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Abstract— The performance and capacity of commodity com- [__Application [ Storage access Bottlenecks |
puter systems have improved drastically in recent years. How- Video-on-Demand| read-only storage, network
ever, these systems still lack the support for real-time data access, \E/)'idi‘;lsli‘g:’;'i'éznce ‘r’ggg'mg;tl'y z:g:zgg' ggg
v_vhlch is req_uwed by an increasing number of_emerglng applica- Digtance learning | read-write Y nemgrl(" storage
tions. In this paper we first present several important storage- Virtual reality read-write CPU, network, storaga
bound real-time applications and classify their Quality of Service Scientific write-mostly | storage, network
(QoS) requirements. We then survey the representative work on
disk management in the areas ofO scheduling admission con- TABLE |

trol, and data placementFinally, we present our approach for pro-
viding disk QoS in commodity systems and present key empirical
results from the micro-benchmark-based evaluation of our QoS-
enhanced Linux kernel.

STORAGE-BOUND REAL-TIME APPLICATIONS.

Video-on-Demandpplications provide streaming video con-
Keywords: QoS disk scheduling, real-time storage, Linux. currently to multiple clients. Clients can issue interactive video
requests (for example, fast forward, slow motion, instant re-
|. INTRODUCTION play, or pause/resume). Traditional solutions are designed for

The performance and capacity of commodity computer S))g)_cal-area network video streaming, and system bottlenecks are
tems have improved drastically in recent years. An incred?—the storage subsystem. With the proliferation of broadband

ing number of emerging applications, such as video streamir@temet access, global Video-on-Demand systems are becom-

video surveillance, virtual reality, scientific and environmer!'d MOre popular. These systems also have bottlenecks in the
tal data gathering, digital libraries, or distance learning, requipgtwork management. o
various Quality of Service (Q0S) guarantees for data accessYideo surveillanceapplications manage a large number of
For example, they require guaranteed real-time streaming Yéqjeo streams from surveillance cameras, which n_eed to be re-
video or scientific detector data, but guaranteed response titB!Y recorded to a storage system. At the same time, security
for interactive or high-priority data. These applications increaB&rsonnel need to monitor a subset of video streams in real-
ingly run on commodity systems. However, commodity Sy§|_me, (_:rea_mng addltlon_al regd traf_flc. Emerg_lng solutions fora_u-
tems still lack sufficient QoS support for their storage subsy@matic video processing, including suspicious event detection
tems. and data mining techniques, also create large computational and
QoS support for real-time storage systems has been an actlgtabase query-processing requirements for video surveillance
field of research throughout the past decade. Still, exponenf¥Ftems.
improvements in computational power, disk performance, high-Digital libraries manage a large number of heterogeneous
speed local-area networks, and broadband Internet connectignitimedia data, including text, images, audio, and video.
are constantly enabling new applications. These applicatiohdese heterogeneous data have different QoS requirements and
demand not only large storage space and high-performancetfig-underlying storage subsystem needs to handle them differ-
cess, but also better operating system support for disk quagtly. In addition to mostly read data access for digital libraries,

of service. emerginglistance learnin@pplications need to handle interac-
tive real-time video/audio streaming (both read and write) and
A. Storage-bound Real-time Applications dynamic changes to their databases.

Traditional real-time systems do not use disks to store data/i"tual reality applications are still mainly developed in re-
and typically operate using only the random-access main mefarch labs. However, the large storage requirements for rep-
ory. An example for these systems are embedded control Sgpss_entpn of complex virtual worlds and the inherent |nteract|v-_
tems in cars and aeroplanes. On the other hand, the applifgreauirements for storage access make QoS support for their
tions that we target have large storage requirements and H{Q/29€ Systems a necessity.
only cost-effective solution is to use disks as their main storageScientific applicationsvith real-time storage requirements
medium [26]. Table | summarizes several important storagésually handle a large number of real-time sensors. Data ob-
bound real-time applications. tained from these sensors have to be reliably recorded to a stor-

age system, since scientific experiments are sometimes hard or
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B. QoS Requirements for Storage Systems A. 10 Scheduling

