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Quality of Service Support for
Real-time Storage Systems

Zoran Dimitrijevi ć Raju Rangaswami

Abstract— The performance and capacity of commodity com-
puter systems have improved drastically in recent years. How-
ever, these systems still lack the support for real-time data access,
which is required by an increasing number of emerging applica-
tions. In this paper we first present several important storage-
bound real-time applications and classify their Quality of Service
(QoS) requirements. We then survey the representative work on
disk management in the areas ofIO scheduling, admission con-
trol, and data placement. Finally, we present our approach for pro-
viding disk QoS in commodity systems and present key empirical
results from the micro-benchmark-based evaluation of our QoS-
enhanced Linux kernel.

Keywords: QoS disk scheduling, real-time storage, Linux.

I. I NTRODUCTION

The performance and capacity of commodity computer sys-
tems have improved drastically in recent years. An increas-
ing number of emerging applications, such as video streaming,
video surveillance, virtual reality, scientific and environmen-
tal data gathering, digital libraries, or distance learning, require
various Quality of Service (QoS) guarantees for data access.
For example, they require guaranteed real-time streaming for
video or scientific detector data, but guaranteed response time
for interactive or high-priority data. These applications increas-
ingly run on commodity systems. However, commodity sys-
tems still lack sufficient QoS support for their storage subsys-
tems.

QoS support for real-time storage systems has been an active
field of research throughout the past decade. Still, exponential
improvements in computational power, disk performance, high-
speed local-area networks, and broadband Internet connections
are constantly enabling new applications. These applications
demand not only large storage space and high-performance ac-
cess, but also better operating system support for disk quality
of service.

A. Storage-bound Real-time Applications

Traditional real-time systems do not use disks to store data
and typically operate using only the random-access main mem-
ory. An example for these systems are embedded control sys-
tems in cars and aeroplanes. On the other hand, the applica-
tions that we target have large storage requirements and the
only cost-effective solution is to use disks as their main storage
medium [26]. Table I summarizes several important storage-
bound real-time applications.
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Application Storage access Bottlenecks

Video-on-Demand read-only storage, network
Video surveillance write-mostly storage, CPU
Digital libraries read-mostly storage, CPU
Distance learning read-write network, storage
Virtual reality read-write CPU, network, storage
Scientific write-mostly storage, network

TABLE I
STORAGE-BOUND REAL-TIME APPLICATIONS.

Video-on-Demandapplications provide streaming video con-
currently to multiple clients. Clients can issue interactive video
requests (for example, fast forward, slow motion, instant re-
play, or pause/resume). Traditional solutions are designed for
local-area network video streaming, and system bottlenecks are
in the storage subsystem. With the proliferation of broadband
Internet access, global Video-on-Demand systems are becom-
ing more popular. These systems also have bottlenecks in the
network management.

Video surveillanceapplications manage a large number of
video streams from surveillance cameras, which need to be re-
liably recorded to a storage system. At the same time, security
personnel need to monitor a subset of video streams in real-
time, creating additional read traffic. Emerging solutions for au-
tomatic video processing, including suspicious event detection
and data mining techniques, also create large computational and
database query-processing requirements for video surveillance
systems.

Digital libraries manage a large number of heterogeneous
multimedia data, including text, images, audio, and video.
These heterogeneous data have different QoS requirements and
the underlying storage subsystem needs to handle them differ-
ently. In addition to mostly read data access for digital libraries,
emergingdistance learningapplications need to handle interac-
tive real-time video/audio streaming (both read and write) and
dynamic changes to their databases.

Virtual reality applications are still mainly developed in re-
search labs. However, the large storage requirements for rep-
resention of complex virtual worlds and the inherent interactiv-
ity requirements for storage access make QoS support for their
storage systems a necessity.

Scientific applicationswith real-time storage requirements
usually handle a large number of real-time sensors. Data ob-
tained from these sensors have to be reliably recorded to a stor-
age system, since scientific experiments are sometimes hard or
impossible to repeat. Examples for these applications are high-
energy particle research [1] and the SETI (Search for Extrater-
restrial Intelligence) project [2].
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B. QoS Requirements for Storage Systems

The general requirements for large-scale storage systems in-
clude high availability, high reliability, ease of manageability,
large storage space, and high-performance access. With the
proliferation of applications that require both large-scale stor-
age and real-time data access, traditional solutions for building
storage systems have to be revisited [42], [41].

