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Abstract

Semi-structured data is becoming commonplace with ex-
amples such as XML, Bioinformatics suffix-trees, scientific
computing data, and even generic directory-file hierarchies.
Such semi-structured data must be stored on mass storage
devices for persistence as well as cost-efficiency. Current
approaches, which map semi-structured data to relational
databases or simply use flat files, incur a mismatch between
the structure of the data and the underlying storage de-
vice (disk drive). In this paper, we explore alternate na-
tive strategies for storing semi-structured data that match
its access characteristics to those of disk drives, using XML
data as a concrete case study. In particular, we present al-
gorithms that, given semi-structured data and a disk drive,
decide how to store the data on the drive in a way that will
later allow efficient navigation and retrieval. We evaluate
our proposed methods using the DiskSim disk simulator and
benchmark XPath queries. The experimental results indi-
cate savings of as much as 7X-34X in query execution time
for an important class of navigational queries (which we
call non-deep-focused class), compared to the baseline se-
quential layout of the XML data.

1 Introduction

In recent years, there has been a move towards storing
more and more data in semi-structured form. The pop-
ularity of semi-structured data, proved by the success of
XML, is due to the fact that tree- or graph- structures lend
themselves naturally to organizing and visualizing large
amounts of information. In addition to general-purpose
XML databases, examples of applications dealing with
large amounts of semi-structured data include BioInformat-
ics suffix-tree alignments [13], scientific data grids [36],
multi-resolution video [16], as well as directory-file hierar-
chies in general-purpose filesystems [32]. Although, there
have been several recent efforts directed towards developing

semi-structured data processing systems (e.g., Galax [5],
Timber [26], XALAN [1], Natix [33] and XT [2]) and eval-
uating queries on semi-structured data (e.g., [7, 22]), the
problem of efficiently storing semi-structured data on mass
storage devices remains largely unexplored (Natix is an ex-
ception and we discuss later how we leverage and extend its
native storage strategies).

To store and access semi-structured data, current ap-
proaches map them to tables (e.g, [40, 14]) or object-based
storage abstractions [12] or simply use flat files. These
approaches, however, ignore the specific characteristics of
semi-structured data as well as those of disk drives. In
particular, semi-structured data has tree (or graph) struc-
ture, whereas relational databases are structured tables and
flat files are unstructured. On the other hand, disk drives
store information in circular tracks that are accessed with
mechanical seek and rotational delay overheads. As a re-
sult, such solutions result in sub-optimal accesses to semi-
structured data. Given the abundance of data in semi-
structured form today, there is an immediate need for re-
examining the existing storage and access machinery for
semi-structured data.

In this paper, we explore strategies to optimize the stor-
age (placement) and retrieval of semi-structured data on
disk drives by explicitly accounting for the mismatch be-
tween the structure of the data and the disk drive charac-
teristics. Throughout the paper, we use XML as a concrete
case of semi-structured data. In particular, we present al-
gorithms that given the physical characteristics of a disk
drive (number of tracks, rotational speed, seek time, etc.),
place semi-structured data on the disk drive in a way that
facilitates efficient navigation of the data by reducing ac-
cess overheads. The proposed technique first addresses the
problem of grouping nodes of semi-structured data so that
they can be mapped to disk blocks. We develop and ex-
perimentally evaluate different grouping strategies, includ-
ing strategies developed in previous work [29]. Second,
our on-disk placement strategy for node groups optimizes
common navigation operations (parent-to-child and node-



to-next-sibling) on tree-structured data. In the case of XML,
this in turn leads to efficient execution of XML queries on
the data. For on-disk placement, we use the semi-sequential
disk access technique proposed recently by Schindler et.
al. [37]. We show that a naive usage of semi-sequential
access, however, can lead to large seek times and unaccept-
able fragmentation of disk space. We propose an optimized
strategy which reduces such overheads drastically.