The general requirements for large-scale storage systems inlable Il depicts several approaches for best-effort, real-time,
clude high availability, high reliability, ease of manageabilityand heterogeneous (mixed-media) disk scheduling. Disks can
large storage space, and high-performance access. With hgeclassified as non-volatile storage devices with non-uniform
proliferation of applications that require both large-scale stgemory access. In terms of data throughput, the best perfor-
age and real-time data access, traditional solutions for buildiftgnce is achieved when the disk access is sequential. How-
storage systems have to be revisited [42], [41]. ever, file systems cannot always place and access data sequen-
formance, best effort, and fair service to all clients. This [g€SS patterns.
sufficient for traditional applications that do not require real-

fi dat H . der t ¢ I-ti [ Best-effort | Real-time |  Heterogeneous |
ime data access. However, in order to support real-time ap- ==F5 e
plications, we identify the following requirements for storage SSTE EDE Cello
access. SATF SCAN-EDF AL (clockwise FS)
. . . . . . . SCAN EDL User-safe disk
« Differentiated serviceMost real-time applications require C-SCAN | Round-robin MARS
both real-time and traditional best-effort data access. This Freeblock | Bubble-up
means that a storage system should differentiate 10 re-
TABLE Il

guests and service them according to their QoS require-
ments. In effect, this requires that each 10 request is asso-
ciated with its QoS requirements.

« Guaranteed-latency respons8ome 10 requests have to . . .
be serviced before their deadlines. Examples for these reWorthlngton etal. [44] survey the scheduling algorithms for

quests are video data retrieval that must finish before gjaditional, best-effort disk access. FCFS (First-Come-First-
playing or kernel access to virtual memory on the disk a erve) gpproach Services disk I.O requ_ests In th_e order in which
ter page faults for high-priority jobs they arrive. Because disk seek times differ drastically and FCFS
« Guaranteed-rate streamingStreaming data with soft or ‘?'OG? not optimize disk seeking, this appr.oach leads to poor uti-
hard real-time guarantees are often read from and Wﬁlgatlon of disk throughput when the |0 sizes are small and the

ten to a storage system. In order to consistently guaran?e ess is random.

their streaming rate, a storage system must employ an gd- STF .(Shor.test—Seek—Tlme—Flrst) and SATF '(Shortest-
mission control which ensures that once admitted Strea%gcess-Tlme-Fwst) [19] methods use greedy heuristics in order

get sufficient data throughput. Examples for these streaﬁ?sminimize disk seeking. SSTF schedules the 10 in the waiting
are surveillance video and scientific detector data queue that requires the shortest seek time relative to the current

« Low latency and high-throughpuBest-effort data still re- dls.k arm position. S|m|larly_, SATF §chgdules the 10 that re-
quire low latency and high-throughput access, and a st ires the shortest access time (which includes both seek time

age system must employ scheduling algorithms that pr%l:ld rotational delay) relative to the current disk position. While

vide the high-performance access for best-effort 10 rg-o.th. methods achieve good disk throughput utilization_ by min-
quests, while satisfying guarantees for real-time 10s. Imizing access overheads, they _do n_ot prevent starvation. Som_e
10 requests can spend a long time in the queue and the maxi-
mum latency is not bounded.
C. Paper Outline SCAN and C-SCAN algorithms use a simple elevator prin-
ciple which solves starvation and reduces disk seeking [37],

The goal of this paper is to provide an overview of cUfryg) |n SCAN, the disk arm starts from one end of the disk
rent solutions for designing storage systems with real-time QR4 moves to another, servicing 10 requests on the way. In C-

