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Abstract
Cache replacement algorithms have focused on man-

aging caches that are in the datapath. In datapath caches,
every cache miss results in a cache update. Cache up-
dates are expensive because they induce cache insertion
and cache eviction overheads which can be detrimental to
both cache performance and cache device lifetime. Non-
datapath caches, such as host-side flash caches, allow
the flexibility of not having to update the cache on each
miss. We propose the multi-modal adaptive replacement
cache (mARC), a new cache replacement algorithm that
extends the adaptive replacement cache (ARC) algorithm
for non-datapath caches. Our initial trace-driven sim-
ulation experiments suggest that mARC improves the
cache performance over ARC while significantly reduc-
ing the number of cache updates for two sets of storage
I/O workloads from MSR Cambridge and FIU.

1 Introduction
CPU and main memory caches are datapath caches.
Such caches incur forced cache updates; they are re-
quired to make a cache update on every cache miss
so that the data is accessible by upper-level hardware
or software. The widely used cache replacement poli-
cies today, such as (e.g LRU [2], FIFO [2], ARC [8],
MQ [13]) were designed for datapath caches. Non-
datapath caches, on the other hand, are not required to
perform a cache update on every cache miss. One can ap-
ply opportunistic cache updates, whereby case-by-case
decisions can be made whether to perform a cache up-
date. A host-side flash cache is an example of a non-
datapath cache. Host-side flash caches are attractive be-
cause they can reduce the demands placed on network
storage, speed up I/O performance, and provide I/O la-
tency and throughput control [1, 6, 7].

A cache update is composed of two operations: an
eviction and an insertion. Performance wise, evictions
can be detrimental. In case of a host-side flash cache,
a dirty item chosen for eviction needs to be written to
the backing storage consuming both cache and network
storage bandwidth and contending with other items being
accessed at the same time. Furthermore, it can add sig-
nificant latency to the access inducing the eviction. More
significantly, since the item being evicted may be more
valuable than the item being inserted in its place, cache
updates can be detrimental to the cache hit rate. This

problem is especially acute for one-time access items, as
in a streaming or random access workload, since they
lead to inserting non-reusable items into the cache. Fi-
nally, flash-based cache devices have limited write cycles
and cache updates also affect device lifetime.

Lazy adaptive replacement cache (LARC) [3] is a
recent proposal that implements opportunistic cache up-
dates. While LARC benefits from avoiding certain cache
updates, since the LARC cache filter is always opera-
tional, it can also prevent important items from enter-
ing the cache in a timely fashion. As we shall demon-
strate later, because of this shortcoming, LARC performs
worse than ARC for the MSR Cambridge workloads.

We propose multi-modal adaptive replacement cache
(mARC), a non-datapath version of the adaptive replace-
ment cache (ARC) algorithm. mARC is designed to
avoid unnecessary cache updates. It identifies three pos-
sible states in which a workload may be operating in at
any given time — STABLE, UNSTABLE, and UNIQUE
ACCESS — and selectively disables cache replacement
depending on the state.

An evaluation of mARC using a cache simulator for
the MSR and FIU block I/O traces from SNIA [11] is
encouraging. For the MSR Cambridge Traces, while
maintaining a competitive hit-rate compared to ARC (1%
worse on average), mARC reduces the number of cache
updates by 25% on average. This translates to a signifi-
cant improvement in flash cache device lifetimes. For the
FIU traces, mARC leads to 9% better hit-rate on average
while reducing the number of cache updates by 23% on
average, when compared with ARC. These results mo-
tivate further investigation into replacement algorithms
that are specifically designed for non-datapath caches.

2 The Case for Selective Caching
2.1 Dynamic Storage Workloads

Storage workloads are dynamic. We model this dy-
namism using a simple Active-Unique (A-U) model that
is time-aware and describes the amount of unique data
accessed as well as the amount of data that is reused (ac-
tive data) in a workload. A sample A-U plot is presented
in Figure 1 for one day of the prn0 MSR Cambridge
trace. The A-U model tracks the number of active and
unique pages accessed over time. The active pages at any
instant are the unique pages accessed previously and that
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Figure 1: A-U plot for one day of the prn0 MSR trace.
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Figure 2: Cache churning behavior. S(WSi) is the size of
the working set at granularity i that is entirely contained within
the larger working set WSi+1 [5]. S(C) is the cache size. Since
the cache is not large enough to contain all pages of WSi+1,
non cache-resident pages of WSi+1 continuously replace cache-
resident ones.

will be re-accessed at some time in the future. As pages
get accessed, the unique set of pages never decreases,
while the active set may either increase or decrease de-
pending on the future reuse.

