
Florida International University Technical Report TR-2006-09-03

A Case for Self-Optimizing File Systems

Medha Bhadkamkar, Sam Burnett
�

, Jason Liptak
�

, Raju Rangaswami, and Vagelis Hristidis
�

Carnegie Mellon University
�

Syracuse University
Florida International University

medha@cs.fiu.edu srburnet@andrew.cmu.edu jjliptak@syr.edu raju@cs.fiu.edu vagelis@cs.fiu.edu



A Case for Self-Optimizing File Systems

Medha Bhadkamkar, Sam Burnett
�

, Jason Liptak
�

, Raju Rangaswami, and Vagelis Hristidis
medha@cs.fiu.edu srburnet@andrew.cmu.edu jjliptak@syr.edu � raju,vagelis � @cs.fiu.edu

�

Carnegie Mellon University
�

Syracuse University
Florida International University

Abstract

Efficient file systems hold one of the keys to high-
performance I/O systems. Today’s file systems per-
form a static layout of file data, aiming to preserve
the directory structure of the file system and opti-
mizing for sequential access to entire files. In this
paper, we re-examine the existing state-of-the-art in
file system design and find it severely lacking in
an important aspect, application awareness. We ar-
gue that for optimal performance, file systems must
self-optimize by adapting data layout to accommo-
date the dynamism in application access patterns.
We present the design and implementation of an au-
tomated data layout reconfigurator which is at the
heart of such a self-optimizing file system. Prelim-
inary studies using file system traces indicate sig-
nificant I/O performance gains when compared to a
state-of-the-art ext3 file system.

1 Introduction

File systems perform a critical task within operating
systems, that of providing a simple file abstraction
to complex storage devices. To do so, they map each
file or directory element to a set of logical block
addresses (LBA), representing a portion of the disk
drive space. This mapping from the file space to the
drive space, as dictated by the data layout technique
employed, greatly influences the performance of the
file system, the applications that access the file sys-
tem, and consequently the system as a whole.

The basic file and directory layout techniques in
file systems have not changed significantly since
the early days of the Unix Fast File System [18].

Application CPU (s) I/O wait (s) Seq I/O (%)
firefox 1.95 5.43 13.97%
gedit 0.70 4.53 18.83%
gimp 2.67 4.37 50.49%

oowriter 4.83 10.82 10.47%
xemacs 0.74 3.59 27.03%
xinit 0.64 2.95 50.38%

Table 1: Application startup profiles on a 2 GHz
Intel machine with 512MB of RAM and a Max-
tor 6L020J1 disk drive. The system ran Linux
and an ext3 file system.

Current file systems perform two key optimizations.
First, they preserve the directory structure when
mapping file system elements by allocating cylinder
groups for storing directory sub-trees. Second, for
each file, they attempt to allocate sequential space
on the disk drive to optimize for sequential file ac-
cess. Application access patterns, however, are typ-
ically more complex. Applications may access mul-
tiple files in different file system directory subtrees,
often in a specific sequence. Further, rather than
accessing an entire files sequentially, they may ac-
cess files partially and even non-sequentially. These
characteristics depend greatly on the specific appli-
cations running on the system, which is a dynamic
set. Importantly, these characteristics put to ques-
tion one of the fundamental paradigms of file sys-
tem design, the static layout of file data.

Table 1 shows the startup profiles for six Linux-
based applications using the default ext3 file sys-
tem [29]. On an average, these applications spend
thrice the amount of time waiting for I/Os to com-
plete than running on the CPU when they start up.
(Note that total times spent performing I/O were



higher, including times when processing and I/O oc-
curred in parallel.) Further, almost uniformly, most
of the I/Os performed led to random accesses on the
disk drive. This table makes two points in relation to
application startup events: (i) I/O is the bottleneck,
and (ii) there is significant room for improvement in
I/O performance.

To improve the interactive performance of sys-
tems, such applications startup operations must be
optimized by optimizing I/O systems. Further, a sig-
nificant fraction of applications are also I/O bound
during their lifetime, often repeating I/O access pat-
terns. This underlines the importance of improving
I/O performance. We argue that self-optimizing file
systems hold the key to significantly improving the
overall I/O performance in systems.

In this paper, we re-examine file system design
from an application standpoint to identify perfor-
mance improvement opportunities. We argue that
a key reason for sub-optimal performance in exist-
ing existing file systems is ignorance of applica-
tion access patterns. We make the case for a self-
optimizing file system that dynamically adapts it-
self based on application access patterns. A self-
optimizing file system takes into account: (i) the
patterns of whole- and partial- file accesses by ap-
plications, and (ii) the frequencies of such patterns
across all applications. The changing application
mix over time due to dynamic running sets as well
as addition of new applications to the system makes
the above factors time-variant. This dynamism in
file system access necessitate actively monitoring
and learning from file system access patterns. A
self-optimizing file system, based on this knowl-
edge, would reconfigure file data layout as required
to improve performance, in an online fashion.

Performing self-optimization within the file sys-
tem requires effort along the following directions:

� profiling file system accesses by applications,
� analyzing these accesses to derive application

access patterns,

� planning a modification to the existing data
layout, and

� executing the plan to reconfigure the data lay-
out.

The above steps conform to the autonomic loop
as proposed by Kephart et al. [13]. In this paper, we
present how each of the above stages can be real-
ized in an actual file system with acceptable over-
head. To address the important stages of analysis
and planning, we use the concept of an LBA access
graph, which captures both the individual and cu-
mulative access characteristics of applications. This
access graph is weighted with process-, file-, and
block- level attributes. The temporal dimension can
be used to further enrich the access graph, by ac-
counting for application thinktimes. The file system
data layout reconfiguration problem is thus trans-
lated to a graph layout problem. We then use a
greedy heuristic that takes the access graph as input
and develops a data layout reconfiguration plan. As
is the case with current file systems, LBA proxim-
ity is used as an approximate measure of the access
delays between blocks.

The reconfiguration plan is executed to complete
the data layout reconfiguration. In an actual file
system implementation, the reconfiguration of the
file system metadata and data blocks could be per-
formed during system idle time, with a frequency
that is based on both system usage as well as the
performance-impact of the reconfiguration. Our ini-
tial investigation reveals that on a moderately-used
desktop system, although reconfiguration on a per-
day basis would be feasible, using a coarser time-
scale (once a week) would be adequate.