requirements and to present our implementation of disk Q&g aAN; the disk arm services 10 requests only in one direction
scheduler for the commodity Linux operating system. The pgjs ally in increasing order of disk blocks, which means from
per is organized as follows: In Section Il, we survey the repy,er portions of the disk towards the inner ones). SCAN and
resentative work on QoS disk management. In Section Ill, W& scAN guarantee non-starvation, but still an 10 request can
present the design and implementation of our QoS disk scheflang 4 ong time in the queue. To prevent this, the OS usually
uler for Linux suitable for real-time storage systems. In Segynds the number of requests that are serviced in one SCAN
tion IV we illustrate the effectiveness of our Linux-based pro;,i,  This also bounds the maximum latency for each 10 re-
totype using microbenchmarks. Sectioh V presents related fRiest. Most commodity operating systems use a variation of
search. In Section VI, we make concluding remarks and SU9G§E simple elevator principle for best-effort disk scheduling.
directions for future work. SSTF and SATF require a disk model in order to predict
disk seek and access times, which is not required for SCAN
algorithms. This is the reason why the versions of SCAN and
C-SCAN are the most widely currently used disk schedulers.
In this section we classify the representative work on didRecently, several scheduling algorithms that rely on detailed
management in the following three ared® schedulingad- disk models are designed to improve disk access [22], [21],
mission contrglanddata placement [13]. Freeblock schedulinfR?], [21] uses rotational prediction
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II. OVERVIEW OF REAL-TIME DISK MANAGEMENT



to schedule low-priority I10s in the background without affect- In Section Il we explain our approaches for scheduling disk
ing other 10s.Semi-preemptible IQL3] schedules 10 requestslOs with heterogeneous QoS requirements in Linux-based sys-
using multiple fast-executing disk commands and enables diskns.

access preemption between them.

Real-time disk scheduling algorithms consider additional .
real-time requirements when servicing disk I0s. These alg%= Admission Control
rithms can be classified in the following two high-level classes. The admission control is a mechanism for deciding if a par-

« Deadline-based schedulersEach disk 10 is associatedticular request can be admitted into the system or not. In this

with a deadline. The disk scheduler should service all Igeper we classify the disk admission control approaches in the
before their deadlines. Examples for these schedulers &#owing three categories.
rate-monotonic, EDF, SCAN-EDF, and EDL [26]. « Best effort.Best-effort approaches admit all requests into
« Cycle-based schedulersAll real-time disk 10s are ser- the system. When the disk cannot service all requests by
viced in cycles and they all share the common deadline— their deadlines, the system’s QoS deteriorates. The sys-
the disk scheduler should service all I0s before the cy- tems that use the best-effort approach usually distinguish
cle expires. Examples for these schedulers are round- between different requests, and try to first reduce the QoS
robin [37], bubble-up [5], and bubble-up 2D [7]. for less important requests.

The deadline-based schedulers are more general scheduless Deterministic. Deterministic approaches admit only re-
since one can implement the cycle-based scheduling using quests that can be serviced with their required QoS. These
deadlines (by setting deadlines for all IOs in a cycle to the cy- methods use either worst-case assumptions (that usually
cle’s end). However, for real-time streaming, which is the most  lead to low disk utilization) or rely on low-level disk mod-
common case, cycle-based schedulers are more natural and canels [43], [32], [14] to predict the disk performance. The
provide easier and more efficient admission control. problem with these approaches is the inherent variability

Heterogeneous disk schedulers support scheduling for both in QoS requirements for various data. For example, com-
best-effort and real-time 10s. In Group Sweeping Strategy pressed videos do not have a constant bit-rate, but in order
(GSS) [9], requests are serviced in cycles, in round-robin man- to deterministically guarantee the real-time streaming, ad-
ner. To provide the requested guarantees for continuous media mission control must use the maximum expected bit-rates.
data, GSS introduces jaint deadlinemechanism: it assigns This leads to suboptimal disk utilization.
one joint deadline to each group of streams. This deadline ise Statistical. Statistical approaches monitor system perfor-
specified as being the earliest one out of the deadlines of all mance and use various heuristics to predict if they are able
streams in the respective group. Streams are grouped in such a to admit a new request or not. This usually means that
way that all of them comprise similar deadlines. they can provide only soft guarantees. However, they can