Traditional storage systems are designed to provide high per-
formance, best effort, and fair service to all clients. This is
sufficient for traditional applications that do not require real-
time data access. However, in order to support real-time ap-
plications, we identify the following requirements for storage
access.
• Differentiated service.Most real-time applications require

both real-time and traditional best-effort data access. This
means that a storage system should differentiate IO re-
quests and service them according to their QoS require-
ments. In effect, this requires that each IO request is asso-
ciated with its QoS requirements.

• Guaranteed-latency response.Some IO requests have to
be serviced before their deadlines. Examples for these re-
quests are video data retrieval that must finish before dis-
playing or kernel access to virtual memory on the disk af-
ter page faults for high-priority jobs.

• Guaranteed-rate streaming.Streaming data with soft or
hard real-time guarantees are often read from and writ-
ten to a storage system. In order to consistently guarantee
their streaming rate, a storage system must employ an ad-
mission control which ensures that once admitted, streams
get sufficient data throughput. Examples for these streams
are surveillance video and scientific detector data.

• Low latency and high-throughput.Best-effort data still re-
quire low latency and high-throughput access, and a stor-
age system must employ scheduling algorithms that pro-
vide the high-performance access for best-effort IO re-
quests, while satisfying guarantees for real-time IOs.

C. Paper Outline

The goal of this paper is to provide an overview of cur-
rent solutions for designing storage systems with real-time QoS
requirements and to present our implementation of disk QoS
scheduler for the commodity Linux operating system. The pa-
per is organized as follows: In Section II, we survey the rep-
resentative work on QoS disk management. In Section III, we
present the design and implementation of our QoS disk sched-
uler for Linux suitable for real-time storage systems. In Sec-
tion IV we illustrate the effectiveness of our Linux-based pro-
totype using microbenchmarks. Section V presents related re-
search. In Section VI, we make concluding remarks and suggest
directions for future work.

II. OVERVIEW OF REAL-TIME DISK MANAGEMENT

In this section we classify the representative work on disk
management in the following three areas:IO scheduling, ad-
mission control, anddata placement.

A. IO Scheduling

Table II depicts several approaches for best-effort, real-time,
and heterogeneous (mixed-media) disk scheduling. Disks can
be classified as non-volatile storage devices with non-uniform
memory access. In terms of data throughput, the best perfor-
mance is achieved when the disk access is sequential. How-
ever, file systems cannot always place and access data sequen-
tially, since various applications have inherent random data ac-
cess patterns.

Best-effort Real-time Heterogeneous

FCFS Rate-monotonic GSS
SSTF EDF Cello
SATF SCAN-EDF ∆L (clockwise FS)
SCAN EDL User-safe disk
C-SCAN Round-robin MARS
Freeblock Bubble-up

TABLE II
DISK SCHEDULERS.

Worthington et al. [44] survey the scheduling algorithms for
traditional, best-effort disk access. FCFS (First-Come-First-
Serve) approach services disk IO requests in the order in which
they arrive. Because disk seek times differ drastically and FCFS
does not optimize disk seeking, this approach leads to poor uti-
lization of disk throughput when the IO sizes are small and the
access is random.

SSTF (Shortest-Seek-Time-First) and SATF (Shortest-
Access-Time-First) [19] methods use greedy heuristics in order
to minimize disk seeking. SSTF schedules the IO in the waiting
queue that requires the shortest seek time relative to the current
disk arm position. Similarly, SATF schedules the IO that re-
quires the shortest access time (which includes both seek time
and rotational delay) relative to the current disk position. While
both methods achieve good disk throughput utilization by min-
imizing access overheads, they do not prevent starvation. Some
IO requests can spend a long time in the queue and the maxi-
mum latency is not bounded.

SCAN and C-SCAN algorithms use a simple elevator prin-
ciple which solves starvation and reduces disk seeking [37],
[44]. In SCAN, the disk arm starts from one end of the disk
and moves to another, servicing IO requests on the way. In C-
SCAN, the disk arm services IO requests only in one direction
(usually in increasing order of disk blocks, which means from
outer portions of the disk towards the inner ones). SCAN and
C-SCAN guarantee non-starvation, but still an IO request can
spend a long time in the queue. To prevent this, the OS usually
bounds the number of requests that are serviced in one SCAN
turn. This also bounds the maximum latency for each IO re-
quest. Most commodity operating systems use a variation of
this simple elevator principle for best-effort disk scheduling.