The baseline storage strategy that we compare our ap-
proach against is sequential layout of semi-structured tree
nodes in depth-first order, referred to as default storage
strategy henceforth. To evaluate our work on optimizing
navigation of XML data, we consider XPath [4] queries,
which are the core navigation component of XQuery [3].
Paper contributions:

1. We explore native strategies to place semi-structured
data on a disk drive, which closely match the characteris-
tics of the data to that of the drive.
2. We study techniques for grouping tree nodes into su-
pernodes which balance fragmentation and preservation
of the tree-structure within the supernodes.
3. We experimentally evaluate different placement strate-
gies (with various grouping techniques), for XML bench-
mark documents and queries [39, 17] using an instru-
mented DiskSim [11] disk simulator.

The rest of the paper is organized as follows. Section 2
presents the system framework including its architecture
and the model used for semi-structured data and their ac-
cess. In Section 3, we present a native data-layout strategies
for semi-structured data. In Section 4, we present strategies
for organizing and grouping nodes in semi-structured tree
data so that they can be mapped to disk blocks. In Sec-
tion 5, we evaluate the proposed approach by comparing
it against the default sequential layout. We survey related
work in Section 6 and conclude in Section 7.

2 System Framework and Data Model

Storage Stack Figure 1(a) shows the current storage stack.
The proposed storage stack (Figure 1(b)) builds a native
Semi-Structured Storage (SSS) engine on top of the block
I/O interface to provide native storage and access support
for semi-structured data. The SSS engine employs disk pro-
filing to perform low-level data layout on the disk drive [15].
Storage access modules (Filesystem, DB Engine, etc.) need
to be minimally modified to use the SSS interface in order to
efficiently store and retrieve semi-structured data, or bypass
it for non-semi-structured data.

Semi-structured data We view a semi-structured data ob-
ject as a labeled tree � , where each node � has a label ������� ,
which is a tag name for non-leaf nodes and a value for leaf
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Figure 1. Storage stack modifcation.

nodes. Also, non-leaf nodes � have an optional set �	����� of
attributes, where each attribute 
���	����� has a name and
a value. Note that our placement technique can also be ap-
plied to documents with cycles (e.g., ID-IDREF edges in
XML); however, the navigation on such edges has not been
optimized. Figure 2 shows an example of an XML docu-
ment.

We assume that each node has a pointer to its first child
and its right sibling. This assumption is intended to make
the comparison of our storage method to the default storage
method more fair, allowing the default storage method to
avoid reading the entire subtree of a node to access its right
sibling.
Indexes There is a large body of work on indexing semi-
structured and XML data (e.g., [20, 23]). Our work focuses
on exploring the effects of the data placement and therefore
we only consider no-index query execution plans to make
the comparison clear. The interplay of XML indexes with
our placement method is an important issue which we leave
as future work (see Section 7).
XML queries We adopt the “standard” XPath evaluation
strategy [22] shown in Figure 3. Intuitively, this strategy
processes an XPath query � in a depth-first manner on the
XML document, one step of � ( ������������� ) at a time, and
stores the intermediate results in a set � . In [10] we explain
how optimizing XPath also leads to optimized XQuery.
Updates We do not directly tackle the problem of updates in
this work. However, the techniques of [27] can be applied,
where they focus on maintaining the supernode tree in the
presence of updates.

3 XML Tree Storage

In this section, we present our on-disk data placement
strategies for XML data. These strategies are generic
and can be applied to work with other non-XML, semi-
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Figure 2. A Sample XML document and corresponding tree.

procedure process-location-step(n0, Q) {
/* n0 is the context node;

query Q is a list of location steps */
node set S := apply Q.first to node n0;
if (Q.tail is not empty) then
for each node n in S do
process-location-step(n, Q.tail);

}
Figure 3. Standard XPath evaluation strategy.

structured data. We first introduce a basic tree-structured
placement strategy which illustrates our approach. We then
present an improved and optimized variant of the basic strat-
egy, which addresses the shortcomings of the basic strat-
egy. Finally, we address several practical issues that must
be considered when implementing the proposed placement
strategies.

