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Abstract
Recent advances in machine learning open up new and at-
tractive approaches for solving classic problems in comput-
ing systems. For storage systems, cache replacement is one
such problem because of its enormous impact on perfor-
mance. We classify workloads as a composition of four
workload primitive types — LFU-friendly, LRU-friendly,
scan, and churn. We then design and evaluate CACHEUS,
a new class of fully adaptive, machine-learned caching al-
gorithms that utilize a combination of experts designed to
address these workload primitive types. The experts used
by CACHEUS include the state-of-the-art ARC, LIRS and
LFU, and two new ones – SR-LRU, a scan-resistant ver-
sion of LRU, and CR-LFU, a churn-resistant version of
LFU. We evaluate CACHEUS using 17,766 simulation ex-
periments on a collection of 329 workloads run against 6
different cache configurations. Paired t-test analysis demon-
strates that CACHEUS using the newly proposed lightweight
experts, SR-LRU and CR-LFU, is the most consistently per-
forming caching algorithm across a range of workloads and
cache sizes. Furthermore, CACHEUS enables augmenting
state-of-the-art algorithms (e.g., LIRS, ARC) by combining
it with a complementary cache replacement algorithm (e.g.,
LFU) to better handle a wider variety of workload primitive
types.

1 Introduction
Cache replacement algorithms have evolved over time with
each algorithm attempting to address some shortcomings of
previous algorithms. However, despite the many advances,
state-of-the-art caching algorithms continue to leave room
for improvement. First, as demonstrated abundantly in the
literature, caching algorithms that do well for certain work-
loads do not perform well for others [23, 13, 20, 12, 29, 34].
The production storage workloads of today are significantly
diverse in their characteristic features and these features can
vary over time even within a single workload. Second,
as demonstrated recently [34], caching algorithms that do
well for certain cache sizes do not necessarily perform well
for other cache sizes. Indeed, the workload-induced dy-
namic cache state, the cache-relevant workload features, and

*The first two authors contributed equally to this work.

thereby the most effective strategies, can all vary as cache
size changes.

The ML-based LeCaR algorithm demonstrated that hav-
ing access to two simple policies, LRU and LFU was suf-
ficient to outperform ARC across specific production-class
workloads. LeCaR used regret minimization [22, 21], a ma-
chine learning technique that allowed the dynamic selec-
tion of one of these policies upon a cache miss. We review
LeCaR both analytically and empirically to demonstrate that
while LeCaR took a valuable first step, it had significant lim-
itations. As a result, LeCaR underperforms state-of-the-art
algorithms such as ARC, LIRS, and DLIRS for many pro-
duction workloads.

As our first contribution, we identify the cache-relevant
features that inform workload primitive types. In particu-
lar, we identify four workload primitive types: LRU-friendly,
LFU-friendly, scan, and churn. The workload primitive
types vary across workloads, within a single workload over
time, and as cache size changes. Our second contribution,
CACHEUS, is inspired by LeCaR but overcomes an impor-
tant shortcoming by being completely adaptive, with the
elimination of all statically chosen hyper-parameters, thus
ensuring high flexibility. Our third contribution is the de-
sign of two lightweight experts, CR-LFU and SR-LRU; put
together, these address a broad range of workload primitive
types. CR-LFU infuses LFU with churn resistance and SR-
LRU infuses LRU with scan resistance. CACHEUS when
using the proposed two experts is able to perform compet-
itively or better for a significant majority of the (workload,
cache-size) combinations when compared with the state-of-
the-art.

We evaluate CACHEUS using 17,766 simulation experi-
ments on a workload collection comprising of over 329 in-
dividual single-day workloads sourced from 5 different pro-
duction storage I/O datasets. For each workload, we evaluate
against 6 different cache configurations that are sized rela-
tive to the individual workload’s footprint, the set of unique
data accessed. We perform paired t-tests analysis compar-
ing CACHEUS against individual algorithms across 30 dif-
ferent (workload, cache-size) combinations. CACHEUS us-
ing SR-LRU and CR-LFU as experts is the most consistently
performing algorithm with 87% of the workload-cache com-
binations being the best or indistinguishable from the best
performing algorithm, and distinctly different than the best
performing algorithm for the remaining 13%. For the 13%



Dataset # Traces Footprint Requests Details

FIU [33, 16] 184 398MB 314563 End user home directories; Webpage and web-based
email servers; Online course management system

MSR [33, 24] 22 467MB 4126937
User home and Project directories; Hardware monitor-
ing; Source control; Web staging; Terminal, Web/SQL,
Media, Test web servers; Firewall/web proxy

CloudPhysics [35] 99 458MB 2470326 VMware VMs from cloud enterprise
CloudVPS [2] 18 3.7GB 3400025 VMs from cloud provider
CloudCache [2] 6 6.2GB 3867313 Online course website; CS department web server

Table 1: Descriptions for the 5 datasets used (average footprint and requests). Each trace has a 1 day duration.

cases where an algorithm other than CACHEUS is found to
be distinctly better, no single algorithm is found to be con-
sistently the best, indicating that CACHEUS is a good de-
fault choice. Finally, when using state-of-the-art algorithms
such ARC and LFU, we show that the CACHEUS frame-
work provides a simple way to enable access to an additional
expert with complementary expertise such as LFU. These
CACHEUS variants achieve at least competitive performance
when compared against the original algorithms and other
competitors.

