
Automatic Generation of User-Centric Multimedia Communication Services

Raju Rangaswami, S. Masoud Sadjadi, Nagarajan Prabakar, Yi Deng
Florida International University, 11200 SW 8th Street, Miami FL, USA 33199

traju, sadjadi, prabakar, deng}(,csfiu. edu

Abstract

Multimedia communication services today are
conceived, designed, and developed in isolation,
following a stovepipe approach. This has resulted in
a fragmented and incompatible set of technologies
and products. Building new communication services
requires a lengthy and costly development cycle,
which severely limits the pace of innovation. In this
paper, we address the fundamental problem of
automating the development of multimedia
communication services. We propose a new
paradigm for creating such services through
declarative specification and generation, rather than
through traditional design and development. Further,
the proposedparadigm pays special attention to how
the end-user specifies hislher communication needs,
an important requirement largely ignored in existing
approaches.

1. Introduction

In recent years, we have witnessed a great increase
in the number and variety of multimedia
communication services that have been developed
and deployed. Examples range from IP telephony,
instant messaging, video conferencing, multimedia
collaboration, to specialized communication
applications for telemedicine, disaster management,
and scientific collaboration. Given the ease of
creation of multimedia data, the continuous
improvements in network capacity and reliability, and
the varying and changing communication needs of
end-users, it is likely that the pace of innovation in
multimedia communication services will accelerate
further.

Although this trend presents a tremendous
opportunity for technological growth and for
improved end-user experience, current approaches for
developing multimedia communication services are
severely lacking in several respects. Multimedia
communication services today are conceived,

designed and developed following a stovepipe
(vertical) approach that has resulted in a fragmented
set of incompatible tools, technologies, and products.
In addition, there is limited separation between
application logic, the communication requirements,
underlying platform specifics, and the networking
protocols and infrastructure. The fragmented
development approach also poses a great challenge in
providing integrated multimedia communication
services. Users are forced to hop between tools to
satisfy their communication needs since the current
suite of multimedia communication tools are
technology-centric and largely ignore user-specific
communication needs.
We argue that the root causes for holding back

rapid innovation in multimedia communication
services are the lack of user-centric developmental
approaches, combined with stovepipe
implementations. In this paper, we investigate a new
paradigm for developing and deploying multimedia
communication services through specification and
automatic generation, rather than through traditional
design and development. This paradigm advocates a
model-driven process for conceiving and delivering
multimedia communication that is tailor-made to fit
user or application needs. Both general-purpose and
domain-specific communication needs are specified
in a model, called communication schema, which is
independent of device types and underlying network
configuration. This model is instantiated, negotiated,
synthesized, and executed, by a fully automated
process, to satisfy user communication needs. Using
this approach, multimedia communication services
can be built within hours or days, rather than months
or years as required by current development cycles.

The focus of this paper is the automatic generation
of user-centric multimedia communication services
from communication schema descriptions, which
allows changing the communication schema (or
requirements) as required by the user or application at
run-time. We refer to our automatic service generator
as the synthesis engine. In contrast to general-

1-4244-1338-61071$25.00OI2007 IEEE 324

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

purpose, model-driven application development [12],
here we focus on automatic synthesis for multimedia
communication. Our preliminary study suggests that
automated synthesis is largely feasible at least for the
functional aspects of the communication such as
coordination of communication features and
capabilities and media delivery.

The contributions of this paper are as follows:
1. We propose a new paradigm for developing

multimedia communication services through a
model-driven, specification and automatic
generation process.

2. We explore the scope of the automatic synthesis,
given a declarative specification of
communication needs, and show synthesis is
feasible for the domain of user-centric
communication services.

3. We present the automatic synthesis process,
including algorithms for communication schema
population, schema negotiation, and code
generation.

4. We evaluate our proposed approach using a
concrete case study of multimedia
communication used in telemedicine.

The rest of this paper is organized as follows.
Section 2 provides an overview of the
Communication Virtual Machine (CVM), a
comprehensive architecture that enables the proposed
paradigm Section 3 presents context for the
automated generation process. Section 4 details the
actual synthesis process as carried out by the
synthesis engine. In Section 5, we present an
evaluation of the proposed approach using a
prototype that we have developed. Section 6 presents
related research and we make concluding remarks in
Section 7.