3.1 Basic Tree-structured Placement

The limitation of the default storage method is that it is
optimized only for accessing the XML tree in depth-first
order. For example, for the XML tree in Figure 2(b) (cre-
ated by replacing the labels with node ids in the XML tree
of Figure 2(a)), the nodes would be stored sequentially in
alphabetical order. If the XML file is accessed in strictly
depth-first order, such a placement scheme would be opti-
mal.

However, the navigation of the XML tree in answering
XPath (or XQuery) queries displays the following charac-
teristics: (a) nodes are accessed along any path from the root
to a leaf of the XML tree, and (b) siblings are often accessed
together, without accessing their descendants. The default
layout of the nodes would translate to random accesses (and
therefore poor IO performance) for both the above accesses,
except for the leftmost path or traversals along leaf levels.

Based on the above observations, we design our basic
XML layout strategy, tree-structured placement. To sim-
plify the presentation of the algorithm we assume that each
XML node occupies an entire disk block. This assump-

tion is removed in Section 4 where we discuss in detail
the grouping methods we employ to minimize internal frag-
mentation within disk blocks while maintaining the tree
structure of the XML file.

In the basic tree-structured placement, nodes are placed
on the disk starting from the outermost available track (we
choose the outermost track due to its higher bandwidth, fa-
voring the more frequently accessed higher levels of the
tree). In particular, we first place the root node � on the
block with the smallest logical-block-number (LBN), on the
outermost available track of the disk. Second, we place its
children sequentially on the next free track such that ac-
cessing the first child � of � after accessing � results in a
semi-sequential access. This is accomplished by choosing
a block for � rotationally skewed from � such that when ac-
cessing � after accessing � , the rotational delay incurred is
zero. Further, accessing a non-first child from a parent node
involves a semi-sequential access to reach the first child
and a short rotational-delay based on the child index. The
children of the first-child of the root node are then placed
on the next available track, once again in a rotationally-
optimal fashion relative to their parent. Next, the grand-
children of the first child of the root are placed following a
similar approach, and so on. This order of placement cor-
responds to a depth-first ordering (DFO). Although there
are alternate strategies to determine the order of placing the
nodes, we use DFO due to its drastically shorter average
semi-sequential access times. This is explained by the lo-
calization of the numberings for each subtree in DFO. For
the XML tree in Figure 2(b), the numbers above each node
(ignoring the leaf nodes) illustrate the DFO numbering.

Example 3.1 Figure 4 shows the placement of the XML tree of
Figure 2(b) on a disk platter. To simplify presentation, we as-
sume that the disk has a single platter with a single surface (and
consequently a single disk head). Furthermore, we assume that
the rotational skew between tracks is the seek-distance � quarter-
rotation. The asterisked blocks in each track immediately before
the first-child represent the rotational skew between a parent and
its first-child.
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Figure 4. Basic tree-structured strategy.

Figure 5 outlines the algorithm for tree-structured place-
ment. Notice that the leaf nodes of � are not num-
bered in the ordering and hence are not returned by
getNextNode(), which is when the placement algorithm
terminates.

Auxiliary Methods:

Node getNextNode()
/* returns one node at a time in ascending order */
Track getFirstFreeTrack() /* smallest free track */
place(LBN lbnFirst,NodeList L)
/* place children nodes L starting from lbnFirst */
LBN findSemiSequential(LBN parent, int t)
/* returns the LBN n on track t such that
access to t from parent is semi-sequential. */

Tree-structured Placement Algorithm:

1. placeInTrack(getFirstFreeTrack(),0,root(tree));
2. while (more nodes) {
3. n = getNextNode();
4. t = getFirstFreeTrack();
5. L = empty;
6. L -> add(children(n));
7. lbnFirstChild = findSemiSequential(n.lbn, t);
8. place(lbnFirstChild,L); }

Figure 5. Tree-structured placement algo-
rithm.

The following example illustrates the execution of an
XPath query when the XML document has been placed us-
ing the tree-structured placement algorithm.