2 Motivation

2.1 Understanding Workloads

Caching algorithms in the past have optimized for spe-
cific workload properties. As today’s workloads continue
to increase in complexity, even state-of-the-art algorithms
demonstrate inconsistent performance. To understand the
production storage workloads of today, we analyzed over
329 production storage traces sourced from 5 different pro-
duction collections (see Table 1).

2.1.1 Workload Primitive Types

Based on our analysis of production storage workloads, we
define the following set of workload primitive types.

• LRU-friendly defined by an access sequence that is
best handled by the least recently used (LRU) caching
algorithm.

• LFU-friendly defined by an access sequence that is
best handled by the least frequently used (LFU) caching
algorithm.

• Scan defined by an access sequence where a subset of
stored items are accessed exactly once.

• Churn defined by repeated accesses to a subset of
stored items with each item being accessed with equal
probability.

Figure 1 shows an example of how the workload primitive
types manifest in a production trace from the FIU collec-
tion. As one may notice, the primitive types are not all ex-
clusive — for instance, a workload that’s LRU-friendly may

also manifest the churn type. Our goal was identifying work-
load primitive types that would directly inform specific, yet
distinct, caching decisions.

We found that most of the workloads that we examined
contained at least one occurrence of each of the workload
primitive types. However, these workloads were not all the
same in their composition. For instance, the MSR collection
contains all the primitive types with one of the workloads
(proj3) mostly comprising a single long scan. A summary of
our findings are presented in Table 2.

Figure 1: Access pattern for the topgun (day 16) workload
from the FIU trace collection. Dashed lines highlight manifes-
tation of workload primitive types.

2.1.2 Composing Workloads

Modern storage workloads are typically a composition of the
above workload primitive types. Furthermore, as the cache
size changes, a single workload’s primitive type may vary.
For instance, an LRU-friendly type workload at cache size
C1 may transform into a Churn type at a cache size C2 <C1.
This can occur when items in the workload’s LRU-friendly
working set start getting removed from the cache prior to
being reused. Figure 2 illustrates this phenomenon by com-
paring the performance of LRU against the churn-friendly
CR-LFU algorithm proposed in this paper. Finally, storage
working sets are telescoping in nature with larger subsets



Dataset Churn Scan LRU LFU
FIU [33, 16] 3 3 3 3
MSR [33, 24] 3 3 3 3
CloudPhysics [35] 3 3 3 3
CloudVPS [2] 3 3 3 3
CloudCache [2] 3 7 3 3

Table 2: Workload Primitive Types identified using algorithms
that optimize for each primitive type.

Algorithm Churn Scan LRU LFU
ARC 7 3 3 7
LIRS∗ 7 3 7 7
LeCaR∗ 3 7 3 3
DLIRS 7 3 3 7

Table 3: Caching algorithms handling of workload primitive
types. Parametric algorithms are noted using an ∗.

of items accessed at a lower frequency often each entirely
subsuming one or more smaller subsets of items accessed
at a higher frequency [17, 27]. The LeCaR [34] algorithm
was the first to demonstrate an ability to adapt its behavior
based on the available cache size, independent of the ability
to adapt to the dynamics of the workload.

2.2 Caching Algorithms

Adaptive Replacement Cache (ARC): ARC [23] is an
adaptive caching algorithm that is designed to recognize
both recency and frequency of access. ARC divides the
cache into two LRU lists, T1 and T2. T1 holds items accessed
once while T2 keeps items accessed more than once since
admission. Since ARC uses an LRU list for T2, it is unable
to capture the full frequency distribution of the workload
and perform well for LFU-friendly workloads. For a scan
workload, new items go through T1 protecting frequent items
previously inserted into T2. However, for churn workloads,
ARC’s inability to distinguish between items that are equally
important leads to continuous cache replacement [29].
Low Interference Recency Set (LIRS): LIRS [13] is a
state-of-the-art caching algorithm based on reuse distance.
LIRS handles scan workloads well by routing one-time ac-
cesses via its short filtering list Q. However, LIRS’s ability to
adapt is compromised because of its use of a fixed-length Q.
In particular, if reuse distances exceed the 1% length, LIRS
is unable to recognize reuse quickly enough for items with
low overall reuse. And, similar to ARC, LIRS does not have
access to the full frequency distribution of accessed items
which limits its effectiveness for LFU-friendly workloads.
Dynamic LIRS (DLIRS): DLIRS [20] is a recently pro-
posed caching policy that incorporates adaptation in LIRS.
DLIRS dynamically adjusts the cache partitions assigned
to high and low reuse-distance items. Although this strat-
egy achieves performance comparable to ARC for some
cache size configurations with LRU-friendly workloads

Figure 2: Relative difference in hit-rate (HR) of LRU and CR-
LFU for casa, topgun, ikki, and webmail workloads from the
FIU trace collection.

while maintaining LIRS’s behavior for scans, we found its
performance inconsistent across the workloads we tested
against. Finally, it inherits the LFU-unfriendliness of LIRS.
Learning Cache Replacement (LeCaR): LeCaR [34] is a
machine learning-based caching algorithm that uses rein-
forcement learning and regret minimization to control its
dynamic use of two cache replacement policies, LRU and
LFU. LeCaR was shown to outperform ARC for small cache
sizes for real-world workloads [34]. However, LeCaR has
drawbacks relating to adaptiveness, overhead, and churn-
friendliness. In Section 3, we discuss these limitations fur-
ther.

