
Centaur: Host-side SSD Caching for Storage

Performance Control

Ricardo Koller

IBM T.J. Watson Research Center

Ali José Mashtizadeh

Stanford University

Raju Rangaswami

Florida International University

Abstract—Host-side SSD caches represent a powerful knob
for improving and controlling storage performance and improve
performance isolation. We present Centaur, as a host-side SSD
caching solution that uses cache sizing as a control knob to achieve
storage performance goals. Centaur implements dynamically
partitioned per-VM caches with per-partition local replacement to
provide both lower cache miss rate, better performance isolation
and performance control for VM workloads. It uses SSD cache
sizing as a universal knob for meeting a variety of workload-
specific goals including per-VM latency and IOPS reservations,
proportional share fairness, and aggregate optimizations such as
minimizing the average latency across VMs. We implemented
Centaur for the VMware ESX hypervisor. With Centaur, times
for simultaneously booting 28 virtual desktops improve by 42%
relative to a non-caching system and by 18% relative to a unified
caching system. Centaur also implements per-VM shares for
latency with less than 5% error when running microbenchmarks,
and enforces latency and IOPS reservations on OLTP workloads
with less than 10% error.

I. INTRODUCTION

Enterprises constantly consolidate more workloads as vir-
tual machines (VMs) to reduce hardware, power, and mainte-
nance costs. However, doing this well requires VMs to provide
the same performance guarantees that physical machines do.
Current hypervisors provide per-VM performance isolation
guarantees and even knobs to control per-VM shares, limits,
and reservations for CPU and memory resources. However,
these performance controls and isolation guarantees do not
include storage. Storage performance of individual virtualized
workloads under contention is difficult to control with preci-
sion [13]. There is a need for solutions that enable storage
systems to satisfy simple high level goals (e.g., minimizing
average VM latency or meeting a specific VM’s latency target).

Host-side SSDs are a recent augmentation to disk-based
storage stacks that are becoming increasingly mainstream [6],
[16], [20], [30], [42]. When used as a cache, the SSD space
can be dynamically partitioned across workloads to meet
per-workload performance goals. Current cache partitioning
techniques optimize aggregate metrics such as effective cache
utilization [22] and aggregate cache utility [28]. They provide
controls for proportional sharing of the cache space but the
utility and limitations of SSD cache partitioning has not been
comprehensively explored. In particular, current research on
partitioning of SSD caches leaves three questions unanswered:

(i) What motivates host-side SSD cache partitioning? We
observed that workloads sharing a host-side cache can cause
significant cache wastage due to contention effects. Our first
contribution is to show that such wastage occurs for LRU,
Aging-LFU, and ARC [27] replacement algorithms and that

this wastage increases as a percentage of the combined work-
load’s working set size. Thus, solutions that can minimize
wastage in shared SSD caches are necessary.

(ii) How can we best overcome cache wastage effects
via partitioning? Current solutions use conventional cache
partitioning techniques that work well for CPU and memory
caches [17], [38]. In particular, these techniques rely on
assumptions about cache miss rate curves that do not hold true
for host-side SSD caches. Our second contribution involves
empirically demonstrating that applying conventional partition-
ing techniques to SSD caches can result in large errors when
estimating cache miss-rate: a 20% increase in cache miss-
rate for a set of 9 production storage workloads. Our third
contribution is an online technique based on dynamic cache
partitioning that is free of such assumptions and addresses SSD
cache wastage effectively.

(iii) How do we partition caches for per-VM storage la-
tency and throughput control? Previous studies have addressed
improving overall cache hit ratio and proportional sharing of
the cache. However, they do not address how administrators
would map the specified miss-rate based goals into relevant and
familiar goals such as per-VM storage latency or throughput
reservations. Our fourth contribution is demonstrating that
host-side SSD caches can be an accurate storage QoS control
knob. We develop latency curves and throughput curves as
foundations for building a variety of QoS controls.

We present Centaur, a host-side SSD caching system that is
able to meet per-VM performance and isolation goals. It peri-
odically measures latency and miss rate for each VM, uses this
information to predict the performance at different cache sizes,
and re-partitions the cache using these predictions and the ex-
pected goals. We implemented Centaur as a partitioned write-
back host-side SSD cache for virtual disks in the VMware ESX
hypervisor. Experimental results show that Centaur accelerates
the boot time of 28 virtual desktops by 18% when compared
with a unified caching solution. Furthermore, for a set of
9 production storage workloads, it reduces cache misses by
as much as 20% relative to a unified cache. We also show
that our system is also able to balance the average latencies
of mixed read/write VM workloads with less than 5% error.
Moreover, it can implement latency and IOPS reservations
across a mix of VMs running the OLTP benchmark [26].
These fine-grained per-VM performance controls are simply
unavailable when using a unified cache or using the existing
SSD cache partitioning solutions.

II. MOTIVATION

Host-side SSD cache partitioning offers a powerful control
knob for achieving storage performance goals. To make this

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300

M
is

s
e

s

Cache size in MB

combined (a + b)

 1000

 2000

 3000

 4000

WSSa WSSb

M
is

s
e

s

WSSa + WSSb

a
b

Fig. 1. Working set sizes and wastage. Curves a and b are the MRCs of
two workloads and combined is the MRC obtained when both a and b run
together.

argument, we show that sizing an SSD cache (or a cache par-
tition) can be used to control per-VM latency and throughput.
Second, we show that shared SSD caches must be partitioned
to avoid cache wastage due to contention effects that are
otherwise incurred by unified caches.

A. Cache Size as a QoS Control Knob

To motivate cache size as a QoS knob, we designed a
simple experiment to determine if we can control the average
IO latency of a workload by varying the size of its host-
side SSD cache. We created a workload to access a 10 GB
file from a 10K RPM disk using four patterns: random-
reads, random-writes, sequential-reads and sequential-writes.
The SSD cache implements a write-back, write-allocate, Adap-
tive Replacement Cache (ARC) [27] algorithm with 4 KB
requests for the random workloads and 128 KB requests for
the sequential ones. For all cases, the average IO latency
decreases monotonically with increase in cache size in the
range of at least 2 ms to at most 7 ms in all four cases.
This experiment supports the use of host-side SSD cache
size for storage QoS control. Later, we discuss how carefully
partitioning an SSD cache across VMs can be used effectively
for meeting a variety of workload-specific goals. We show that
such goals can be fairly broad and include per-VM latency and
IOPS reservations, proportional share fairness, and aggregate
optimizations such as minimizing the average latency across
all VMs.