Several combinations of A-U states can be identified
with corresponding workload behavior. We say that a
workload is in a STABLE state in a given period if the
set of items that are currently referenced and their rel-
ative importance (e.g., relative frequency of access) re-
mains approximately the same as the previous period.
When the set of active and unique pages both remain un-
changed, the relative frequency of items being accessed
determine if the workload is in a STABLE state. When
the set of unique pages remains the same but the set of
active pages decreases, as well as when both the active
and unique page sets increase, the working set is chang-
ing, and the workload is an UNSTABLE state. When the
set of unique pages increases but the set of active pages
remains unchanged, one time items (either streaming or
random) are being accessed and we refer to the workload
as being in the UNIQUE ACCESS state.

While the active/unique page states provide a good
framework to understand workload behavior, accurately
tracking the active/unique page sets and their relative im-

Figure 3: A-U plot for one day of src2-1 MSR trace.

portance is expensive. Further, it is not possible to iden-
tify active pages in practice, given that it would require
knowledge of future accesses. In practice, we found that
the cache hit rate, a relatively lightweight metric, can
serve as an effective proxy for identifying the above set
of workload states and state change events.

2.2 The Deceptiveness of Stability

If the workload is in a STABLE state, a cache is ex-
pected to perform well. However, if the cache is not
large enough to contain the current set of active pages,
the cache contents can churn needlessly due to forced
cache updates in conventional caching algorithms. Such
churning involves the constant eviction of cached pages
when pages with relatively equal or lesser importance get
accessed. Figure 2 illustrates cache churning behavior
within the STABLE state. Cache replacement due to such
churning is detrimental to cache hit rate. The optimal op-
eration in such situations is a ”noop”, i.e., not to perform
cache replacement. This phenomenon has been observed
for CPU caches earlier [10].

2.3 ARChilles’ Heel

ARC [8] is a high-performance algorithm for datapath
caches. During UNSTABLE periods, ARC updates the
cache contents efficiently by quickly detecting the im-
portant items in the new working set. During UNIQUE
ACCESS periods, ARC retains the frequently used items
while unique items tracked in ARC’s T1 list pass through
the cache quickly. During a workload’s STABLE state,
ARC is designed to retain frequently used items from its
T2 list in the cache. However, ARC’s cache updating
behavior can compromise cache hit ratio when a stable
working set does not fit in the cache. Relatively less fre-
quently used items continuously lead to cache misses and
cache contents churn needlessly.

Figure 3 presents an A-U plot for src2-1 MSR Cam-
bridge trace. In this workload, the number of active and
unique pages climbs steadily (introducing a new work-
ing set) until about 4.2M accesses. Following this, the
workload reuses a subset of these pages for about 0.2M
accesses and then accesses a majority of the 4.2M unique
pages exactly once again causing a steady decrease in
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STABLE STABLE UNIQUEAlgorithm (no Churning) (Churning) UNSTABLE ACCESS

ARC X ∅ X ∼
LARC X ∼ ∼ X
mARC X X X X

Legend: Xfull support, ∼ partial support, ∅ no support

Table 1: Algorithms and workload states

active pages while the number of unique pages stay the
same. If the cache size is smaller than the maximum
number of active pages (i.e., smaller than 20GB), ARC
would continuously evict pages that are about to be used
in this trace. This churning would result in a significantly
increased cache miss rate.

2.4 Avoiding Forced Cache Updates

The recently proposed LARC [3] algorithm implements
a filtering mechanism that always avoids cache updates
for items not accessed sufficiently recently. LARC con-
sists of two LRU lists, one for cached items and a filter
list for tracking items that were not in the cache or in
the filter list when last accessed. A cache update is only
performed when an item that is not found in the cache
is found in the filter list. The filter list size grows (resp.
shrinks) with a decrease (resp. increase) in cache hit rate.

While LARC presents a new approach for avoiding
cache updates, it has its own set of weaknesses. LARC’s
filter is always operational and can prevent important
items from entering the cache in a timely fashion. More
specifically, LARC populates the cache at least twice as
slowly as other algorithms when workload working sets
change, negatively affecting cache performance. In such
situations, LARC can perform significantly worse than
ARC. LARC’s filtering mechanism can reduce the prob-
ability of content churning in the cache by shrinking the
size of the filter. However, it can only be successful in
doing so when the cache hit rate is sufficiently high; in
other cases, LARC is unable to avoid churning.

3 mARC
Building on the strengths of ARC and LARC while ad-
dressing their weaknesses can lead to significant bene-
fits for non-datapath caches. The intuition behind mARC
is that workloads comprise of multiple states and filter-
ing (or not filtering) exclusively is not effective in every
workload state.

