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Abstract

Recent work has proposed making intelligent use of data
access patterns for building self-optimizing storage sys-
tems. However, despite the continued increase in the
CPU-I/O performance gap, such systems are far from
wide adoption. We argue that the key reason for the lack
of real systems adopting this novel idea is that current
studies leave several key questions unanswered. We pin-
point the research and practical challenges that must be
addressed in building effective self-optimizing storage
systems. Our answers to these questions are based on
practical experience while building such a system. Our
prototype self-optimizing storage system offers perfor-
mance improvement of 2.5X-5X, while incurring accept-
able CPU and memory overheads.

1 Motivation

I/O is a well-recognized bottleneck in computer systems
for a range of workloads and applications. The startup
profiles of a set of Linux applications on a six-month
old ext3 filesystem showed that on an average, these ap-
plications spent thrice the amount of time waiting for
I/Os to complete than running on the CPU (See Table 1).
Further, on an average, 40% of the data accessed re-
quired random accesses on the disk drive. This finding
makes two points about application startup events: (i)
I/O is the bottleneck, and (ii) there is significant room
for improvement in I/O performance. Similar observa-
tions were made by Windows and Linux kernel develop-
ers regarding OS boot events [5, 9].

The primary reason for the continued increase in the
performance gap between compute and storage perfor-
mance is the large mechanical seek and rotational delay
overhead components of the I/O access time [1]. Current
file systems, that exclusively control data layout on the
disk drive employ static layouts. They aim to preserve
the directory structure of the file system and optimize for

Application CPU (s) I/O wait (s) Seq I/O (%)
firefox 1.56 3.71 51.08%

gedit 0.48 7.75 57.34%
gimp 1.71 5.88 72.97%

oowriter 3.35 7.93 60.99%
xemacs 0.92 5.94 65.35%
xinit 0.57 3.55 67.42%

Table 1: Application startup profiles for a desktop�
2GHz P4, 512MB DRAM, Maxtor 6L020J1 drive � .

sequential access to entire files. These implementations
lack in an important aspect, application awareness. Ap-
plication access patterns are typically complex. Appli-
cations may access multiple files in different file system
directory subtrees, often in a specific sequence. Further,
rather than accessing entire files sequentially, they may
access files partially and even non-sequentially.

Recent work has convincingly argued that the lack of
intelligent use of data access patterns is a key shortcom-
ing of current storage stack implementations [1, 2, 7, 9].
The studies mostly advocate, with some variations, re-
organizing on-disk data layout based on observed ac-
cess patterns.1 FS2 [2] proposes replication within the
file system to spatially co-locate temporally correlated
blocks. This strategy is restricted by the distribution
of free space within the file system partition. Windows
XP [9] uses the defragmenter for co-locating temporally
correlated data. These solutions are file system specific
solutions and as a result slow to adopt. C-Miner [7] uses
data mining techniques to mine correlations between
block I/O requests sent to the storage device. Though this
helps find interesting inter-application dependencies, this
technique is likely to introduce artificial correlations due
to the I/O scheduler and may lose important correlation
due to absence of process-level attributes. In ALIS [1],

1Recent work on improved prefetching [6, 10] advocate a comple-
mentary technique. Good prefetching solutions can help reduce the
number of I/O requests; good data layout can reduce or eliminate both
seek as well as rotational-delay overheads. Similar arguments hold for
I/O scheduling algorithms [3].



frequently occurring I/O sequences are placed sequen-
tially on a dedicated, reorganized area on the disk. Since
each data block can be replicated more than once and the
replica closest to the current disk head position is chosen,
it incurs large consistency maintenance overhead.

Despite these recent studies, key questions still remain
open: (1) what constitutes the ideal intelligence to be
used in this context?, (2) how to efficiently obtain such
intelligence within the operating system?, and (3) how to
effectively use such intelligence to improve storage per-
formance? In this paper, we address these questions by
articulating the key issues in building a practical solu-
tion. We propose the addition of a self-optimizing block
storage layer to the storage stack, that reorganizes disk
data on the fly while remaining completely oblivious to
the file system(s) above. A prototype augmented stor-
age stack shows I/O performance gains of 2.5X-5X with
acceptable CPU and memory overheads.

2 Key Challenges

We list six important challenges that must be addressed
by an effective self-optimizing storage system.

I. Information-Rich Intelligence. A variety of infor-
mation about each I/O operations are critical to optimiz-
ing data layout. These include temporal attributes such
as timestamp, process-level attributes such as process
ID and executable issuing the I/O request, file-level at-
tributes such as the file or address-space being accessed,
and block-level attributes such as the LBA, size, and
mode of access (read/write) for the I/O request. Most
current approaches only leverage a subset of the above
critical information. A few use incorrect or artificial at-
tributes introduced due to unfavorable profiling points.

