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Abstract

Host intrusion prevention systems for both servers and
end-hosts must address the dual challenges ofaccuracyand
performance. Researchers have mostly focused on address-
ing the former challenge, suggesting solutions based either on
exploit-based penetration detection or anomaly-based misbe-
havior detection, but yet stopping short of comprehensive so-
lutions that leverage merits of both approaches. The second
challenge, however, is rarely addressed; doing so comprehen-
sively is important for practical usability, since these systems
can introduce substantial overhead and cause system slow-
down, more so when the system load is high.

We present Rootsense, a holistic and real-time intrusion
prevention system that combines the merits of misbehavior-
based and anomaly-based detection. Four principles govern
the design and implementation of Rootsense. First, Rootsense
audits events within different subsystems of the host operating
system and correlates them to comprehensively capture the
global system state. Second, Rootsense restricts the detection
domain to root compromisesonly; doing so reduces run-time
overhead and increases detection accuracy (root behavior is
more easily modeled than user behavior). Third, Rootsense
adopts a dual approach to intrusion detection – aroot pene-
tration detectordetects activities that exploit system vulnera-
bilities to penetrate the security perimeter, and aroot misbe-
havior detectortracks misbehavior by root processes. Fourth,
Rootsense is designed to be configurable for overhead man-
agement allowing the system administrator to tune the over-
head characteristics of the intrusion prevention system that
affect foreground task performance. A Linux implementation
of Rootsense is analyzed for both accuracy and performance,
using several real-world exploits and a range of end-host and
server benchmarks.

1 Introduction
Intrusion detection and prevention systems must address

two challenges comprehensively:accuracyandperformance.
Accuracy is concerned with bothfalse positivesas well as
false negativesof the intrusion detection mechanism, while
performance is measured by impact to the foreground taskre-
sponse time distribution. Each of these metrics affect the end-
user experience and are critical factors determining whether
the solution is practical for use in production systems.

There has been substantial research on addressing accuracy

and current solutions can be classified at the high-level into
exploit-based penetration detection[15, 33, 16] oranomaly-
based misbehavior detection[7, 14, 32, 3]. It is well-accepted
that while the former approach can be susceptible to false neg-
atives, the latter must deal with (often large number of) false
positives. However, little research exists on how we can com-
bine these complementary techniques to effectively increase
accuracy. Solutions focusing on accuracy also often target
a specific subsystem. Systems such as StackGuard [6], Trip-
wire [17], Snort [28], and Bro [25] rely on monitoring a single
subsystem (e.g.,memoryor filesystem) to derive inferences.
However, as we shall exemplify later on, many intrusions as
well as post-intrusion misbehavior involve a sequence of oper-
ations affectingmultiplesubsystems. Finally, most solutions
addressing the former challenge attempt to detectall intru-
sions in the system, while some focus on detectingroot do-
main intrusions only [14, 19, 34]. This choice can impact the
efficiency, accuracy, and usability of the system.

The latter challenge, namelyperformance, has received
relatively less attention. If not addressed comprehensively,
performance can be the roadblock to large-scale adoption
of real-time intrusion prevention solutions. Specifically, the
overhead associated with monitoring (e.g., data collection),
analysis (e.g., signature-matching), and response, in terms
of their impact to foreground tasks are not well understood.
Here, theresponse time distributionis a key metric that cap-
tures both theaverage response timeand jitter experienced
by foreground tasks. What is required is a control mechanism
that will allow the system administrator to monitor and tune
the response time distribution (to whatever extent possible) to
reflect overall system performance goals.

In this paper, we present Rootsense, a real-time intru-
sion prevention system, which monitorsmultiple subsystems
to get comprehensive information about the global state of
the host, focuses on the restricted but critical domain of
root intrusions, and employs adual approachfor detecting
both vulnerability-specific exploits as well as anomalous pro-
cesses. Rootsense actively reports on the performance impact
to foreground applications to the system administrator, by
continuously monitoring the distribution of foreground task
response times. Without sacrificing its accuracy, Rootsense
also provides overhead tunability that the system administra-
tor can use to control the execution behavior of the intrusion
prevention system. Consequently, the administrator can con-
trol impact on foreground performance, specifically allowing



a trade-off between foreground task average response time
and jitter.

The design of Rootsense addresses several challenges, in-
cluding minimizing overhead and exporting control over the
system overhead characteristics, addressing the scope andde-
tail of the information collected, correlating the collected in-
formation within and across subsystems, generating activity
signatures of interest at the right level of abstraction, using
such signatures for accurate and efficient intrusion detection,
and creating a timely and configurable response mechanism.

The design, implementation, and a detailed performance
analysis of Rootsense are the subject of the remainder of the
paper. Section 2 discusses the design principles adopted in
Rootsense and gives a high-level description of its architec-
ture. Section 3 defines the fundamental concepts ofevents,
activities, andsignatures. Section 4 describes the intrusion
detection algorithms used by Rootsense. Section 5 presents
an experimental evaluation of Rootsense. Section 6 discusses
related work and we conclude in Section 7.