Cello [35] employs a two-level disk scheduling architecture, utilize the disk better than the deterministic approaches.
consisting of a class-independent scheduler and a set of class- If the system can provide different QoS for different re-
specific schedulers. The two levels of the framework allo- quests, one can use the deterministic admission control for
cate disk bandwidth at two time-scales: the class-independent important requests and various statistical approaches for
scheduler governs the coarse-grain allocation of bandwidth to other 10 requests. We proposed several statistical admis-
application classes, while the class-specific schedulers control sion control methods in [12] and compared their perfor-
the fine-grain interleaving of requests. Symphony [34] multi- mance with a deterministic approach.
media file system supports diverse application classes that ac-
cess data with heterogeneous characteristics using Cello frame-
work. C. Data Placement

Clockwise [3] is a real-time file system that schedules best-A number of data placement solutions have been proposed
effort and real-time disk requests so that real-time disk requegis both single disk and multiple disk systems. Initial solu-
are serviced before their deadlines and the best-effort requetss for placing data on single disk systems were proposed
are serviced as quickly as possible without violating real-time the UNIX Fast File System (FFS) [23], which proposed the
deadlines. It is based on a non-preemptible EDF schedulingnotion of cylinder groups to place related data closer on the

User-safe disks [27] export a virtual device interface to disk surface. Log-structured placement [31] proposed perform-
number of different clients. They provide the protection neéng all stream writes sequentially in large contiguous free space
essary to ensure that applications cannot violate the systemadn-disk to reduce the overhead for write operations at the cost
tegrity and ensure the guaranteed QoS for each client’s data@ftsub-optimal stream retrieval. Other single disk placement
cess. strategies include multi-zone placement [29], constrained block

MARS [4] is a scalable web-based multimedia-on-demaradlocation [28], track extents [33], etc. Multi-zone placement
system. To provide fair guaranteed access to storage bapbposes matching of stream bit-rates to zone bit-rates so that
width, it uses multiple-priority queues and services them withe disk throughput is utilized better. Constrained block allo-
adeficit-round-robin(DRR) fair queueing algorithm within the cation controls the separation of successive stream blocks on
SCSI driver. Their DRR-based SCSI system provides efficietfite disk to reduce access overheads. Track extents proposes al-
sharing of resources between real-time and non-real-time diekating and accessing related data on disk track boundaries, to
requests. avoid excessive rotational latency and track crossing overheads.



For multiple disk systems, the additional design goal is that next_request?
of load-balancing. Striping proposes scattering bytes (fine- '
grained striping) or blocks (coarse-grained striping) of data Meta-scheduler
across the disks to increase the throughput of the disk array U
system using concurrent access. In [6], the authors argue that ‘
for streaming applications, operating the disks in the disk array Linux
independently rather than striping is better in terms of memory best-effort ‘ ;
use. Another approach to load-balancing in a disk array system scheduler : ‘
is random duplicated assignment [20], in which each data object ; ‘
is replicated and the copies are placed randomly on two disks.  Priority scheduler
This offers reliability and extendibility apart from lowering re- B '
sponse times and RAM costs. Another approach to reliabilityfg. 1. UCSB-10 hierarchical disk scheduler.
using a parity disk as in RAID [25] to detect and correct errors
on the disk surface.

High—-priority

Figure 1 depicts the decision process when the disk device
driver requests the next 10. The meta-scheduler first checks
if there is any high-priority request (with higher priority than

Current commodity operating systems are designed to ptbe default best-effort priority). If there is, it invokes our pri-
vide efficient best-effort access to its resources. One exceptamity scheduler. Otherwise, it invokes the default best-effort
is CPU scheduling, which typically provides preemptible pridisk scheduler. If there are no best-effort 10 requests in the
ority scheduling. Various applications successfully utilize thigueue, the meta-scheduler checks if there is any low-priority
priority scheduling to guarantee various real-time requirementequest, and if it exists, invokes the priority scheduler to service
In addition to the existing CPU scheduler, in this paper we iiit: These lower priority requests are serviced in chunks [13] and
vestigate adding a preemptible priority disk scheduler into coroan be preempted if the higher-priority 10 request arrives.
modity operating systems.

