monotonically increasing integer representing the current
version of BlockNum, HwGB is the label of the host that
most recently wrote to the block, and TSwGB is the times-
tamp when HID first wrote to BlockNum. UsedBy is a list
of tuples (HUB , TSUB) where TSUB is the time that HUB

first read the current version of BlockNum. The filtering
algorithm works as follows:

Read from Host HA to BlockNum: the device dae-
mon updates BlockNum’s struct, appending UsedBy iff
HwGB 6= HA and ∀HUB ∈ UsedBy,HUB 6= HA .
Write from Host HA to BlockNum: iff HwGB 6= HA, the
device daemon writes BlockNum’s struct to flash storage,
re-initializes the struct, sets HwGB = HA and TSwGB equal
to the current timestamp.

The result is that flushes to storage never occur for consec-
utive reads, and only occur on writes when a new host writes
to a given block. When the ProvUSB device receives an ejec-
tion signal, the in-memory structure is flushed to storage,

Figure 5: ProvUSB Software Stacks. The left figure shows
a software stack of a USB storage in the view of a host ma-
chine. The right box displays the software stack of ProvUSB
devices. All layers are mapped between the host machine
and the storage device.

Figure 6: ProvUSB Architecture. In the host machine, the
nltpmd communicates with the TPM and relays the TPM at-
testation results to the usb-storage driver. In the ProvUSB
device, f-mass-storage driver verifies the TPM attestation
using krsa and monitors each I/O operations at the block
level, enforcing the policy control and relaying the prove-
nance to provd in the user space.

saving provenance and block integrity information, which is
read back into memory next time the device is plugged in.

4. IMPLEMENTATION
We implemented ProvUSB on a Gumstix COM (Computer-

on-Module) [25] equipped with a USB OTG (On-The-
Go [71]) interface, acting as a USB storage device formated
in FAT16 filesystem, as shown in Figure 5. The host ma-
chine was a TPM-equipped desktop running a modified
version of Linux. An overview of the architecture is shown
in Figure 6.
Host Modifications: We modified the Linux usb-storage

driver to support TPM attestation over USB. ProvUSB de-
vices enumerating to the host signal their presence by using
vendor ID 0xb000 to distinguish themselves from other USB
storage devices. After the normal enumeration and before
the driver begins scanning the storage device, the host ini-
tiates a TPM attestation procedure as outlined in Section
3.4, beginning with sending an ADSC over the USB control
channel (EP0) to activate the TPM attestation procedure
on the device side. Note that because EP0 is mandatory
for all USB devices and ADSC uses EP0, ADSC is natively
supported by the USB hardware.

In user space, the NetLink TPM Daemon (nltpmd) listens
on a netlink socket for a new TPM challenge (i.e., a nonce)
from the usb-storage driver. Once the nonce arrives, it
uses the TrouSerS API [69] to talk to the TPM hardware,
then sends both the TPM quote and AIK public key back to
the usb-storage driver. The driver delivers this response to
the ProvUSB device over an ADSC message. Immediately
after this, the driver requests SCSI scanning the device stor-
age in order to mount the partition, which is permitted by
ProvUSB only if it successfully authorizes the host.
Device Modifications: In the kernel space of the USB
storage device, we modified the f-mass-storage gadget
driver. We created a new device entry mapping for ven-
dor ID 0xb000 and added it into the USB Mass Storage
compliant devices list. To support TPM attestation over
USB, we added new EP0 callbacks to process ADSCs from
the host machine. To manage the TPM AIK public keys
and maintain the policy control for each block, we added
two linked lists to the gadget driver. We backported the
RSA verification implementation from Linux Kernel 3.13
to directly support signature verification in kernel space.
We also patched the crypto subsystem to make it callable
in the EP0 handlers (IRQ context). Finally, we added a
kernel timer to the gadget driver so TPM attestations can
gracefully fail in the event of a timeout, which could occur
if the host machine was not equipped with a TPM or the
TPM attestation response was sent late. In the event of a
failure, the gadget driver rejects subsequent requests from
the host machine.

In the user space of the USB storage device, a prove-
nance daemon (provd) communicates with the kernel gad-
get driver using a netlink socket. Provd performs three key
tasks: 1) TPM management, 2) policy configuration, and 3)
provenance logging. TPM management supports adminis-
trative tasks such as adding TPM AIK public keys to the
gadget driver key store, or removing old ones. The pol-
icy configuration component allows administrators to assign
integrity labels to new machines. It also maintains persis-
tent storage of the integrity labels of different blocks on the
storage partition for when the device is unmounted, which
is necessary for bus-powered devices. This information is
loaded automatically into the gadget driver when the de-
vice is plugged into a host machine again. The provenance
logging component runs in two configurations, ProvFlush
and ProvSave. The ProvFlush configuration synchronously
flushes each new provenance record to persistent storage as
soon as it is created. The ProvSave configuration imple-
ments the optimization described in Section 3.5 in which
provenance is only flushed to persistent storage on write op-
erations and initial read operations among consecutive ones.
To bridge the semantic gap between human-interpretable file
metadata and block provenance, we implemented a utility
called file2block (f2b) that can identify the blocks corre-
sponding to a given file name in the FAT16 filesystem. After
recovering the blocks associated with a file, the provenance
of each block can then be queried individually to discover
the file’s provenance.