2 Design Principles and System Architecture
2.1 Design Principles

Rootsense’s design is directed by four key principles:

A. Holistic monitoring. We gain a more comprehensive
view of the global system state by monitoring four sub-
systems: Process, File System, Memory, and Network,
and by correlating events generated by multiple process
executions.

B. Focus onroot intrusions. Rather than trying to detectall
possible intrusions, we focus only on root domain intru-
sions.

C. Separate detection of penetration and misbehavior.
We employ two detectors that run in parallel: aroot
penetration detector, which looks for activities that
exploit system vulnerabilities to penetrate the security
perimeter, and aroot misbehavior detector, which looks
for misbehavior by root processes without trying to
know the cause.

D. Design for real-time response with overhead control.
We focus on making the intrusion response system
real-time, but at the same allow the system administrator
to tune the impact to the foreground task response time
distribution.

Several real-world exploits guided these design principles.
We illustrate with two examples.

Example 2.1 To exploit a time-of-check to time-of-use
(TOCTTOU) vulnerability [5], an attacker process performs
two operations,removeand replace, between the check and
use operations of the vulnerable process. Therpm package
manager (runs as root) in Linux contains an<open,open>
TOCTTOU pair [36]. An attacker process can replace the
file created in the firstopen with a file of her choice, before
it is opened again for execution. Detecting such an exploit

requires the detection of several events with associated data
across two different processes.

Example 2.2 Rootkits typically modify system binaries (e.g.,
ls, ps, etc.) to conceal their presence [34]. For exam-
ple, modification of the/bin/ls root-domain file can be
interpreted as anomalous activity indicating presence of a
rootkit [9]. However, the package updaters (e.g.,yum) may
also modify system programs including/bin/ls, a benign
event. Differentiating between these two anomalous activities
requires context information and correlation of bothprocess
subsystem andfilesystemactivity. This knowledge must be
combined with a mechanism that allows for exceptions when
dealing with “apparently anomalous” events.

The justification of Principle A is straightforward and is il-
lustrated by both the above examples. Detecting the exploitin
Example 2.1 requires time-sensitive correlation of event data
across two processes, while Example 2.2 necessitates corre-
lation across events in the process subsystem (exec of yum)
against a filesystem anomalous event (write of /bin/ls).

Principle B is probably more controversial; its justifica-
tion involves considerations of both importance and feasibil-
ity. First, root intrusions are much more important than user-
level intrusions—root intrusions can cause unlimited damage,
while user-level intrusions cannot affect other users. Sec-
ond, root intrusions are more feasible to detect than user-level
intrusions, because root behavior is more constrained (and
hence more predictable) than user behavior;1 for instance, a
root process modifying/bin/ls is in itself suspicious, un-
like a user process modifying a user file. Further, the difficulty
of accurately modeling “normal” user behavior could easily
lead to an unacceptable false positive rate [2].

In addition, focusing on root intrusions is more feasible
from the standpoint of efficiency in two respects – we reduce
the analysis overhead of user-level events2 and more impor-
tantly, we substantially reduce signature-matching overhead
by eliminating signatures corresponding to the large popula-
tion of user-level exploits.

Justification of Principle C relies on the observation that
root domain intrusions can be detected in two distinct ways:
(1) by observing activity that exploits known vulnerabilities to
penetrate root protections, and (2) by simply observing mis-
behavior in root processes, even if the cause of the misbehav-
ior is unknown. These two approaches are complementary:
penetration detection is less prone to false positives, since it
relies on specific signatures, while misbehavior detectionis
less prone to false negatives, since it can be effective even
against intrusions that exploit unknown or unavoidable vul-
nerabilities, such as compromised root passwords. A novelty
in Rootsense post-intrusion misbehavior detection lies inthe

1This detection domain can be potentially expanded to include “non-
human”, privileged user accounts (e.g., apache, sshd, mailman, etc.) with
constrained behaviors that can be easily modeled.

2To respond to privilege-escalating penetration attacks, however, some
user-event analysis is still needed.
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ability to specify exceptions that help reduce false positives to
address situations such as in Example 2.2.

Finally, justification of Principle D primarily harbors on
practical usability of the intrusion prevention system. In-
formation about and control over the response time distri-
bution of foreground task response times can help the sys-
tem administrator evaluate the suitability of such a solution
in her current environment. The ability to trade-off average
response-time for jitter (and vice-versa) is built into thede-
sign of Rootsense; this ability we believe is valuable in adapt-
ing Rootsense behavior in varied environments, such as a
jitter-sensitive desktop environment or a throughput-sensitive
server environment.

2.2 System Architecture

Figure 1. Rootsense system architecture.

As illustrated in Figure 1, Rootsense uses a layered archi-
tecture composed of five distinct layers. TheMonitored Sub-
systemsform the lowest layer and encapsulate the four main
subsystems—Process, File System, Memory, and Network—
that together compose the holistic view of the system. The
Sensors at Touchpointsprovide an abstraction layer on top of
the detailed sensing mechanisms incorporated inside the mon-
itored subsystems. TheSyscall Sensorintercepts selected sys-
tem calls as well as other kernel events along with associated
data and forwards them for processing; third-party sensorscan
also be plugged into this layer (e.g., Snort events or a simple
sensor for network bandwidth usage). TheMonitoring Mod-
ulesperform aggregation, filtering, and escalation functions
on intercepted events before analysis.