In Table 3, we compare the current state-of-the-art algo-
rithms in terms of their ability to handle various workload
primitive types.

2.3 Need for a New Approach

Each of the state-of-the-art caching algorithms address a
subset of workload primitive types. We conducted an em-
pirical study using over 329 storage I/O traces from 5 differ-
ent production systems, across 6 different workload-specific
cache configurations — from 0.05% to 10% of the workload
footprint. To understand relative performance across such a
large collection of experiments, we ranked algorithms based
on their achieved hit-rates for individual workloads. The
best-performing algorithm received the rank of 1 as well as
any other algorithm that achieved a hit-rate within a 5% rel-
ative margin. For example, if the best-performing algorithm
achieves a hit-rate of 40%, any other algorithm that achieves
a hit-rate within the range 38% to 40% is also ranked as 1,
but anything lower than 38% is ranked 2 or higher. Next,



Figure 3: An analysis of the ranked performance of state-of-the-art caching algorithms. The X-axis indicates cache size as a % of
workload footprint. A darker cell indicates that an algorithm’s performance across all workloads of the dataset was better. The number
within each cell denotes the percentage of workloads for which an algorithm was ranked 1. For example, ARC has the highest hit-rate in
34% of the workloads for MSR at the 0.05% cache size.

we computed the percentage of workloads within each set
for which a given algorithm was assigned a rank of 1. We
present this information in Figure 3.

Of the state-of-the-art caching algorithms, we observe that
no algorithm is a clear winner. For instance, while LIRS
achieves the best performance for CloudCache workloads at
cache sizes of 0.05% and 0.1%, ARC outperforms the rest
of the competitors for a majority of the MSR workloads, and
LeCaR is the best for FIU workloads at a cache size of 0.1%.
New caching algorithms that perform competitively across a
wide range of workloads and cache configurations would be
valuable.

3 CACHEUS

Given the distinct characteristics and dynamic manifestation
of workload primitive types within a workload over time,
caching algorithms need to be both nimble and adaptive. On-
line reinforcement learning is valuable because of its inher-
ent ability to adapt to the unknown dynamics of the system
being learned. CACHEUS uses online reinforcement learn-
ing with regret minimization to build a caching algorithm
that attempts to optimize for dynamically manifesting work-
load primitive types. Since CACHEUS’ design draws heavily
from LeCaR, we review it briefly first, conduct an investiga-
tive study of LeCaR, and finally discuss the CACHEUS algo-
rithm.

3.1 LeCaR: A Review
LeCaR demonstrated the feasibility of building a caching
system that uses reinforcement learning and regret mini-
mization. LeCaR learns the optimal eviction policy dynam-
ically, choosing from exactly two basic experts, LRU and
LFU. On each eviction, an expert is chosen randomly with
probabilities proportional to the weights wLRU and wLFU .
LeCaR dynamically learns these weights by assigning penal-
ties for wrongful evictions.

To control online learning, LeCaR uses a learning rate
parameter to set the magnitude of the change when the al-

gorithm makes a poor decision. Larger learning rates allow
quicker learning, but need larger corrections when the learn-
ing is flawed. LeCaR uses a discount rate parameter to de-
cide how quickly to stop learning.

3.2 Running Diagnostics on LeCaR
In over 17,766 distinct caching simulations that we ran
against LeCaR using 329 workloads, we found that experts
other than LRU and LFU produced outcomes that were sig-
nificantly better for a non-trivial number of workloads. In
particular we found that LRU and LFU were unable to ad-
dress the scan and churn workload primitive types. This mo-
tivates further exploration of the choice of experts for learn-
ing cache replacement within the regret minimization frame-
work.

A second challenge when using LeCaR in practice is the
manual configuration necessary for its two internal param-
eters — learning rate and discount rate. These parame-
ters were fixed after experimenting with many workloads in
LeCaR [34]. From the above empirical evaluation, we found
that eliminating the discount rate altogether did not affect
LeCaR’s performance appreciably. Furthermore, different
static values of the learning rate were found to be optimal for
different workloads (see Figure 4). In addition, we observed
across almost all workloads that not only do workload char-
acteristics change substantially over time, the velocity and
magnitude of these changes also varied significantly over
time. To accommodate this dynamism, different values for
the learning rate were found to be optimal at different points
in time.

3.3 Formalizing CACHEUS(A,B)

CACHEUS starts off by simplifying and adapting LeCaR.
First, for reasons discussed previously, CACHEUS simply
eliminates the use of discount rate. Second, for adapting the
learning rate hyper-parameter, we investigated adaptation
approaches including grid search, random search [5], gaus-
sian, bayesian and population based approaches [14, 36, 32,
6, 3, 19], and gradient-based optimization [26, 7, 15, 28, 37,



Figure 4: The optimal learning rate varies across workloads. X-axis indicates learning rates. Cache size was chosen as 0.1% of
workload footprint. We chose one workload each from CloudCache, CloudPhysics, CloudVPS, FIU, and MSR (from left to right).