5. SECURITY ANALYSIS
Minimal Trusted Computing Base (G1). To verify

the identity and software configuration of the host, ProvUSB
performs a TPM-based remote attestation over the USB in-
terface. ProvUSB does not trust any configuration infor-

mation reported by the host during USB enumeration, as
the host could spoof these messages. The host cannot lie
about the operations it performs on the device’s storage
partition, as ProvUSB is able to record the ground truth
of the hosts interactions with the USB storage. Therefore,
ProvUSB only trusts software running onboard the device.

Forensic Validity (G2). ProvUSB provenance informa-
tion is aggregated and analyzed by an enterprise’s technol-
ogy office periodically upon device check-in. The length of
epochs is parametrizable, but we envision that device check-
ins will occur on the order of days. Failure to return a
ProvUSB device could lead to incomplete provenance, but
in this instance the technology office is alerted to the possi-
bility of nefarious behavior on the part of the employee that
checked-out the device. From this, we can conclude that G2
is satisfied, as at the end of each epoch the administrator is
guaranteed to have either a complete provenance history for
the device or an alert to the possibility of misbehavior.

Tamperproof (G3). A violation of Goal G3 would
occur if an employee is able to manipulate ProvUSB in or-
der to insert or remove provenance records between epochs;
through use of a modified version of the Yocto Linux ker-
nel and USB OTG, the storage of provenance is separated
from the storage partition exposed to the host, making it ex-
tremely difficult to view or modify provenance records with-
out physically opening the device. The possibility of such
attacks could be further mitigated through implementing
ProvUSB on tamper-resistant hardware, in much the same
way that IronKey ensures confidentiality guarantees [32].
Another possible attack that could lead to lost provenance
would be to exploit the race condition between the times
when a block operation occurs and when its provenance
record is written to persistent storage. For example, imme-
diately after a write operation the employee could physically
unplug the device, causing the device to shut down before
ProvUSB can record the operation’s provenance. While our
prototype implementation would be vulnerable to this at-
tack, this threat could be remedied by extending ProvUSB
with a capacitor-backed mechanisms to flush out such meta-
data quickly when disconnected from the host power source.

Track Malware and Explain Data Leaks (G4,G5).
Given Goals G2 and G3, it logically follows that G4 and
G5 are satisfied. This is because previous work has already
demonstrated that data provenance can be used to track the
propagation of malware [5, 21, 54, 65, 74] and detect data
exfiltration [8, 35, 40, 41, 43]. We provide specific examples
of how ProvUSB can detect malware propagation in §6.6.

Integrity Assurance (G6). Given Goals G2 and G3,
it logically follows that G6 is satisfied. This is because pre-
vious work has demonstrated that provenance histories can
be used to provide fine-grained access control enforcement
[7, 48, 50]. We provide specific examples of how ProvUSB
can prevent integrity violations in §6.6.

6. EVALUATION
We now evaluate the performance of the various compo-

nents of ProvUSB. The host machine used in our tests is a
Dell Optiplex 7010 desktop with a quad-core Intel i5-3470
3.20 GHz CPU, 8 GB memory, standard USB 2.0 ports
and an STM TPM (version 1.2 and firmware 13.12), run-
ning Ubuntu LTS 14.04 (x86-64) with Linux kernel version
3.13.11 and TSS API 1.2 rev 0.3. The ProvUSB device is a
Gumstix Overo COM with an ARMv7 600 MHz CPU, 256

TPM Operation Min Avg Med Max Dev

PCR Read 10.633 12.188 11.978 23.199 1.709
AIK Read 48.220 57.244 60.273 60.491 5.218

Quote 323.647 344.028 347.858 360.209 6.100

Table 1: TPM operation time (ms) averaged by 1000 runs.

Enumeration Min Avg Med Max Dev

Kingston2G 338.446 343.003 340.682 389.194 10.630
SanDisk16G 119.962 122.583 122.550 125.309 1.383

Original 40.246 65.382 50.857 97.724 22.286
ProvUSB 839.120 850.743 851.300 851.766 2.670

Table 2: USB enumeration time (ms) averaged across 20
plugging operations for different devices.

MB flash memory and a USB OTG port, running Yocto 1.6
with Linux kernel version 3.5.7. The device uses an 8 GB
class 10 microSDHC flash memory card; the USB storage
partition is 1 GB in size, formatted as a FAT16 filesystem
with the logical block size of 512 bytes. We compare the
ProvUSB storage with two commercial USB storage devices:
a Kingston DataTraveler 2 GB USB thumb drive, and a San-
Disk Cruzer Fit 16 GB USB stick. All devices were plugged
into the same USB 2.0 port throughout the evaluation.

6.1 TPM Operations
One source of overhead imposed by our system is the intro-

duction of a TPM-based attestation procedure during device
enumeration. We determined the cost of host attestation by
measuring the completion time of each TPM operation used
by ProvUSB. Averaged across 1000 iterations, we found that
reading the system measurement from PCRs takes 12.19 ms,
while retrieving the AIK public key takes 57.24 ms. The cost
of attestation is dominated by the quote operation, which re-
quired 344.03 ms to complete on average, with a standard
deviation of 6.10 ms, as shown in Table 1. Fortunately, this
overhead is a one-time effort during USB enumeration, and
does not affect the runtime performance of the device. The
speed of TPM operations is constrained by the performance
of the TPM hardware. Though TPM are usually low-speed
chips, the enumeration overhead could be brought to mini-
mum through the help of high-end TPM chips that uses the
400 KHz I2C bus [28].