SSTF and SATF require a disk model in order to predict
disk seek and access times, which is not required for SCAN
algorithms. This is the reason why the versions of SCAN and
C-SCAN are the most widely currently used disk schedulers.
Recently, several scheduling algorithms that rely on detailed
disk models are designed to improve disk access [22], [21],
[13]. Freeblock scheduling[22], [21] uses rotational prediction
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to schedule low-priority IOs in the background without affect-
ing other IOs.Semi-preemptible IO[13] schedules IO requests
using multiple fast-executing disk commands and enables disk
access preemption between them.

Real-time disk scheduling algorithms consider additional
real-time requirements when servicing disk IOs. These algo-
rithms can be classified in the following two high-level classes.
• Deadline-based schedulers.Each disk IO is associated

with a deadline. The disk scheduler should service all IOs
before their deadlines. Examples for these schedulers are
rate-monotonic, EDF, SCAN-EDF, and EDL [26].

• Cycle-based schedulers.All real-time disk IOs are ser-
viced in cycles and they all share the common deadline—
the disk scheduler should service all IOs before the cy-
cle expires. Examples for these schedulers are round-
robin [37], bubble-up [5], and bubble-up 2D [7].

The deadline-based schedulers are more general schedulers
since one can implement the cycle-based scheduling using
deadlines (by setting deadlines for all IOs in a cycle to the cy-
cle’s end). However, for real-time streaming, which is the most
common case, cycle-based schedulers are more natural and can
provide easier and more efficient admission control.

Heterogeneous disk schedulers support scheduling for both
best-effort and real-time IOs. In Group Sweeping Strategy
(GSS) [9], requests are serviced in cycles, in round-robin man-
ner. To provide the requested guarantees for continuous media
data, GSS introduces ajoint deadlinemechanism: it assigns
one joint deadline to each group of streams. This deadline is
specified as being the earliest one out of the deadlines of all
streams in the respective group. Streams are grouped in such a
way that all of them comprise similar deadlines.

Cello [35] employs a two-level disk scheduling architecture,
consisting of a class-independent scheduler and a set of class-
specific schedulers. The two levels of the framework allo-
cate disk bandwidth at two time-scales: the class-independent
scheduler governs the coarse-grain allocation of bandwidth to
application classes, while the class-specific schedulers control
the fine-grain interleaving of requests. Symphony [34] multi-
media file system supports diverse application classes that ac-
cess data with heterogeneous characteristics using Cello frame-
work.

Clockwise [3] is a real-time file system that schedules best-
effort and real-time disk requests so that real-time disk requests
are serviced before their deadlines and the best-effort requests
are serviced as quickly as possible without violating real-time
deadlines. It is based on a non-preemptible EDF scheduling.

User-safe disks [27] export a virtual device interface to a
number of different clients. They provide the protection nec-
essary to ensure that applications cannot violate the system in-
tegrity and ensure the guaranteed QoS for each client’s data ac-
cess.

MARS [4] is a scalable web-based multimedia-on-demand
system. To provide fair guaranteed access to storage band-
width, it uses multiple-priority queues and services them with
adeficit-round-robin(DRR) fair queueing algorithm within the
SCSI driver. Their DRR-based SCSI system provides efficient
sharing of resources between real-time and non-real-time disk
requests.

In Section III we explain our approaches for scheduling disk
IOs with heterogeneous QoS requirements in Linux-based sys-
tems.

B. Admission Control

The admission control is a mechanism for deciding if a par-
ticular request can be admitted into the system or not. In this
paper we classify the disk admission control approaches in the
following three categories.
• Best effort.Best-effort approaches admit all requests into

the system. When the disk cannot service all requests by
their deadlines, the system’s QoS deteriorates. The sys-
tems that use the best-effort approach usually distinguish
between different requests, and try to first reduce the QoS
for less important requests.