25, 8]. Ultimately, we chose a gradient-based stochastic hill
climbing approach with random restart [31] for CACHEUS, a
choice that proved to be the most consistent. Using this tech-
nique, at the end of every window of N requests (N = cache
size), the gradient of the performance (average hit-rate) with
respect to the learning rate over the previous two windows is
calculated. If the gradient is positive (negative, resp.), then
the direction of change of the learning rate is sustained (re-
versed, resp.). The amount of change of learning rate in the
previous window determines the magnitude of the change in
learning rate for the next window. Therefore, if the perfor-
mance increases (decreases, resp.) by increasing the learning
rate, we will increase (decrease, resp.) the learning rate mul-
tiplying it by the amount of learning rate change from the
previous window, and vice versa. But, if the learning rate
doesn not change for consectuive windows, and the perfor-
mance degrades continuously or becomes zero, we record
this. If the performance keeps degrading for a 10 consecu-
tive window sizes [9], we reset the learning rate to the initial
value. The objective behind is to make sure we restart the
learning when the performance drops for a longer period.
The learning rate is initialized randomly between 10−3 and
1.

The goal of the CACHEUS framework is to enable a sin-
gle cache replacement policy that uses the combination of
individual decisions taken by exactly two internal experts.
Algorithm 1 depicts the generalized CACHEUS(A,B) algo-
rithm with generic cache replacement experts, A and B. HA
and HB are LRU lists of the history of items evicted by
experts A and B, respectively, each of size N/2. Upon a
cache hits, CACHEUS updates the internal data structures
which includes moving the item to the MRU position of
the cache and updating its frequency information. Upon a
cache miss, CACHEUS checks the eviction histories for the
requested item q, removes it from said histories, and up-
dates the weights wA and wB. The weights are initialized
to 0.5. Using the updated weights (Algorithm 2), CACHEUS
chooses the expert (A or B) to use and obtains the eviction
candidate accordingly, A(C) or B(C). Finally, CACHEUS up-
dates its history, avoiding this update entirely if both experts
suggest the same eviction candidate.

At the end of every window of N requests (N = cache
size), CACHEUS updates its learning rate (Algorithm 3).
First, the gradient of the performance (average hit-rate) with
respect to the learning rate over the previous two windows is
calculated. If the gradient is positive (negative, resp.), then

the direction of change of the learning rate is sustained (re-
versed, resp.). The amount of gradient change determines
the magnitude of the change in the learning rate. If the per-
formance increases (decreases, resp.) by changing the learn-
ing rate, we will increase (decrease, resp.) the learning rate
by an amount proportional to the learning rate change rela-
tive to the previous window. The learning rate is initialized
randomly between 10−3 and 1. Finally, if the performance
keeps degrading for a 10 consecutive window sizes [9], we
reset the learning rate.

Like LeCaR, CACHEUS uses exactly two experts. The
usage of more than two experts was considered for early
CACHEUS versions. Interestingly, the performance with
more than two experts was significantly worse than when us-
ing only LRU and LFU. Having multiple experts is generally
not beneficial unless the selected experts are orthogonal in
nature, and operate based on completely different and com-
plementary strategies. The intuition here is that multiple ex-
perts will overlap in their eviction decisions thereby affect-
ing learning outcomes and deteriorating the performance.
We demonstrate in this paper that with two well-chosen ex-
perts CACHEUS is able to best the state-of-the-art with sta-
tistical significance.

4 Scan Resistance
Our initial experiments with CACHEUS using LRU and LFU
as experts demonstrated inconsistent results when tested
with a significantly wider range of workloads than the orig-
inal LeCaR study did [34]. Of particular concern was the
inability of CACHEUS(LRU, LFU) to handle the scan work-
load primitive type. Of the 5 different datasets comprising a
total of over 329 different workloads that we examined, 4 of
the datasets comprised scan workloads (see Table 2).

To understand the impact of scan on classic caching algo-
rithms, we set up synthetic workloads that interleaved reuse
with scan. Figure 5 shows performance versus cache size
for two synthetic workloads wherein a single scan of size 60
items is interleaved between accesses to reused items. Let
us assume that the scan phase is greater than twice the size
of the cache (say 25). In this case, classic algorithms such
as LRU evict resident items to absorb the new items antici-
pating their future reuse, giving up on hits for resident items
that get reused beyond the scan phase.

State-of-the-art caching algorithms such as ARC, LIRS



Algorithm 1: CACHEUS(A, B)
Data: Cache C; Eviction histories HA, HB;
Weights wA, wB; Current time t;
Learning rate update interval i;
λt — learning rate at time t;
HRt — average hit-rate at time t
Input: Requested page q
if q ∈C then

C.UPDATEDATASTRUCTURES(q)
else

UPDATEWEIGHT(q,λ ,wA,wB)
if q ∈ HA then

HA.DELETE(q)
if q ∈ HB then

HB.DELETE(q)
if C is full then

if A(C) == B(C) then
C.EVICT(A(C))

else
action = (A, B) w/prob (wA,wB)
if (action == A) then

if HA is full then
HA.DELETE(LRU(HA))

HA.ADDMRU(A(C))
C.EVICT(A(C))

if (action == B) then
if HB is full then

HB.DELETE(LRU(HB))
HB.ADDMRU(B(C))
C.EVICT(B(C))

C.ADD(q)
if (t%i) = 0 then

UPDATELEARNINGRATE( λt−i, λt−2i, HRt , HRt−i)

and DLIRS each implement their own mechanisms for scan
resistance. ARC limits the size of its T 1 list used to iden-
tify and cache newly accessed items to preserve reused items
in T 2. Unfortunately, ARC’s approach to scan-resistance
makes it ineffective when handling the churn workload pat-
tern. In particular, when a scan phase is followed by a churn
phase, ARC continues to evict from T 1 and behaves similar
to LRU, as evidenced in one of our experiments (see Fig-
ures 10 and 11). Similarly, LIRS uses its stack Q to accom-
modate items that belong to the scan sequence. However, the
size of Q is fixed to 1% of the cache , which cannot adapt to
dynamic working sets. Finally, DLIRS reworks LIRS’s so-
lution by making Q adaptive. Despite its built-in adaptation
mechanism, we note that DLIRS does not perform as well as
LIRS in practice (see Figure 3).