Paper contributions:

1. We re-examine file system design from an ap-
plications standpoint and provide a potential path
to implementing a self-optimizing file system by
presenting a possible design and a prototype im-
plementation.
2. We model the problem of data layout reconfig-
uration as a graph layout problem and present a
greedy heuristic for doing so.
3. We address the practical issues that arise in in-
corporating such a dynamic data reconfigurator in
an actual file system implementation.
4. We conduct an extensive trace-drive evaluation
of a prototype block layout reconfiguration sys-
tem and demonstrate the benefits of the proposed
approach.



Profiling Analysis Planning

I/O Traces Access graph Data layout plan

Execution

Figure 1: The data layout reconfigurator stages.

The rest of the paper is organized as follows. Sec-
tion 2 presents the high-level approach to building a
data layout reconfigurator within a self-optimizing
file system. Section 3 demonstrates how the data
layout reconfiguration problem can be modeled as
a graph layout problem. Section 4 details a greedy
heuristic for graph layout. Section 5 brings up prac-
tical issues that arise when incorporating the tech-
niques proposed in a file system. In Section 6, we
conduct a trace-based comparison study of applica-
tion and system performance. Section 7 presents
related work and we make concluding remarks in
Section 8.

2 Overview of our Approach

Current file systems employ a a mostly static layout
of file system data with the defragmentation opera-
tion being the only dynamic aspect. We argue that a
static layout of file system data leads to sub-optimal
performance. More specifically, we contend that file
systems can improve the system I/O performance
by dynamically adapting file system layout based on
how the file system is used by various applications.

This section provides an overview of our ap-
proach to building a self optimizing file system. We
present the data layout reconfigurator, which imple-
ments the four-stage process of profiling, analysis,
planning, and execution and reorganizes file sys-
tem data (including meta-data) on the disk drive,
based on application access patterns. Please note
that we have not implemented the techniques pre-
sented within a file system; instead, we have simu-
lated it using a semi-automated process. In partic-
ular, we have built (a) a profiling tool to collect the
access patterns profile, (b) an analyzing tool to an-
alyze this profile, (c) a planning tool that, given the
profile’s analysis and the hard disk characteristics,
generates a modification plan, and (d) a reconfigu-
ration tool to execute the plan.

This four-stage process and the intermediate data
that is created by the stages is depicted in Fig-
ure 1. The four stages are repeated continuously,
thereby enabling dynamic self-optimization. We
now briefly describe each of the stages.

2.1 Profiling

The profiling stage collects application I/O request
patterns inside the operating system by logging each
I/O request made. The I/O requests are logged with
process- and block- level attributes:

� Process-level attributes: Timestamp, process
ID, and executable name

� Block-level attributes: LBA, size, and mode
(read/write).

The timestamp is the specific time a request was
made. The process ID (PID) and the executable
name help differentiate I/O requests belonging to
different applications. This allows per-process I/O
access patterns to be derived from a cumulative I/O
trace. The LBA and size attributes provide the start-
ing logical block address and the number of blocks
to be accessed for servicing the I/O request. Mode
distinguishes the read IO’s from the write IO’s.1

The above data are collected using low-overhead
kernel probing techniques.

2.2 Analysis

Once the I/O traces are obtained, we extract per-
process I/O access patterns from them. We repre-
sent the access pattern for each process as a pro-
cess access graph. An access graph

���������
	
, is

1A natural extension to this information is the file-level at-
tribute consisting of the full-path to the file or directory ac-
cessed. Further meta-data can be marked as such and tagged
with their type (e.g., inode, indirect-block, etc.). We do not dis-
cuss file-level attributes further because the current prototype
of the data layout reconfigurator does not include them.



a weighted directed graph with
�

vertices and
�

edges. Every vertex represents a range of LBAs
(typically representing an individual I/O request
from the process) and the edge weights represent to-
tal read and writes with direction showing the tran-
sition between the LBA’s2. A sample access graph
is shown in Figure 2.

A

ED G

CB

J

F

H I

5

2

8

9

8 8

9

7

10

3 9 6

42

7 6 1 2 7

6  3

Figure 2: A sample access graph.

We create an such a process access graph for
every process; it captures the I/O request behav-
ior of an individual application. The directed and
weighted graph representation is powerful enough
to capture sequences of multi-request patterns and
also the relative importance of these request pat-
terns. If a sequence of I/O requests is repeated
by the application, the corresponding edge-weights
also increase.

The process access graphs obtained over a period
of time (explained later) each belonging to differ-
ent application invocations are then merged to form
a single master access graph. The master graph is
then used to create the data layout reconfiguration
plan. Since the master graph is based on the process
access graphs, the reconfiguration operation takes
into account individual I/O access patterns of ap-
plications, a critical requirement for the reconfigu-
ration operation. The algorithm for constructing the
master access graph from the process graphs is elab-
orated in Section 3.

2Including application thinktimes and file-level attributes in
calculating the edge-weights can further improve the weighting
process. However, the current prototype does not support pro-
cess thinktimes or file-level attributes, which are left as future
work.

2.3 Planning

The goal of the planning stage is to develop a data
layout reconfiguration plan such that the modified
data layout would improve the I/O performance of
various applications and consequently, the overall
I/O performance of system. To do so, the planning
stage takes as input the master access graph and de-
velops a reconfiguration plan for the file system.

To develop a data layout reconfiguration plan, the
planning stage first identifies contiguous portion(s)
of unused disk LBA space to serve as the target lo-
cation of the reconfigured data blocks. (Section 4
explains this process in more detail while also con-
sidering the possibility that such space is not avail-
able.) It then uses a greedy heuristic to determine
the sequence in which the reconfigured data blocks
must be placed.

In brief, the greedy heuristic proceeds by first
choosing the most connected vertex, � , in the mas-
ter access graph. This is the vertex with the max-
imum sum of incoming and outgoing edges. The
next vertex chosen for placement is the vertex �

most connected (in one direction only, either incom-
ing or outgoing) to � . It is chosen to be placed either
before or after � based on the direction of the edge
connecting them. If � lies on the outgoing edge of
� , it is placed after � and if it lies on the incoming
edge it is placed before. This process is repeated
until all the vertices are placed on the disk or until
the edges connecting to the unplaced vertices in the
master graph have weight below a certain threshold.