• Deterministic. Deterministic approaches admit only re-
quests that can be serviced with their required QoS. These
methods use either worst-case assumptions (that usually
lead to low disk utilization) or rely on low-level disk mod-
els [43], [32], [14] to predict the disk performance. The
problem with these approaches is the inherent variability
in QoS requirements for various data. For example, com-
pressed videos do not have a constant bit-rate, but in order
to deterministically guarantee the real-time streaming, ad-
mission control must use the maximum expected bit-rates.
This leads to suboptimal disk utilization.

• Statistical. Statistical approaches monitor system perfor-
mance and use various heuristics to predict if they are able
to admit a new request or not. This usually means that
they can provide only soft guarantees. However, they can
utilize the disk better than the deterministic approaches.
If the system can provide different QoS for different re-
quests, one can use the deterministic admission control for
important requests and various statistical approaches for
other IO requests. We proposed several statistical admis-
sion control methods in [12] and compared their perfor-
mance with a deterministic approach.

C. Data Placement

A number of data placement solutions have been proposed
for both single disk and multiple disk systems. Initial solu-
tions for placing data on single disk systems were proposed
in the UNIX Fast File System (FFS) [23], which proposed the
notion of cylinder groups to place related data closer on the
disk surface. Log-structured placement [31] proposed perform-
ing all stream writes sequentially in large contiguous free space
on disk to reduce the overhead for write operations at the cost
of sub-optimal stream retrieval. Other single disk placement
strategies include multi-zone placement [29], constrained block
allocation [28], track extents [33], etc. Multi-zone placement
proposes matching of stream bit-rates to zone bit-rates so that
the disk throughput is utilized better. Constrained block allo-
cation controls the separation of successive stream blocks on
the disk to reduce access overheads. Track extents proposes al-
locating and accessing related data on disk track boundaries, to
avoid excessive rotational latency and track crossing overheads.
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For multiple disk systems, the additional design goal is that
of load-balancing. Striping proposes scattering bytes (fine-
grained striping) or blocks (coarse-grained striping) of data
across the disks to increase the throughput of the disk array
system using concurrent access. In [6], the authors argue that
for streaming applications, operating the disks in the disk array
independently rather than striping is better in terms of memory
use. Another approach to load-balancing in a disk array system
is random duplicated assignment [20], in which each data object
is replicated and the copies are placed randomly on two disks.
This offers reliability and extendibility apart from lowering re-
sponse times and RAM costs. Another approach to reliability is
using a parity disk as in RAID [25] to detect and correct errors
on the disk surface.

III. A L INUX QOS DISK SCHEDULER

Current commodity operating systems are designed to pro-
vide efficient best-effort access to its resources. One exception
is CPU scheduling, which typically provides preemptible pri-
ority scheduling. Various applications successfully utilize this
priority scheduling to guarantee various real-time requirements.
In addition to the existing CPU scheduler, in this paper we in-
vestigate adding a preemptible priority disk scheduler into com-
modity operating systems.

A. Kernel-level Scheduler

The disk scheduling in commodity operating systems has
not been radically changed since the early days of Unix sys-
tems [44]. The standard best-effort disk scheduling is not ap-
propriate for multimedia applications, especially not for appli-
cations with harder real-time requirements [17]. In this section
we explain our implementation of the priority-based disk sched-
uler [15]. We employ a scheme in which all best-effort disk IO
requests share the common priority level, and the user-level ap-
plications can specify both higher and lower priority for some
of their IOs. Being able to specify higher-priority requests can
substantially reduce the response time for latency-critical jobs.
Similarly, being able to specify lower-priority requests enables
an application to perform background operations which do not
disturb more important operations. In addition to simple priori-
ties, a user-level daemon can periodically set a best-effort slack
time. When this slack time is available, the kernel schedules
best-effort requests before the guaranteed-rate requests (effec-
tively performing the priority inversion). This is useful for re-
ducing the average response time for interactive best-effort ap-
plications. (In Section III-B we explain in details how to use
this slack time to implement a user-level cycle-based sched-
uler.)

Disk Meta-scheduler

Hierarchical schedulers are introduced to simplify the design
of real-time schedulers and enable dynamic scheduling [30].
The main reasons for using the hierarchical approach in our
implementation are 1) to enable modularization and 2) to in-
tegrate priority scheduling without modification of the existing
best-effort disk scheduler.