Example 3.2 Consider the XPath query ����� ���� ���	��
 ����������
“ ��������� � � ����� ” � �	 "!$#&%$�� �'
 ������(�)�

“ �+* #,�! ” �
on the XML document of Figures 2(a) and 2(b). The following
table shows the sequence of node accesses to answer this query
using the evaluation strategy of Figure 3 and the types of disk
accesses they correspond to for the default and the tree-structured
placement. Notice that the tree-structured placement incurs a
semi-sequential access instead of sequential access in two cases,
but this is outweighed by a sequential instead of random access in
two other cases.

nodes A B I N O P Q
default rand seq rand rand seq seq seq
tree rand semis seq seq semis seq seq

Discussion The parent-to-first-child and node-to-next-
sibling operations optimized by our placement are critical
for the following reasons. In theory, these two navigation
operations have been shown to be sufficient for answer-
ing any XQuery query [21]. In practice, the two main ap-
proaches for native XQuery evaluation are navigation-based
(e.g., Galax [5]), and native algebraic-based (Timber [26],
Niagara [34], Tamino [8], X-Hive [6]). Galax evaluates
XQuery queries using optimized XML Core, which is based
on nested for-loops, which translate to our two operations.
Likewise, the algebraic operators (e.g., select in TLC alge-
bra of Timber) themselves are typically implemented using
the two proposed operations.

The basic XML layout strategy, as is obvious in Figure 4,
results in severe external fragmentation of disk space (inter-
nal fragmentation within a disk block is discussed in Sec-
tion 4), which, among other things, increases the average
seek time. Next, we present an optimization of the basic
tree-structured layout strategy that reduces external frag-
mentation as well as random seek times drastically.

3.2 Optimized Tree-structured Placement

The key idea in the optimized tree-structured placement
is the use of non-free tracks for placing the children for a
given parent node. The optimized placement strategy al-
lows further flexibility by not requiring the first child to be
placed at the exact rotationally-optimal block, but rather al-
lows placing the first-child anywhere within a rotationally-
optimal track-region (defined below).
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Figure 6. Optimized Strategy.

The optimized placement strategy is less restrictive than
the basic tree-structured placement strategy in two ways:
(1) it allows placing children on a non-free track, and
(2) it does not require the first-child to be placed at the
rotationally-optimal block, but rather allows placing the



first-child anywhere within a rotationally-optimal track-
region as defined next.

We define a track-region as a contiguous list of ����� disk-
blocks along a track. The blocks within a track-region,
therefore, are also sequential in the logical address space
(LBN space) of the disk. Given a parent node � and a target
track � , we define the rotationally-optimal track-region for

� on track � as the track-region of size � ��� blocks starting
from the block where the disk head lands when seeking to
track � starting from � . In Figure 6, two rotationally-optimal
track-regions ( � ��� =6) for parent node ‘S’ are marked us-
ing the � symbol. To place the children nodes for � , a
set of candidate rotationally-optimal track-regions are cho-
sen close to � , which can lie in either side of the par-
ent track. The optimized placement algorithm chooses the
track-region closest to � with sufficient free space to house
the children of � . Other than this variation, the optimized
placement algorithm proceeds to place the XML tree simi-
lar to the basic placement algorithm.

In the above placement description, the choice of the
track-region size ( � ��� ) is a critical factor. Increasing the
track-region size gives the placement algorithm more op-
portunity to reduce fragmentation and consequently re-
duce random-seek overhead between node accesses, but it
also increases the average rotational-delay incurred during
parent-to-child node-traversals. This is an important trade-
off to be considered when choosing ����� . In our experi-
ments, we choose ����� as a quarter of the track-size, which
worked well for the benchmark XML documents.

Figure 6 shows the placement of the XML tree of Fig-
ure 2(b) on a hard disk (platter) using the optimized strat-
egy. Again, we assume that the platter rotates in the clock-
wise direction. The assumptions of track skew are also the
same as for the basic strategy. In the optimized placement,
since track-regions can be filled with children of various
nodes, the external fragmentation (measured in Section 5)
is drastically reduced compared to the basic tree-structured
placement. [10] elaborates on the details of this approach
further.

3.3 Practical System Implementation Issues

In implementing the strategies presented above, several
practical issues must be considered. First, the above place-
ment scheme assumes that a single, contiguous partition,
large enough to accomodate the XML data is available. This
assumption is realistic since database systems typically al-
locate a large continous disk partition.