3.1 Design

mARC characterizes workloads as a state machine with
three states — STABLE, UNSTABLE, and UNIQUE AC-
CESS. By avoiding cache updates when cache contents
would otherwise churn, mARC improves cache hit-rate.
By avoiding unnecessary cache updates, it also improves
data access latency and extends cache device lifetime.

During the UNSTABLE state, mARC implements a

simple ARC access for each referenced item, i.e., per-
forms no filtering. mARC implements filtering in the
UNIQUE ACCESS and STABLE states. In these states,
items either enter the cache or are registered in a filter
list, which only stores metadata about the item. On a
cache miss, items that are not found in the filter list get
added to the filter list, whereas those that are in found in
the filter list result in an ARC access within the cache.
The size of the filter list is maintained and updated as in
LARC [3]. Table 1 provides a qualitative comparison of
ARC, LARC, and mARC.

3.2 The States of mARC

To efficiently identify workload states, mARC uses sam-
pling. It maintains two indicators to track workload
state: a running average cache hit-rate that has been ac-
cumulated during the current workload state (HRstate)
and the cache hit-rate during the current sample period
(HRsample). HRsample is the hit-rate computed over the
last n accesses where n is the size of the cache. In prac-
tice, n accesses provide us a valuable mean hit-rate by en-
suring adequate coverage of items compared to the work-
ing set resident in the cache.

mARC operates as follows. Every n accesses,
HRsampleis compared with HRstate. mARC resets the
value of HRstate only when entering an UNSTABLE state
to quickly and accurately track the hit-rate of a new
working set. Doing so for the other states is not nec-
essary. While in the UNSTABLE state, to increase con-
fidence and robustness, HRstate tracks at least 2n ac-
cesses before checking if a change of state should take
place. Table 2 depicts the state machine that mARC im-
plements. The constants used for each condition were
determined by experimenting with a subset of the possi-
ble combinations of feasible values across all the 45 I/O
workloads from MSR Cambridge and FIU [11]. mARC
starts its operation in the UNSTABLE state. The rest of
this section discusses how the various states of mARC
operate, how state transitions occur, and the resulting im-
pact to the caching mechanism.

3.2.1 STABLE State

At the beginning of a stable state, mARC enables the fil-
tering mechanism, configuring the filter to its minimum
size. ARC, active during the previous UNSTABLE state,
is expected to have populated the cache with the work-
load’s working-set. Filtering in this state prevents cache
pollution and needless cache updates. Starting with the
minimum sized filter reduces the probability of cache
churning as well. When signs of workload instability
appear, the filtering mechanism is stopped and mARC
returns to the UNSTABLE state to repopulate the cache.

The only condition needed for mARC to transition
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State Condition Action
STABLE HRsample <= 0.7∗HRstate Switch to UNSTABLE

0.9∗HRstate <=HRsample <= 1.1∗HRstate
HRsample >= 1.2∗HRstate∧HRsample > 0.2 Switch to STABLEUNSTABLE
0.5∗HRstate >HRsample∨HRsample < 0.1 Switch to UNIQUE ACCESS

UNIQUE ACCESS 0.10∗HRsample >Filter-HRsample∨HRsample > 0.1 Switch to UNSTABLE

Table 2: mARC State transition table

out of the STABLE state is that the performance of the
cache is deteriorating over time because a new working
set. As shown in Table 2, we used a HRsample that was
70% of the HRstate as a robust indicator of instability.
In practice, we found that higher values make mARC
prematurely enter the UNSTABLE state for a substantial
fraction of the workloads.
3.2.2 UNSTABLE State

In an UNSTABLE state, mARC uses ARC without filter-
ing with the objective of populating a new working set.
As shown in Table 2, there are three possible conditions
that lead to transitions out of this state:

• HRsample is similar to HRstate — within 10% of each
other. This implies hit-rate stability and mARC infers
that the workload itself is stable. To respond, mARC
moves to the STABLE state to improve the hit-rate by
avoiding cache churning and cache updates. We found
10% of HRstate to be an acceptable margin of error
when detecting stability. If a more rigorous measure
of stability were to be used, mARC delays entering the
STABLE state and in starting to filter unwanted items.
If a less rigorous measure were to be used, the risk of
changing state prematurely, and thereby compromising
cache hit-rate, increases.
• If HRsample is significantly higher than HRstate and
also above a threshold, mARC determines that recent
performance is better than the historical performance
in the current state and moves to the STABLE state.
When HRsample is 20% higher HRstate, then the new
state is considered significantly better. However, a min-
imum threshold must also be met by HRsample for this
increase to avoid really low values.
• When HRsample is significantly lower than HRstate
or HRsample is below a minimum value, mARC infers
streaming or random (one time) access behavior, and
transitions to the UNIQUE ACCESS state. mARC em-
ploys 50% decrease in hit-rate as a good indicator of
unique access behavior and this worked well in prac-
tice. Furthermore, if HRsample is below 10%, unique
access behavior is automatically inferred.