B. Wastage in Unified Caches

High performance storage caches are expensive and are
typically sized to hold the working set of the workload. We
define the working set size (WSS) as the size beyond which
any increase in cache size does not reduce the miss rate. A
common method to estimate a workload’s working set size
is using a miss rate curve (MRC) as in Figure 1. Given the
MRC, a storage cache can be provisioned to match the working
set size. This approach works well when a single workload
uses the cache exclusively. However, when multiple workloads
share a storage cache, it does not.

We replayed the webresearch and webusers production
traces published previously [41] for half an hour on a warmed-
up, aging-LFU cache simulator, first individually and then
simultaneously. Figure 1 illustrates how the MRCs of two

workloads is not adequate for computing the combined cache
requirement of two workloads. The caching system uses a
unified cache replacement policy at the hypervisor level that
is not aware of individual workloads. One would expect the
combined workload to have a WSS equal to the sum of the
individual WSS. However, the real WSS is 23 MB (almost
10 %) more than the expected 246 MB. We term this additional
cache requirement as wastage.

To better quantify wastage with host-side SSD caches, we
replayed a three-hour segment from eight production workload
traces [41]. Individual and time-stamp based combinations of
these workloads were replayed on simulators using the LRU,
aging-LFU, and ARC [27] replacement policies with cache
lines of 4 KB (typical file block size). Figure 2 uncovers
a troubling phenomenon—the induced cache wastage (as a
fraction of the combined workloads working set) increases
as more workloads are made to share the cache. Given the
high consolidation ratios in today’s virtualized systems (50:1,
100:1), wastage would represent a significant portion of the
cache space requirements.

To overcome the cache wastage effects incurred when
multiple workloads access a unified cache, Centaur adopts
per-workload partitioning of the host-side SSD cache. While
previous work implicitly chose to partition a shared host-side
SSD cache and applied conventional techniques for partition-
ing [22], [28], this work provides the foundations for doing so
with host-side SSD caches.

III. CENTAUR OVERVIEW

A Centaur-enabled hypervisor manages host-side SSDs as
a cache resource to be used within each VM’s storage access
path. The managed element in Centaur is the set of VMs, and
the autonomic manager is a high-level process that monitors
the VMs and configures their SSD cache allocations. Individual
VMs store their file systems as distinct files managed by
the hypervisor. An administrator would assign some or all
virtual disks to SSDs for caching and specify performance
goals on a per-VM basis. Hypervisors, upon the direction of
the autonomic manager, control the storage performance of
individual VMs by increasing or decreasing the cache space
assigned to each VM to meet administrator goals. Further,
unlike previous solutions for CPU caches that continuously
repartition the cache [40], SSD cache partitions in Centaur are
only periodically resized by the global scheduler to adapt to
stable changes in the workloads and the storage system [21],
[35]. Doing so ensures that stable workload characteristics are
reflected post-repartitioning.

We anticipate our solution to be used by administrators
towards meeting several types of system goals. The adminis-
trator can choose to (A) maximize overall performance which
translates to minimizing overall cache miss rate or average IO
latency across all VM IOs or (B) maximize the sum of per-
VM average performance which translates to a fairness goal,
or (C) per-VM performance control which allows specifying
latency or IOPS targets on a per-VM basis. A unified cache
can support only the first of the three goals above and will
incur unwanted cache wastage when doing so.

 0

 3

 6

 9

 12

 2 3 4 5 6 7 8

W
a
s
ta

g
e
 (

%
)

Number of concurrent workloads

Wastage

LRU
ARC

Aging LFU
 0

 50

 100

 150

 200

 2 3 4 5 6 7 8

W
o
rk

in
g
 s

e
t
s
iz

e
 (

M
B

)

LRU

 2 3 4 5 6 7 8

Number of concurrent workloads

Aging LFU

Wastage
Actual

Individual sum

 2 3 4 5 6 7 8

ARC

Fig. 2. How does wastage scale? The leftmost pot tracks wastage as a percentage of the total cache requirement. It grows as the degree of contention increases.
While wastage with Aging-LFU grows slower than with LRU or ARC, its overall cache requirement is higher than either (as shown in the three rightmost plots).

+

0 1 2 0 1 2

Cache space Cache space

VM 1 VM 2

Miss

rate

Miss

rate

cache

assigned

to VM 1

cache

assigned to

VM 2

0

1

0.5

0

1

0.5

Fig. 3. Example of cache partitioning. A cache of size 2 is partitioned
across two VMs. VM MRCs are shown with the optimal assignment of cache
shown in grey: one cache unit to each VM.

M
is

s
-r

a
te

Cache size

MRC
Convex minorant of the MRC

Fig. 4. Sample MRC and its convex minorant.

IV. BACKGROUND ON CACHE PARTITIONING

Wastage in shared caches can be addressed with cache
partitioning. Most partitioning approaches in the literature are
based on miss rate curves (MRC), which define the miss rate
for a given cache size. We illustrate the use of miss rate
curves to find the allocation that optimizes a specific goal—
minimizing the sum of average VM miss rates. Assume there
are two VMs reading from random locations within a file. VM
1 reads a file of size 2 GB and VM 2 reads a file of size 1 GB.
Figure 3 shows the MRCs for both VMs. The miss rate is 1
for a cache size of 0 for both VMs; it is 0 for cache sizes
greater than the size of the files read (2 GB for VM 1 and
1 GB for VM 2). For a 2 GB cache, assigning 1 GB to each
VM is optimal when minimizing the overall cache miss rate.
This partitioning results in a total miss rate of 0.5 = 0.5 + 0
and is depicted as the shadowed regions in Figure 3.

While this seems straightforward, the number of possible
partitions grows exponentially with the number of workloads.
Rajkumar et al. proved that optimal cache partitioning is NP-
hard [32]. Stone et al. proposed an approximation algorithm
using convex hulls for solving this problem [38]. This approach
and its variants have been used for partitioning CPU, main
memory, and storage system caches [9], [29], [31], [37], [39],
[40], [45].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06

M
is

s
 r

a
te

Cache size in blocks

rs = 64 blocks
rs = 1 block

Fig. 5. MRCs for large requests sizes. Random reads from a file at two
granularities, with request size (rs) = 1 and with rs = 64.

A. The Convex Hull Approach

Current cache partitioning algorithms follow the convex
hull approach. The convex hull of a set of points is the
smallest convex polygon that contains all the points. The
convex minorant is the greatest convex curve lying entirely
below this polygon (Figure 4). The partitioning algorithm first
computes a convex minorant for the MRC of each VM and then
applies an iterative, greedy search algorithm on the minorants
to find a close-to-optimal partitioning of the cache space as
follows:

1) Initialize partition sizes sk to zero.
2) Calculate the convex minorant mi(si) of the MRC

for each VM i.
3) Increase by one unit the partition size of the VM k

which would benefit the most computed as mk(sk)−
mk(sk+1), the reduction in the miss-rate for the VM.