The next layer is composed ofAnalyzing Modulesthat
use input from the monitoring modules and theKnowledge
Sourcesto analyze the current state of the system. The fol-
lowing databases comprise the Knowledge Sources: (i)Mali-
cious Activity Signatures, (ii) Benign Activity Signatures, and
(iii) Anomalous Event Signatures. We describe these concepts
in detail in Section 3. Finally, in the topmost layer of this ar-
chitecture is theResponse Mechanism, which acts to stop an
ongoing “detected” intrusion attempt and notifies the system
administrator.

In the current implementation of Rootsense, thetouch-
point sensorsand theresponse mechanismreside in kernel
space, while the remaining layers are implemented in user

space within a Rootsense user-space daemon calledRoot-
sensed. This separation ensures that the resource-heavymon-
itoring andanalysismodules do not consume scarce kernel
space resources. However, this separation complicates time-
liness of intrusion response and interactivity control of fore-
ground tasks; we address these detail in Section 4.2.

3 Concepts and Terminology
In this section, we introduce the basic concepts in Root-

sense, including specific terminology that we shall use in the
rest of the paper.

Subsystem Sample events

Process create process, process exit, load executable, sig-
nal process

Memory allocate memory, free memory, map memory, un-
map memory

Filesystem open file, make directory, change permis-
sions/owner, symlink, read/write

Network create socket, listen, connect, close

Table 1. Sample events for each subsystem.

Definition 3.1 An event is a significant occurrencewithin a
single subsystem and due to a single process. An event de-
scription comprises key pieces of information relating to the
occurrence including a unique event ID, its invocation time,
subsystem, process-id, user-id, effective user-id, event-type,
and additional arguments that further define the event, if any.

An event description in Rootsense is represented using the
following format:

[event ID] [timestamp] [subsystem] [pid] [uid]
[euid] [event type] [arguments]

Event IDs are incremented for each new observed event. Ta-
ble 1 lists example event types that may occur within each
subsystem.

521 1122538450 P 25631 0 0 exec /usr/bin/yum 22
643 1246434546 F 25631 0 0 write /bin/ls 211

Figure 2. An example of an activity

Definition 3.2 Anactivity is a sequence of events. The events
in an activity need not occur consecutively; other events can
be interleaved arbitrarily.

A useful activity monitored in Rootsense typically consists
of a sequence ofcorrelatedevents. An example of an activity
is shown in Figure 2. Notice that the event IDs are not se-
quential, i.e., this is a filtered sample of the observed system
events. This activity consists of two events:

Event 521. At time 1122538450, process with PID 25631
which is running with both real and effective UID of root
(0) invokes aProcesssubsystemExec event to load the
/usr/bin/yum executable, and

Event 643. At time 1246344546, the above process (same
PID), causes afilesystemevent of typeWrite; the file written
to is/bin/ls.
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Notation Description
lower-case letter Variable
upper-case letter Predefined Set
:X Member of X
!(E) Not E
* Don’t-care

Table 2. Notations in signature specification.

<begin signature>
<extern UpdateSet:U>
<extern ProtectedSet:P>
P p u 0 exec :U * *
F p u 0 write :P * *
<end signature>

Figure 3. An activity signature corresponding for the
specific activity in Figure 2.

Definition 3.3 An event signatureis a generic event which
does not include timestamp information and allows vari-
ables and wildcards (don’t-cares) in various event description
fields.

In other words, an event signature is not a system occur-
rence but is used to represent a class of actual system events,
allowing for system variants such as their time of occurrence,
associated process ID, etc. Table 2 lists the notations for vari-
ables and wild-cards that are used in Rootsense for specifying
event signatures. An example of an event signature is shown
below:

P p u 0 exec :U * *

The above event-signature represents the class of actual events
which occur in theprocesssubsystem (P), caused by a process
with effective user ID (EUID) root (0), with the event-type
exec, and wherein the executable loaded by exec is a member
of the externally-specified setU of executables. The process
ID (p) and the user ID (u) are specified as variables, and the
arguments of exec are “don’t-cares”. We eliminate the event
ID and timestamp for brevity of the event signatures.

Definition 3.4 An activity signature is a sequence of event
signatures and describes classes of activities.

Figure 3 is an activity signature that captures the behav-
ior of the activity described earlier in Figure 2. The activity
signature first specifies that there are two externally defined
sets,U andP, that are used in the activity signature. Next, the
main signature body is specified and it consists of two event
signatures:

Event Signature 1requires that a matching event be apro-
cesssubsystemexecevent, invoked by a process with EUID
0 and executable loaded is an element of the UpdateSet,U.
The remaining arguments to exec are “don’t-cares”. The
process ID (p) and the user ID (u) are specified as variables,
implying that although they are not specified, their values
are significant connecting information for subsequentevents
that contribute to anactivity signaturematch.