4.1 SR-LRU

One policy that handles scan well is the classic Most Re-
cently Used (MRU) policy. While LRU consistently evicts
resident working-set items during scan, MRU evicts the pre-

Algorithm 2: UPDATEWEIGHT(q,λ ,wA,wB )

if q ∈ HA then
wA := wA ∗ e−λ // decrease wA

else if q ∈ HB then
wB := wB ∗ e−λ // decrease wB

wA := wA/(wA +wB) // normalize
wB := 1−wA

Algorithm 3: UPDATELEARNINGRATE(λt−i , λt−2i,
HRt , HRt−i)

δHRt := HRt −HRt−i
δLRt := λt−i−λt−2i
if δLRt 6= 0 then

sign :=+1 if δHRt
δLRt

> 0, else −1

λt := max(λt−i + sign×|λt−i×δLRt | ,10−3)
unlearnCount := 0

else
if HRt = 0 or δHRt ≤ 0 then

unlearnCount := unlearnCount +1
if unlearnCount ≥ 10 then

unlearnCount := 0
λt := choose randomly between 10−3 & 1
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Figure 5: Motivating SR-LRU with the scan workload prim-
itive type. Two synthetic workloads are considered with 175 total
requests and a single inserted scan: LFU-friendly pattern (left col-
umn) and LRU-Friendly pattern (right column). The size of the scan
is 60 items in both cases.

viously inserted page placed at the top of the stack. We de-
signed Scan-Resistant LRU (SR-LRU), an LRU variant that
favors LRU friendly workloads while also being scan aware.

SR-LRU manages the cache in partitions similar to ARC
and LIRS. It divides the cache into two parts: one containing
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Figure 6: Understanding CR-LFU and SR-LRU. Shown are actions taken to handle request x under: cache miss, cache miss with x in
history, cache hit with x in SR, and cache hit with x in R.

only items with multiple accesses (R) and the other for single
access items as well as older items that have had multiple
accesses (SR). The SR partition allows SR-LRU to be scan
resistant; a partition for new items to be housed so that they
do not affect the important items in R. SR-LRU only evicts
from the SR partition — it evicts the LRU item of SR on
a cache miss when the cache is full. Older items in R get
demoted to SR to keep only important items that are being
reused in R. In addition, SR-LRU maintains a history list H
as large as the size of the cache that contains the items most
recently evicted.

The basic workings of SR-LRU are as shown in Algo-
rithm 4. We illustrate how a request for page x gets handled
in Figure 6. On a cache miss where x is not in a history list,
x is inserted to the MRU position of SR. Should the cache
be full, the LRU item of SR is evicted to H, and should H
be full the algorithm removes the LRU item of H to make
space. On a cache miss where x is in H, x is moved to the
MRU position of R. On a cache hit where x is in SR, x is
moved to the MRU position of R. On a cache hit where x is
in R, x is moved to the MRU position of R.

While SR-LRU could set a constant size for SR (similar
to LIRS) and thereby be scan resistant, doing so would com-
promise its performance with LRU-friendly workloads for
which SR is unfavorably sized [20]. Our approach to adapt-
ing SR-LRU is to adjust its partition sizes when we have
found that SR-LRU either demoted or evicted incorrectly. If
a demoted item gets referenced while in SR, SR-LRU infers
that the size of R is too small and should be increased. To
handle incorrect evictions, when an item is encountered for
the first time, it gets marked as new after inserting it in cache.
Should this item be evicted but then requested before it is re-
moved from SR-LRU’s history H, SR-LRU infers that the
size of SR is too small to allow new items to be reused prior
to being evicted. Items that enter the cache for the second
time, after being placed in the history list previously, are not

Algorithm 4: SR-LRU
Data: Scan-resistant list SR; Reuse list R
Cdemoted — count of demoted items in cache
Hnew — count of new items in history
Input: requested page q
if q ∈C then

if q was demoted from R then
δ = max(1,Hnew/Cdemoted)
sizeSR = max(1,sizeSR−δ )

R.MOVEMRU(q)
else

if q ∈ H then
if q was new from SR then

δ = max(1,Cdemoted/Hnew)
sizeSR = min(|C|−1,sizeSR +δ )

H.DELETE(q)
if C is full then

if H is full then
H.DELETE(LRU(H))

H.MOVEMRU(LRU(SR))
SR.ADDMRU(q)

UPDATESIZES(SR,R)

considered to be new items anymore.
To adapt itself, SR-LRU continuously computes a target

size for SR. The algorithm reactively increases the size of SR
upon hits in H by moving the LRU items of R into SR in or-
der for SR to reach its target size. If the size of SR increases
by too much, the demoted items being reused will inform the
algorithm allowing it to reverse the erroneous increase.