4) Repeat the previous step until all cache space has
been assigned.

B. Problems with the Convex Hull Approach

The above approach fails when used for host-side SSD
caches and will fail for other caches with the properties
discussed below. Unlike CPU caches, the SSD cache access
granularity can be arbitrarily large. For a multi-block cache
request, some blocks could be resident in the SSD cache while
others are not. Since a block request can complete only when
all blocks have been retrieved, we consider a request to the
host-side caching layer as a cache hit only when all the blocks
accessed are found in the cache. The effect of this requirement
is that the probability of a cache hit decreases with the request
size. For example, if the cache size is 10 MB, requests of
1 MB are less likely to hit the cache than requests of 4 KB.

We illustrate the problem with the convex hull approach
empirically. The dotted line in Figure 5 shows the MRC for a

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 300 600 900 1200

M
is

s
 r

a
te

Cache size in MB

Convex hull (smoothed MRC)
Full MRC

Fig. 6. Convex hull approach versus using the full MRCs. Nine production
traces were replayed using a partitioned cache of varying size with the convex
hull approach and when using full MRCs.

workload that randomly reads from a file of one million blocks
using a request size of one block. As expected, the miss rate
decreases as a straight line from 1 when there is no cache to a
miss rate of zero when the cache has the size of the file. The
solid line shows the MRC for the same workload but when
requests are of size 64 blocks. The curve becomes concave
because as the size of the request increases, the chances of
hitting the cache decrease. The problem with the convex hull
approach is that both these workloads have the same convex
minorant and are therefore treated identically by the allocation
algorithm. This can lead to a substantial approximation error.
For instance, if the workload issued requests of size 64 and the
algorithm assigned it half a million blocks of cache expecting
a cache miss-rate of 0.5, in reality, the workload would incur
a miss rate of 0.8 instead, an error of 60% in the miss-rate
estimation.

To understand the significance of this loss of accuracy in
miss-rate estimates, we analyzed an entire day of nine produc-
tion storage traces [41]. We replayed the traces simultaneously
on a cache simulator that partitions the cache space every 5
minutes across all the workloads. Figure 6 shows the total
miss rate across all workloads at different caches sizes when
partitioned either using the convex hull approach or using full
MRCs. The convex hull approach can lead to an increase in
total cache miss-rate of as much as 20%.

V. PARTITIONING FOR PERFORMANCE

In this section, we describe how Centaur dynamically par-
titions a host’s SSD cache for improving overall performance
and for reducing the sum of the average latencies across all
VMs.

A. Partitioning for IO Latency Minimization

Centaur predicts the sum of IO latencies, probabilistically
searches the space of potential partitioning outcomes, and
chooses the partitioning outcome which results in the smallest
sum of IO latencies across VMs. The process (at every epoch)
follows the steps listed below:

1) Construct a miss rate curve (MRC) for each VM.
2) Use the MRCs to predict the IO latency for each

VM at all possible cache sizes, thereby creating the
latency curve for each VM.

3) Use a probabilistic search using the latency curves
to find the partitioning candidate that produces the
smallest sum of IO latencies across all VMs.

Step 1: MRC construction for external caches

Following Denning’s locality principle [7], we assume that
the MRCs of two consecutive partitioning epochs are likely
to be similar and construct MRCs for future use using the
IO accesses during the previous partitioning epoch. Centaur’s
MRC construction technique is an adaptation of Mattson’s
stack algorithm [25]. Mattson’s stack algorithm was originally
designed to create MRCs for the LRU cache policy; later it
was shown to work for other policies (e.g., LFU [5]). Each
time an element is accessed, the stack distance (depth in the
stack at which the element was found because of a previous
reference) for the reference is determined. The algorithm
updates a histogram of stack distances upon every access,
thereby capturing the hit count at every possible stack distance.
The workload’s MRC is constructed from the final histogram
of stack distances.

We changed Mattson’s stack algorithm to account for the
unique properties of external caches (which support multi
cache-block accesses) and our proposed batched cache pop-
ulation mechanism (discussed further in Section VII-C). Our
first modification to the Mattson’s stack algorithm is at the
histogram construction step; we record a hit only if all the
blocks forming a single request are found in the cache. If a
request has more than one block, we update the histogram
only for the block that has the largest stack distance. This
ensures that cache hits for multi-block requests are accounted
for correctly in the MRC. Specifically, if the cache size is
greater than the largest stack distance (for a set of blocks that
are accessed in a single request), the request will hit only if
the largest of the stack distances is smaller than the cache size.

The second modification accounts for batched cache pop-
ulation. We construct the histogram of stack distances using
an LRU stack that is only updated on every batched cache
population event. Our goal with this modification is to use
this modified histogram and create an MRC that will mimic
the miss behavior of a cache whose blocks only get updated
during batched population operations. The batched updates are
implemented by periodically replacing the LRU stack with a
shadow stack that is updated on every access.

Step 2: Construction of latency curves

We construct latency curves for VM workloads using
the MRCs computed using our modified Mattson’s stack
algorithm. IO latency prediction can be done similar to the
approach of Soundararajan et al. [37]:

lat = (1−mr) ∗ latssd +mr ∗ latdisk (1)

Where lat is the predicted average IO latency, mr is the miss-
rate as obtained from the MRC, and latssd and latdisk are
the VMs recently measured IO latencies for the SSD cache
and disk respectively. However, using previously measured IO
latencies can lead to large inaccuracies. A simple scenario
where this can happen is when the prediction leads to IOPS
saturation on the disk, while the measurements are from an
unsaturated state. For example, if the current state latdisk is
low, then a prediction of IO latency at higher miss rates would
fail because latdisk would not be low anymore. Since latency
for a VM is measured while running with other VMs, adding
and removing VMs from the hypervisor lead to inaccuracies

0
5

10
15
20

0 1 2 3 4 5 6 7 8

L
a

te
n

c
y

in
m

s

SSD size in GB

MRC
Reservation

New latency curve
Reservation

Original
curve

Fig. 7. Latency reservation. The latency curve is modified by extrapolating
the point at which it hits the reservation to the infinite.

in the latency curve. This and changes in application behavior
prompted updating the latency frequently in Centaur.

Our SSD caching solution follows a three step process
iteratively: (i) plan a partitioning, (ii) repartition the cache
across the VMs, (iii) measure the resulting IO latencies, and
then restarts the whole process again. The process is stopped
when the deviation between the measured and predicted IO
latencies converge to a difference less than a small constant.