Event Signature 2requires a matching event to be afilesys-
tem write event to a file in the ProtectedSetP. The PID

(p) and the UID (u) must exactly match those of the event
matching event signature 1. The remaining arguments are
“don’t-cares”.
A subtlety in this signature is that we want thesamepro-

cess p to participate in both events. But it is conceivable that
the process with PID p might exit and that another process
with the same PID p could later be created; our signature
matching would not want to match this signature in this case.
Our implementation deals with this by aborting the matching
of any activity signatures waiting for an event involving a pro-
cess with PID p if that process exits.

Rootsense uses three kinds of signatures within its pene-
tration and misbehavior detectors.Malicious activity signa-
turesare intended to capture the behavior of a system while a
vulnerability is being exploited, allowing the detection of in-
trusions “at entry”.Anomalous event signaturesdescribe sin-
gle root events that are apparently malicious; these are used
to detect intrusions “post entry”. An example is a file in the
/bin/* ProtectedSet being written to. Finally,benign activ-
ity signaturesare intended to describe scenarios in which ap-
parently malicious events are actually innocent. (Example2.2
describes such a scenario.) As indicated in Figure 1, Root-
sense uses three databases, one with each of the above kinds
of signatures. We explain how Rootsense uses these databases
to detect intrusions next.

4 Intrusion Detection and Response
In this section, we describe the dual approach to intrusion

detection in Rootsense, addressing the challenges associated
with maintaining and updating the signatures databases. We
follow this with a description of the real-time intrusion re-
sponse mechanism and also describe how a system adminis-
trator can control Rootsense overhead to better match system
end-goals.

4.1 Dual Detection in Rootsense

Rootsense employs a dual approach to intrusion detection,
using both aroot penetration detectoras well as aroot mis-
behavior detector. The penetration detector looks for activi-
ties that exploit system vulnerabilities to penetrate the security
perimeter, while the misbehavior detector looks for activities
by root processes that constitute misbehavior. Both detection
engines run continuously, in parallel.

For monitoring the global system state continuously, each
detector independently monitors and correlates events rele-
vant to its operation. The detectors do not correlate and track
all activities; they use their associated signatures databases to
determine important activities that must be tracked. By ob-
serving the system activity in real time, each detector tracks
relevant transitions in the global system state to make infer-
ences about the system’s intrusion status.

Root Penetration Detector.
Theroot penetration detectormonitors all system activities to
monitor the “entry points” for intrusions, which are the sys-
tem vulnerabilities. It continuously monitors all events for
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matches with activity signatures in themalicious signatures
database; a match indicates an intrusion attempt and triggers
the response mechanism.

Although the root penetration detector is intended to detect
root domain intrusions only, it still must monitor all activities
by both users and root. This is required because several in-
trusions of the root domain are due to privilege escalating ex-
ploits (e.g., a TOCTTOU vulnerability exploit) wherein a user
process acts maliciously to obtain root privilege. To trackim-
portant activity in the system, the detection engine performs
the following actions for each event observed:

1. For each malicious activity signature whosefirst event
signature matches the observed event, create anactivity state
machinewhich will track the specific activity pattern. The
state machine is populated with event-specific information
to replace a subset of the variables in the activity signa-
ture. The state machine is then set towait-for an event that
matches thesecondevent signature in the activity signature.

2. For each state machine whosewait-for event signature
matches the observed event, transition the state machine to
the next state by setting it to wait-for an event that matches
thenextevent signature in the activity signature. Before do-
ing so, populate the state machine with event-specific infor-
mation to replace any additional variables it may have in-
stantiated. If a state machine terminates due to this event,
invoke the response mechanism

3. If the event belongs to theterminatingclass of events,
abort all of the affected state machines. For example, with a
state machine whosewait-for event is an event with process
with PID 16909, termination of that process will disable the
state machine.
The root penetration detector cannot detect all root pen-

etrations. Specifically, it cannot detect intrusions in thefol-
lowing three scenarios: (i) an unknown system vulnerability
is exploited, (ii) a known vulnerability is exploited, but it is
not possible to detect the exploit with within the framework
of Rootsense, and (iii) the intruder makes a “legal” entry into
the system, using a compromised root password. Detecting
such intrusions is the job of theroot misbehavior detector,
which we describe next.

Root Misbehavior Detector.
The root misbehavior detectormonitors only the activity
of processes with effective user ID (EUID) root to detect
privileged-mode misbehavior. It works by looking for single
events that match theanomalous event signaturesdatabase.
Recall that such events are apparently malicious. However,
there may be scenarios in which such events are actually in-
nocent; to recognize those situations, we must simultaneously
track matches within thebenign activity signaturesdatabase.
More precisely, the root misbehavior detector processes each
event that it observes by

• creating and/or advancing state machines (i.e., do steps 1
and 2 of theroot penetration detectoroperation) for any
of the benign activity signatures that can make progress

<begin signature>
<extern CheckSet:C>
<extern RemoveSet:R>
<extern CreationSet:L>
<extern UseSet:U>
F p u 0 :C f *
F !p * !0 :R f *
F !p * !0 :L f *
F p u 0 :U f *
<end signature>

Figure 4. An activity-signature corresponding to the
TOCTTOU serialization vulnerability class [21].

on this event, and

• simultaneously checking whether the event matches
some anomalous event signature.