The SR-LRU Difference Prior approaches to scan resis-
tance are limited because they are either not adaptive (e.g.,
LIRS) or do not adapt well enough (e.g., DLIRS), or are
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Figure 7: Motivating CR-LFU with the churn workload primi-
tive type. Two synthetic workloads are considered: a churn pattern
(left column) and a combination of churn and LRU-friendly pattern
(right column). The working set is 200 items.

unable to handle a scan followed by churn (e.g., ARC).
The most important distinction in SR-LRU is balancing the
need for being scan resistant with quickly recognizing when
a workload is no longer scanning. In particular, SR-LRU
tracks new items in history to distinguish between new items
that belong to a scan from the new items that contribute to
churn. As a result, SR-LRU continues to be effective im-
mediately when a workload switches from scan to churn, as
evidenced in our experiments (see Figures 10 and 11).

5 Churn Resistance

For the churn workload primitive type, if the number of
items being accessed is larger than the size of the cache,
an LRU-style algorithm would lead to churning of the
cache content whereby items get repeatedly inserted into
and evicted from the cache. On the other hand, the clas-
sic LFU assigns equal importance to all items with the same
frequency. In a churn workload, all items have the same
access frequency and these items may be accessed sequen-
tially or otherwise. Other frequency-based algorithms like
LRFU [18], that assign weights based on recency of access,
result in LRU-based eviction for items with the same fre-
quency; this unfortunately, does not prevent churning either.

Fortunately, a simple modification of the classic LFU
turns out to be sufficient to handle the churn workload prim-
itive type while continuing to retain the benefits of LFU.
Churn-resistant LFU (CR-LFU) modifies the eviction mech-
anism in pure LFU by choosing the MRU (Most Recently
Used) item to break the ties when several items have the least
access frequency. By choosing the MRU item, CR-LFU ef-

fectively “locks” a subset of items with the lowest frequency
into the cache, generating hits for the caching algorithm.
Figure 6 illustrates the operation of algorithm CACHEUS us-
ing the SR-LRU and CR-LFU while handling a page request
x in different situations.

We compare CR-LFU with LRU and LFU in Figure 7 for
two different types of synthetic workloads: pure churn and
mixed pattern of churn and LRU-friendly. Both LFU and
CR-LFU outperform LRU when the cache size is less than
the workload’s working set size. Classic LFU evicts at ran-
dom from among multiple items with the lowest frequency
whereas CR-LFU evicts the MRU item. Because of that
distinction, the average performance of CR-LFU is 8.67%
and 3.83% higher than LFU for the churn and mixed pattern
workloads respectively.

6 Evaluation

6.1 Experimental Setup
We conducted simulation-based evaluations of several state-
of-the-art algorithms from the caching literature using pub-
licly available production storage I/O workloads.
Algorithms: We compared CACHEUS against 6 previously
proposed algorithms: LRU, LFU, ARC, LIRS, LeCaR, and
DLIRS. In cases we could successfully contact the algorithm
authors to obtain an implementation, we used the authors’
original versions. In all other cases, we reimplemented the
algorithms.

We also evaluated each of these against 3 vari-
ants of CACHEUS — C1: CACHEUS(ARC, LFU), C2:
CACHEUS(LIRS, LFU) and C3: CACHEUS(SR-LRU,CR-
LFU).
Workloads and Simulations. We used production storage
I/O traces from 5 different productions systems for the simu-
lation evaluation. Table 1 summarizes the workload datasets
we used. A total of 17,766 simulations were conducted
across 6 different cache sizes on 329 individual workloads
contained within the 5 sets of workloads. Each individual
workload represents an entire day of storage I/O activity
from one storage system.
Cache Configurations. For evaluating caching algorithms,
the primary metric of significance is cache hit-rate. To com-
pare the relative performance of various caching algorithms,
we chose caches that are sized relative to the size of each
workload’s footprint, i.e., all the unique data items accessed.

6.2 Time and Space Overheads
CACHEUS maintains roughly 2N pieces of metadata where
N is the size of the cache, using N units to track cache-
resident items and N additional units to track items that are
in history. This is equivalent to state-of-the-art algorithms
such as ARC and LIRS which each maintain approximately
N items of additional metadata to track a limited history.



Cache size as a % of workload footprint

Figure 8: Paired t-test analysis to understand the difference
in performance between (A) CACHEUS vs. (B) Other. The
three panels compare four “Other” algorithms (i.e., ARC, DLIRS,
LeCaR, and LIRS) against the following variants of CACHEUS:
Top: C1, Middle: C2 Bottom: C3. Green colors indicate that
the CACHEUS variant was significantly better, red colors indicate
that the CACHEUS variant was significantly worse, and the gray
color indicates no significant difference. Brighter green and red
colors indicate higher effect sizes. Effect sizes were computed us-
ing Cohen’s d-measure.

CACHEUS merges the additional metadata of individual ex-
perts (e.g. ARC, SR-LRU, and CR-LFU) and its own history
for an effective size of N history items. Specifically, when
SR-LRU and CR-LFU are used as experts in CACHEUS, the
history metadata of each algorithm is reduced to N/2 for a
total of N history metadata. The computational overhead of
CACHEUS when it uses SR-LRU and CR-LFU as experts is
bound by the computational overhead of LFU — O(logN).
This time complexity can be improved with a more careful
implementation for LFU [30].