Step 3: Probabilistic Search

Once the latency curves have been created, we use a
probabilistic search to evaluate potential allocations. These
allocations are evaluated by adding up the IO latencies for all
VMs at candidate partition sizes. If a candidate partition size
of a VM k is sk and its latency is Lk(sk), then the search will

attempt to minimize
∑N

k=1
Lk(sk) such that

∑N

k=1
sk = S

where S is the total size of the cache. We chose simulated
annealing (SA) [19] as the probabilistic search technique to
search for the best partitioning outcome. While classic hill
climbing only allows changing to a better solution thereby
exposing itself to getting trapped in local optimal, SA proba-
bilistically allows changes that may degrade the solution.

B. Partitioning for Other Performance Goals

The above outlined approach for minimizing sum of VM
IO latencies can be easily adapted to meet other goals such as
maximizing overall IOPS performance. For IOPS maximiza-
tion, Centaur uses IOPS curves in place of latency curves. It
predicts IOPS and generates 1/IOPS curves using:

IOPS =
IOPSdisk

MR
(2)

where MR is miss rate and IOPSdisk are the recently
measured IOPS of the disk only. Each time the disk has an
IO, the SSD has (1 − MR)/MR IOs. Therefore, the total
IOs in a second is IOPSdisk + IOPSdisk ∗ (1−MR)/MR.
Minimizing the cumulative 1/IOPS curve maximizes overall
IOPS across the VMs.

VI. PARTITIONING FOR QOS

Centaur extends its approach to performance maximization
to meet QoS targets globally as well as on a per-VM basis.

A. QoS: Reservations

The proposed algorithm can be used to implement QoS
reservations for both latency and IOPS. For brevity however,
we will limit our discussion to latency reservations noting that
a similar approach can be used for IOPS reservations. Our

approach to reservation modifies the latency curve for each VM
with a latency reservation requirement and this change occurs
at the latency curves construction step itself and the modified
latency curve is used by all later steps of the algorithm.
Specifically, for all VMs with latency reservations, we first
calculate the cache size at which the target latency reservation
is achieved. Next, we create a modified latency curve by
extrapolating the latency at that point to [0,∞]. Consequently,
cache sizes that are smaller than the one required to meet
the target latency reservation all result in infinite latency and
thus will not be chosen by the partitioning algorithm. Figure 7
shows the modified latency curve for a VM with latency
reservation of 5 ms.

Since QoS reservations are fixed targets (instead of an
optimization), we apply a basic form of admission control next.
This admission control checks whether the system can satisfy
the requested reservations. We check that new reservations
are satisfiable based on the current latency predictions (i.e.,
latencies in the current system state). Notice, however, that this
can lead to false negatives or false positives. False positives
are solved by having the algorithm go through the iterative
process discussed earlier and stopping after a certain number
of iterations if there is no convergence. Non-convergence in-
dicates that the reservation target cannot be met given existing
reservations and the current system state. While our solution
does not address false negatives, we found that false negatives
do not occur in practice. Furthermore, false negatives do not
compromise the reservations of other workloads.

B. QoS: Proportional Share Fairness

Fairness and performance maximization or reservation are
distinct problems and require different approaches. We treat
these as different techniques that may not be used together.
Again, we restrict our discussion to latency fairness for brevity;
IOPS fairness follows a similar approach. For simple fairness
with equal shares, we construct latency curves as before and
use them to greedily find the partitioning at which latencies are
equalized. Starting from an arbitrary partitioning, we minimize
the difference of latencies by incrementally resizing the par-
titions. The key difference in the process are the intermediate
steps which attempt instead to minimize is the largest latency
difference across all pair of workloads. In each iteration, the
algorithm increases the partition size of the VM with the
highest latency and decreases the partition size of the VM
with the lowest latency. The algorithm stops when the largest
latency difference is smaller than a threshold. This algorithm
makes the assumption that latency decreases monotonically as
cache size increases; if this is not found to be true at any point
during its iterative execution, the algorithm stops.

This algorithm can be easily adapted to implement arbitrary
shares. For every VM, the shares force an increase or decrease
their latency curves artificially. For instance, with shares of
1:2 we retain the latency curve of VM1 and artificially scale
(increase) latencies in VM2’s curve by a factor of two. The
new latency curves are then used to achieve simple fairness as
described in the previous paragraph.

VII. IMPLEMENTATION

This section discusses how Centaur deals with the host-
side flash cache in terms of IO handling, cache replacement,

and data consistency.

A. Cache Implementation

Centaur is a host-side caching layer in the VMware ESX
hypervisor that uses the vSCSI filter API available to third
party kernel modules. Centaur’s kernel module inserts a filter
instance per virtual disk, and exposes cache controls to a
user-level agent that performs cache partitioning. The im-
plementation supports both a conventional unified cache and
our partitioned cache to compare the performance of these
architectures.

With Centaur, as with many virtualization architectures, all
IOs initiated by virtual machines are handled by the hypervisor.
The virtual disk layer of the ESX hypervisor translates a
guest’s virtual disk IO into a file access IO to the hypervisor
managed file system located in a SAN store. An instance of
the filter is attached to a specific virtual disk and redirects all
IOs to the local flash on a cache hit or to the SAN on a miss.

Per-VM host-side flash caches, like virtual disks, are stored
as individual files in a file system on the flash device. Centaur
uses one cache file per VM and implements partitioning by
limiting the physical size of these files. The unified and
partitioned caches are both write-back caches, that are more
effective for mixed workloads that contain both reads and
writes [20]. As we shall elaborate later, cache metadata is
persistent and journaled to ensure crash consistency for the
host-side cache.

B. Cache Partitioning

Centaur’s cache partitioning is the key mechanism that
eliminates cache wastage by isolating the cache usage of VMs.
It is also the knob used for controlling the IO performance
experienced by individual VMs when accessing their respective
virtual disks.

A global scheduler is in charge of partitioning the SSD
space among the various cache files and it implements the
partitioning algorithms presented in the previous sections.
Recent developments in low-overhead MRC construction make
the necessary frequent, online MRC construction practically
feasible [34], [43], [44]. The global scheduler runs every “par-
titioning epoch,” which is configurable in our implementation.
We chose five minutes as the default duration after a pilot
examination of its impact for the workloads in our study. The
data mover implements partitioning by controlling the size of
the per-VM cache files by allocating and freeing blocks in
them. Management of individual cache partitions is discussed
next.

C. Cache Replacement

Conventional cache replacement policies are designed for
CPU and buffer caches. These policies are required to move
blocks into the cache directly after a miss, i.e., on-demand,
since the cache lies in the data access path. In other words, the
cache gets populated as a side-effect of the access itself, and
more importantly, with zero overhead. We call this behavior
of conventional cache replacement mechanisms as on-demand
cache population. For an external memory cache such as host-
side flash, populating the cache incurs additional overhead:

potentially evicting an existing dirty element and writing a new
element into the cache both incur additional IO latency. While
it is certainly important to do so for items that are frequently
accessed, it can be counter-productive to do so for every item
that misses the cache [35].