1. AL INUX QOS DiSK SCHEDULER

B. User-level Scheduler

A. Kernel-level Scheduler Dedicated systems with QoS requirements have been im-

The disk scheduling in commodity operating systems h@éemented on top of commodity systems (for example,
not been radically changed since the early days of Unix sy§$TREAM [12]). However, in the time-sharing multipro-
tems [44]. The standard best-effort disk scheduling is not agrammed systems the design is complicated by the fact that
propriate for multimedia applications, especially not for applinultiple processes are sharing the storage subsystem. Current
cations with harder real-time requirements [17]. In this sectis®®mmodity operating systems provide only the best-effort fair-
we explain our implementation of the priority-based disk schefiess to all processes. This means that the application with QoS
uler [15]. We employ a scheme in which all best-effort disk I@equirements has to ensure that no other processes use its criti-
requests share the common priority level, and the user-level §p! resources at the same time. In this section we propose one
plications can specify both higher and lower priority for sompossible user-level QoS scheduler on top of our kernel-level pri-
of their 10s. Being able to specify higher-priority requests ca@fity scheduler. We support the following three classes of 10
substantially reduce the response time for latency-critical joi€guests:guaranteed-rate IQinteractive 1Q andbackground
Similarly, being able to specify lower-priority requests enabld®.
an application to perform background operations which do notGuaranteed-rate 10: Streaming applications require
disturb more important operations. In addition to simple priorguaranteed-rate disk 10 in order to get jitter-free video
ties, a user-level daemon can periodically set a best-effort slggRyback or recording. In our implementation, we employ
time. When this slack time is available, the kernel schedultiie-cycle-based disk scheduling because of its simple design,
best-effort requests before the guaranteed-rate requests (efgedictable behavior, and simple admission control. Figure 2
tively performing the priority inversion). This is useful for re-depicts time-cycle-based scheduling with three guaranteed-rate
ducing the average response time for interactive best-effort greams. The scheduler maintains a bubble slot[5] and services
plications. (In Section IlI-B we explain in details how to uséest-effort 10 requests when they do not violate the streaming
this slack time to implement a user-level cycle-based schegparanteed-rate requirements.

uler.) .
Real-time 10 Idle-time Best-effort 10s
. NololNe ®
Disk Meta-scheduler :
Time
Hierarchical schedulers are introduced to simplify the design | ! Bubble-slot

R . K Time-cycle T\
of real-time schedulers and enable dynamic scheduling [30].

The main reasons for using the hierarchical approach in atig. 2. Time-cycle-based disk QoS scheduler.

implementation are 1) to enable modularization and 2) to in-

tegrate priority scheduling without modification of the existing The user-level time-cycle based scheduler uses the follow-
best-effort disk scheduler. ing kernel methods: disk 10 tagging, disk priority scheduler,



best-effort slack-time management, and asynchronous 1O. i(fieface to user mode e e e |
Section IlI-A we have explained the first three methods. Asyn-[system calls] [ D wite0: o ][ i O’M G reovr }

read(); write(); ioctl(); sendfile(); send(); recv();

Net

tems.) At the beginning of each cycle, the user-level scheduiler
asynchronously submits all real-time 10 requests for the whale
time-cycle. Admission control explained in Section 111-B en: 1
sures that these |0 requests will be serviced before the en
the cycle. The scheduler also sets the slack-time register §fo
best-effort IOs at the beginning of each time cycle. The kernel

disk meta-scheduler services the next best-effort request only [sFql [cad) |

[ide ][ scsi | [ ne2ic-pci] [eeproz00]

service an interactive or other important request at any moment

by specifying high priority for that particular disk 10.
Interactive 10: We support two types of interactive re-Fig. 3. Simplified architecture of Linux 2.5 kernel.

quests: best-effort and guaranteed-latency 10 requests. Best-

effort interactive requests are serviced beforg hlg_her-pr!orltl){nux kernel do not pass file information to the disk scheduler

guaranteed-rate requests when the slack time is availa

e o . ;
Guaranteed-latency requests are serviced with higher priorﬁ%er' We enable specifying QoS parameters per file descriptor,
than the guaranteed-rate requests. The scheduler reserves%

Page-cache IP stack !