Second, after a tree node is read from the disk drive, a
non-negligible CPU think time is typically required before
the next IO request is issued. We address this isssue as fol-
lows. If the next request is for a sibling node (stored se-
quentially in our approach), then on-disk prefetching mech-

anisms ensure that this node is prefetched into the on-disk
cache. However, if the next request is for a child node
(stored semi-sequentially), then during computation time,
the disk would have already rotated by an amount propor-
tional to the CPU thinktime and hence no semi-sequential
access would be possible. To address this, we skew the
first child by an additional rotational delay, slightly more
than the average CPU think time. This ensures that in most
cases, the semi-sequential nature of child node accesses will
be preserved.

Third, the proposed strategy would work well when pro-
cessing a single query at a time. However, if there are
multiple queries issued concurrently by different processes
or users, then the resulting interleaving IOs are likely to
degrade sequential or semi-sequential accesses to random
ones. This problem is not specific to XML databases and
is equally prominent in traditional relational database and
filesystem acceses. Techniques at the disk scheduling layer
such as anticipatory scheduling [25], which group together
requests from a single process and minimize the effects of
multiple interleaved IO request streams, address this issue
well. In the rest of the paper we assume a single query is
submitted at a time, and leave the problem of placement for
multi-query evaluation as future work.

4 Supernode Trees

In this section, we first lay the foundation for grouping
nodes in an XML tree � to form supernodes. Each supern-
ode occupies an entire disk block. Next, we describe how
to organize the supernodes into a supernode tree structure
��� . The placement strategies of Section 3 are then applied
on the supernode tree instead of the node tree.
Grouping Nodes into Supernodes The grouping of the
XML tree nodes to form supernodes determines the inter-
nal fragmentation of disk blocks. In principle, we would
like to include as many nodes as possible in a supernode.
Furthermore, it is desirable to group adjacent nodes of � in
the same supernode, so that navigating among these nodes
requires only one disk access. We consider three grouping
approaches (details can be found in [10]): (a) the sequen-
tial grouping, where nodes are added to a supernode in a
depth-first manner until the supernode is full (used in the de-
fault placement strategy), (b) the tree-preserving grouping,
which differs from the sequential one in that no cycles of su-
pernodes are allowed by enforcing an additional constraint
when adding nodes to a group so that cycles do not exist in
the resulting supernode graph (this increases internal frag-
mentation but preserves the tree-structure), and (c) the En-
hanced Kundu Misra (EKM) grouping [29], where the tree
is first converetd to a binary tree followed by a bottom-up
grouping strategy.
Building Supernode Trees The organization of the supern-



odes into a supernode tree, � � , is critical because this tree
determines the placement of the supernodes on the disk
drive according to the algorithms presented in Section 3.
Hence, it is desirable to preserve the tree-structure of � in
� � . That is, if a parent-child pair of nodes in � is split to
different supernodes, then it is preferable to split it to two
adjacent supernodes in � � . Based on the grouping strategies
described above, we consider four supernode tree organiza-
tion strategies (for details see [10]):

1. The sequential supernode list, which corresponds to
the default placement strategy, uses sequential grouping to
form supernodes. It is merely a linked-list of supernodes
in the order in which the supernodes were formed.
2. The tree-preserving supernode tree, which corresponds
to the tree-preserving1 tree-structured2 placement in Sec-
tion 5, uses the tree-preserving grouping to form supern-
odes. The supernode tree is formed by adding edges be-
tween two supernodes � ��� ��� if there is an edge between
two nodes � � � � ��� ��� � ��� in � . Notice that due to the
nature of tree-preserving grouping no cycles can occur.
3. The sequential supernode tree, which corresponds to
the sequential tree-structured placement algorithm in Sec-
tion 5, uses the sequential grouping to form supernodes.
Then, the supernode tree is created by adding edges be-
tween pairs of supernodes � � � � � if there is an edge be-
tween two nodes � � �� � � � � � � � in � and adding the
edge will not create a cycle.
4. The EKM supernode tree builds a tree on the EKM
supernodes. Again no cycles exist due to the nature of
EKM grouping.