An alternate approach to cache population is to perform
such operations in batches (e.g., periodically or triggered by
cache miss-count): the per-VM caches are (re)populated during
“mover epochs” by a data mover process that moves multiple
blocks to and from the cache based on the chosen cache
replacement policy. Batched cache population utilizes storage
workload stability properties [4], [11], [41] and is particularly
attractive for external caches that are not in the storage
access path. With batched cache population, the additional IO
operations due to cache population to both the flash cache and
the storage system can be deferred and aggregated. Batched
cache population can reduce the number of additional writes
to populate the cache since spurious cache population with
unimportant data can be avoided. Because it enables higher
levels of eviction IO parallelism, it can improve eviction
performance to both the flash cache. Further, batched cache
population reduce the number of evictions from flash since
aggregate cache access behavior is considered. On the negative
side, batched cache population can potentially incur higher
cache misses transitorily, in proportion to the rate of change of
the working-set of the workload. We evaluated on-demand and
batched (with periodic trigger) cache population techniques in
Centaur for the production traces that we analyzed and found
that we can improve overall throughput by making such data
movement periodically rather than on-demand in the IO path.

D. Crash Consistency

Persistent services require both consistency and persistence
of data to recover correctly after a system failure [10]. Ensuring
these properties for both data and the internal metadata of the
cache is thus critical for a write-back caching solution [20].
Write-back caches can contain dirty data not present in the
backing store. Therefore, when restarting a VM we must access
its backing store and all its cached data on the SSD. Centaur
keeps the mapping information for cached data persistently in
the SSD cache itself so that it can be queried it when a VM
restarts. To minimize the impact on IO performance, Centaur
journals the updates to these persistent mappings in memory
and then replays the journal before data mover migrations
during each mover epoch.

VIII. EVALUATION

Our evaluation of Centaur aims to answer the following
questions:

Performance maximization (1) How does a partitioned
cache perform compared to a unified cache? (2) How do these
approaches adapt to the performance properties of the cache?

QoS control (3) How accurate are our proposed propor-
tional share fairness and (4) reservations techniques?

Overheads (5) What are the performance overheads of
partitioning and what are the sources of the overheads?

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

B
o
o
t
ti
m

e
 i
n
 s

e
c
o
n
d
s

VM number (sorted by boot time)

Partitioned
Unified

Fig. 8. 28 Virtual Linux desktops booting simultaneously using an 6 GB

SSD cache. A global LFU cache and a partitioned LFU cache were used.

A. Experimental Setup

After a sensitivity analysis of the parameters of Centaur
with several workloads, we chose the cache block size as
128 KB, the partitioning epoch as 5 minutes, and the mover
epoch to be 1 minute long. We used the aging-LFU cache
replacement policy [33]. The host was a dual socket machine
with AMD Opteron 270 dual core processors, each running
at 2 GHz and 4 GB memory. We used two kinds of VMs in
our experiments: a Linux Ubuntu VM with a 30 GB virtual
disk, one virtual CPU, and 1 GB of memory; and a Windows
7 VM with 40 GB of virtual disk, one vCPU, and 2 GB of
memory. We used an 120 GB Intel X25-M SSD as the host-
side cache, but limited its available capacity in proportion to
the total working-set size of the workloads sharing the cache in
a given experiment. The backing store was an EMC Clarion
CX4 Model 120. The data mover and the hypervisor were
configured to have an issue queue length of 32 outstanding
IOs (OIOs) each.

We evaluated Centaur using a mix of microbenchmarks,
macro-benchmarks, and production storage traces. The mi-
crobenchmarks used Iometer [3] on Windows and fio [2]
(with the libaio engine) on Linux for workload generation.
All experiments used 32 OIOs unless stated otherwise. The
macro-benchmark used was Filebench [26] OLTP. Finally, we
replayed several production storage traces [41].

B. Performance Maximization

1) Unified vs. Partitioned SSD Caches: In our first exper-
iment, we evaluated the solution’s effectiveness when maxi-
mizing average IO throughput. Both variants (partitioned and
unified caching) use the same implementation except that the
unified cache uses no partitions. The partitioned cache was
configured to maximize overall IOPS; the unified cache does
so by design. We fixed the total cache size to 6 GB for both
variants.

The first experiment involved booting 28 Ubuntu 10.04
desktop systems simultaneously and measuring the reboot-
ing time as reported by Bootchart [1]. We booted all the
systems simultaneously, twice, to allow warming up of the
cache and partitioning. Figure 8 shows the rebooting time
of all 28 machines for global and partitioned caches. The
x axis is sorted by reboot time. Average reboot time was
32 seconds with a partitioned cache and 39 seconds with a
unified cache. Compared to the 55 second rebooting time of
the 28 VMs without an SSD cache, the unified cache offered a

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 300 600 900 1200 1500

M
is

s
e
s
 i
n
 m

ill
io

n
s

Cache size in MB

Partitioned Unified

Fig. 9. Replaying nine production storage traces.

seq (OIO=8, bs=32k) Latency (usec) IOPS

SSD 648 1886

SAN 1548 1689

TABLE I. Device characteristics.

29% improvement while the partitioned cache offered a 42%
improvement. With partitioning, cache wastage is eliminated,
and the VMs incur fewer SSD cache misses, experience greater
IOPS, and ultimately improved reboot times.

Using a partitioned cache improves fairness across the
VMs, because we nearly equally allocated cache space to each
VM. This results in the partitioned cache reducing the variance
in boot time relative to the unified case. We found that with
unified cache some VM’s boot up took twice as long as others,
because they received one third the cache space in comparison.

In the next experiment, we evaluate the additional cache
misses due to cache wastage using the production storage
traces described earlier. We replayed nine production workload
traces simultaneously on a unified and a partitioned aging-LFU
cache. Trace replay duration was 1 day for each trace, and
we repeated the experiment for different cache sizes. Figure 9
shows that for sizes larger than 300 MB up to 1.2 GB, the
partitioned cache incurred at least 15% fewer cache misses
than the unified cache. These reduced misses translated to a
reduction of 1 GB of data transferred from the SAN store,
which directly impacts performance of the VMs.

2) Adaptation to Specific Storage Characteristics: Some
SSD specific performance oddities are slow writes, and se-
quential read performance that is comparable to that of the
SAN store. Conventional caches would minimize the number
of IOs to the SAN store, even if these would have been
serviced efficiently by the SAN store. The latency and IOPS
curves based techniques use observed performance data from
individual tiers (SSD cache or SAN store). Thus, our latency
and IOPS curves adapt to how individual VMs will benefit
from the SSD cache versus the SAN store for a given target
performance metric and allocating cache space for the VMs
accordingly.