The above reconfiguration planner algorithm re-
lies on the principle that edges and edge-weights in
the master graph closely reflect the important I/O
access patters of applications. Improving the edge
weighting algorithm is therefore an important as-
pect of improving the overall performance of the
data layout reconfigurator.

2.4 Execution

Once the new data layout plan is obtained, the final
step is to execute the plan and reconfigure the exist-
ing data layout to the new layout. Such reconfigu-
ration involves moving reconfigured data blocks to
their new locations on the disk drive. Second, all file
system metadata (e.g., superblock, inode, and indi-



rect block information) must be updated to reflect
the new data layout to make the file system consis-
tent after the reconfiguration operation.

Since reconfiguration is an intrusive process, po-
tentially slowing down the system or even requir-
ing system down-time, it must be optimized. As we
shall also explore in our evaluation (Section 6), the
overhead of the reconfiguration operation is small
enough that this operation could be performed on a
daily basis. However, even weekly reconfiguration
(or more specifically, usage-driven reconfiguration)
would be a more practical approach to achieve bet-
ter cost-benefit points.

3 Building the Master Access Graph

The master access graph is a key data structure used
by the data layout reconfigurator. The quality of the
master access graph influences greatly the quality of
the overall reconfiguration operation. The profiling
and analysis stages contribute towards the genera-
tion of the master access graph. In this section, we
examine these two stages and the process of gener-
ating the master access graph in detail.

3.1 Profiling: Generating I/O traces

The starting point in the reconfiguration operation is
understanding application I/O behavior. An appli-
cation can spawn multiple processes and each pro-
cess could constitute multiple threads. Each thread
of execution creates correlations between the I/Os
it performs. These correlations are built into the
trace right from the beginning (as opposed to mined
correlations in [15]). The inherent intra-process (or
intra-thread) I/O correlation forms the basis of the
data layout reconfiguration. If multiple processes
access the same LBA, there may be correlation con-
flicts. This is resolved by creating a single master
access graph, that captures all available correlations
into a single input for the reconfiguration planner.

Figure 3 shows a fragment of an I/O trace col-
lected from a desktop environment. Each I/O re-
quest logged has the following signature:
[Timestamp] [PID/TID] [Executable]

[Starting LBA] [Size] [Mode]

As can be seen in Figure 3, the profiling process
tags each I/O request to the file system with the cor-

705423195774700 5745 screen 6914207 32 R
705423257310080 5744 bash 28511023 8 R
705423259644748 5745 utempter 24379775 8 R
705423283490088 5747 bash 7501079 40 R
705423350957048 5744 bash 7079271 8 R
705423379492524 5745 utempter 24787567 8 R
705423421266908 5753 bash 7498311 24 R
705423454005104 5745 utempter 24793415 8 R
705423493292648 5756 bash 34543375 64 R
705423565122668 5756 stty 34543439 16 R

Figure 3: A sample I/O trace collected by the data
layout reconfigurator.

responding executable name and its process ID (or
thread ID, in case of a multi-threaded process). This
allows the separation of the I/O trace collected into
multiple process- or thread- specific I/O traces.

Virtual File System

Actual File System (ext3)

Page
Cache

I/O
Scheduler

Device Driver

P1

P2

P3

P4

Application I/O

page−block−request

disk−block−request

disk−block−request

page−request

Figure 4: I/O trace profiling points in Linux.

3.1.1 I/O Profiling Points

To collect I/O traces, it is important to determine the
ideal trace collection point inside an OS kernel. Fig-
ure 4 depicts the various points inside the Linux op-
erating system where I/O traces could be obtained.
These are labeled as P1 through P4. The quality
of the I/O traces collected depends strongly on the
profiling point used.
P1 is an ideal profiling point that preserves the in-

tegrity of the application I/O sequence with process-
and file- level attributes. However, this profiling



point cannot be used with the stock Linux kernel be-
cause block-level attributes are missing at this level.
Modifying the kernel to retain this mapping would
make this an ideal profile point. P2 and P3 pro-
vide similar traces which also include page cache
effects, except that P2, once again, lacks block-level
attributes. Finally, P4 is a post I/O scheduler profil-
ing point that also includes scheduler introduced ef-
fects, apart from losing process-level attributes. The
I/O scheduler adds artificial correlation between I/O
requests as well as eliminates process-level correla-
tions due to re-ordering of I/O requests. It is note-
worthy that several studies [15, 2, 31, 22] use P4 as
the profiling point.

The current prototype of the data layout reconfig-
urator uses P3 as its profiling point. In a future im-
plementation, P1 would be the ideal profiling point
if it can be enriched with block-level attributes.

3.2 Analysis: Generating the Master Ac-
cess Graph

The I/O trace obtained from the profiling stage is
split into multiple I/O traces, one per each process
or thread. In particular, an I/O trace is created for
each pair of (pid, program) from the trace file
(program resolves duplicates in case of recycled
PIDs). The primary benefit of separating data based
on process is that it eliminates race conditions im-
posed by the multitasking nature of the operating
system; an individual application will almost always
access the same data when starting up and is likely
to access similar data over its lifetime during suc-
cessive invocations. However, if two applications
run at the same time, it is unlikely that the sequence
of requests will ever be reproduced exactly ever
again.

For each process or thread, we use its I/O trace
to build a directed process access graph

��������� ������	
,

where each vertex represents an LBA range and
each edge a transition between two LBAs. The
weight on an edge

�
�
�

�
	

is the frequency of ac-
cesses (reads or writes) from � to � .3

3This weighting scheme reflects the current prototype we
have developed. Richer weighting schemes can be developed
that employ, among other information, file- and thinktime- at-
tributes. For example, a higher weight can be associated on
an edge that connects LBAs representing data of a single file.

(8,2)

(4,2)

(0, 3)
(1, 6)

(9,1)
(3,1)

(6,1)

(1,2)

(4,2)

(0,1)

(8,1)

(9,1)

1

1

1

1

1

1

1

1

1

2

2

Figure 5: Merging graphs to form a master
graph.