2. Communication Virtual Machine

To better understand the role of Synthesis, we
present it in the context of the Communication Virtual
Machine (CVM [6]), a comprehensive architecture
for realizing communication services using the
paradigm of specification and automatic generation.

The design of CVM draws from the concepts of
model-driven engineering [12] and middleware-based
architecture [8, 11]. However, by focusing on the
communication domain only, CVM avoids the pitfalls
of many general-purpose methods and techniques for
model-driven engineering that are overreaching and
consequently less effective.

The model-driven communication mentioned
above is supported by the CVM layered architecture
(Figure 1). These layers are common to and shared by

different communication applications. This
architecture separates and encapsulates major
concerns of communication modeling, synthesis,
coordination, and the actual delivery of the
communication by the underlying network and
devices, into self-contained compartments with clear
interface and responsibility.

User/ Application (Initiator) User/ Application (Initiator)

Communication Network Communication Network

Figure. 1. Layered CVM architecture

The CVM architecture divides the major
communication tasks into four major levels of
abstraction, which correspond to the four key
components of CVM:
1. User Communication Interface (UCI), which

provides a language environment for users to
specify their communication requirements in the
form of a user communication schema or schema
instance

2. Synthesis Engine (SE), which is a suite of
algorithms to automatically synthesize a user
communication schema instance to an executable
form called communication control script;

3. User-centric Communication Middleware
(UCM), which executes the communication
control script to coordinate the delivery of
communication services to users, independent of
the underlying network configuration; and

4. Network Communication Broker (NCB), which
provides a network-independent API to UCM
and works with the underlying network protocols
to deliver the communication services.
The four layers collectively fulfill the promise of

CVM - that of generating communication
applications that are reconfigurable, adaptive, and
flexible based only on a high-level description of
communication requirements. In this paper we only
focus on the automated schema synthesis process that
transforms a declarative user communication schema
instance (provided by the UCI) to an imperative
control script (to be executed by the UCM).

325

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

3. The Context for Synthesis
In this section, we elaborate on two key concepts

that help realize the CVM architecture when used in
combination with the synthesis engine:
communication modeling language and user-centric
communication middleware. Note that these concepts
are discussed elsewhere in detail [4,6]; we outline
them here only for completeness.

3.1. Communication modeling language

The user-centric communication configuration and
attributes (communication schema instance) are
specified by the end user using a declarative
communication modeling language (CML), in a
graphical user environment [4]. This schema instance
is represented as a modified ER diagram [3]. The
UCI layer validates the user communication schema
instance for syntax and semantics correctness and
generates an XML specification of the
communication schema instance that is processed by
the synthesis engine. The UCI layer also processes
call backs from the synthesis engine and notifies the
user via the graphical user environment.

To illustrate the basic features of CML and the
realization of the layered approach of the CVM, we
present the following telemedicine communication
scenario that takes place in an operating room.
During a surgery of a patient Davis, Dr. Adams
(surgeon) initiates a communication session with Dr.
Brown (referring physician of Davis) and shares the
echocardiogram and MRI images of the patient by
interactively creating a communication schema
instance with a voice activated browser. During this
session, Dr. Brown wants to consult a cardiologist
and includes Dr. Conway in the schema. Dr. Adams
feeds a live video of the surgery to the

communication session and sends a structured vital
sign chart (text data). This facilitates the discussion
among all three and Dr. Adams performs successful
surgery with the agreement of Dr. Brown and the
consultation of Dr. Conway. Figure 2 presents a more
easily interpretable graphical view of the same. Both
views and corresponding interfaces for creation and
modification are currently implemented in our
prototype.

3.2. User-centric communication middleware

The UCM layer is responsible for executing the
communication control script generated by the
Synthesis Engine, for maintaining the states of user
level communication (as opposed to network level),
and for performing a safe state transition from a
current running script to an updated one. The current
state of a running script encapsulates its "program
counter", communication logs, data already
exchanged, data in transition, and so on. In other
words, UCM manages user communication sessions.