The next experiment illustrates the need to adapt to work-
loads respond on different devices. We show this by co-
locating a sequential read workload reading a 5 GB file with a
random workload reading a 10 GB file. We configured the
sequential read workload to generate a similar number of
IOPS when using the SAN store or the SSD. The workload
only generated 11% more IOPS on the SSD, but experiences

!"#

Fig. 10. Latency and IOPS curves.

 0

 1

 2

 3

 4

 5

 6

 7

 1200

 2400

 3600

 4800

 6000

1:1 1:2 2:1 10:1 1:1 2:1

L
a

te
n

c
y
 i
n

 m
s

Time in seconds

VM 1
VM 2

Fig. 11. Adaptiveness to shares. How the SSD space for each VM adapts
to changes in shares. The workload is Iometer with 50% random, 50% reads.

2.4X greater latency when using the SAN store. Table I lists
actual performance for this workload when using the SAN
store or the SSD. Figure 10 (a) shows the latency curves
for both workloads. To minimize the average latency the best
partitioning is to either: (i) allocate half of the cache to each
VM, or (ii) allocate the entire cache to the random workload.

However, for maximizing IOPS, allocating half of the cache
to each is not a good distribution because the sequential
workload gets similar IOPS from the SSD and from the
SAN store. Figure 10 (b) shows the cost curves and how the
sequential workload benefits only minimally from the SSD
cache. Thus, the best distribution to minimize 1/IOPS (i.e.,
maximize IOPS) is to allocate the entire cache space to the
random workload. Our solution learns these properties about
the workloads dynamically and allocates SSD cache space only
to workloads that benefit from it.

C. Storage QoS

1) Proportional Share Fairness: To evaluate how our so-
lution implements proportional share fairness, we dynamically
varied the desired (target) latency proportions for two VMs
running an instance of Iometer with mixed read-write and
random accesses. Each workload accesses a file of 1 GB with
4 OIOs; the initial cache partition size is set to 500 MB
per VM. Iterations of the fairness algorithm were configured
to occur every 5 seconds and cache size increments and
decrements were in units of 10 MB.

 0
 5

 10
 15
 20
 25
 30

 350 400 450 500 550 600

L
a

te
n

c
y
 i
n

 m
s

Time in secs

OLTP
Reservation of 2 ms

Fig. 12. Latency reservation.

Figure 11 shows the outcome of configuring latency shares
for VMs. The requested changes in the desired latency shares
are listed at the top of the plot. When latency shares are
modified, within 2–3 minutes, our solution adapts per-VM
latency to the specified shares with less than 5% of error. The
changes, however, are not immediate because the cache was
configured to only move 10 MB of data from/to the cache
every 5 seconds; if we assume that latency is proportional to
cache size, then the slope of the latency adaptation would be
proportional to the frequency of the iterations.

2) IOPS and Latency Reservations: To evaluate the ef-
fectiveness of IOPS and latency reservations, we co-located
3 workloads on the same host and set latency reservations
for only one of them, 350 seconds into the experiment.
For the workloads, we used Filebench OLTP in its default
configuration and a footprint of 8 GB per workload to stress
an SSD cache limited to a total of 12 GB across the three
workloads. Filebench OLTP performs 8 KB random IOs, with
75% of reads and writes and keeps 16 OIOs at all time.

Figure 12 shows the effectiveness of our solution. In
Centaur, reservations prescribe bounds on average latencies
and not maximum latencies. Again, reservations are not met
immediately since the system was bound by the speed of the
data mover. The target workload needed 90% of its footprint
cached to meet its latency reservation target which in turn
caused 7GB to be moved from the SAN store to the SSD, thus
requiring 150 seconds. We performed a similar experiment for
IOPS reservation and found that the system was able to meet
reservations with less than 10% of error. Additional analysis of
the data revealed that the interference introduced by the data
mover with respect to meeting the reservation target was much
higher for an IOPS reservation than with latency reservation
(∼10X more).

D. Overheads

Next, we evaluate the overhead of the cache partitioning
solution by comparing storage performance across 3 caching
configurations: (1) our partitioned caching system (full sys),
(2) when the workload accesses the backing store directly
without any caching (van disk), and (3) a variant of our system
where we do not maintain persistent block mappings for the
SSD cache (modif sys).

We used a single Iometer workload within a Windows VM
for this experiment. The workload is a 50% mix of reads and
writes on 1 GB with a cache of 100 MB. Figure 13 shows
warm cache IOPS, and average and maximum latency for each
of the three configurations. The first observation is that in the
average case, both caching systems perform better than the
system without caching. The caching variants both provide
approximately the same average latency and IOPS indicating

0

500

1000

1500

full
sys.

van.
disk

modif.
sys.

IOPS

0

1

2

3

4

5

6

Avg latency in ms

10
0

10
1

10
2

10
3

10
4

Max latency in ms

full
sys.

van.
disk

modif.
sys.

full
sys.

van.
disk

modif.
sys.

Fig. 13. Full system (full sys) performance compared to a non-caching
solution (van disk) and a simplified cache that does not maintain persistent

mappings for cache entries (modif sys). 4 KB aligned random reads/writes
on 1 GB using 100 MB of cache.

that average case overhead is acceptable. However, the max-
imum latency of the full system with persistent mappings is
almost one order of magnitude higher than the one without
persistent mappings. We noticed that these spikes in latency
occur every mover epoch, and specifically, every time the
journal is replayed. The scheduling and execution of mover
epochs were not optimized in our system and we expect that
optimizing these carefully would help reduce the observed
latency spikes. Another interesting observation is that IOPS
for the full system are higher than the non-persistent cache
variant; the journal replaying was merging and sequentializing
writes much better, an unplanned benefit!

IX. RELATED WORK

Managing cache contention across multiple workloads is
a well-studied problem in the research literature starting with
seminal work on memory contention done by Denning [8] to
the very recent works on SSD cache partitioning [22], [28],
[36]. Centaur distinguishes itself from this body of work in
its novel and robust approach to online cache partitioning
that is free of assumptions contained within established cache
partitioning techniques and that do not apply to external
memory flash caches, and by building practically usable QoS
control knobs for storage administrators.

A. Partitioning for Performance

Rajkumar et al. prove that optimal cache partitioning is NP-
hard [32]. Stone et al. [38] analytically showed that for min-
imizing overall miss rate and assuming convex MRC curves,
optimal partitioning can be achieved by choosing allocation
sizes for which derivatives of miss rates are the same across
all workloads. Thiebaut et al. [40] then developed a practical
implementation of Stone’s algorithm by approximating MRC
derivatives rather than constructing full MRCs. Suh et al. [39]
proposed an approach to obtain the convex minorant of MRCs
and a greedy partitioning CPU caches.