The next step is to merge all individual process
access graphs into a single master access graph���������
	

. Since every vertex contains a range of
LBA’s, it complicates the merge process. The com-
plexity arises because the range nodes of individ-
ual process access graphs may overlap. If two ver-
tices have overlapping ranges, they must be split
into multiple vertices so that each LBA is repre-
sented in at most one range vertex. For instance,
let �

�
� be two overlapping range nodes with LBAs

��� ������� � ��� ������� � ��	 and �
� ������� � ��	 ������� � ��� respec-
tively. Then we split them to nodes �

��

� � ������� � ��� ,

�
� � 


��� ������� � � 	 and �
� � � 


� 	 ������� � ��� , and rear-
range edges accordingly. Note that we must check
for node overlaps across process access graphs and
within a process access graph, while building the
process access graphs. Figure 5 shows how two
range-based process access graphs are merged into
the master access graph, where each vertex is rep-
resented by a pair (start LBA, end LBA). The algo-
rithm to perform this splitting procedure is as fol-
lows:

For each vertex � of the graph:
1. Examine all other vertices � in the graph. If �

overlaps � , let
�

be the LBAs represented by
� and � be the LBAs represented by � . Create
new vertices for:

(a) � 
 ��� �
(b) � 
 ��� �

(c) � 
 � ���

A larger process thinktime would reduce the weight, reflecting
that perhaps there is a reduced dependency between the corre-
sponding I/O requests by the process.



2. Move the edges coming into � to the new ver-
tex that has the same starting LBA as � .

3. Move the edges coming out of � to the new
vertex that has the same ending LBA as � .

4. Move the edges coming into � to the new ver-
tex that has the same starting LBA as � .

5. Move the edges coming out of � to the new
vertex that has the same ending LBA as � .

6. Wherever � was split, add an edge with the
weight being the maximum of the incoming
and outgoing weights on � .

7. Do the same for � .

Note that the above algorithm is simplistic and is
for illustration purposes only. The complexity of the
algorithm can be reduced by keeping the vertices
sorted by their initial LBA. In any case, once this
operation is completed, the master access graph is
obtained. This master access graph serves as input
to the planning stage which comes up with the data
layout reconfiguration plan.

4 On-Disk Layout of Master Access Graph

In this section we explain how a master access graph�
is placed on a hard disk. For clarity of presenta-

tion, in this section we assume
�

is stored in a fresh
contiguous portion � of the disk. We elaborate on
the implications of this assumption and alternative
approaches in Section 5. Note that every block in�

is moved from its original LBA to a new LBA in
� . Also note that if a vertex of

�
corresponds to a

block range, then multiple consecutive LBA’s in �
are occupied. For simplicity of presentation we as-
sume that each vertex in

�
corresponds to a single

block.
We start placing blocks at the middle �������

of � . We first place the most connected vertex �

at ����� � . The most connected vertex is the one
with the highest sum of (incoming and outgoing)
edge weights, i.e., with �
	�� ��
 � � �

	���
�� �
�
	 	

, where
 � �
�
	

and

 � �

�
	

are the sums of incoming and out-
going edge weights of � respectively.

Next, we pick vertex ��� �
, adjacent to � , with

highest weight on the edge between � and � . If

Auxiliary Methods:
int PlaceInLBA(LBA lba,vertex z)
/* places z at LBA lba.*/
int MaxDegreeNode(Graph g);
/* returns vertex u with max(wi(u)+wo(u))in g.*/
<v,direction> GetNextNode(LBAList L, Graph g)
/* returns the next vertex v in g with max sum

of incoming or outgoing edge weights to L;
direction=incoming or outgoing accordingly*/

Algorithm:
Place(Graph G, contiguous LBA space S)
1. Graph g <- G;
2. List L <- NULL;
3. lba <- LBAl <- LBAr <- LBAm;

/*LBAm is middle LBA of S*/
4. v <- MaxDegreeNode(g);
5. PlaceInLBA(lba,v);
6. L.Add(v);
7. while (more vertices in g) {
8. <v,direction> == GetNextNode(L,g)
9. if (v==NULL) /*in connected component*/
9. if (direction == outgoing)
10. LBAl <- LBAl-1;
11. PlaceInLBA(LBAl,v);
12. L.AddToFront(v);
13. Remove v from g;
14. else
15. LBAr <- LBAr+1;
16. PlaceInLBA(LBAr, v);
17. L.AddToEnd(v);
18. Remove v from g;
19. else /*go to other connected component*/
20. L <- NULL;
21. LBA <- LBAl <- LBAr <- LBAm’;

/*LBAm’ is middle LBA of largest
contiguous portion of S*/

22. v <- MaxDegreeNode(g);
23. PlaceInLBA(LBA,v);
24. }

Figure 6: Algorithm for placement of vertices of�
.

the direction of this edge is ��� � , we place �

on ������� right before ������� . Thus, ������� 

������� ��� . Similarly, if the edge is ��� � , �

is placed after � and ������� 
 ����� � � �
. The

next vertex � to be placed is adjacent to the ones al-
ready placed and has the highest sum of incoming
or outgoing weights to the list of vertices already
placed, i.e. ! �

�
��" or ! �

�
�#" . � is placed either be-

fore � , at �%$'& � ������� � ������� 	 �(� or after � , at
�
	)� � ������� � ������� 	*� � depending on the direc-
tion of the maximizing sum of weights. That is, if
the sum of outgoing (resp. incoming) edges from �
to � is maximum then � is placed before (resp. af-
ter) � . This process is repeated until all the vertices
of
�

have been placed.
If
�

is not connected then once a connected com-
ponent is placed we follow the previous process for



each of the other connected components, that is, we
start from the most connected vertex of the compo-
nent.

Figure 6 presents the algorithm for this strategy.
First, the vertex in

�
with the highest sum of edge

weights is placed on the middle LBA of � . The ver-
tices that are placed on the disk are added to the list
� . GetNextNode() returns the subsequent ver-
tices to be placed, which are adjacent to the vertices
in � . If no such vertices are found, and if the graph
still contains vertices which are not placed on the
disk (vertices in another connected component of�

), we repeat the above process starting at a fresh
LBA in � . The algorithm terminates when all the
vertices have been placed.

Example Consider the master access graph in
Figure 2. � is the most connected vertex and is
placed in the middle LBA of the contiguous space
� . Next vertex � is placed 	�������� vertex � since it is
connected by an outgoing edge and has the highest
weight of all the edges connected to � . Next, vertex�

is placed 	
���
����� vertex � since it is connected
with the highest weight on the incoming edge to
the group of vertices placed i.e. � and � . At this
point � 
 ! �
� � � � " . All the remaining vertices are
placed in a similar manner. The final sequence of
vertices placed on the disk from the lowest LBA to
the highest is: � 
 ! � ��� � � � � � �
� � � � ��� ��� " .