If the event matches an anomalous event signature, then we
regard it as malicious and invoke the response mechanism
unlessat least one benign activity state machine was able to
make progress on the event, in which case we judge the event
to be benign.

One might wonder about a situation in which a benign
activity signature ispartially matched, but never completed.
Might this cause an anomalous event to be wrongly judged
benign? We actually believe that this situation will never
arise, because we conjecture that it suffices to use benign ac-
tivity signatures containing justoneanomalous event signa-
ture, which always occurslast. If this is so, then whenever a
benign activity signature “salvages” an apparently malicious
event, that actually completes the match of the benign activity
signature3.

Signatures Databases.
One of the key challenges in Rootsense is the generation and
continuous updating of the signatures databases. To make the
task of signature specification more efficient and practical, our
approach buildsgenericclasses of malicious, anomalous, and
benign activity. To keep the signature count tractable, we clas-
sify both subjects as well as objects using the set concept to
aggregate specific vulnerabilities into classes. Set information
associated with an activity signature is specified asexternal
information that can potentially be shared by several activity
signatures.

The current Rootsense prototype consists of hand-coded
signature sets for modeling malicious activity. To obtain ma-
licious activity-signatures, we started with the combinedfind-
ings of classification proposals for software vulnerabilities by
Neumann [24], Landwehr et al. [21], and Bishop [4]. We ana-
lyzed each vulnerability class to determine if generic exploits
could be specified independent of context and associated data.
The identified exploits were then encoded into signatures in-
terpreted by Rootsense. For instance, a generic exploit sig-
nature for the serialization TOCTTOU vulnerability (as clas-
sified in [21]) is specified in Figure 4. Set specification is
borrowed from the recent work on understanding TOCTTOU
vulnerabilities in file systems by Wei et al. [36]

3Note that this conjecture thus far holds true for all the benign activity
signatures used in the current Rootsense prototype.
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The anomalous event signatures database is a collection of
event signatures for EUID root processes, each of which by
itself constitutes a potential anomaly in root behavior. These
event signatures are specified manually, and include events
such as a process with effective UID root writing to /bin/* or
exec’ing a shell.

An example of a benign activity signature was introduced
earlier in Figure 3. While these are manually specified in our
prototype, in the future, however, we envision obtaining this
class of activity signatures automatically. This can be accom-
plished by first running the system in a protected environment
guaranteed to be free of malicious activity (similar to the tech-
niques used in studies such as [10] for learning normal pro-
gram behavior) and monitoring for anomalous events. An au-
tomatic process for determining correlated events to form the
activity and another process for deriving a generic signature
that considers activity invariants might then be used.

Efficient Signature Matching in Rootsense.
In Rootsense, the events are analyzed in parallel by theRoot
Misbehavior Detectorand theRoot Penetration Detector. The
detection engines employ the following hash-table data struc-
tures to speedup the pattern matching process: (i) asigna-
tures hash-table, for fast look-up ofsignatures(value) whose
first events conform to the<subsystem,event-type> (key) of
the observed event, (ii) astate machines hash-table, for fast
look-up ofstate machines(value) whose wait-for events con-
form to the<subsystem,event-type> (key) of the observed
event, and (iii) ananomalous event signatures hash-table,
for fast look-up ofevent signatures(value) conforming to the
<subsystem,event-type> (key) of the observed event. The ter-
mination status of the state machine determines the state of
the system and whether or not the response mechanism is in-
voked. Due to space constraints, further details on implemen-
tation optimizations is provided in an extended version of this
paper [27].

4.2 Intrusion Response

Timely response to intrusion attempts, before they can
perpetrate damage, is necessary to ensure system security.
Timely response in Rootsense is ensured by analyzing each
system call request, before the actual system call is invoked.
Doing so naively, however, can introduce unnecessary con-
text switching between the Rootsense kernel space (i.e., sens-
ing/response) and user space (i.e., monitoring/analysis)com-
ponents. Consequently, a naive implementation can incur an
arbitrary amount of system overhead.

Timeliness of Response.
Figure 5 depicts the sensing and response mechanisms in
Rootsense, including the interactions between the kernel and
user space components. The Rootsense kernel space com-
ponents (sensing and response) interpose between the system
call interface and the actual system call implementation.

When an application invokes a system call, this system call
event is assigned a uniqueevent IDand buffered in a circu-
lar kernel event bufferfor intrusion analysis; the process is
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Figure 5. Rootsense kernel-space sensing/response
and userland interactions.

put to sleep in theprocess wait queue. The Rootsense mon-
itoring component is implemented as ag event readerwhich
consumes from the event buffer with ag event granularity.
The g events are then analyzed, followed by consuming of
the nextg events from the kernel event buffer. (More on
this shortly). Rootsense’s intrusion response mechanism is
invoked each time the analyzer concludes that a requested sys-
tem event is potentially malicious. The analyzer notifies the
response mechanism the associatedevent IDof the potentially
malicious event, which is used to wake up the corresponding
process from the process wait queue. This process is then ei-
therterminatedor its system call request is denied, depending
on the administrator-specified policy for handling suspected
malicious events, and the system administrator is notified.Fi-
nally, each time the user space component consumes a new
set ofg events, processes associated with the previousg event
IDs from the process wait queue are woken up and allowed to
continue executing their respective system calls, since those
events are implicitly identified as non-malicious by the re-
sponse mechanism.