6.3 Statistical Analysis

We performed a broad palette of paired t-tests to evaluate
the three CACHEUS variants against the strongest competi-
tors across 17,766 experiments. A p-value threshold of 0.05
was used to judge statistical significance outcomes from the
t-tests. Effect sizes were computed using the Cohen’s d-
measure, which measures the number of standard deviations
that separate the two means. Figure 8 presents the results of
our t-test analysis for the three CACHEUS variants.

To summarize the findings, C3 is distinctly the best per-
forming algorithm in 47% of the workload-cache combina-
tions with effect sizes ranging from 0.2 to 1.08 in 28% of the
positive cases, is indistinguishable from the best performing
state-of-the-art algorithm in about 40%, and is worse than
the best performing algorithm for the remaining 13% with

negative effect sizes of up to 0.31. For the 13% of the cases
where an algorithm other than C3 is found to be distinctly
better, no single algorithm is found to be consistently the
best, indicating that C3 is an excellent choice overall. C2 is
better than the best performing state-of-the-art in about 26%
of the combinations with effect size in the range of 0.2 to
0.56 in 55% of the positive cases, indistinguishable from the
best in 48% of the combinations, and worse in the remain-
ing 27% of the cases with negative effect size of up to 0.17.
C1 is better than the best performing state-of-the-art in about
20% of the combinations with effect size from 0.2 to 0.44 in
22% of the positive cases, indistinguishable from the best in
41% of the combinations, and worse in the remaining 39%
of the cases with negative effect size up to 0.62.

We also analyze the best and worst case improvements
in hit-rate for the best-performing CACHEUS algorithm, C3.
Figure 9 presents the absolute difference in hit-rate for
C3 relative to its competitors — ARC, LIRS, DLIRS and
LeCaR, shown as a set of violin plots. Violin plots have the
advantage of showing summary statistics, including the me-
dian, the quartiles and outliers along with a density shape for
each Y-value [11]. The worst case degradation of 15.12%
is observed with the MSR workload with cache size at 5%
when compared against DLIRS. The best case improvement
of 38.32% is observed with CloudPhysics workload at a
cache size of 10% when compared against ARC.

6.4 Understanding CACHEUS

We focus our investigation and comparative analysis of
CACHEUS against 3 of the best performing candidates: (i)
state-of-the-art adaptive algorithm (ARC), (ii) state-of-
the-art scan-resistant algorithm (LIRS); we do not con-
sider DLIRS, its adaptive variant, which performs worse
than LIRS on average, and (iii) state-of-the-art machined-
learned algorithm (LeCaR), a predecessor of CACHEUS.
To understand the performance advantage of CACHEUS, we
measured hit-rates over time averaged across a sliding win-
dow equal to the size of the cache. In particular, we exam-
ine the performance for the webmail day 16 workload from
the FIU trace collection. As shown in Figure 11, this work-
load includes a combination of multiple workload primitive
types. For example, we observe a long scan for approx-
imately 2 hours (between 6:30 and 8:30) followed by re-
peated accesses over a sub-set of the items (i.e., churn) for
more than half the total workload duration.

6.4.1 CACHEUS C3 vs ARC

Figure 10 shows the performance over time for the four algo-
rithms tested on webmail (day 16) workload. The total hit-
rates for ARC, LIRS, LeCaR and C3 are 30.08%, 40.71%
and 42.08% and 43.95% respectively. The leftmost plot
shows the comparison against ARC. Initially a set of items
that include a single large scan are accessed until the burst
of unique accesses creates zero hits. C3 is able to maintain
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Figure 10: Detailed comparison of CACHEUS against ARC (left), LIRS (middle) and LeCaR (right) for the webmail (day 16)
workload. The lower plots show cache hit-rate computed using a sliding window equal to the size of the cache. The upper plot shows
the internal parameter for each algorithm (p in ARC is normalized with respect to the size of the cache). Cache size is set to 10% of the
workload footprint (54MB). The hit-rate improvements for CACHEUS with respect to ARC, LIRS, and LeCaR are 46.11%, 7.95% and 4.4%
respectively.

Figure 11: Access pattern for the webmail (day 16) workload
from the FIU trace collection.

the previous working set in the cache, enabling it to generate
hits post scan. ARC protects T 2 as dictated by its internal
parameter p close to 0 in an attempt to minimize cache pol-
lution. Right after the scan finishes, a sequence of 8 churn
phases starts to populate the cache. To respond effectively,
ARC starts to increase the size of T 1 to accommodate the
new incoming items. However, the increments in p grow T 1
slowly in steps of 1. In particular, during this entire trace
ARC maintains its shadow list B2 empty by avoiding evic-
tions from T 2, even during churn. This behavior negatively
impacts ARC’s performance for the last 5 churn periods.

6.4.2 CACHEUS C3 vs LIRS

The center plot in Figure 10 compares LIRS and C3 using
the same workload. LIRS uses a fixed size of Q equal to
1% of the cache size (138 items in this experiment). During
the scan period, LIRS uses Q as a filter without affecting the
working set previously populated in cache. For the churn

phases, LIRS is able to keep in cache the important items
by relying on its low-interference items in S. In particular,
for churn phases, LIRS will always miss the first hits on the
initial portion of the churn because these items will stay in
cache for a short period of time. On the other side, C3 starts
with a small size in SR to protect against the initial scan.
During churn periods, C3 is able to dynamically accommo-
date new items in SR by increasing its size and therefore
relaxing the scan protection. Finally, LIRS’s ability to adapt
to LRU-friendly workloads is limited by the size of Q.