6.2 USB Enumeration
To show the overhead of USB enumeration using ProvUSB

compared to other commercial devices, we measured the
complete procedure from the host side, starting from the
beginning of the device probing, to the TPM attestation
protocol (for ProvUSB), and including the SCSI scanning
for the USB storage, by manually plugging each storage de-
vice into the host machine 20 times. As shown in Table 2,
Kingston 2G takes 343.00 ms on average while SanDisk 16G
needs 122.58 ms. Compared to these products, the Gum-
stix board we use for ProvUSB is much faster, spending only
65.38 ms to finish the enumeration. This is due to the host
kernel quickly recognizing the device as a USB storage gad-
get and loading the corresponding driver immediately. The
time required by ProvUSB is 850.74 ms on average. This is
high compared to commercial products, but this is a one-
time effort per session or plugging. Less than one second is
required to mount a partition.

Figure 7: ProvUSB throughput (MB/s)
using fileserver workload with differ-
ent file sizes.

Figure 8: fileserver throughput
(MB/s) comparison of different devices
with different mean file sizes.

Figure 9: Provenance storage us-
ing fileserver workload with different
mean file sizes.

Figure 10: Block control storage us-
ing fileserver workload with different
mean file sizes.

Figure 11: Provenance overhead with
ProvUSB optimization using Direct I/O
with different read-write ratios.

Figure 12: Performance comparison of
different USB devices using real-world
workloads.

6.3 I/O Operations
To measure the runtime performance of ProvUSB, we used

filebench [62] to benchmark throughput and latency, then
compared the results to the Kingston and SanDisk devices.
We chose the fileserver workload model within filebench

as the testing base, because it covers all file related opera-
tions, including read, write, create, open, close, delete, and
stat. However, as fileserver was designed to benchmark
file servers, to reflect a plausible usage pattern for a USB
storage device, we changed the default configuration as fol-
lows: The mean file size in operation ranged from 1 KB to
10 MB; the number of files in total was fixed at 20; the num-
ber of operation threads was set to 1; the I/O size was fixed
to 1024 bytes, and the run time was fixed to 60 seconds. We
selected this configuration to represent a single user making
rapid edits to a set of documents, which is a more realistic
usage pattern for a USB device.

The throughput of ProvUSB under different configura-
tions is shown in Figure 7. Original signifies the origi-
nal Gumstix device without ProvUSB functionality enabled.
ProvFlush refers to the ProvUSB device synchronously flush-
ing provenance once created. ProvSave is the ProvUSB
device using the optimized provenance logging method de-
scribed in Section 3.5. When the file size is small (1 KB and
10 KB), ProvUSB achieves roughly half of the throughput
of the original device. Intuitively, the cost of creating a new
provenance record remains the same regardless of the size
of the file being accessed. As such, ProvUSB still needs to

examine a large number of blocks when files are distributed
sparsely in the filesystem, since each file holds the whole
block (cluster) even if it is small. As the mean file size grows
(from 100 KB to 10 MB), both ProvFlush and ProvSave
demonstrate throughput similar to the original device. For
example, when the file size is 10 MB, the throughput of Orig-
inal is 6.0 MB/s, while that of both ProvFlush and ProvSave
are 5.4 MB/s (10% overhead).

Comparing ProvUSB to the unmodified Gumstix Overo
COM may not be representative of overhead imposed on
commercial USB storage devices. To address this, we then
compared ProvUSB’s original device performance on the
same benchmark against commercial storage devices from
Kingston and SanDisk. The results are shown in Figure 8.
Kingston 2G demonstrates a high throughput jump when
the mean file size is bigger than 1 MB, but the lowest
throughput when the mean file size is small. SanDisk 16G
shows better throughput compared to Kingston 2G when
the mean file size is small, and maintains the throughput
at around 7 MB/s when the mean file size is greater than
1 MB. The original ProvUSB device has the best through-
put when the mean file size is small, and a comparable
throughput with SanDisk 16G when the mean file size is 10
MB. In general, as the mean file size increases, the utiliza-
tion of each block gets better, as well as the utilization of
transmission bandwidth of storage devices.

The corresponding latencies for the tests from Figures 7
and 8 are shown in Table 3. Both ProvFlush and ProvSave
perform comparably to the original device when the mean

Device/Configuration 1K 10K 100K 1M 10M

Original 1.0 2.1 11.9 105.5 768.6
ProvFlush 3.1 3.6 12.3 104.8 897.6
ProvSave 2.9 3.5 13.5 111.3 856.5

Kingston2G 48.5 42.3 62.3 93.4 386.6
SanDisk16G 3.5 4.3 10.3 70.1 722.4

Table 3: Latency (ms) of ProvUSB under different config-
urations, Kingston 2G, and SanDisk 16G devices using the
fileserver workload with different file sizes.

file size is smaller than 10 KB due to the sparse block allo-
cation for small files. With a 10 MB file size, ProvFlush im-
poses 16.8% overhead while ProvSave introduces 11.4% over-
head compared to the unmodified device. Kingston 2G’s la-
tency is largest when the mean file size is smaller than 1 MB,
but smallest when the mean file size is 10 MB, which also
explains its throughput behavior. We suspect that its USB
microcontroller is optimized for large bulk data transfer, and
the result is reflective of realistic workloads on this device.
Aligned with its throughput model, SanDisk 16G shows sim-
ilar latencies with ProvFlush and ProvSave’s when the mean
file size is small, and latencies comparable to the unmodi-
fied device as the mean file size increases. ProvUSB devices
thus perform comparably to commercial devices, providing
a realistic assessment of overheads we introduce if our mech-
anisms are deployed on production devices.