Arguing that a unified LRU main memory cache cannot
avoid cache pollution, several researchers proposed partition-
ing buffer caches across processes [18], [45], [37] or storage
classes [9]. Zhou et al. [45] argued that most MRCs for main
memory workloads are convex and used a greedy MRC-based
approach to partition main memory for minimizing aggregate
miss ratio. Soundararajan et al. [37] address partitioning of
multiple levels of caches including memory and storage server

caches to minimize average latency using latency curves that
are similar to the ones we use in this work for host-side SSD
caches. Goyal et al. [9] also address the problem of dynam-
ically partitioning storage server caches to address workload
changes, again assuming that MRCs are convex.

Our approach has the following distinguishing character-
istics from all of the related work. Previous work on mod-
eling cache wastage has been focused on LRU-based CPU
caches [41]. We generalize observations on wastage to other
policies such as Aging-LFU and ARC. Further, we present
empirical evidence to quantify the rather serious implications
of wastage.

Much of the current SSD caching systems do not explicitly
address inter-workload cache contention and simply employ
unified cache replacement policies [6], [16], [20], [30]. S-Cave
implements cache partitioning by estimating cache demand
and allocation of cache space to the individual workloads
sharing the cache, optimizing the effective utility of a partition
for a specific workload [22]. vCacheShare also implements
cache partitioning, optimizing cache utility but by favorably
allocating space to workloads that are better aligned with
their cache management mechanisms [28]. While vCacheShare
relies on an existing cache partitioning technique, S-Cave relies
on a periodic heuristic that reallocates space based on hit-rate
feedback. We empirically demonstrate that assumptions made
by conventional cache partitioning approaches do not apply to
out-of-core caches and that using existing cache partitioning
approaches could lead to large errors in partitioning. Centaur is
grounded in the established theory of MRCs but free from such
assumptions. Further, Centaur is also the first to propose and
validate the use of throughput curves with a similar capability
as latency curves.

B. Storage QoS

Storage QoS has been addressed from several perspectives
ranging from partitioning memory to IO throttling to storage
migration. Host-side SSD cache sizing represents a powerful
control knob for storage QoS that is complementary to these
solutions. It provides much larger space for storage caching
than main memory ballooning. However, it is less responsive
than ballooning. In contrast to the IO throttling [12], IO
scheduling controls [15], and storage migration [13], [14], [24],
[23], that are all ultimately limited by storage performance,
SSD caching provides a mechanism that allows greater sepa-
ration of VM IO performance from storage performance.

Recent work by Sehgal et al. on using host-side SSD
dynamic cache sizing as an IO latency control knob [36].
They employ a control loop of observed latencies to deliver
specified latency guarantees probabilistically. In this paper, we
go well beyond meeting specified latency targets and support
a variety of optimization objectives such as minimizing IO
latencies across groups of workloads, IO throughput control,
and proportional share IO throughput fairness.

X. CONCLUSION

Host-side SSDs provide new opportunities for improv-
ing and managing storage performance. In this paper, we
demonstrated that host-side SSDs demand new techniques for
performance management and propose a system, Centaur, that

addresses both performance maximization and storage QoS
goals. We showed that managing the SSD as a unified cache
for VMs can lead to wastage of cache space with the ARC,
LRU and aging-LFU policies. Further, we demonstrated that
conventional partitioning techniques, that have worked well for
CPU, main memory, and storage buffer caches, do not work
well for host-side SSD caches. We then proposed a new cache
partitioning approach that employs online MRC construction
combined with periodic partitioning and data movement to
efficiently allocate cache space to individual workloads. We
utilized this solution to build a new, richer set of storage
QoS controls for latency and IOPS. An evaluation of Centaur,
implemented for VMware ESX, demonstrated that it works
well in practice and can be used for meeting both performance
maximization and storage QoS goals.

XI. ACKNOWLEDGMENTS

We would like to thank Murali Vilayannur, Diplreet Bindra,
and Haripriya Rajagopal who inspired this work and helped
with the initial phases of the project. This work is supported
in part by NSF awards CNS-1018262 and CNS-1448747, and
a NetApp Faculty Fellowship.

REFERENCES

[1] Bootchart. http://www.bootchart.org.
[2] Fio. http://linux.die.net/man/1/fio.
[3] Iometer. http://www.iometer.org.
[4] BHADKAMKAR, M., GUERRA, J., CHE, L. U., BURNETT, S., LIPTAK,

J., MI, R. R., AND HRISTIDIS, V. BORG: Block-reORGanization for
Self-optimizing Storage Systems. In Proc. of USENIX FAST (2009).

[5] BILARDI, G., EKANADHAM, K., AND PATTNAIK, P. Efficient Stack
Distance Computation for Priority Replacement Policies. In ACM

International Conference on Computing Frontiers (2011).
[6] BYAN, S., LENTINI, J., MADAN, A., PABON, L., CONDICT, M.,

KIMMEL, J., KLEIMAN, S., SMALL, C., AND STORER, M. Mercury:
Host-side Flash Caching for the Data Center. In Proc. of IEEE MSST

(2012).
[7] DENNING, P. The Locality Principle, Communication Networks And

Computer Systems (Communications and Signal Processing). Imperial
College Press, London, UK, 2006.

[8] DENNING, P. J. Working Sets Past and Present. IEEE Trans. Softw.

Eng. 6 (1980), 64–84.
[9] GOYAL, P., JADAV, D., MODHA, D. S., AND TEWARI, R. CacheCOW:

QoS for Storage System Caches. In Proc. of IWQoS (2003).
[10] GUERRA, J., MARMOL, L., CAMPELLO, D., CRESPO, C., RAN-

GASWAMI, R., AND WEI, J. Software Persistent Memory. In Proc.

of the USENIX ATC (2012).
[11] GUERRA, J., PUCHA, H., GLIDER, J., BELLUOMINI, W., AND RAN-

GASWAMI, R. Cost Effective Storage using Extent Based Dynamic
Tiering. In Proc. of USENIX FAST (2011).

[12] GULATI, A., AHMAD, I., AND WALDSPURGER, C. A. PARDA:
Proportional Allocation of Resources for Distributed Storage Access.
In Proc. of FAST (2009).

[13] GULATI, A., AHMAD, I., AND WALDSPURGER, C. A. PESTO: Online
Storage Performance Management in Virtualized Datacenters. In Proc.

of ACM SOCC (2011).
[14] GULATI, A., KUMAR, C., AHMAD, I., AND KUMAR, K. BASIL:

Automated IO Load Balancing Across Storage Devices. In Proc. of

USENIX FAST (2010).
[15] GULATI, A., MERCHANT, A., AND VARMAN, P. J. mClock: Handling

Throughput Variability for Hypervisor IO Scheduling. In Proc. of

USENIX OSDI (2010).
[16] HOLLAND, D. A., ANGELINO, E., WALD, G., AND SELTZER, M. I.