6.4.3 CACHEUS C3 vs LeCaR

Finally, the rightmost plot in Figure 10 compares LeCaR and
C3. The upper plot shows the weights for LRU and SR-LRU
in LeCaR and C3 respectively, both initialized to 0.5. Dur-
ing the scan phase, LRU and SR-LRU get penalized due to
the drop in performance until new hits in cache make them
increase again. Even though choosing LFU is the right de-
cision for LeCaR during churn phases, the delay in doing
so prevents LeCaR of accumulating more hits than C3. In
particular, C3 is able to capitalize during one churn period
during the 11 hour while maintaining good performance for
the last 7 hours of the workload. Most interestingly, towards
the end when LeCaR mostly uses LFU, C3 exclusively re-
lies on SR-LRU during churn periods. This is due to the
fact that while SR-LRU was designed to handle scan phases,
it also implements a way to avoid confusing churn periods
with scan. This is done by marking items entering SR for the
first time as new and keeping track of such items in H. If
a new item is accessed again while in H, SR-LRU quickly
corrects itself to disable scan protection.

7 Related Work
Past work on utilizing multiple experts within a cache re-
placement algorithm include ACME [1] and the follow up



work on designing a master policy [10] which learned the
weights of 12 distinct experts and used these to make evic-
tion decisions. Since then, algorithms such as ARC [23],
LIRS [13], DLIRS [20], and LeCaR [34] were developed
and are considered the state-of-the-art.

CACHEUS builds on the successes of LeCaR. It improves
upon LeCaR in a few ways. First, while LeCaR argued for
using the classic LRU and LFU, CACHEUS demonstrates
the importance of using more sophisticated experts. Sec-
ond, CACHEUS simplifies LeCaR by identifying and elim-
inating redundant aspects of its machine-learning mecha-
nism. Third, it creates a fully-adaptive version that is also
lightweight. Finally, new lightweight experts, SR-LRU and
CR-LFU improve upon LeCaR’s experts to address two new
workload primitive types, scan and churn. With these im-
provements, CACHEUS performs better than LeCaR as well
as other state-of-the-art algorithms such as ARC, LIRS, and
DLIRS.

SR-LRU is inspired by both ARC and LIRS. One im-
portant distinction between ARC and SR-LRU is that ARC
evicts from either T 1 or T 2, while SR-LRU only evicts from
a single spot: SR. Another distinction is SR-LRU’s use of
tags instead of separate histories (B1 and B2 in ARC) in or-
der to enable reasonable adaptiveness. As to LIRS and its
adaptive version, DLIRS, SR-LRU differs from these in the
separation of history from internal partition/stack data struc-
tures, and its use of tags to determine relevance of items in
history instead of explicitly pruning obsolete history items.

Recent works on adaptive caching include Least Hit Den-
sity (LHD) [4] which focuses on predicting an object’s hits-
per-space-consumed to determine evictions in a variable-
sized object environment. LHD focuses on variable-sized
caches of key-value stores or CDNs and was therefore not
evaluated against the state of the art storage caches such as
ARC and LIRS [4]. Like the state-of-the-art storage caching
algorithms, CACHEUS is designed for a fixed-sized object
caching environment and uses a novel reinforcement learn-
ing technique that engages exactly two complementary ex-
perts for significantly improving caching decisions.

8 Conclusions
Consistently high-performing caching continues to repre-
sent a fascinating, yet elusive, goal for storage researchers.
CACHEUS serves this goal by creating a new class of
lightweight and adaptive, machine-learned caching algo-
rithms. The CACHEUS framework allows the use of ex-
actly two, ideally complementary, experts to guide its ac-
tions. CACHEUS using the proposed new experts, SR-LRU
and CR-LFU, is the most consistent algorithm for a range of
workload-cache size combinations. Furthermore, CACHEUS
enables easily combining a state-of-the-art caching algo-
rithm such as ARC and LIRS with a complementary expert
such as LFU to better handle a wider variety of workload
primitive types. We believe that ML-based frameworks for

utilizing caching experts holds great promise for improv-
ing the consistency and effectiveness of caching systems
when handling production workloads. CACHEUS sources
can be downloaded at https://github.com/sylab/
cacheus.

Acknowledgments
We would like to thank the reviewers of this paper and our
shepherd Ken Salem for insightful feedback that helped im-
prove the content and presentation of this paper substantially.
This work was supported in part by a NetApp Faculty Fel-
lowship, and NSF grants CCF-1718335, CNS-1563883, and
CNS-1956229.

References
[1] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A.

Brandt, and D. D. Long. ACME: Adaptive caching us-
ing multiple experts. In WDAS, pages 143–158, 2002.

[2] D. Arteaga and M. Zhao. Client-side flash caching for
cloud systems. In Proceedings of International Con-
ference on Systems and Storage (SYSTOR), 2014.

[3] R. Battiti. Accelerated backpropagation learning: Two
optimization methods. Complex systems, 3(4):331–
342, 1989.

[4] N. Beckmann, H. Chen, and A. Cidon. LHD: Im-
proving cache hit rate by maximizing hit density. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 389–403, 2018.

[5] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(Feb):281–305, 2012.

[6] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.
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