6.4 Provenance Collection
To evaluate the provenance storage costs introduced by

ProvUSB, we measured the provenance log size during the
filebench testing. As shown in Figure 9, both ProvFlush
and ProvSave generate around 800 KB of provenance, when
the mean file size is 1 KB. Besides the total number of files
(20) in operation, the main reason for this relatively large
amount of provenance is the large number of I/Os (read and
write) performed by filebench given the running time, as
a result of the small file size. In this case, ProvFlush and
ProvSave have 305 and 329 I/Os respectively. This also ex-
plains why the throughput and latency of ProvUSB are not
optimal when the mean file size is small (< 10 KB). As the
mean file size increases, the overhead of provenance logging
decreases, since each I/O takes more time, and filebench

does not repeat the same I/O multiple times. For exam-
ple, when the mean file size is 100 KB, ProvFlush has 80
I/Os, whereas ProvSave has 73 I/Os in total. If we assume
the total amount of data is 200 MB (10MB × 20, based on
the fileserver workload configuration) when the mean file
size is 10 MB, the provenance storage takes around 120 KB,
introducing only 0.06% storage overhead.

In addition to provenance logging, ProvUSB also tracks
the integrity level of each block. This block control infor-
mation is loaded automatically every time the ProvUSB de-
vice powered on, helping enforce persistent block-level pol-
icy control. As shown in Figure 10, regardless of the dif-
ferent scale of the provenance storage overhead, the block
control storage pattern looks almost the same as the prove-
nance storage, demonstrating that write operations are dom-
inant in the filebench benchmark. In our testing, we find
that the number of write I/Os usually doubles the num-
ber of read ones, which is the behavior of filebench using
the fileserver workload. To mitigate the impact of re-
peated I/Os during the workload, we compute the average

Provenance per I/O 1K 10K 100K 1M 10M

ProvFlush 2.76 2.78 3.14 11.91 148.80
ProvSave 2.75 2.78 3.17 11.32 148.20

Table 4: Provenance overhead (KB) of ProvUSB per I/O
using the fileserver workload with different file sizes.

Storage Size KVM Tor ClamAV

Workload Files 581 MB 152 MB 581 MB
Provenance 186 KB 81 KB 471 KB

Overhead 0.03% 0.05% 0.07%

Table 5: Provenance storage overhead using ProvUSB
(ProvFlush) is less than 0.1% for different workloads.

provenance overhead (provenance + block control storage)
per I/O, as shown in Table 4. Even when file size is small
(< 10KB), both ProvFlush and ProvSave show a decrease
in overhead due to reduced interaction with the filesystem,
such as searching the allocation table and updating file meta-
data. As the file size increases, the overhead of provenance
is amortized accordingly. For instance, when the file size is
10 MB, the provenance overhead is no more than 1.5% of
the original storage.

The difference between ProvFlush and ProvSave is ob-
scured in filebench, as shown in Figure 9 and Table 4, due
to the effect of the system cache (page cache) in the Linux
kernel, which may buffer a significant portion of the USB
storage partition in memory. To verify the advantage of
ProvSave, we used direct I/O (bypassing the system cache)
to read or write the Linux kernel 4.4 zipped source file (83
MB) 100 times for 6 runs, each of which randomly gener-
ated the read-write ratio based on a uniform distribution
from 0 to 1. We then measured the provenance log size for
ProvFlush and ProvSave with the proportion of writes rang-
ing from 0% to 50%. The results are shown in Figure 11.
As the proportion of writes increases, the provenance stor-
age overhead increases almost linearly in ProvSave, from 0
KB to 2 MB, whereas the storage overhead in ProvFlush
stays almost constantly at 2.6 MB, since ProvFlush does
not distinguish read operations from write ones to filter
loggings. When the probability of write operations is less
than 40%, ProvSave reduces provenance storage cost by
over 50%. While system cache is desirable, large volume
USB storage (e.g., large external hard drives) would benefit
from ProvSave since only a small portion of the storage can
be cached. Applications bypassing the system cache (e.g.,
databases) would also benefit from ProvSave. The size of the
block integrity storage stays the same (5696 bytes) during
the testing regardless of the number of write operations.

6.5 Real-world Workloads
To arrive at a more accurate estimate of ProvUSB’s per-

formance in practice, we chose three real-world workloads
using USB storage devices, then compared the performance
of ProvUSB (ProvFlush) against the Kingston and SanDisk
devices. In the KVM workload, an Ubuntu 14.04 image was
loaded from the storage device to create and install a KVM
virtual machine automatically on the host machine. The Tor
workload benchmarked the portable Tor browser in storage
devices by accessing the browser performance benchmarking
web site [4]. The final workload unzipped the Ubuntu 14.04
image file in device storage and then ran ClamAV [39] to

scan the whole image directory for virus. All measurements
are in seconds, as shown in Figure 12, except the Tor mea-
surement, which are scores given by the benchmarking web
site, and are divided by 10 to fit into the figure.