In the above algorithm, for choosing the next ver-
tex to place, we use the maximum sum of weights in
any one direction from any unplaced vertex to all the
placed vertices. This may introduce An improve-
ment to this would be choose instead the left-most
(resp. right-most) � vertices of the placed vertices
for outgoing (resp. incoming) edges from the un-
placed vertex. This would reduce the importance to
dependencies on far-away LBAs.

Once the new layout is determined, the execution
phase performs the actual task of moving block data
to their new locations and performing book-keeping
of file system meta-data.

5 Practical Implementation Issues and
Limitations

So far, we have presented methods and procedures
that can be employed in building a self-optimizing

file system. We now look at various issues of feasi-
bility, practicality, and performance, that arise when
incorporating these into an actual implementation.

5.1 Profiling phase

The first significant issue is the overhead incurred in
profiling application access patterns. The primary
overhead in this stage is the management of the pro-
file data collected, before it is incorporated into the
access graph. If online graph construction (elabo-
rated below) is employed, a temporary store in ker-
nel memory would be sufficient before the data is
processed. However, in case on offline graph con-
struction, the volume of data to be managed requires
secondary storage. In such a case, writing of this
profile data to a an access log must be performed
non-intrusively. Considering that each entry in the
access log is significantly smaller than the size of
the original I/O being logged, this overhead is neg-
ligible. Back of the envelope calculations suggest
that a moderate amount of temporary kernel mem-
ory, say 10 MB, can store as many as 200,000 access
log entries before requiring to be flushed to the disk
drive. This provides ample flexibility in timing the
log flushes, so that they are non-intrusive.

5.2 Analysis phase

The master access graph construction algorithm for
the access graph can either be online or offline. The
online version constructs the access graph incre-
mentally as access patterns are obtained, typically
operating at intervals of either minutes or hours,
while the offline version constructs the graph all at
once after obtaining access patterns over a longer
duration of time such as a day or week. While the
online version has the advantage of reducing the
turnaround time for the layout reconfiguration as ac-
cess patterns change, the offline version has the ad-
vantages of reducing file system runtime overhead.
The current prototype of the layout reconfigurator
uses the latter version.

5.3 Planning phase

The data layout reconfiguration planner requires ad-
ditional space on the disk for effectively planning



the data layout reconfiguration operation for the ex-
ecution phase. The planner assumes that there is
a contiguous portion of the disk LBA space that is
available to move reconfigured data into. The abun-
dance of disk space (in comparison with the more
scarce disk bandwidth) in most systems makes the
use of additional space for layout reconfiguration
planning practical. To execute the reconfiguration
plan, the file system would read in a set of data
blocks form the first location into memory and then
write them back to their respective new locations on
the drive.

Each time a new data layout is planned, the ex-
ecution phase requires a contiguous space on the
drive. This can be made available by freeing the
contiguous space from the previous run, by restor-
ing the blocks that were moved in the previous run
to their original locations first. The restoring op-
eration would require maintaining the original map-
pings of the file system blocks which incurs an over-
head proportional to the data moved in the execution
phase. After restoration, the space freed up can be
re-used for the current run of the execution phase.

5.4 Execution phase

The execution of the reconfiguration plan is the
most resource-consuming of the four phases. Dur-
ing this phase the file system must perform sev-
eral operations including the actual movement of
the data blocks, calculating the metadata updates
that need to be performed (free-block bitmaps, su-
perblock, inodes, indirect blocks), and performing
the metadata updates. As mentioned ealier, we an-
ticipate that this operation will be performed rela-
tively infrequently, thereby reducing the impact of
the overhead of executing the reconfiguration plan.

Although we have presented layout algorithms
for entire graphs, an actual file system implemen-
tation could also perform incremental layout of
graphs that are updated over time. In either ver-
sion of the problem, an optimization objective that
we have so far neglected is reducing the total data
movement required to realize the new data layout.
To reduce the amount of data movement required,
we suggest the possibility of not having to reconfig-
ure all data represented by the graph. A subset of the
graph data which correspond to edge weights above

a certain threshold could be chosen for reconfigura-
tion, thereby reducing the data movement overhead.

5.5 Other issues

The self-optimizing file system reconfigures data
layout so that repetitive application access patterns
incur reduced I/O times and consequently better
performance over time. To this end, it builds intelli-
gence about the access patterns of each application.
However, in a general time-shared system, I/Os
from multiple processes get interleaved, thereby de-
stroying the accesses patterns of individual applica-
tions. To address this issue, we bring to attention
the recent success of anticipatory scheduling [12],
which eliminates deceptive idleness in applications
issuing synchronous I/O, thereby reducing the ef-
fects of interleaved I/Os. Further, readahead tech-
niques employed by most modern file systems also
reduce the effects of interleaved I/Os. With individ-
ual application accesses being more co-located in a
self-optimizing file system, we believe that anticipa-
tory scheduling will be able to reduce such effects
to a greater degree.

6 System Evaluation

In this section we evaluate the performance of the
Data Layout Reconfigurator (DLR) against the de-
fault layout of the ext3 file system. The results
demonstrate the performance gains of using DLR.
We also calculate the overhead for running the DLR
and find it within acceptable bounds.

6.1 Experimental setup

To conduct the experiments, we start with a Linux
system (2.6 kernel) that uses the default ext3
data layout. The DRL collects I/O traces (both
application-specific and system-wide) and suggests
a data layout reconfiguration plan. Next, the I/O
traces corresponding to the original layout and the
new layout are played out and total I/O times com-
pared.

To evaluate the difference in performance of ap-
plications, we collect traces from six different IO
bound applications mentioned in Table 1. We also
collect traces from three different machines over



Drive Capacity Make Model
Twain 17GB Maxtor 6L120J1

Apocalypse 23GB Quantum fireballp KX27.3
Mark 17GB Maxtor 6L120J1

Maverick 34GB West. Dig. WD800BB-75FJA1
Fallout-1 34GB Seagate ST336754LW
Fallout-2 68GB Hitachi HU10307073FL3600

Table 2: Experimental set-up details.

several days to obtain an access pattern. We then
reconfigure the layout on these machines and ob-
serve the increase in performance both in the spe-
cific applications as well as the overall system I/O
performance. The details of the disk drives on sev-
eral machines used in the evaluation are presented in
Table 2. The last two drives Fallout-1 and Fallout-2
are SCSI drives. All machines use a 2GHz Intel P4
processor and 512MB of DRAM.