5 Experiments

This section evaluates the suitability of our approach
for placing XML data on disk drives. We used the
Disksim [11] disk simulator for our evaluations, in-
strumenting it to provide the additional interface: <LBN>

findSemiSequential(LBN parent, int cyl, int track)

which returns an LBN X on � cyl,track 	 such that access
to X from parent is semi-sequential. The optimized
tree-structured and the default placement algorithms were
implemented in C and integrated with the instrumented
DiskSim code. The grouping algorithms of nodes to
supernodes were implemented as a separate module.

To evaluate our algorithms, we generated XML files of
various sizes using the XMark generator; each file corre-
sponds to an XML tree. To demonstrate the strengths and
weaknesses of our approach, we classified XPath queries
into two categories–a subset of each class is shown in Ta-
ble 1. To compute the query set of Table 1, we adopted the

1with respect to grouping
2with respect to placement algorithm
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Table 1. XPath queries for the deep-focused
(D) and the non deep-focused (N) classes.

performance-sensitive queries from XPathMark, but omit-
ted the ones that check for features supported by XPath
(e.g., Q18: /comment()).3 This greatly reduced the num-
ber of queries. To compute reliable results we added more
queries with similar properties (depth, number of condi-
tions, selectivities).

The two query classes we used are deep-focused queries
and non deep-focused queries. The former class describes
the special class of XPath queries that navigate entire sub-
trees of the XML tree (queries PRQ � ��� � � PTS in Table 1). The
reason we classify based on this criterion is that the default
strategy is optimized only for the special class of deep-
focused queries and is sub-optimal for all other queries.
Notice also that only the supernode-granularity naviga-
tion matters for overall IO performance, and not the node-
granularity navigation. Hence, queries like PVU , which do
not access leaf nodes, are included in the first category since
they access supernode leaves; the watches subtree is very
small and fits in less than one supernode. The latter class
of queries, non deep-focused, represents all queries that do
not belong to the former class. We show that for non deep-
focused queries our proposed placement methods are supe-
rior.

In the experiements below, we compare IO times for an-
swering XML queries for four different XML layout strate-
gies, corresponding to the supernode tree organizations
of Section 4: default, tree-preserving tree-structured (TP-
TS), sequential tree-structured (Seq-TS), and EKM tree-
structured (EKM-TS).

3The latter is the main focus of XPathMark.



(a) Deep-focused queries (b) Non-deep-focused queries

Figure 7. Total IO times in logarithmic scale for various XML placement strategies.

We take disk caching into account in all our experiments,
specifically assuming that the cache is large enough to hold
all nodes along the path from the root to a single leaf node.
This is a reasonable assumption for XML trees, which are
typically short. As a result, we do not include duplicate
nodes encountered during the depth first traversal of the
XML tree. It is noteworthy that such caching reduces the
number of random accesses equally in all three placement
strategies, since the navigation of nodes for answering a
query is exactly the same regardless of the placement strat-
egy.

Access time of placement methods Figure 7 shows (in log-
arithmic scale) the IO times for each query, for the two
classes of queries, deep-focused (Di) and non deep-focused
(Ni). This experiment considered each query for an XMark
file with scaling factor ��� � ��� (50MB). For the deep-
focused class of queries, he default placement strategy per-
forms consistently better than the others, since it can re-
trieve entire subtrees more efficiently. On the other hand,
for the non-deep-focused query class, the performance of
the default placement strategy is consistently worse than
the tree-structured variants (TP-TS, Seq-TS, and EKM-TS).
For this query-class, a large number of accesses are non-
sequential for the default placement, since complete sub-
tree accesses are few. In [10], where we split the cost to the
various disk access times (rotate, seek, transfer), we show
that we have significantly reduced average rotational delays
for the tree-structured placement strategies compared to the
default strategy. Overall, the EKM-TS placement strategy
performs better due to its lower internal fragmentation and
tree-structure preservation property; it results in IO times
which are 3X-124X better than the default strategy. Be-
tween the remaining strategies, TP-TS performs better on

an average, since it better preserves the original XML tree-
structure.