Controlling Overhead Characteristics.
Intrusion detection and prevention systems necessarily intro-
duce system overhead because they must analyze system ac-
tivity and such analysis requires system resources. While
optimized implementations can reduce the absolute value of
such overhead, the characteristics of such overhead are often
hard to control. The characteristics of system overhead can
be captured by the distribution of foreground task response
times, which can be succinctly represented byaverageand
standard deviationvalues. While the average value dictates
overall system interactivity, the standard deviation (i.e., vari-
ability in response times) dictates user-perceived jitter. In
some interactive systems, minimizing jitter may be as impor-
tant as improving average interactive performance.

Intrusion analysis using aG event granularity was a design
choice in Rootsense to control the number of context switches
between user and kernel space as well as the context switches
between the Rootsense user space and the system foreground
tasks (i.e. applications). The value ofG is a control parameter
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Vulnerability Symptom Description Exploit-based Anomaly-based Rootsense

bzip2 [30] bzip2 chmod, permissions, race condition − + ⊖ + − +

execve [37] execve/ptrace, race condition − + ⊖ + − +

tar [29] GNU tar hostile destination path − + ⊖ + − +

tOrnkit [9] Malicious modification of/bin/ls ⊖ + − + − +

X.org [31] Xorg X window server local privilege escalation ⊖ + − + − +

N/A Benign modification of/bin/ls − + −⊕ − +

N/A Benign /bin/sh exec by root/bin/bash process − + −⊕ − +

Table 3. Comparing Rootsense accuracy with exploit-based a nd anomaly-based detectors.

that a system administrator can use to trade-off average-case
interactive performance with jitter. IncreasingG implies that
the Rootsense user space process can analyze a larger num-
ber of events before issuing a system call to consume subse-
quent events (i.e., requiring a user-kernel context switch). It
also implies that foreground tasks have an increased chanceof
waiting after, rather than waiting bothbeforeandafter, they
enqueue their respective events, thereby reducing context-
switch overhead introduced into foreground workload.4 Thus,
a larger value ofG improves interactivity, but also increases
jitter. Rootsense exports tunability ofG to the system admin-
istrator who can observe as well as control this trade-off based
on the needs of her system. For instance, the administrator at
a data-center hosting web-services may choose to exclusively
prioritize average-case response time, while a system admin-
istrator for an end-user system may choose to prioritize jitter
reduction to keep user experience acceptable. We analyze this
trade-off in detail in the evaluation section.

5 Evaluation
We deployed Rootsense on an Intel x86 2GHz machine

with 512MB of memory, running GNU/Linux with a Fedora
Core 5 distribution and 2.6.15.6 kernel.5 The kernel com-
ponent overwrites thesys call table entries for interposi-
tion, and exports events via a/proc extension. Rootsense
was evaluated for both accuracy and performance, as we shall
describe next.

Rootsense Accuracy.To evaluate accuracy, we used a un-
patched Fedora Core 5 distribution as a testbed, containinga
few root vulnerabilities. We installed additional vulnerable
root binaries to complete the testbed. Next, exploits corre-
sponding to these vulnerabilities were carried out to determine
the Rootsense response. In addition, we simulated apparently
anomalous behaviors by benign processes.

The objective of our evaluation was not to evaluate de-
tection completeness, but rather to demonstrate the scope of
Rootsense’s capability to distinguish between malicious and
non-malicious activity. It is indeed infeasible to evaluate com-
pleteness, since the duel between intruders and intrusion pre-

4The size of the kernel event buffer does not impact overhead character-
istics, as long as its value is greater thanG. This can be intuitively reasoned
by considering that in steady state, when the rate of event analysis is greater
than the rate of event generation, process wait events are controlled by event
consumption behavior which is independent of kernel event buffer size. We
validated this intuition experimentally and report results in Section 5.

5The only exception was theexecve/ptrace exploit for which we
used a 2.2 kernel.

vention systems is necessarily never-ending. Consequently,
we restrict this evaluation to merely contrasting the behavior
of Rootsense in comparison with generic exploit-based and
anomaly-based systems alone.

Table 3 presents a comparative evaluation of exploit-based,
anomaly-based, and Rootsense detection accuracy. Accu-
racy is represented by true (-/+) as well as false (⊖/⊕) pos-
itives/negatives, respectively. For brevity, we only elaborate
three specific scenarios from Table 3, thebzip2 race attack,
the theXorg local privilege escalation, and the benign modi-
fication of/bin/ls.