We evaluate two placement strategies. The first,
which we call sequential layout, assumes a con-
tiguous portion is available on the disk in the mid-
portion of the LBA-range of the I/O requests in the
trace. Since this may not be true in a realistic envi-
ronment, we also compare the performance with a
fragmented layout.4 In the fragmented version, we
use the same set of blocks that were accessed by the
application to perform the reconfiguration (i.e. no
additional contiguous space is assumed), instead of
the sequential set of blocks used in the sequential
layout. The order in which the blocks are placed re-
mains the same. The performance of the fragmented
layout can be considered as a lower bound on the
improvement.

6.2 Evaluation

For the various applications, Figure 7 shows the
time required to read all initialization data from disk
as specified by the six IO bound Linux applica-
tions. The first bar, Ext3, in the graph corresponds
to time required to access the blocks based on the
default ext3 file system layout. The second bar,
DLR-Seq, corresponds to the time required to ac-
cess the blocks using the sequential placement of

4Notice that the sequential layout may not provide an upper
bound on the performance; a true upper bound can be obtained
when a contiguous space on the outer cylinders (with consider-
ably higher bandwidth) is allocated for the reconfigured blocks.

Figure 7: Disk access times for different applica-
tions.

the access graphs by the DLR and the third, DLR-
Frag, corresponds to that of accessing blocks using
the fragmented layout of the access graphs by the
DLR. The fourth bar corresponds to the results we
obtained from our implementation of C-Miner [15],
which is an algorithm which produces frequent se-
quences of blocks from a set of short sequences. For
C-Miner, we experimented with different values of
support, ranging from two to five, and gap between
20 and 100, for six different sequences of the ap-
plications. The most optimal results are presented
here, with support = 2 and gap = 100.

On an average, sequential placement yields an
improvement in performance by 57 percent and
even the fragmented placement yields a 23 percent
performance increase.

To perform multi-day experiments, without fo-
cusing on any specific set of applications but on the
system as whole, disk activity was monitored over
a span of several days on three different machines.
DLR was used to plan a new data layout for all the
blocks that were accessed in that duration. Figure 8
shows the performance improvement with DLR-Seq
and DLR-Frag. The average performance improve-
ment for the DLR-Seq in this case is about 70 per-
cent.



Host Requests Profile time(s) Processing time(s) Overhead(%) sec./req.
twain 43472 51336 789 1.54% 0.0181

apocalypse 68752 262615 1492 0.57% 0.0217
mark 181120 156531 12480 7.97% 0.0689

Table 3: Overhead for analysis and planning for multi-day traces.

twain apocalypse mark
0

100

200

300

400

500

Ti
m

e 
(s

ec
on

ds
)

Hosts

Ext3 DLR-Seq DLR-Frag

Figure 8: Disk access times for multi-day I/O
traces.

6.3 Overhead

A self-optimizing file system, being an active sys-
tem, would have some impact on the overall system
performance. Table 3 shows the overhead for pro-
cessing data with different number of requests. As
is apparent, the percentage of time spent process-
ing increases with the number of records. In a real-
world system the amount of time spent in process-
ing would probably be even higher. However, these
three phases can be done offline, during system idle
times. Additionally, the number of requests pro-
cessed can be restricted. This, and other practical
issues discussed in Section 5, must be considered
while implementing a self optimizing file system.
Furthermore, the implementation we have evaluated
is an unoptimized one. An actual implementation
of a self-optimizing file system would likely em-
ploy techniques to significantly decrease processing
time, perhaps through approximation or more effi-
cient processing algorithms.

6.4 Sensitivity to drive characteristics

To evaluate the effect of drive characteristics on the
performance of the DLR, we conducted a sensitivity
study over a range of drives mentioned in Table 2.
Figure 9 shows the average IO time required for the
startup of the applications mentioned in Table 1 on
each of the drives. The increase in performance with
the DLR using the sequential layout averages to 82
percent with a minimum of 75 percent and the max-
imum of 88 percent. Using the fragmented layout
also results in a performance increase with an aver-
age of 44 percent; the minimum being 39 percent
and the maximum as much as 52 percent.

Figure 9: Sensitivity of IO access times to various
drive characteristics.

7 Related Work

Significant research has been done in dynamically
adapting storage systems to improve performance.
This section briefly discusses the closely related
work in this area.



Early work [10, 34] has shown that for optimal
performance, data should be placed on the disk
drive using the organ-pipe which places the fre-
quently accessed data in the center of the disk,
and the lesser accessed data on the inner and outer
tracks. Several strategies have been proposed to
reorganize the frequently accessed blocks on the
disk. We classify these into two broad categories
as block-level approaches and file-level approaches,
reflecting the abstraction at which solutions are sug-
gested.

Block-level approaches: Block-level approaches
work at the disk block abstraction level, obtaining
access patterns at the block level, typically at the
storage system.

Ruemmler and Wilkes [22] and Vongsathorn et
al. [31] use Cylinder Shuffling to lower the access
time by minimizing the mean seek time. These tech-
niques keep a count of the number of requests to
a cylinder and move the most frequently accessed
data segments to the center of the disk. In [2], the
frequent blocks are copied to a reserved space in the
center of the disk. These strategies emphasize on
process-agnostic block counts to perform the data
reorganization.

Kuenning et. al. [14] and Griffoen et. al. [9]
suggest inferring frequently accessed data by min-
ing I/O traffic. Li et. al. [15] and Gunawi et. al. [11]
propose black box data mining techniques for learn-
ing block correlations and deconstructing commod-
ity storage clusters to infer I/O traffic semantics re-
spectively. Although used for different purposes,
the above approaches nevertheless suggest infer ac-
cess patterns at the block-level.

More recently, CMiner [15] modifies the fre-
quent sequence mining algorithm of [1] to find the
frequent sequences from a set of short sequences
which in turn infer the correlations between blocks.
The correlated sequence of blocks are then placed
contiguously on the disk. This work is closely re-
lated and uses a black-box approach as opposed to
our white box approach.