Disk scheduler) Network scheduler ‘

d pass the pointer to these QoS parameters to each 10 request

. . -~ in_the disk queue (similar to the approaches in semantically-
for interactive guaranteed-latency requests and uses admissjon . . .
. . -Smart disk systems [38]). After ttmpen()system call, file ac-
control to ensure that they do not violate the real-time require- .
cesses get the default best-effort QoS. We introduce several new
ments for guaranteed-rate 10O.

Background 10:Background IO requests are for data whicr'PCtlo commands Whlch_enable an _appllcatlon to setup differ
. .___ent QoS parameters for its opened files. These additioat()
do not need a prompt service. For example, the application . .
. . commands are summarized in Table I11.
may choose to perform data mining, backup copy, or logging

using the background 10. Our scheduler services background [ Tocticommand | Argument |  Description |
10 using the low-priority disk access. [O_GET.QOS structucsbio * | Get file’s QoS
I0_BESTEFFORT Set best-effort QoS
. o IO_SOFTRT int *rate Set guaranteed rate
Disk Admission Control IO_PRIORITY int *priority Set priority

The user-level disk scheduler uses the following analytical

model to decide if the new stream can be admitted in the sys-

tem. GivenV streams to support, in each 10 cycle the disk must

perform N 10 operations, each consisting of a latency compo-

nent and a data transfer component. Lgt, denote the disk

cycle time. LetLy;.x, denote the disk latency to start IO trans-

fer for streami. Letrpr denote the fraction of time reservedDisk Profiler

for real-time streams within each disk cycle. Ligtdenote the  \we improve the basic time-cycle model by introducing real-

bit-rate for a stream Let Ry;,,, denote the disk throughput forjstic multi-zone disk modeling [14] and maintain the bubble-up

the zone on which streanresides. Theﬁhisk can be written slot [8] to minimize |atency for interactive streams.

as N N To provide guaranteed-rate disk access, our scheduler relies
rrp X Thiap > ZLdiski " Z Taisk X Bi on the realistic disk model obtained using an automatic disk

=1

TABLE 1l
ADDITIONAL ioclt() COMMANDS.

Ryisk, profiler [14]. In our previous work we have implemented and

tested our user-level disk QoS scheduling [12]. However, the

kernel disk scheduler can achieve harder real-time guarantees.

N X Laisk X Raian In order to_ support interaqtive, high—priority [@] .reque_sts, we

(1)  use chunking when accessing large sequential disk regions [10],
[11], [13]. This way, the higher-priority request can preempt the

whererrr X Rgis > N x B. When the application asks forlower-priority one.

a specific guaranteed-rate, the scheduler checks to see whether

Inequality 1 is satisfied. If not, the application is notified that Programming Model

cannot get the required disk bandwidth. More details are in OUr'Tg minimize changes in the Linux kernel and enable seam-

related paper about the XTREAM system [12].

=1
The above equation can be simplified as

Taisk > _
disk = TRT X Rdisk —NxB

less porting of existing applications to utilize the operating sys-

tem QoS extensions, we employ the following strategies:

C. Linux Implementation Details « Applications provide explicit parameters for disk-access
Figure 3 depicts a simplified architecture of the Linux 2.5 QoS (usingioctl() system calls and théroc file-system

development kernel. Currently, the upper-layers in the official interface).



#include <stdio.h>

#include <sysl/ioctl.h>

#include <fcntl.h>

#include "../linux/include/linux/ucsb _io.h"

#define O _DIRECT 040000 /* direct disk access hint */

static int io _size = 32*4096;

main(int argc, char **argv){
int ret,size;
int rate,priority;
struct ucsb  _io qos;
int fd;
char *buf;

ret = posix _memalign(&buf, 4096, io _size);
if (arge<2) {
fprintf(stderr,"Usage: %10s <file>\n",argv[0]);

exit(-1);
}
fd = open(argv[1],0 _RDONLY | QDIRECT);
if (fd<0) {
fprintf(stderr,"Cannot open file: %s\n",argv[1]);
exit(-1);
}
priority = 100;
ret = ioctl(fd,UCSB _IO _PRIORITY,&priority);
if (ret) {
fprintf(stderr,