Compared to commercial USB devices, ProvUSB takes
less time to finish the new virtual machine creation and in-
stallation. In the Tor browser benchmarking, all the three
devices share similar scores. Within the ClamAV virus scan-
ning benchmark, ProvUSB doubles scanning time compared
to the other two devices. This is not surprising consider-
ing that unlike with the KVM and Tor workloads, where
not all the files within the storage are needed to finish the
task, a normal virus scanning has to touch every file in the
storage to fulfill the job. To confirm the effect of system
caching on system performance, we relaunched ClamAV im-
mediately after completion of the first test. As expected,
scanning completes much faster in the second iteration (ap-
prox. 20 seconds) regardless of which storage device is used.
The corresponding provenance logging by ProvUSB was also
collected for all workloads, shown in Table 5. Compared
to workload file size, the overhead of provenance storage is
consistently less than 0.1%. The ClamAV workload gener-
ates the most provenance, providing more insight as to why
ProvUSB imposes higher performance overhead during virus
scanning. In the majority of cases, enabling provenance col-
lection mechanisms has little effect on real-world workloads.

6.6 Case Study
We now present a scenario in which ProvUSB can help

to track (and possibly prevent) the spread of malware. The
Stuxnet virus leveraged multiple USB-based attack vectors
in an attempt to spread to its intended targets. One of these
methods of propagation was to embed a malicious payload
in an autorun.inf file on the storage device [18]. Until
recently, this file denoted a special system script that was
automatically executed by Windows operating systems upon
connecting a device to the host.

In this scenario, we have an administrator Alice (Host A)
and a normal user Bob (Host B), and Bob’s host has been
infected with Stuxnet. Alice has used Host A to configure
and distribute ProvUSB devices throughout the organiza-
tion, including installing a policy that marks Host A as high
integrity (H) and Host B as low integrity (L). In an at-
tempt to deliver a critical system patch, Alice now plugs
her ProvUSB device into the infected Host B.

Case 1: Detect Malware Propagation. Once the storage
is plugged into Host B, Stuxnet writes a malicious au-

torun.inf to the device, yielding the provenance record
<201509161750,B,w,2505,1282560,512>, consisting of a
timestamp, host machine identifier, operation, block num-
ber, file offset, and amount. Let us assume that block 2505
is the only block needed to save the file. While the storage
partition of the device has been infected, ProvUSB is able
to collect provenance as normal. Eventually, Alice may dis-
cover the infection on one of the hosts in her network. She
can then use the f2b tool to identify the blocks associated
with autorun.inf, query the provenance to reconstruct the
chain of infections, and prepare a recovery plan.

Case 2: Integrity Assurance. Using Host A, Alice has
configured her ProvUSB device to automatically run diag-
nostic utilities on the host via an autorun.inf script. As a
result, prior to the attack ProvUSB will possess a block con-
trol record <2505,H> marking block 2505 as high integrity.

When Alice plugs her device into Host B, Stuxnet will again
attempt to infect the device. ProvUSB will compare the
access request <w,2505,integrity(B)> against the integrity
label <2505,H>, and transition the block’s integrity label to
<2505,L>. When Alice plugs the device back into Host A,
block 2505 will not be permitted to flow to the high integrity
host. This example demonstrates that integrity protection
can be enabled on any critical system blocks on a ProvUSB
device, preventing low integrity objects from flowing to high
integrity hosts, thereby quarantining sensitive machines in
the network from USB-borne malware.

7. DISCUSSION
Smart Storage Devices: While low cost USB thumb
drives cannot run their own operating systems, a variety of
enterprise devices contain CPUs or cryptographic coproces-
sors, including products from IronKey [32] and Kingston
[38]. We believe these devices already contain the necessary
hardware to support adapted versions of ProvUSB. There
are many embedded devices in the market that support
full operating systems. Gumstix Thumbo [26] runs an
ARM processor and embedded Linux. Intel Edison [29] and
Google Project Vault [24] provide OS distributions in an
SD-card form factor. USB Armory [30] embeds an ARM
processor and Linux in the USB stick. Given this trend of
increasingly sophisticated storage devices, we are confident
that device provenance is achievable for USB storage.
Provenance Relay: With ProvUSB, provenance logging
requires less than 0.1% storage overhead compared to the
workload file size of a given benchmarking run. Never-
theless, the device would run out of space given enough
time, depending on the storage size and the frequency
of workloads. Ideally, provenance should be relayed to a
trusted server using a secure channel directly by the device
itself. Enterprise versions of some secure USB devices (e.g.,
IronKey) are already capable of communicating with such
a server [31]. When networking is not viable, we rely on
the owner or sysadmin of the device with root permission
to export the provenance manually, making sure enough
space is left for normal functionality. Unlike provenance
logging, block integrity information is always kept within
the device to consistently enforce policy control within the
device. This space could be reserved based on the storage
size, For example, a 16 GB storage with 33,554,432 blocks
(assuming 512 bytes per block) needs 268 MB in total, since
we require 8 bytes per block to store integrity metadata.
System Caching: As a side effect of caching in the host
operating system, the timestamps for some ProvUSB prove-
nance records do not accurately reflect the actual access
time. Modern operating systems apply multi-layer caches
to improve the performance of USB storage. For instance,
when mounting a smaller storage partition (1 GB), we
observed that the Linux kernel reads most storage into
the page cache to speed up future operations. Once data
is in the page cache, I/O operations for the USB storage
partition occur in memory, outside of the view of the USB
storage driver. When write operations occur, a dedicated
kernel thread periodically flushes data to the block device
(write-back). A by-product of this behavior is a reduction
in benefit of ProvUSB’s provenance storage optimization,
shown in Figure 9, though the optimization is still useful
for large storage and certain applications. Fortunately,
host caching does not impact the forensic validity of block

provenance collected by ProvUSB. Provenance is eventually
generated for all writes to USB storage, and for the first read
to a given block after enumeration. Although repeated reads
to the same block may be masked by host-level caching, it
is known that the host accessed the block.
Filesystem Integrity: In order for ProvUSB devices to
be mounted by high-integrity hosts, blocks containing the
filesystem’s metadata need to be made world read-writable.
This leaves a small window of opportunity for malware
propagation. If attackers discover an exploitable bug in the
host’s filesystem subsystem, this may allow them to infect
the host and the device. Otherwise, this offers limited ad-
vantage to attackers, as writing data to the filesystem blocks
would merely result in corrupting the storage partition. We
are not aware of any malware that propagates through the
filesystem metadata of a USB storage device.2