High−priority

scheduler
best−effort

Linux

Background

next_request?

Meta−scheduler

Priority scheduler

Fig. 1. UCSB-IO hierarchical disk scheduler.

Figure 1 depicts the decision process when the disk device
driver requests the next IO. The meta-scheduler first checks
if there is any high-priority request (with higher priority than
the default best-effort priority). If there is, it invokes our pri-
ority scheduler. Otherwise, it invokes the default best-effort
disk scheduler. If there are no best-effort IO requests in the
queue, the meta-scheduler checks if there is any low-priority
request, and if it exists, invokes the priority scheduler to service
it. These lower priority requests are serviced in chunks [13] and
can be preempted if the higher-priority IO request arrives.

B. User-level Scheduler

Dedicated systems with QoS requirements have been im-
plemented on top of commodity systems (for example,
XTREAM [12]). However, in the time-sharing multipro-
grammed systems the design is complicated by the fact that
multiple processes are sharing the storage subsystem. Current
commodity operating systems provide only the best-effort fair-
ness to all processes. This means that the application with QoS
requirements has to ensure that no other processes use its criti-
cal resources at the same time. In this section we propose one
possible user-level QoS scheduler on top of our kernel-level pri-
ority scheduler. We support the following three classes of IO
requests:guaranteed-rate IO, interactive IO, andbackground
IO.

Guaranteed-rate IO: Streaming applications require
guaranteed-rate disk IO in order to get jitter-free video
playback or recording. In our implementation, we employ
time-cycle-based disk scheduling because of its simple design,
predictable behavior, and simple admission control. Figure 2
depicts time-cycle-based scheduling with three guaranteed-rate
streams. The scheduler maintains a bubble slot[5] and services
best-effort IO requests when they do not violate the streaming
guaranteed-rate requirements.

31 2 1

Time
Bubble−slot

TdiskTime−cycle

Real−time IO Best−effort IOsIdle−time

Fig. 2. Time-cycle-based disk QoS scheduler.

The user-level time-cycle based scheduler uses the follow-
ing kernel methods: disk IO tagging, disk priority scheduler,
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best-effort slack-time management, and asynchronous IO. (In
Section III-A we have explained the first three methods. Asyn-
chronous IO is already available in commodity operating sys-
tems.) At the beginning of each cycle, the user-level scheduler
asynchronously submits all real-time IO requests for the whole
time-cycle. Admission control explained in Section III-B en-
sures that these IO requests will be serviced before the end of
the cycle. The scheduler also sets the slack-time register for
best-effort IOs at the beginning of each time cycle. The kernel
disk meta-scheduler services the next best-effort request only
when it has sufficient slack time or when all real-time requests
are already serviced. The user-level scheduler can choose to
service an interactive or other important request at any moment
by specifying high priority for that particular disk IO.

Interactive IO: We support two types of interactive re-
quests: best-effort and guaranteed-latency IO requests. Best-
effort interactive requests are serviced before higher-priority
guaranteed-rate requests when the slack time is available.
Guaranteed-latency requests are serviced with higher priority
than the guaranteed-rate requests. The scheduler reserves time
for interactive guaranteed-latency requests and uses admission
control to ensure that they do not violate the real-time require-
ments for guaranteed-rate IO.

Background IO:Background IO requests are for data which
do not need a prompt service. For example, the application
may choose to perform data mining, backup copy, or logging
using the background IO. Our scheduler services background
IO using the low-priority disk access.

Disk Admission Control

The user-level disk scheduler uses the following analytical
model to decide if the new stream can be admitted in the sys-
tem. GivenN streams to support, in each IO cycle the disk must
performN IO operations, each consisting of a latency compo-
nent and a data transfer component. LetTdisk denote the disk
cycle time. LetLdiski denote the disk latency to start IO trans-
fer for streami. Let rRT denote the fraction of time reserved
for real-time streams within each disk cycle. LetBi denote the
bit-rate for a streami. LetRdiski denote the disk throughput for
the zone on which streami resides. ThenTdisk can be written
as

rRT × Tdisk ≥
N∑

i=1

Ldiski +
N∑

i=1

Tdisk ×Bi

Rdiski

.