Thebzip2 race attack [30] has a clearly defined exploit-
signature, requiring the attacking process to interpose an
<unlink,link> pair betweenopen andchown operations
of bzip2. Both the exploit-based detector and Rootsense are
successful in preventing this attack. However, since this at-
tack does not involve any anomalous behavior by thebzip2

process, the anomaly-based detector makes a false negative
decision. TheXorg privilege escalating attack exploits a
buffer overflow. It is well-known that this class of attack
cannot be detected “at entry” without architectural changes
or binary modification; consequently, exploit-based detectors
make a false negative decision. However, post-intrusion, this
attackexecs a shell, inheriting the privilege ofXorg (i.e.,
root). An anomaly-based detector which tracks shell exec’ing
behavior (including Rootsense) can detect and prevent this
immediately after the intrusion. Finally, the benign modifica-
tion of the protected binary/bin/ls by yum results in false
positive decision by the anomaly-based system, but Root-
sense correctly identifies the activity as benign. This capabil-
ity of coding exceptions to anomalous behavior in Rootsense
is a unique one which enables combining exploit-based and
anomaly-based detection without sacrificing accuracy.

Rootsense Performance. In evaluating Rootsense perfor-
mance, we focused on three aspects: (a) system overhead, (b)
impact and control over foreground response time distribu-
tion, and (c) effect of knowledge base size. Unless otherwise
mentioned, the knowledge base contained approximately ten
each of malicious activity signatures, benign activity signa-
tures, anomalous event signatures, and set definitions.

First, to evaluate system overhead, we ran several bench-
marks on three different system configurations: a vanilla sys-
tem, a system with Rootsense kernel space component but
a dummy user space component (i.e., no event correlation
and analysis), and Rootsense (everything enabled). For each
benchmark, we present a brief description next along with the
load it generates by indicating its measured event generation
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rate in parentheses (events per second). Lmbench (11575) is
a suit of diverse micro-benchmarks used to measure operat-
ing system performance; it issues various system calls at high
rate. UnixBench (784) is a set of micro-benchmarks which
range from system to arithmetic related. Iozone (2468) is an
I/O intensive benchmark with mostly disk reads and writes.
Bltk-dev (2910) and Bltk-office (1232) are end-user work-
loads that real world usage such as software development and
office related applications, respectively.
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Figure 6. Benchmark execution times.

Figure 6 depicts the normalized execution times of the
benchmarks with the three configurations. With Rootsense,
the execution time increases by as much as 4% with loads
such as UnixBench and Bltk-office, and as much as 45%
with the Lmbench (the highest load) benchmark. This indi-
cates that the system can slowdown as much as 45% for small
knowledge base sizes. For most benchmarks, the interceptor
component of Rootsense incurs a small amount of overhead;
the bulk of the overhead resides in the analysis phase.
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Figure 7. Event buffer entries over time with high
load (left) and low load (right).

To study controllability of response time distribution, we
used two system variables - the kernelevent buffer size(K)
and the user-spaceevent processing granularity(G). Figure 7
shows how the number of entries in the event buffer varies
over time in the case of high-load and low-load. With low
load (right figure), Rootsense was mostly waiting for events
to be produced and the event buffer always runs low. With
high load (left figure), foreground tasks must wait for events
to be processed by Rootsense before generating more events;
consequently, the event buffer is mostly close to full in the
steady state. We also studied the effect of varying the kernel
event buffer size and found that it did not affect the execution
time of any benchmark (we elaborate on this later in Figure 9.)

Next, we evaluated the impact to foreground response time
distribution by measuring theevent wait time distributionin-
troduced by the Rootsense kernel-space component. This dis-
tribution directly measures the impact of Rootsense to fore-
ground task performance, since it gets added to the vanilla
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Figure 8. Event wait time characteristics.

response time distribution of any foreground workload. Fig-
ure 8 depicts the effect of varying the event processing granu-
larity (G) on the event wait times when running the Lmbench
benchmark. (Y-axis is shown in logarithmic scale). For a low
value of G=16, most event wait times are distributed in the
10-20 ms range, with low variance. For a moderate G=128,
there is a larger variance with most values lying in the 0.1-0.2
ms range, but a few that require up to 100 ms. This implies
relatively larger jitter but lower average wait time. For a high
G=256, this variance is even larger but with even fewer out-
liers. Thus, exporting control over the value of G to the system
administrator enables fine-grained control over foreground re-
sponse time distribution.
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Figure 9. Event wait times: maximum for K=10000
(left) and average with varying K (right).

This phenomenon is further elaborated in Figure 9 where
we depict maximum event wait time as G is varied (left) and
show that average wait time is mostly independent of the event
buffer size (K). The maximum event wait times increase pro-
portionately to the event processing granularity, G, as canbe
seen in the left graph (note that X-axis uses logarithmic scale),
implying that a smaller G can reduce the jitter experienced
by foreground tasks, confirming earlier deductions. Another
noteworthy point, seen on the right grapth, is that smaller val-
ues of G can degrade average case performance almost expo-
nentially. Values of G above 500 work well for all values of
K.

Finally, to evaluate the impact of the size of the knowl-
edge base, we populated the knowledge-base by generating
random, but valid, event and activity signatures as required.
We chose an equal mix of ofmalicious activity, benign activ-
ity, andanomalous eventsignatures. Figure 10 depicts how
Lmbench execution time varies as thenumber of signatures
andstates-per-signatureare scaled up. There is a relatively
small increase in execution time overall – less than 15% rela-
tive to the 10 signature / 10 states-per-signature case. We can
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Figure 10. Lmbench execution time - varying the
knowledge base size.

also conclude that the overhead depends mostly on the abso-
lute number of signatures, rather than the states-per-signature.