Fragmentation We now measure the internal and external
fragmentation incurred by the grouping and placement al-
gorithms respectively. Figure 8 shows the internal frag-
mentation of disk block space with the three grouping algo-
rithms, sequential, tree-preserving, and EKM. As expected,
the sequential grouping algorithm has little internal frag-
mentation as it can freely add nodes to a supernode as long
as adding the next node does not violate the block-size re-
striction. Disk blocks are not occupied completely if the su-
pernode space left is smaller than the size of the next XML
node. The tree-preserving grouping places further restric-
tions on grouping for preserving the XML tree-structure in
supernodes and incurs additional internal fragmentation (as
much as 55%). We argue that considering the fact that cur-
rent disk drives are bound more by IO access time than by
IO capacity, trading capacity for improving access is ac-
ceptable.4 The internal fragmentation with EKM is very
close to that in for sequential grouping. The EKM algo-
rithm has the flexibility that allows selecting as partition any
of a node’s many subtrees, thereby obtaining a more opti-
mal result for this procedure. Our tree-preserving grouping
algorithms lack this flexibility, and can only add the next
node to the current supernode in an in-order fashion.

Figure 9 shows the external fragmentation results for
the data placement strategies. The default strategy in-
curs zero external fragmentation as it places the supern-
ode list sequentially on the disk. The tree-preserving tree-
structured placement strategy (TP-TS) and the sequential
tree-structured placement strategy (Seq-TS) incur external

4Higher internal fragmentation also offers more update flexibility; han-
dling updates, however, is left to a future study.



Figure 8. Internal fragmentation.

fragmentation of less than 28%, while that of the EKM-TS
is higher at around 42% in some cases. However, we once
again contend that these numbers are acceptable, following
the arguments mentioned above. The EKM-TS placement
strategy incurs the highest external fragmentation. This is
because in EKM-TS, the fanout of nodes is less in the top
levels (closest to root) of the tree and is higher in the lower
levels than that in the other strategies. If the fanout of a
tree is higher at a greater depth, it is more difficult to find
contiguous free space to place all the children on the par-
tially occupied tracks using the optimized placement strat-
egy. Consequently the children are placed on new tracks,
thereby increasing the external fragmentation.

Figure 9. External fragmentation.

Sensitivity to drive characteristics To evaluate the effect
of drive characteristics and performance on the XML place-
ment strategies, we conducted a sensitivity study of IO ac-
cess time for representative disk-drive models. The drive
models chosen, shown in Table 2, were the Seagate Bar-
racuda, Seagate Cheetah 9LP, Seagate Cheetah 4LP, and the
HP C3323A as representative of four performance classes
of disk drives: base, fast rotating and fast seeking, fast ro-
tating, and slow rotating respectively. A disk block is of
size 512 bytes. Figure 10 shows the average (across queries
in a query-class) total IO times (in logarithmic scale) for the
two query classes for an XMark file with � � � � � with the
various hard disk models.

Again, as expected, for the special class of deep-focused
queries the default placement strategy performs better than

the other strategies benefiting from optimized sub-tree re-
trievals. However, for all other queries the tree-structured
placement strategies perform better for all disk models, of-
fering as much as 7X-34X reduction in average IO time for
answering queries. This underscores the importance of na-
tive layout strategies for XML data.

6 Related Work

Storage of XML data has received attention in the last
few years due to the popularity of XML. However, most
work has focused on storing XML in relational DBMSs
or in flat files with indexes. The former approach (e.g.,
[14, 40]) has been the most popular due to the success and
maturity of the relational DBMSs. The latter approach (e.g.,
[31, 30]) is based on storing the XML document as a flat file
and building separate indexes on top. Unlike our approach,
these strategies do not use native layout of XML data and
are limited to the generic optimization strategies built into
relational databases and filesystems.