The above equation can be simplified as

Tdisk ≥ N × L̄disk ×Rdisk

rRT ×Rdisk −N × B̄
(1)

whererRT × Rdisk > N × B̄. When the application asks for
a specific guaranteed-rate, the scheduler checks to see whether
Inequality 1 is satisfied. If not, the application is notified that it
cannot get the required disk bandwidth. More details are in our
related paper about the XTREAM system [12].

C. Linux Implementation Details

Figure 3 depicts a simplified architecture of the Linux 2.5
development kernel. Currently, the upper-layers in the official

read(); write(); ioctl();
open(); close();

system calls:

elevator deadline

Disk scheduler

CBQSFQREDFIFO

Net

IP stack

send(); recv();
socket(); shutdown();

Interface to user mode

FS

VFS
MM

Page−cachereiserfsext3

proc partitions

ramfs Network scheduler

Device drivers

Block device Net device

ide scsi eepro100ne2k−pci

mmap(); readahead();
sendfile();

Fig. 3. Simplified architecture of Linux 2.5 kernel.

Linux kernel do not pass file information to the disk scheduler
layer. We enable specifying QoS parameters per file descriptor,
and pass the pointer to these QoS parameters to each IO request
in the disk queue (similar to the approaches in semantically-
smart disk systems [38]). After theopen()system call, file ac-
cesses get the default best-effort QoS. We introduce several new
ioctl() commands which enable an application to setup differ-
ent QoS parameters for its opened files. These additionalioctl()
commands are summarized in Table III.

Ioctl command Argument Description

IO GET QOS struct ucsb io * Get file’s QoS
IO BESTEFFORT Set best-effort QoS
IO SOFTRT int *rate Set guaranteed rate
IO PRIORITY int *priority Set priority

TABLE III
ADDITIONAL ioclt() COMMANDS.

Disk Profiler

We improve the basic time-cycle model by introducing real-
istic multi-zone disk modeling [14] and maintain the bubble-up
slot [8] to minimize latency for interactive streams.

To provide guaranteed-rate disk access, our scheduler relies
on the realistic disk model obtained using an automatic disk
profiler [14]. In our previous work we have implemented and
tested our user-level disk QoS scheduling [12]. However, the
kernel disk scheduler can achieve harder real-time guarantees.
In order to support interactive, high-priority IO requests, we
use chunking when accessing large sequential disk regions [10],
[11], [13]. This way, the higher-priority request can preempt the
lower-priority one.

Programming Model

To minimize changes in the Linux kernel and enable seam-
less porting of existing applications to utilize the operating sys-
tem QoS extensions, we employ the following strategies:
• Applications provide explicit parameters for disk-access

QoS (usingioctl() system calls and the/proc file-system
interface).
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#include <stdio.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include "../linux/include/linux/ucsb io.h"

#define O DIRECT 040000 /* direct disk access hint */

static int io size = 32*4096;

main(int argc, char **argv){
int ret,size;
int rate,priority;
struct ucsb io qos;
int fd;
char *buf;

ret = posix memalign(&buf, 4096, io size);
if (argc<2) {

fprintf(stderr,"Usage: %10s <file>\n",argv[0]);
exit(-1);

}
fd = open(argv[1],O RDONLY | ODIRECT);
if (fd<0) {

fprintf(stderr,"Cannot open file: %s\n",argv[1]);
exit(-1);

}
priority = 100;
ret = ioctl(fd,UCSB IO PRIORITY,&priority);
if (ret) {

fprintf(stderr,
"WARNING: Cannot set UCSB IO priority!\n");

}

while ((size=read(fd,buf,io size)) > 0){
do {

ret=fwrite(buf,1,size,stdout);
if (ret<=0) break;
size-=ret;

} while(size>0);
}

}

Fig. 4. Example code for a high-priority Linuxcat.

• The kernel provides implicit optimizations for the file sys-
tem’s data placement.

An application opens a file using unmodifiedopen()system
call. The file gets the default best-effort disk QoS. After open-
ing, the application can change the file QoS at any time using
ioctl() system call. The QoS setting is per file descriptor, and
the application can access the same file using different QoS.
The application can setup the priority and rate for each file. The
kernel notifies application if the QoS is granted usingioctl() er-
ror codes.