3.2.3 UNIQUE ACCESS State

In a UNIQUE ACCESS state, mARC turns on filtering
mechanisms to avoid cache pollution due to cache up-
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Figure 4: MSR Cambridge Results

dates and stops filtering only after transitioning out to
an UNSTABLE state. Table 2 shows the conditions that
bring mARC back to the UNSTABLE state. These in-
volve detecting either that (i) a new working set is be-
ing introduced or (ii) unique access behavior has termi-
nated. To determine if a new working set is being ac-
cessed, mARC samples the hit-rate of items in the fil-
ter (Filter-HRsample). If this value exceeds 10%, it con-
cludes that unique access behavior will soon terminate.
mARC also uses a minimum HRsample threshold to de-
tect that the UNIQUE ACCESS state has terminated and
a new working set may already be cache resident. In this
case, switching to the UNSTABLE state will allow con-
firming that the working-set is indeed cache resident and
eventually switch to the STABLE state.

4 Evaluation
We built ARC, LARC, and mARC cache simulators
which process a block I/O trace and report on the num-
ber of reads/writes, hits and misses, and clean and dirty
evictions. To simulate sufficient cache as well as I/O ac-
tivity, we controlled the size of the cache to be a frac-
tion of the workload footprint, defined as the combined
size of all unique data accessed. We varied this frac-
tional cache size from 5% to 25% in our simulations.
Our evaluation metrics include the mean cache hit-rate
and the normalized mean write-rate; greater write-rates
indicate lower flash cache device lifetime. For the work-
loads, we used the FIU and MSR Cambridge block I/O
traces from the SNIA IOTTA trace repository [11]. The
MSR Cambridge and FIU traces are two large sets of 36
and 9 I/O traces respectively, from a variety of produc-
tion servers/systems [9, 12].

4.1 MSR Traces

We first evaluate mARC for the MSR Cambridge traces,
averaging across all its workloads. Figure 4 depicts how
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Figure 5: FIU Results

the cache hit-rate and cache write-rate vary for various
cache sizes chosen as fractions of the workload footprint
size. We observe that mARC has an average hit-rate that
is very competitive with ARC (1% worse on average)
and is greater than the LARC hit-rate (5% better on av-
erage) across the various cache sizes. LARC incurs the
least number of cache writes (43% better than ARC on
average), while mARC does 25% fewer cache writes on
average than ARC.

4.2 FIU Traces

Figure 5 depicts results for the FIU traces, averaged
across all the workloads. While mARC and LARC both
provide higher hit-rate than ARC, LARC’s hit-rate de-
grades as cache size increases from 10% to 15% of the
workload footprint. This happens because LARC makes
decisions on what to cache based on a secondary hit
in the filter; since the filter size is proportional to the
cache size, cache churning becomes a possibility. mARC
does slightly better than LARC on average (1% bet-
ter hit-rate) and also performs better with more cache
space. LARC incurs the lowest write-rate (33% lower
than ARC), whereas mARC also reduces write-rate by
23% compared to ARC.

5 Related Work
Besides LARC, PLC-Cache [4] also avoids cache up-
dates; it is built on top of a deduplication framework and
filters elements based on the frequency of access. Simi-
lar to LARC, it does not model workload state and can-
not selectively turn off its filtering mechanism based on
such state. Some work on CPU caching is also related.
Dynamic Insertion Policy (DIP) is an adaptive insertion
policy [10] that chooses between using a LRU Insertion
Policy (LIP) or a Bimodal Insertion Policy (BIP), based
on the current workload. Unlike mARC, the goal of DIP
is not to avoid cache updates. Like mARC, it does at-
tempt to reduce overall cache pollution.

6 Conclusion
Conventional datapath caches have been managed by
policies that incur forced cache updates. For non-
datapath caches, these caching policies can become
detrimental to cache performance and cache device life-
time. In this paper, we demonstrate that managing data-
path caches involves deciding whether and when to fil-

ter items from entering the cache, as well as to turn
off such filtering when it becomes detrimental to per-
formance. We show that for caching purposes, work-
loads can be modeled as a simple but useful state ma-
chine. mARC modifies the ARC algorithm equaling or
exceeding its hit-rate while significantly lowering cache
updates. While much work remains, mARC and other
algorithms in its class present a path towards better man-
aging non-datapath caches.
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