8. RELATED WORK
need for smart USB storage devices armed with advanced

features has been well noted both by industry and in the
literature. By running the Knoppix OS on a USB storage
device, Cáceres et al. take snapshots of a running operating
system that can later be resumed in another virtual ma-
chine [14]. Surie et al. use a smart USB device to measure
the software stack of host machines, but not a hardware-
based root of trust, and are therefore vulnerable to software
attacks targeting the BIOS, bootloader or kernel [63]. Mc-
Cune theorizes that host system state can be attested via
USB, but does not design or implement a system [44]. Bates
et al. measure timing characteristics during USB enumer-
ation to infer characteristics of the host machine, but are
unable to reliably identify specific instances of similar ma-
chines [6, 42]. By leveraging the TPM in the host machine,
Butler et al. design and implement Kells [12], exposing the
private partition of USB storage based on the measurement
of host machines. Tian et al. propose GoodUSB [67] and
USBFILTER [68] to defend against malicious USB firmware
in the devices for host machines, while Cinch [3] leverages
virtualization to achieve the same goal.

For traditional storage systems, Gibson et al.’s NASD
adds secure capabilities to SCSI disks [23]. Strunk et al.’s
self-securing storage (S4) mitigates attempts to tamper
with data by internally auditing all requests from the OS
[61]. Both NASD and S4 operate at the high-level ob-
jects rather than the low-level blocks directly. Pennington
et al. present a storage-based intrusion detection system
[53]. Unlike ProvUSB which is designed to be filesystem
agnostic, Sivathanu et al.’s semantically-smart disks (SDS)
leverage filesystem information to improve performance of
the standard SCSI interface [60] and database management
systems [59]. Butler at al. design rootkit-resistant storage
by labeling certain blocks as immutable to prevent the
corruption of the operating system [13], but do not record
data provenance or ensure integrity of other data blocks.

Data provenance provides a means for defending against
security threats. Provenance has been employed to detect
compromised nodes in data centers [5, 21, 65, 74], detect
data exfiltration [35, 41], enrich access controls [7, 50], and

2However, some filesystems, e.g., NTFS, allow storing small
files into metadata. In this case, the provenance of ProvUSB
devices still works, though the block-level policy control may
not be easily extended to cover metadata.

enforce regulatory compliance [7, 8]. Mechanisms that fa-
cilitate the capture of provenance have been proposed for a
variety of system layers including filesystems [46, 47], oper-
ating systems [8, 22], system libraries [27], workflow engines
[2, 15], and network middle boxes [5, 74], among others.
Whereas past approaches such as PASS focused on a par-
ticular filesystem type (EXT2 [47]), ProvUSB is compatible
with any SCSI storage devices regardless of filesystems.

9. CONCLUSION
Modern USB storage devices do not support provenance,

which means that there is no way to answer questions such as
when and where a piece of malware infected and impacted
the system. In this paper, we presented ProvUSB, which
adds provenance for each I/O operation at the block level
and enforces a provenance-based integrity policy for each
block. ProvUSB introduces a small overhead (< 1s) during
device enumeration, reaches 90% throughput as mean file
size increases, and imposes only a small provenance storage
overhead (< 0.1%) in real-world workloads. To our knowl-
edge, ProvUSB is the first provenance-aware USB storage
solution that enforces data integrity within storage, work-
ing at the ubiquitous, non-circumventable block layer.

Acknowledgements
This work is supported in part by the US National Sci-
ence Foundation under grant numbers CNS-1563883, CNS-
1540217, and CNS-1540218, and by the Florida Center for
Cybersecurity (FC2) seed grant program.

10. REFERENCES
[1] M. Al-Zarouni. The Reality of Risks from Consented Use of

USB Devices. Edith Cowan University, Perth, W. Aus., 2006.

[2] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance
Collection Support in the Kepler Scientific Workflow System.
In Int’l Conf. on Provenance and Annotation of Data. 2006.

[3] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo,
et al. Defending against Malicious Peripherals with Cinch. In
USENIX Security Symposium, Aug. 2016.

[4] Basemark, Inc. Basemark browsermark.
http://web.basemark.com/.

[5] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou. Let
SDN Be Your Eyes: Secure Forensics in Data Center Networks.
SENT’14, Feb. 2014.

[6] A. Bates, R. Leonard, H. Pruse, K. R. Butler, and D. Lowd.
Leveraging USB to Establish Host Identity Using Commodity
Devices. NDSS ’14, February 2014.

[7] A. Bates, B. Mood, M. Valafar, and K. Butler. Towards Secure
Provenance-based Access Control in Cloud Environments.
CODASPY ’13, 2013.