Additionally, the application can change the disk scheduler’s
parameters using the/proc interface (for example, the sched-
uler’s slack time). The application can also use the/proc inter-
face to get QoS usage statistics or to setup a debugging level.

We have changed three system calls to provide disk QoS:
read(), write(), andioctl(). Figure 4 depicts an example appli-
cation which performs the high-prioritycat. The disk priority
is specified using anioctl() on the opened file.

IV. EXPERIMENTAL RESULTS

In this section we present a micro-benchmark evaluation of
our kernel-level disk priority scheduler. We have implemented
the scheduler in Linux 2.5.67. Our testbed was an800 MHz
Pentium III system with one IDE (ST330630A) and one SCSI
disk (ST318437LW). In this draft we will present only the re-
sults for guaranteed-rate streaming. In the final version of this
paper we plan to add the results for guaranteed-latency disk IO.
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Fig. 5. High-priority vs. best-effort constant-rate streaming.

Figure 5 depicts the difference between a high-priority
constant-rate stream (8 MB/s) and best-effort constant-rate
streams (5 MB/s). We read data from the ext2 file system on the
SCSI disk. Each stream was accessing a different sequentially-
placed700 MB file. In the first5 seconds, the only stream in the
system was the high-priority one. Additional5 MB/s best-effort
streams were introduced after5, 10, 15, 20, and25 seconds.
The disk was not able to provide the requested throughput for
all streams, but our system was able to provide the requested8
MB/s for the high-priority stream. The cycle time for the high-
priority stream was4 seconds.
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Fig. 6. High-priority constant-rate streaming in the presence of best-effort
streams.

Figure 6 depicts the streaming throughput for a high-priority
constant-rate stream (8 MB/s) and best-effort streams. Each
best-effort stream tries to read as fast as possible. Again, at
the beginning of the experiment we had only one high-priority
stream and introduced additional best-effort streams after5, 10,
15, 20, and25 seconds. We can see that the first best-effort
stream started with a high streaming rate. When the number of
concurrent best-effort streams increased, the disk seeking over-
head reduced the data rate, but without reducing the rate for
the high-priority8 MB/s stream. The cycle time for the high-
priority stream was again4 seconds.

Figure 7 depicts the average response time for both high-
priority and low-priority disk IOs. Our micro-benchmark con-
sisted of one high-priority constant-rate stream (4 MB/s) and
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Fig. 7. Average response time for disk IOs.

several low-priority constant-rate streams (also4 MB/s). The
cycle time for all stream was the same (4 seconds). The priority
scheduler was able to provide substantially better response time
for high-priority IOs.

V. RELATED WORK

Multimedia real-time systems were the focus of several rel-
evant survey and trend studies [39], [18], [16], [26]. Plage-
mann et al. [26] survey related work in operating system archi-
tectures, CPU scheduling, disk management, memory manage-
ment, and low-level bus, cache, and device management. Gem-
mell et al. [16] concentrate on disk file systems and scheduling
for continuous media applications. In this paper, we also focus
on disk QoS management, but we are interested in heterogenous
media applications, which manage interactive, continuous, and
best-effort data.

While it is the case that most current commodity operating
systems do not provide sufficient support for real-time applica-
tions, several research projects are committed to implementing
real-time QoS support for open-source commodity operating
systems [24], [36], [40]. Molano et al. [24] presented their de-
sign and implementation of a real-time file system for RT-Mach
(which is a microkernel-based real-time operating system from
CMU). Shenoy et al. [36] and Sundaram et al. [40] presented
their QoS extensions for Linux operating system (QLinux). Our
goals are similar to QLinux since we want to add QoS support
for Linux disk access. However, in this paper we investigated an
approach with minimal changes in Linux kernel space, which is
sufficient for an efficient implementation of QoS disk schedul-
ing.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have first presented several important
storage-bound real-time applications and classified their QoS
requirements. We have then surveyed the representative work
on disk management in the areas ofIO scheduling, admission
control, anddata placement. Finally, we have presented our
approach for disk QoS in commodity systems and key empir-
ical results from the micro-benchmark evaluation of our QoS-
enhanced Linux kernel.

We plan to further study the QoS support required for multi-
disk RAID systems. Our next milestone is to design a pre-
emptible priority-based RAID scheduler and to investigate its
benefits for real-time applications.
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