Flash Caching on the Storage Client. In Proc. of USENIX ATC (2013).
[17] INTEL CORPORATION. Intel R© 64 and IA-32 Architectures Software

Developer’s Manual, Section 11.1 INTERNAL CACHES, TLBS, AND

BUFFERS. 2009.

[18] KIM, J. M., CHOI, J., KIM, J., NOH, S. H., MIN, S. L., CHO, Y.,
AND KIM, C. S. A Low-Overhead High-Performance Unified Buffer
Management Scheme that Exploits Sequential and Looping References.
In Proc. of USENIX OSDI (2010).

[19] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by Simulated Annealing. Science (1983).

[20] KOLLER, R., MARMOL, L., RANGASWAMI, R., SUNDARARAMAN, S.,
TALAGALA, N., AND ZHAO, M. Write Policies for Host-side Flash
Caches. In Proc. of USENIX FAST (2013).

[21] KOLLER, R., VERMA, A., AND RANGASWAMI, R. Generalized ERSS
Tree Model: Revisiting Working Sets. Performance Evaluation 67, 11
(2010), 1139–1154.

[22] LUO, T., MA, S., LEE, R., ZHANG, X., LIU, D., AND ZHOU, L. S-
CAVE: Effective SSD Caching to Improve Virtual Machine Storage
Performance. In Proc. of PACT (2013).

[23] MASHTIZADEH, A., CAI, M., TARASUK-LEVIN, G., KOLLER, R.,
AND GARFINKEL, T. XvMotion: Unified Virtual Machine Migration
over Long Distance. In Proc. of USENIX ATC (2014).

[24] MASHTIZADEH, A., CELEBI, E., GARFINKEL, T., AND CAI, M. The
Design and Evolution of Live Storage Migration in VMware ESX. In
Proc. of USENIX ATC (2011).

[25] MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER, I. L.
Evaluation Techniques for Storage Hierarchies. IBM Syst. J. (1970).

[26] MCDOUGALL, R. Filebench: Application Level File System Bench-
mark.

[27] MEGIDDO, N., AND MODHA, D. S. Outperforming LRU with an
Adaptive Replacement Cache Algorithm. Computer (2004).

[28] MENG, F., ZHOU, L., MA, X., UTTAMCHANDANI, S., AND LIU, D.
vCacheShare: Automated Server Flash Cache Space Management in a
Virtualization Environment. In Proc. of USENIX ATC (2014).

[29] PRABHAKAR, R., SRIKANTAIAH, S., PATRICK, C., AND KANDEMIR,
M. Dynamic Storage Cache Allocation in Multi-server Architectures.
In Proc. of SC (2009).

[30] QIN, D., BROWN, A. D., AND GOEL, A. Reliable Writeback for Client-
side Flash Caches. In Proc. of USENIX ATC (2014).

[31] QURESHI, M. K., AND PATT, Y. N. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches. In Proc. of MIRCO (2006).

[32] RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND SIEWIOREK, D. Practi-
cal Solutions for QoS-based Resource Allocation Problems. In In Proc.

of RTSS (1998).
[33] ROBINSON, J. T., AND DEVARAKONDA, M. V. Data Cache Manage-

ment Using Frequency-based Replacement. Proc. of ACM SIGMET-
RICS.

[34] SAEMUNDSSON, T., BJORNSSON, H., CHOCKLER, G., AND VIG-
FUSSON, Y. Dynamic Performance Profiling of Cloud Caches. In Proc.

of ACM SOCC (2014).
[35] SANTANA, R., LYONS, S., KOLLER, R., RANGASWAMI, R., AND LIU,

J. To ARC or not to ARC. In Proc. of USENIX HotStorage (2015).
[36] SEHGAL, P., VORUGANTI, K., AND SUNDARAM, R. SLO-aware

hybrid store. In Proc. of IEEE MSST (2012).
[37] SOUNDARARAJAN, G., LUPEI, D., GHANBARI, S., POPESCU, A. D.,

CHEN, J., AND AMZA, C. Dynamic Resource Allocation for Database
Servers Running on Virtual Storage. In Proc. of FAST (2009).

[38] STONE, H. S., TUREK, J., AND WOLF, J. L. Optimal Partitioning of
Cache Memory. IEEE Trans. Comput. 41, 9 (1992).

[39] SUH, G. E., RUDOLPH, L., AND DEVADAS, S. Dynamic Partitioning
of Shared Cache Memory. The Journal of Supercomputing 28, 1 (2004).

[40] THIEBAUT, D., STONE, H., AND WOLF, J. Improving Disk Cache Hit-
Ratios Through Cache Partitioning. IEEE Transactions on Computers

41, 6 (1992), 665 –676.
[41] VERMA, A., KOLLER, R., USECHE, L., AND RANGASWAMI, R. SR-

CMap: Energy Proportional Storage Using Dynamic Consolidation. In
Proc. of USENIX FAST (2010).

[42] VMWARE, INC. VMware Virtual SAN.
http://www.vmware.com/products/virtual-san/, 2013.

[43] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A., AND AHMAD,
I. Efficient MRC Construction with SHARDS. In Proc. of USENIX

FAST (2015).
[44] WIRES, J., INGRAM, S., DRUDI, Z., HARVEY, N. J. A., AND

WARFIELD, A. Characterizing Storage Workloads with Counter Stacks.
In Proc. of USENIX OSDI (2014).

[45] ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A., ZHOU,
Y., AND KUMAR, S. Dynamic Tracking of Page Miss Ratio Curve for
Memory Management. Proc. of ASPLOS (2004).

	Introduction
	Motivation
	Cache Size as a QoS Control Knob
	Wastage in Unified Caches

	Centaur Overview
	Background on Cache Partitioning
	The Convex Hull Approach
	Problems with the Convex Hull Approach

	Partitioning for Performance
	Partitioning for IO Latency Minimization
	Partitioning for Other Performance Goals

	Partitioning for QoS
	QoS: Reservations
	QoS: Proportional Share Fairness

	Implementation
	Cache Implementation
	Cache Partitioning
	Cache Replacement
	Crash Consistency

	Evaluation
	Experimental Setup
	Performance Maximization
	Unified vs. Partitioned SSD Caches
	Adaptation to Specific Storage Characteristics

	Storage QoS
	Proportional Share Fairness
	IOPS and Latency Reservations

	Overheads

	Related work
	Partitioning for Performance
	Storage QoS

	Conclusion
	Acknowledgments
	References