II. Online and Incremental Optimization. The data
layout reconfiguration must occur in an online and incre-
mental fashion, rather than demand periodic downtime
for reconfiguration. This implies that the reconfigura-
tion engine must be able to run as a background pro-
cess and data layout reconfiguration must also be carried
out opportunistically during I/O idle time or using tech-
niques such as freeblock scheduling []. Some current ap-
proaches do not address this practical issue while some
other require a dedicated reconfiguration phase.

III. Controllable Overhead. Almost uniformly, most
of the current approaches to build self-optimizing stor-
age systems incur CPU, memory, disk space, and disk
bandwidth overheads. An ideal solution will provide for
control knobs that allow trading-off one overhead for an-
other dynamically. Current approaches do not address
this challenge.

IV. File System Independence. To ensure wide adop-
tion, the self-optimizing storage system design must be
independent of the file system. Some current solutions
propose modification to existing file systems; we be-
lieve that such efforts are misdirected since they are not
generic solutions. An ideal solution should seamlessly
handle multiple active file systems and/or mount-points.
Existing file systems should require no modification. The
challenge then is to seamlessly import appropriate file
system level attributes.

V. Consistency. Several self-optimizing storage solu-
tions, including the one we propose, create copies of pop-
ular data. Consistency of data across its multiple copies
is an important issue when data layout is reconfigured.
Such consistency must be ensure at low cost. Some so-
lutions invalidate non up-to-date copies rendering them
useless. We propose a different approach that ensures
consistency across power outages with low overhead.

VI. Ease of Integration. Self-optimizing storage sys-
tems are a significant deviation from current static-layout
solutions. However, developing such systems from
scratch is impractical in the short term. Practical solu-
tions must be able to fit into the existing storage stack
architecture. Implementations must be minimally intru-
sive to ensure quick adoption. Further, they must easily
integrate with current optimizations. Current solutions
do not adequately address the above issues.

3 A Self-Optimizing Block Storage Layer

We present the architecture and design of a self-
optimizing storage system that addresses the challenges
discussed in the previous section. Figure 1 presents its
architecture. The modification to the existing storage
stack is in the form of a new layer which we term self-
optimizing block storage layer. It resides between the file
system and I/O scheduler layers within the operating sys-
tem. As we shall explain later, this layer can designed to
be dynamically and seamlessly added/removed from the
storage stack. A secondary throttle-friendly user-level
daemon component communicates with this layer to per-
form compute and memory-intensive tasks.

The following four steps govern the operation of the
self-optimizing engine at the high-level. These steps con-
form to the autonomic loop as proposed by Kephart et
al. [4] and are also either explicitly or implicitly em-
ployed by the recently proposed approaches.

1. profiling application block I/O accesses,
2. analyzing I/O accesses to derive access patterns,
3. planning a modification to the data layout, and
4. executing the plan to reconfigure the data layout.
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Figure 1: System Architecture.

Although our solution follows this well-known self-
optimizing loop, there are significant differences to prior
realizations of this basic idea. Each stage operates con-
tinuously in a pipelined fashion as opposed to periodic
and sequential invocations of prior approaches. Further,
each stage incorporates new ideas in its design and im-
plementation. Finally the system architecture that en-
ables the autonomic loop is novel in its ease of imple-
mentation of integration into existing storage stacks, and
in its separation of kernel and user level concerns for bet-
ter control on resource consumption overhead.

Reverting to the architecture, the self-optimizing block
storage layer consists of three major components: I/O
Profiler, I/O Indirector, and OPT Space Reconfigurator.
The I/O profiler component collects block I/O access pat-
terns while the I/O indirector directs I/O requests to the
OPT partition copies (explained later on) if necessary.
The OPT space reconfigurator dynamically reconfigures
the contents of the OPT space. The OPT space is an op-
timized partition on the disk drive exclusively used by
the self-optimizing block storage layer. As opposed to
approaches such as FS2 [2] and C-Miner [7] wherein the
self-optimizing engine operates in file system managed
space, our approach uses a dedicated partition to allow
a clean separation of space management responsibilities.
The self-optimizing block storage layer exclusively man-
ages the OPT partition while file systems continue to ex-
clusively manage file system partitions.

The OPT space partition has parallels to SWAP parti-
tions used by modern operating systems for. The SWAP
partition is a reserved portion of disk to allow exceed-
ing the limits of physical memory space by trading both
average memory access performance and disk space for
increased accessible virtual memory. It is a cache for
memory pages. OPT space is an optimized partition of
the disk space used for improving I/O performance. Here
we trade disk space (as well as some CPU and memory
space) for improved I/O performance. It is an optimized

cache for file system blocks.