[8] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy
Whole-System Provenance for the Linux Kernel. In
Proceedings of the USENIX Security Symposium, Aug. 2015.

[9] Belkasoft, Inc. SSD Forensics 2014.
https://belkasoft.com/en/ssd-2014, 2014.

[10] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Report
M74-244, MITRE Corporation, Bedford, MA, 1973.

[11] K. Biba. Integrity Considerations for Secure Computer
Systems. Technical Report MTR-2574, MITRE Corporation,
1975.

[12] K. Butler, S. McLaughlin, and P. McDaniel. Kells: A
Protection Framework for Portable Data. In ACSAC, 2010.

[13] K. R. Butler, S. McLaughlin, and P. D. McDaniel.
Rootkit-Resistant Disks. In ACM CCS, 2008.

[14] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath.
Reincarnating PCS with Portable Soulpads. In MobiSys, 2005.

[15] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T.
Silva, and H. T. Vo. VisTrails: Visualization Meets Data
Management. In SIGMOD, 2006.

http://web.basemark.com/
https://belkasoft.com/en/ssd-2014

[16] Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and Phillips.
Universal Serial Bus Specification, Revision 2.0, April 2000.

[17] W. W. W. Consortium et al. Prov-overview: an overview of the
prov family of documents. 2013.

[18] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet
Dossier. 2011.

[19] T. Fraser. LOMAC: Low Water-Mark Integrity Protection for
COTS Environments. In Proceedings of the IEEE Symposium
on Security & Privacy, 2000.

[20] T. Fraser. LOMAC: MAC You Can Live With. In USENIX
ATC, 2001.

[21] A. Gehani, B. Baig, S. Mahmood, D. Tariq, and F. Zaffar.
Fine-grained Tracking of Grid Infections. In IEEE/ACM
GRID, Oct 2010.

[22] A. Gehani and D. Tariq. SPADE: Support for Provenance
Auditing in Distributed Environments. In Proceedings of the
13th International Middleware Conference, 2012.

[23] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
and et al. A Cost-Effective, High-Bandwidth Storage
Architecture. In ACM ASPLOS, 1998.

[24] Google, Inc. ProjectVault. https://github.com/ProjectVault.

[25] Gumstix, Inc. COMS. https://store.gumstix.com/coms.html.

[26] Gumstix, Inc. Thumbo.
https://store.gumstix.com/thumbo.html.

[27] R. Hasan, R. Sion, and M. Winslett. The Case of the Fake
Picasso: Preventing History Forgery with Secure Provenance.
In USENIX FAST, 2009.

[28] Infineon, Inc. Embedded TPM.
http://www.infineon.com/cms/en/product/channel.html?
channel=db3a30434422e00e01442555a5f713f5.

[29] Intel, Inc. Intel Edison. http://www.intel.com/content/www/
us/en/do-it-yourself/edison.html.

[30] Inverse Path, Inc. USB Armory.
https://inversepath.com/usbarmory.

[31] IronKey, Inc. Access Enterprise.
http://www.ironkey.com/en-US/access-enterprise/.

[32] IronKey, Inc. IronKey Enterprise S1000 Encrypted Flash
Drive. http://www.ironkey.com/en-US/
encrypted-storage-drives/s1000-enterprise.html.

[33] T. Jaeger, R. Sailer, and U. Shankar. Prima: policy-reduced
integrity measurement architecture. In ACM SACMAT, 2006.

[34] Jaikumar Vijayan. Infected USB drive blamed for ’08 military
cyber breach. http://www.computerworld.com/article/
2514879/security0/infected-usb-drive-blamed
-for--08-military-cyber-breach.html, 2008.

[35] S. N. Jones, C. R. Strong, D. D. E. Long, and E. L. Miller.
Tracking Emigrant Data via Transient Provenance. In 3rd
Workshop on the Theory and Practice of Provenance,
TAPP’11, June 2011.

[36] B. Kauer. OSLO: Improving the Security of Trusted
Computing. In USENIX Security Symposium, 2007.

[37] Kevin Poulsen and Kim Zetter. U.S. Intelligence Analyst
Arrested in Wikileaks Video Probe.
http://www.wired.com/2010/06/leak/.

[38] Kingston, Inc. DataTraveler USB Drives.
http://www.kingston.com/us/usb.

[39] T. Kojm. Clamav. http://www.clamav.net/.

[40] K. H. Lee, X. Zhang, and D. Xu. High Accuracy Attack
Provenance via Binary-based Execution Partition. NDSS, 2013.

[41] K. H. Lee, X. Zhang, and D. Xu. LogGC: Garbage Collecting
Audit Log. CCS, Nov. 2013.

[42] L. Letaw, J. Pletcher, and K. Butler. Host Identification via
USB Fingerprinting. In IEEE SADFE, 2011.

[43] S. Ma, X. Zhang, and D. Xu. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and
Tainting. In ISOC NDSS, 2016.

[44] J. M. McCune. Turtles All the Way Down: Research
Challenges in User-based Attestation. In USENIX Workshop
on Recent Advances on Intrusion-tolerant Systems, 2008.

[45] Michael K. Daly. The Advanced Persistent Threat. In
USENIX LISA, 2009.

[46] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, and et al. Layering in Provenance Systems. In
USENIX ATC, 2009.

[47] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware Storage Systems. In USENIX
ATC, 2006.

[48] D. Nguyen, J. Park, and R. Sandhu. Dependency Path Patterns
As the Foundation of Access Control in Provenance-aware
Systems. In Proceedings of the 4th USENIX Conference on
Theory and Practice of Provenance, TaPP’12, 2012.