"WARNING: Cannot set UCSB _IO priority!\n");
}

while ((size=read(fd,buf,io _size)) > 01
do {
ret=fwrite(buf,1,size,stdout);
if (ret<=0) break;
size-=ret;

8 MB/s high-priority stream ———
5 MB/s best-effort stream #1 ---------
5 MB/s best-effort stream #2 -
12 b 5 MB/s best-effort stream #3
5 MB/s best-effort stream #4 ------
5 MB/s best-effort stream #5 -----

14 -

Throughput [MB/s]

0 50 100 150 200 250
Time [s]

Fig. 5. High-priority vs. best-effort constant-rate streaming.

Figure 5 depicts the difference between a high-priority
constant-rate strean8 (MB/s) and best-effort constant-rate
streams{ MB/s). We read data from the ext2 file system on the
SCSI disk. Each stream was accessing a different sequentially-
placed700 MB file. In the first5 seconds, the only stream in the
system was the high-priority one. AdditioriaMB/s best-effort
streams were introduced aftgy 10, 15, 20, and25 seconds.
The disk was not able to provide the requested throughput for
all streams, but our system was able to provide the requésted

} while(size>0); MB/s for the high-priority stream. The cycle time for the high-
priority stream wad seconds.

40

8 MB/s high-priority stream ——
- best-effort stream #1 -
35 best-effort stream #2 -

; best-effort stream #3 :
best-effort stream #4 ------ !

« The kernel provides implicit optimizations for the file sys- 30| best-effort stream #5 -~~~ 7

tem’s data placement.

An application opens a file using unmodifieden()system
call. The file gets the default best-effort disk QoS. After opens :
ing, the application can change the file QoS at any time using | ]
ioctl() system call. The QoS setting is per file descriptor, and 10 |
the application can access the same file using different QoS. ‘
The application can setup the priority and rate for each file. The
kernel notifies application if the QoS is granted usingfl() er- 00 20 40 60 80 100 120 140 160 180 200
ror codes. Time [s]

Additionally, the application can change the disk schedulerF’?
parameters using thiproc interface (for example, the sched-stf’e'
uler’s slack time). The application can also use/ftrec inter-
face to get QoS usage statistics or to setup a debugging level. Figure 6 depicts the streaming throughput for a high-priority

We have changed three system calls to provide disk Qanstant-rate streans (MB/s) and best-effort streams. Each
read(), write(), andioctl(). Figure 4 depicts an example applihest-effort stream tries to read as fast as possible. Again, at
cation which performs the high-priorityat The disk priority the beginning of the experiment we had only one high-priority
is specified using aioctl() on the opened file. stream and introduced additional best-effort streams Bfte,

15, 20, and25 seconds. We can see that the first best-effort
IV. EXPERIMENTAL RESULTS stream started with a high streaming rate. When the number of

In this section we present a micro-benchmark evaluation edncurrent best-effort streams increased, the disk seeking over-
our kernel-level disk priority scheduler. We have implementdtead reduced the data rate, but without reducing the rate for
the scheduler in Linux 2.5.67. Our testbed was8ah MHz the high-priority8 MB/s stream. The cycle time for the high-
Pentium Il system with one IDE (ST330630A) and one SCSlriority stream was agaih seconds.
disk (ST318437LW). In this draft we will present only the re- Figure 7 depicts the average response time for both high-
sults for guaranteed-rate streaming. In the final version of tipsiority and low-priority disk 10s. Our micro-benchmark con-
paper we plan to add the results for guaranteed-latency disk Bxted of one high-priority constant-rate streatMB/s) and

Fig. 4. Example code for a high-priority Linwat

25 + .

put [MB/s]

20 + t

6. High-priority constant-rate streaming in the presence of best-effort
ams.



B High-priority 10s We plan to further study the QoS support required for multi-
O Low-priority 10s disk RAID systems. Our next milestone is to design a pre-
emptible priority-based RAID scheduler and to investigate its

,glooo A benefits for real-time applications.
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