4 Implementation Outline and Key Issues

4.1 The Self-Optimizing Engine

Profiling. The I/O profiler component (See Figure 1)
collects application I/O traces by logging each I/O re-
quest made. An application may spawn multiple pro-
cesses and each process may constitute multiple threads.
Each thread of execution creates correlations between the
I/Os it performs. These are implicitly built into the trace
(as opposed to mined correlations in [7]). The inherent
intra-process I/O correlation forms the basis of the data
layout reconfiguration. If multiple processes access the
same LBA, there may be correlation conflicts. This is
resolved by creating a single master access graph, that
captures all available correlations into a single input for
the reconfiguration planner.

I/O requests are tagged with the following temporal,
process-, file-, and block- level attributes. The timestamp
is the specific time a request was made. The process ID
(PID) and the executable name help differentiate I/O re-
quests of different processes. The address-space attribute
allows the mapping of I/O requests to file or directory ob-
jects within the file system. The LBA and size attributes
provide the starting logical block address and the number
of blocks requested. Mode distinguishes read from write
I/Os. The above data are collected using low-overhead
kernel probing techniques at the self-optimizing block
storage layer. The I/O trace is exposed to the user-space
analysis component. None of the prior approaches make
use of all the rich information available inside the kernel
in deriving access patterns.

Analysis. The user-space analyzer component first splits
I/O trace into multiple I/O traces, one per process or
thread. The primary benefit of separating data based on
process is that it eliminates I/O race conditions imposed
by the multitasking nature of the operating system.

For each process or thread, we use its I/O trace to build
a directed process access graph ���������	��
��� , where each
vertex represents an LBA range and each edge a transi-
tion between two LBA ranges. The weight on an edge
�����	��� is the frequency of accesses (reads or writes) from
� to � . Applying a attenuating factor on edges for large
application thinktimes and boosting those with the same
address-space attribute in calculating the edge-weights
further improves the weighting process.

The next step is to merge all individual process ac-
cess graphs into a single master access graph �������
�� .
This merge process is non-trivial because the range nodes
of individual process access graphs may overlap. If
two vertices have overlapping ranges, they must be split



into multiple vertices and a directed edge added between
them. Since the master graph is derived from the pro-
cess access graphs, the reconfiguration operation takes
into account individual access patterns of applications, a
critical requirement for the reconfiguration plan. Graph
merging and master access graph creation are new tech-
niques unexplored in prior solutions.

Planning. The goal of the user-space planner compo-
nent is to develop an OPT space reconfiguration plan that
would improve the I/O performance of various applica-
tions and consequently, the overall I/O performance of
system. This reconfiguration plan is built based on the
master access graph from the analyzer and is specified
via a reconfiguration map in which each entry indicates
the LBAs of a set of blocks in file system partition(s) and
their desired location in the OPT space.

The planner uses a greedy heuristic to determine the
sequence in which the reconfigured data blocks must be
placed in the OPT space. In brief, the greedy heuris-
tic proceeds by first choosing the most connected (with
respect to edge weights) vertex, � , in the master access
graph. The next vertex chosen for placement is the vertex
� most connected (in one direction only, either incoming
or outgoing) to � . If � lies on the outgoing edge of � ,
it is placed after � and if it lies on the incoming edge it
is placed before. This process is repeated until all the
vertices are placed or until the edges connecting to the
unplaced vertices in the master graph have weight below
a certain threshold.

The above reconfiguration planner algorithm relies on
the principle that edges and edge-weights in the mas-
ter graph closely reflect the important I/O access patters
of applications. The edge weighting algorithm is there-
fore an important aspect of improving the overall perfor-
mance of the data layout reconfigurator.

Execution. The OPT space reconfigurator component
obtains the reconfiguration map (OPT space layout plan)
from the planner and executes it. This process involves
copying data blocks from file system space to OPT space.
Since reconfiguration is an intrusive process, it is per-
formed in the background, either when the I/O queue
is empty or when it is possible to issue such I/O re-
quests with minimum or no overhead using optimized
I/O scheduling techniques [3, 8].

The reconfiguration map is also used by the I/O in-
director component to redirect file system block I/O re-
quests to the OPT space if appropriate. We discuss the
I/O indirection component below in more detail.

4.2 Other Components and Issues

I/O Indirection. The I/O indirector must efficiently di-
rect block I/O requests to the OPT space, if the reconfigu-

ration map contains an indirection entry for the requested
block. The reconfiguration map is cached in memory and
a persistent copy is stored in the beginning of the OPT
space partition. Prior approaches for indirection advo-
cate a greedy policy of choosing a copy closest to the disk
head. In contrast, our approach always chooses the OPT
space copy for both consistency as well as long-term I/O
efficiency reasons. We address efficiency in our anticipa-
tion that subsequent I/O requests will be made to blocks
correlated to the current request; the subsequent set of
I/O requests will be best served from the OPT space,
which is configured based on such correlation. Consis-
tency reasons that also drive this choice appear next.