The problem of native storage of XML data has been ad-
dressed by Kanne et al. [27, 28] and System RX [9], where
XML documents are stored by first splitting the XML tree
into a tree of pages, where each page corresponds to a disk
block. In this manner, they reduce the number of blocks
read to traverse the tree. Furthermore, [27] shows how up-
dates can be handled when XML nodes are grouped into
disk pages (similarly to our grouping algorithms of Sec-
tion 4), which is complementary to our work. The above
studies, however, ignore the physical characteristics of op-
eration of the disk drive and views it as just a list of pages.
On the other hand, we investigate how to exploit detailed
information about the disk drive and use this information to
minimize overheads such as seek-time and rotational-delay.

Wang et al. [42] present a technique to efficiently store
Forward and Backward (F&B) Indexes [30] using cluster-
ing. As mentioned earlier, indexing is complementary to
our work which focuses on the storage aspect.

Given the restrictive block IO interface, the clear case
for a more expressive interface been made before [18].
Systems such as [19, 41, 24] use intelligence from upper
layers of the storage stack inside storage devices to im-
prove overall IO performance. Our work can use such sys-
tems if deployed, incorporating storage techniques for semi-
structured data into disk firmware. Gray-box techniques for
partially controlling layout of filesystem data [35] is an ap-
proach similar to ours, applied to sequentially accessed file
data.

Recent work by Schlosser et al. [38] uses the idea
of semi-sequential access for efficient storage of multi-
dimensional data. This work is different from ours since
multi-dimensional data is still structured and can afford ef-
ficient layout based on fixed attribute cardinality, not possi-



# Disk Disk RPM Stroke Transfer Track Size Cylinders
model type [ms] [MBps] [sectors]

1 Barracuda Base 7200 16.679 10-15 119-186 5172
2 Cheetah 9LP Fast disk 10045 10.627 19-28.9 167-254 6962
3 Cheetah 4LP Fast rotate 10033 16.107 15-22.1 131-195 6581
4 HP C3323A Slow rotate 5400 18.11 4.0-6.6 72-120 2982

Table 2. Characteristics of experimented disk drive.

(a) Deep-focused queries (b) Non-deep-focused queries

Figure 10. Sensitivity of IO access times to changing disk drive characteristics (logarithmic scale).

ble with semi-structured data. Further, with semi-structured
data, grouping of multiple data elements to be stored on a
disk block is non-trivial due to the variable size of the data
elements. Finally, the access patterns are different for semi-
structured data than structured data, where access is along
data dimensions. These issues make the problem of stor-
ing semi-structured data significantly different than that for
structured multi-dimensional data.

Atropos [37] exploits the physical properties of disk
drives and uses semi-sequential accesses to store relational
databases. Our work targets data that has a tree structure,
quite different than relational tables. Second, we show that
a naive application of the semi-sequential access paradigm
to tree structures leads to large seek times and severe space
fragmentation. Our optimized layout strategy reduces such
overhead significantly. To the best of our knowledge, there
is no existing work tackling the problem of laying out tree-
structured data, accounting for low-level hard drive storage
and operation semantics.

7 Conclusions and Future Work

Native layout of semi-structured data has been largely
unexplored, except for the area of grouping nodes to supern-
odes. In this paper, we have taken a first step towards on-
disk placement strategies for semi-structured data that ex-
plicitly accounts for the structural mismatch between semi-
structured data and disk devices. We presented data place-
ment strategies that improve the performance of common
tree navigation operations. Evaluation performed using an
instrumented DiskSim simulator [11] suggests reduction in

average IO times of as much as 7X-34X for answering non-
deep-focused class of XPath queries. On the other hand,
the default placement typically performs better for deep-
focused queries.

Based on our initial findings in this study, we conclude
that native data layout strategies for semi-structured data
hold promise for improving application performance. We
are currently investigating the impact of using indexing
techniques with our placement scheme. Ideally, the in-
dexes and the data storage should be optimized for differ-
ent navigation patterns to complement each other. We also
intend to study the advantages of our strategy with different
caching techniques and caches of varying sizes. Finally, we
plan to extend our work to multi-query and multi-user en-
vironments, and work on handling updates within the tree-
structured placement framework.
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