Salmon et al. [23] describe a generic two-tiered
architecture that provides the framework for com-
bining multiple heuristics for data reorganization. It
generates constraints based on these heuristics from
which a new disk layout is obtained.

For throughput improvement, Ganger et al. have
proposed free-block scheduling and track-aligned
extents [17, 20, 16, 24], orthogonal techniques for
I/O performance improvement with block-level so-
lutions.

Wilkes et. al. proposed HP AutoRAID [33] that
automatically and transparently adapts to workload
changes by using a two-level storage hierarchy; the
upper level provides complete data redundancy for
popular data while the lower level provides RAID 5
parity protection for inactive data.

File-level approaches: Several strategies monitor
the file usage to obtain a pattern of the data ac-
cessed. In CLUMP [7], the file system moni-
tors the file accesses and dynamically reorganizes
files in clusters and/or prefetches clusters of files.
The CLUMP solution operates at the granularity
of whole files which does not account for intra-file
block dependencies. Further, they do not consider
the process-context of the file access. [27] monitors
the file accesses and moves the frequently accessed
data to the center of the disk during system idle pe-
riods. This approach has shortcomings similar to
CLUMP.

PROFS [32] improves the IO performance Log
structured File Systems(LFS) [21] by reducing the
transfer time. It uses timestamp information to
maintain the active ratio of the files accessed and to
take advantage of the higher bandwidth in the outer
tracks, it places the active files starting from the out-
ermost track. It uses the frequency of file accesses
and not the association at the file or the block level.

PLACE [19], a gray-box technique, exposes the
underlying layout structure to applications, so that
the applications can place the necessary files based
on their access patterns to improve the I/O perfor-
mance.

File access patterns can be used to predict future
file accesses. Amer et al. [4] and Yeh et al. [35]
use such predictions for purposes of file caching and
energy conservation respectively. Similarly, in [36],
file predictions are used to conserve energy in mo-
bile computers.

In a converse approach to all of the above
(including ours), Sivathanu et al. [26] propose
semantically-smart disk systems (SDS), an en-
hanced disk system that adapts itself by observing



file system I/O traffic. SDS also targets the same
goal as ours, i.e. I/O performance improvement, but
from a different perspective.

Other approaches: Several researchers propose
generic solutions to self-optimizing I/O systems
that cannot be clearly categorized into one of the
above. Carnegie Mellon University’s Self-* Storage
project [8] addresses performance and management
within storage systems by borrowing ideas from AI,
control systems, and human organization. The cen-
tral idea of Self-* is the concept of building large
storage systems using smaller storage bricks that are
self-tuning and self-adapting.

Recent work by Thereska et. al. [28] proposes to
convert complex optimization and tuning problems
into simpler search problems by asking the question
“What ����� if”. Similarly, Polus [30] addresses the
problem of transforming a small set of high-level
QoS goals into low-level system actions by pro-
viding a reasoning and learning-based framework.
Approaches for automated resource provisioning
and dynamic storage reconfiguration such as Min-
erva [3] and Hippodrome [5, 6] require declarative
input for performance requirements, workload and
storage device characteristics for generating stor-
age designs by solving multi-constraint optimiza-
tion problems.

Our approach: We propose a framework for build-
ing for building self-optimizing file systems and
propose a specific design of a data layout reconfig-
urator that will form the core of such a file system.
The ideas we have presented are different from the
above mentioned related work in one or more of the
following aspects. First, to maintain the sequence
of requests, the data layout reconfigurator collects
per-process I/O profiles within the OS. Most of the
above strategies use the traces which are collected
when the request is sent to the disk driver to retrieve
the blocks. Second, we propose using process- as
well as block- level attributes to enrich the associ-
ations between I/O requests observed. From this
information, the application specific requests can
be filtered out which makes the access patterns in
our approach application aware. The importance
of application awareness in data layout reconfigu-
ration also concurs with the findings of [25] that
application-specific benchmarking is a better mea-

sure of the systems performance. In the future, we
intend to incorporate file- and thinktime- attributes
as well. The generic directed, weighted graph repre-
sentation is powerful enough to capture all the var-
ious dimension of I/O correlations. Third, once the
access patterns are obtained, the data layout recon-
figurator uses weights and directions on the mas-
ter access graph to determine the sequence in which
the blocks should be placed. In most of the above
mentioned strategies, once the frequently accessed
quantum of data is obtained, there is no specific or-
der in which the data is placed on the disk.

8 Conclusions and Future Work

We have argued in favor of self-optimizing file sys-
tems that continuously adapt their data layout based
on application I/O access patterns to deliver opti-
mal performance. We have presented techniques
for building an automatic data layout reconfigura-
tor, which is the core self-optimizing engine within
such a file system. We discussed practical issues
that arise when incorporating these techniques in an
actual file system implementation. We presented a
preliminary performance evaluation of the proposed
approach with very promising results, and observed
the potential for significant I/O performance gains.

Based on this preliminary study, we argue that
self-optimizing file systems offer a critical next step
in improving storage system performance and au-
tonomy. However, an actual realization of a self-
optimizing file system is a lengthy and arduous task.
Further, we realize that there may be several practi-
cal considerations when building a file system based
on the ideas presented. This study surely does not
address all such concerns, although we did touch on
a few that stood out. We believe that the potential
gains to be had justify endeavors in realizing self-
optimizing versions of existing file systems. We
have started work on a self-optimizing version of
the ext3 file system.

Acknowledgements

This work was supported in part by the National
Science Foundation under grants IIS-0534530 and
IIS-0552555 and the Department of Energy under



grant DE-FG02-06ER25739.

References

[1] R. Agrawal and R. Srikant. Mining Sequential
Patterns. In P. S. Yu and A. S. P. Chen, editors,
Eleventh International Conference on Data Engi-
neering, pages 3–14, Taipei, Taiwan, 1995. IEEE
Computer Society Press.

[2] S. Akyurek and K. Salem. Adaptive Block Re-
arrangement. Computer Systems, 13(2):89–121,
1995.

[3] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Min-
erva: An Automated Resource Provisioning Tool
for Large-scale Storage Systems. ACM Transac-
tions on Computer Systems, 19(4):483–518, 2001.