Consistency. Each time a reconfiguration of the OPT
space is completed, the reconfiguration map in the OPT
space is updated. Each entry in the reconfiguration map
also contains a dirty bit that indicates whether the OPT
space copy has been modified since the last reconfigura-
tion. Upon writes to an OPT space block, its indirection
entry in the in-memory copy of the reconfiguration map
is marked as dirty, once the I/O is completed. We do
not update the on-disk copy since this will substantially
increase overhead for write operations.

By always choosing the OPT space copy for I/O re-
quests, we ensure that in the presence of writes, the OPT
space copies are up-to-date. However, this may render
original blocks stale. The OPT space manager ensures
consistency in the following manner. First, before each
reconfiguration of the OPT space, dirty blocks from the
OPT space are be copied to their original positions. This
ensures that the file system blocks are up-to-date before
a reconfiguration of the OPT space begins. Second, be-
fore the system is shut-down, the in-memory copy of the
reconfiguration map is flushed to the OPT space. This
is re-loaded into memory when the system is rebooted.
Third, in case of power outage, upon reboot, all entries in
the reconfiguration map are marked as dirty. The above
techniques ensure data consistency and up-to-datedness
across both reboots and power outages.

Overhead Control. Overhead in the self-optimizing
storage system appears in many forms. First, the I/O
profiler component buffers fragments of the I/O trace in
memory before submitting them to the analyzer stage.
Our un-optimized I/O trace entries average 40 bytes,
which allows substantial flexibility in buffered I/O trace
fragment sizes, even in kernel memory. CPU and mem-
ory overheads dominate in the analyzer and planner com-
ponents. However, since these run within a user-space
process, nice priority-levels and memory-pressure sen-
sitive dynamic memory allocation can be performed to
throttle resource consumption. Finally, the I/O reconfig-
urator can be designed to use disk idle periods and intel-
ligent I/O scheduling so that it is almost oblivious. This



is possible since the interval between reconfiguration re-
quests is typically large.

Ease of Integration. Ease of integration with existing
technology is key to the acceptance of new ideas. The
proposed architecture can be easily integrated as an inde-
pendent layer in the current storage stack. Unlike prior
solutions, the proposed architecture does not affect or re-
quire modification of other layers in the stack. In Linux
systems, the self-optimization capability can be designed
as a dynamically loadable kernel module, by introducing
a new I/O scheduler type that encapsulates the actual I/O
scheduler and performs the tasks of I/O profiling, I/O in-
direction, and OPT space reconfiguration.

5 Preliminary Results

We obtained preliminary performance and over-
head numbers from our Linux-based prototype self-
optimizing storage system by comparing to a vanilla
kernel with an ext3 file system. These systems were six
months old on an average.
Speedup of Application Startup Events. The first ex-
periment in Figure 2 compares the improvement in I/O
performance of six applications during their I/O-bound
startup phase after a single reconfiguration of the OPT
space. Startup events of these applications experience
drastic speedup ranging from 3.5X-5X.

Figure 2: I/O speedup in applications.

Overall I/O Performance Improvement. We con-
ducted the following experiment to estimate overall im-
provement in I/O subsystem performance. We trained the
self-optimizing engine for a period of 12 hours on three
standard development desktops. The subsequent 24 hour
trace was used to evaluate the I/O performance improve-
ment. Figure 3 shows improvement in average I/O times
of 4X on an average.
Overhead. The above performance gains are drastic.
However, these improvements incur overhead. Table 2

Figure 3: Overall I/O performance improvement.

Host Total Analysis Planning I/O Indirection
m/c time (hr) time (%) time (%) (CPU-cycles/req)
apo 40 0.05% 0.06% 268
mav 37 0.27% 0.49% 297
twa 48 0.26% 0.49% 220

Table 2: Overheads.

shows percentage CPU time overheads for the resource-
hungry analysis and planning stages as well as the aver-
age I/O indirection time incurred in the testbed systems.
These overheads, although non-trivial, can be justified
easily in I/O bound systems. Further, our implementation
is a highly unoptimized one. We noted several opportu-
nities to decrease processing time through approximation
as well as more efficient processing algorithms.

6 Conclusions

Self-optimizing storage systems are a critical next step
in improving storage system performance and auton-
omy. However, actual solutions still allude us due to sev-
eral unexplored or incorrectly answered questions. This
study attempts to bring out all issues facing the adop-
tion of self-optimizing storage systems and provides an-
swers to them based on experiences building a real sys-
tem. Our preliminary prototype demonstrates that drastic
I/O performance improvements are possible with accept-
able overheads in other resource dimensions.
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