6 Related Work
While there exists a large body of work in this space, we

only examine those closely related to Rootsense.

Specification/Policy Based Approaches. Early work by
Ko et al. [20] proposed specification-based detection that re-
lies on specifications of intended program behavior, allow-
ing the detection of unknown attacks. Systrace is a system
call policy enforcement framework for restricting the usage of
kernel services [26]. Minix3, a microkernel-based operating
system, also implements system call usage policies for (tra-
ditionally in-kernel) user-space Minix3 services [13]. Similar
high-level specifications for restricting program behavior are
used in [33]. Basically, manually specifying the behavior of
each program is immensely time-consuming. Moreover, cap-
turing all possible execution sequences in a multi-threaded,
multi-programmed environment is infeasible. Rootsense at-
tempts to address efficiency, effectiveness, and practicality
with generic signature-sets that model both vulnerabilityex-
ploits as well as misbehavior, completely bypassing applica-
tion behavior specification. Rootsense also provides the addi-
tional flexibility that policy exceptions can be made by speci-
fying appropriate benign activity signatures.

System Monitoring and Behavior Modeling. System call
interposition for system monitoring as well as modeling the
control flow of programs has been used widely since the early
work by Forrestet al. [10]. Sekaret al. [33] proposed intru-
sion prevention systems that model and enforce correct pro-
gram behavior through system call interception at program
run-time. In more recent work, Mutzet al. [23] propose mon-
itoring individual applications to derive normal behaviorin
terms of both the control flow of system calls and the data
flow in terms of the arguments supplied and return values ob-
tained. In Rootsense, we suggest monitoring of an entire sys-
tem (in un-compromised) state (rather than each application
individually) to derive benign activity signatures correspond-
ing to specific anomalous event signatures, to reduce false
positives. Gaoet al.[11] propose detecting compromised pro-
grams by comparing thebehavioral distanceof distinct imple-
mentations of the program on the same inputs. Bhatkaret al’s
data-flow modeling work [3] uses a similar approach. Giffin
et al. [12] also model a program’s behavior with additional

contextual information such as configuration files, command-
line arguments, and environment variables. Similar to the
above contributions, Rootsense uses control flow as well as
data-flow as a basis for detection. However, in contrast to
the application-specific nature of the above, Rootsense allows
capturing system-wide behavior of multiple interacting pro-
grams.

Exploit-Based Penetration Detection. Traditionally, intru-
sion detection techniques have detected either vulnerability-
exploiting penetration attacks or post-intrusion anomalous
program behavior. Porraset al. have proposed STAT [15],
a state transition analysis tool that models and detects pen-
etrations as a series of state changes. Theroot penetration
detector in Rootsense performs a similar function. In ad-
dition, Rootsense employs aroot misbehavior detectorfor
detecting post-intrusion anomalous behavior and proposesa
method whereby the detectors can improve each other. Recent
work on vulnerability-specific predicates proposed by Joshi
et al. [16] allows detecting the exploitation of specific known
vulnerabilities in software both in the past as well as present.
In contrast, the signatures used in Rootsense are generic, but
also provide for describing specific sets of objects that possess
similar characteristics.

Others. Data mining techniques, with the ability to discover
consistent and useful patterns of system features as well as
describing program and user behavior have been used for in-
trusion detection [22]. More recently, Wanget al. [35] argue
for holistic approaches that are able to correlate alerts dur-
ing a multi-step network intrusion. Anagnostakiset al. [1]
propose post-processing of anomalous behavior data with
shadow honeypots to reduce the false positive rate. We be-
lieve that signature generation and upkeep in Rootsense could
greatly benefit by using the techniques presented in these con-
tributions.

7 Conclusions and Future Work
Rootsense is a holistic approach for detecting and prevent-

ing host intrusion attempts in real-time. The four design prin-
ciples of Rootsense help towards making it an accurate, ef-
fective, and practical intrusion prevention solution. Notably,
Rootsense monitors global system state, employs dual detec-
tion of root domain intrusions, reducing false positives byal-
lowing anomaly exceptions, and allows for fine-grained con-
trol over the impact to the foreground task response-time dis-
tribution. Experiments with a Linux-based Rootsense im-
plementation, using several real-world exploits and a range
of end-host and server performance benchmarks, show that
Rootsense can accurately prevent a range of real-world attacks
with an acceptable level ofcontrollablesystem overhead.

We see several avenues for future work and describe two
that we are actively pursuing. First, the current prototypeuses
a simple language for specifying program behavior; activi-
ties involving more than one possible sequence of operations
are modeled using multiple signatures. We are exploring lan-
guage frameworks similar to STATL [8] that provide richer
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capability for modeling system activity. Second, when an in-
trusion is observed by the root misbehavior detector, the in-
trusion can be backtracked using the technique proposed by
King et al. [18] to obtain the penetration activity sequenceau-
tomatically. The challenge then is to derive a new malicious
activity signature from the specific activity automatically. The
root penetration detector would then use this new signatureto
monitor a previously unknown vulnerability class.
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