[4] A. Amer, D. Long, J. Paris, and R. Burns”. File Ac-
cess Prediction with Adjustable Accuracy. Interna-
tional Performance Conference on Computers and
Communication, 2002.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. Usenix
Conference on File and Storage Technologies, Jan-
uary 2002.

[6] E. Anderson, M. Kallahalla, S. Spence, R. Swami-
nathan, and Q. Wang. Ergastulum: Quickly Find-
ing Near-Optimal Storage System Designs. HP
Labs Technical Report HPL-SSP-2001-05, 2001.

[7] P. Eaton, D. Geels, and G. Mori. Clump: Im-
proving File System Performance Through Adap-
tive Optimizations. December 1999.

[8] G. R. Ganger, J. D. Strunk, and A. J. Klosterman.
Self-* Storage: Brick-based Storage with Auto-
mated Administration. Carnegie Mellon Univer-
sity Technical Report, CMU-CS-03-178, August
2003.

[9] J. Griffoen and R. Appleton. Reducing File System
Latency using a Predictive Apporach. Proceedings
of the Summer USENIX Conference, pages 197–
207, June 1994.

[10] D. D. Grossman and H. F. Silverman. Place-
ment of Records on a Secondary Storage Device
to Minimize Access Time. Journal of the ACM,
20(3):429–438, 1973.

[11] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and J. Schindler. Decon-
structing Commodity Storage Clusters. Proceed-
ings of the International Symposium on Computer
Architecture, June 2005.

[12] S. Iyer and P. Druschel. Anticipatory Scheduling:
A Disk Scheduling Framework to Overcome De-
ceptive Idleness in Synchronous I/O. 18th Sympo-
sium on Operating Systems Principles, September
2001.

[13] J. O. Kephart and D. M. Chess. The Vision of Au-
tonomic Computing. IEEE Computer, 36(1):41–
50, January 2003.

[14] G. H. Kuenning and G. J. Popek. Automated
Hoarding for Mobile Computers. Proceedings of
the ACM Symposium on Operating Systems Prin-
ciples, pages 264–275, October 1997.

[15] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-
Miner: Mining Block Correlations in Storage Sys-
tems. Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 173–
186, April 2004.

[16] C. R. Lumb, J. Schindler, and G. R. Ganger.
Freeblock Scheduling Outside of Disk Firmware.
Usenix Conference on File and Storage Technolo-
gies, January 2002.

[17] C. R. Lumb, J. Schindler, G. R. Ganger, and D. F.
Nagle. Towards Higher Disk Head Utilization: Ex-
tracting Free Bandwith From Busy Disk Drives.
Proceedings of the OSDI, 2000.

[18] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A
Fast File System for UNIX*. ACM Transactions
on Computer Systems 2, 3:181–197, August 1984.

[19] J. Nugent, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Controlling your PLACE in the
File System with Gray-box Techniques. Proceed-
ings of the USENIX Annual Technical Conference,
pages 311–324, June 2003.

[20] E. Riedel, C. Faloutsos, G. R. Ganger, and D. F.
Nagle. Data mining on an OLTP system (nearly)
for free. Proceedings of the ACM SIGMOD, May
2000.

[21] M. Rosenblum and J. Ousterhout. The design
and implementation of a log-structured file system.
1991.

[22] C. Ruemmler and J. Wilkes. Disk Shuffling. Tech-
nical Report HPL-CSP-91-30, Hewlett-Packard
Laboratories, October 1991.

[23] B. Salmon, E. Thereska, C. Soules, and G. Ganger.
A Two-tiered Software Architecture for Auto-
mated Tuning of Disk Layouts. Workshop on Al-
gorithms and Architectures for Self-Managing Sys-
tems, 2003.

[24] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R.
Ganger. Track-aligned Extents: Matching Access
Patterns to Disk Drive Characteristics. In FAST,
2002.

[25] M. I. Seltzer, D. Krinsky, K. A. Smith, and
X. Zhang. The Case for Application-Specific



Benchmarking. In Workshop on Hot Topics in Op-
erating Systems, 1999.

[26] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. Pro-
ceedings of the USENIX Symposium on File and
Storage Technologies, pages 73–88, March 2003.

[27] C. Staelin and H. Garcia-Molina. Smart Filesys-
tems. In USENIX Winter Conference, pages 45–52,
1991.

[28] E. Thereska, D. Narayanan, and G. R. Ganger. To-
wards self-predicting systems: What if you could
ask “what-if”? 3rd International Workshop on
Self-adaptive and Autonomic Computing Systems,
August 2005.

[29] S. C. Tweedie. Journaling the Linux ext2fs File
System. The Fourth Annual Linux Expo, May
1998.

[30] S. Uttamchandani, K. Voruganti, S. Srinivasan,
J. Palmer, and D. Pease. Polus : Growing Stor-
age QoS Management Beyond a “Four-year Old
Kid”. Proceedings of the USENIX Conference
on File and Storage Technologies, pages 31–44,
March 2004.

[31] P. Vongsathorn and S. D. Carson. A System for
Adaptive Disk Rearrangement. Softw. Pract. Ex-
per., 20(3):225–242, 1990.

[32] J. Wang and Y. Hu. PROFS-Performance-Oriented
Data Reorganization for Log-Structured File Sys-
tem on Multi-Zone Disks. In MASCOTS ’01: Pro-
ceedings of the Ninth International Symposium in
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’01),
page 285, Washington, DC, USA, 2001. IEEE
Computer Society.

[33] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan.
The HP AutoRAID Hierarchical Storage System.
Proceedings of the Symposium on Operating Sys-
tem Principles, 1995.

[34] C. K. Wong. Minimizing Expected Head Move-
ment in One-Dimensional and Two-Dimensional
Mass Storage Systems. ACM Computing Surveys,
12(2):167–178, 1980.

[35] T. Yeh, D. Long, and S. Brandt. Caching Files with
a Program-based Last N Successors. Workshop on
Caching, Coherency and Consistency (WC3 ’01),
June 17, 2001.

[36] T. Yeh, D. Long, and S. Brandt. Conserving
Battery Energy through Making Fewer Incorrect
File Predictions. IEEE Workshop on Power Man-
agement for Real-Time and Embedded Systems at
the IEEE Real-Time Technology and Applications
Symposium, pages 30–36, May 29, 2001.