[49] OLEA Kiosks, Inc. Malware Scrubbing Cyber Security Kiosk.
http://www.olea.com/product/cyber-security-kiosk/.

[50] J. Park, D. Nguyen, and R. Sandhu. A Provenance-Based
Access Control Model. In Proc. Int’l Conf. on Privacy,
Security & Trust (PST), 2012.

[51] B. Parno. Bootstrapping Trust in a ”Trusted” Platform. In
Proc. Workshop on Hot Topics in Security, 2008.

[52] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust
in Commodity Computers. In Proc. IEEE Symposium on
Security and Privacy, 2010.

[53] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules,
G. R. Goodson, and et al. Storage-based Intrusion Detection:
Watching Storage Activity for Suspicious Behavior. In
USENIX Security Symposium, 2003.

[54] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi:
Collecting High-Fidelity Whole-System Provenance. In
ACSAC, 2012.

[55] J. Rrushi, H. Farhangi, C. Howey, K. Carmichael, and
J. Dabell. A quantitative evaluation of the target selection of
havex ics malware plugin. Industrial Control System Security
(ICSS) Workshop, 2015.

[56] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement
Architecture. In USENIX Security Symposium, 2004.

[57] S. Shin and G. Gu. Conficker and Beyond: A Large-scale
Empirical Study. ACSAC ’10, 2010.

[58] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data
integrity in storage: Techniques and applications. In
Proceedings of the 2005 ACM workshop on Storage security
and survivability, 2005.

[59] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Database-Aware
Semantically-Smart Storage. In USENIX FAST, 2005.

[60] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. In USENIX FAST, 2003.

[61] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Soules,
and G. R. Ganger. Self-securing Storage: Protecting Data in
Compromised System. In USENIX OSDI, 2000.

[62] Sun Microsystems, Inc. and FSL at Stony Brook University.
Filebench. http://filebench.sourceforge.net.

[63] A. Surie, A. Perrig, M. Satyanarayanan, and D. J. Farber.
Rapid Trust Establishment for Pervasive Personal Computing.
Pervasive Computing, IEEE, 6(4):24–30, 2007.

[64] Symantec, Inc. Trojan.Zbot. http://www.symantec.com/
security response/writeup.jsp?docid=2010-011016-3514-99.

[65] D. Tariq, B. Baig, A. Gehani, S. Mahmood, R. Tahir, A. Aqil,
and F. Zaffar. Identifying the Provenance of Correlated
Anomalies. In ACM SAC, 2011.

[66] The USB Device Working Group. USB Class Codes.
http://www.usb.org/developers/defined class, 2015.

[67] D. J. Tian, A. Bates, and K. Butler. Defending Against
Malicious USB Firmware with GoodUSB. In ACSAC, 2015.

[68] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor.
Making USB Great Again with USBFILTER. In USENIX
Security Symposium, 2016.

[69] TrouSerS. The open-source TCG Software Stack.
http://trousers.sourceforge.net/.

[70] J. Tucek, P. Stanton, E. Haubert, R. Hasan, et al. Trade-offs in
Protecting Storage: A Meta-Data Comparison of
Cryptographic, Backup/Versioning, Immutable/Tamper-Proof,
and Redundant Storage Solutions. In IEEE MSST, 2005.

[71] USB Implementers Forum, Inc. USB On-The-Go and
Embedded Host. http://www.usb.org/developers/onthego/.

[72] USB Implementers Forum, Inc. USB Mass Storage Class CBI
Transport. http://www.usb.org/developers/docs/devclass
docs/usb msc cbi 1.1.pdf, 2003.

[73] J. Walter. ”Flame Attacks”: Briefing and Indicators of
Compromise. McAfee Labs Report, May 2012.

[74] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr. Secure Network Provenance. In SOSP, 2011.

https://github.com/ProjectVault
https://store.gumstix.com/coms.html
https://store.gumstix.com/thumbo.html
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30434422e00e01442555a5f713f5
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30434422e00e01442555a5f713f5
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://inversepath.com/usbarmory
http://www.ironkey.com/en-US/access-enterprise/
http://www.ironkey.com/en-US/encrypted-storage-drives/s1000-enterprise.html
http://www.ironkey.com/en-US/encrypted-storage-drives/s1000-enterprise.html
http://www.computerworld.com/article/2514879/security0/infected-usb-drive-blamed
http://www.computerworld.com/article/2514879/security0/infected-usb-drive-blamed
-for--08-military-cyber-breach.html
http://www.wired.com/2010/06/leak/
http://www.kingston.com/us/usb
http://www.clamav.net/
http://www.olea.com/product/cyber-security-kiosk/
http://filebench.sourceforge.net
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.usb.org/developers/defined_class
http://trousers.sourceforge.net/
http://www.usb.org/developers/onthego/
http://www.usb.org/developers/docs/devclass_docs/usb_msc_cbi_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/usb_msc_cbi_1.1.pdf

	Introduction
	Background
	Design
	Threat Model & Assumptions
	Security Goals
	Design Overview
	Identifying Host Machines
	Block-level Tracking and Protection

	Implementation
	Security Analysis
	Evaluation
	TPM Operations
	USB Enumeration
	I/O Operations
	Provenance Collection
	Real-world Workloads
	Case Study

	Discussion
	Related Work
	Conclusion
	References