For the telemedicine communication scenario
introduced above, the script generated by the
synthesizer in response to the scenario initiated by Dr.
Adams is as follows:

createSession("ID");
addParty("ID", "Dr. Brown");
addMedia("ID", "image", <URL>);
addMedia("ID", "audio", <URL>);

where the <URL>'s are replaced by their resolved
values for the actual locations of the MRI imagery
and echocardiogram of the patient. The above script
is delivered to the UCM for execution and the actual
delivery of communication will eventually be
performed by the NCB layer.

Vital signs
(text data)

Figure 2. Graphical view of the schema instance (local view of Dr. Adams)

326

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

Finally, the UCM also provides feedback synthesis
engine. For instance, it reports the change of session
status to the SE so that necessary modifications can
be made to the schema.

4. Synthesis Engine
The synthesis engine (SE) automatically

transforms a declarative user communication schema
(specified using the CML) to an imperative
communication control script for deployment on the
UCM. The SE is defined by its algorithms, processes,
and techniques, which are used to generate the
communication control scripts. These control scripts
represent the network-independent control logic for
user-level communication sessions.

The key challenge for the SE is complete
automation, free of human intervention. With fully
automatic synthesis, communication services can be
generated from declarative user communication
schema instance. The key question then is whether
such an automated transformationlsynthesis is
possible when automated program generation from
declarative models for general-purpose systems is
still beyond our reach? We argue that for a limited
subset of communication applications, such
automation is feasible. Our preliminary study
suggests that automated synthesis is largely feasible
for the domain of user-centric multimedia
communication services at least for the functional
aspects of the communication such as coordination of
communication requirements and capabilities as well
as media delivery.

Given the role of the SE, we identify the following
tasks it must perform:
1. Probe the local environment to align needs with

communication capabilities and constraints and
also determine the need for negotiation.

2. Ensure the consistency of user communication
schema across participating end-points in a
communication session.

3. Perform schema synthesis to obtain the
communication control script to be deployed on
the user-centric communication middleware.
Of the above tasks, #1 and #2 may involve

handling exceptions and/or error conditions, which
may require user-feedback for resolution. The
rationale for designing the SE is to automate the
handling of such exceptions and to employ user
feedback only when unavoidable. We elaborate on
this aspect in Sections 4.2 and 4.3.

The design of the SE follows a three-stage
process: (1) schema population, during which the SE
probes the environment to determine and account for
local device communication capabilities and to

handle communication constraints, (2) schema
negotiation among participants of communication, to
determine the feasibility of the desired
communication and to ensure that all parties agree to
a consistent communication schema, and (3) schema
synthesis, during which the SE determines the needs
of communication and automatically transforms the
schema to a communication control script deployable
on a user-centric communication middleware.

Figure 3 depicts the architecture of the SE. The
arrows depict control flow. We use the generic
layered architecture proposed by Hill et al. [9] for the
TinyOS platform, for interfacing with the CML
(above) and UCM (below) layers. The accepts
interface allows invocation of the SE with a
communication schema instance. The SE interprets
the schema, determining if there is a need for schema
negotiation. If yes, the schema negotiation process is
started; else, the SE proceeds to synthesize the
schema instance, invoking the SE uses interface with
the synthesized communication control script. If
negotiation was invoked, the schema instance is first
negotiated with all communication end-points (as
specified in the schema instance) prior to synthesis.
Finally, the SE contains an event handler for external
negotiation requests, media progress/delivery
notifications, and exceptions. Such handling may
involve re-negotiation or user notification/feedback.

Figure 3. Synthesis Engine architecture.
Arrows depict control flow.

4.1. Schema population

The communication schema instance is a
description of user communication needs in terms of
the desired mode(s) of communication, remote
participants, as well as the specific information that
must be communicated. The first step in synthesizing
the desired communication is schema population,

327

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

which probes the local environment to align
communication needs with local device capabilities
and constraints. Schema population also the need to
negotiate communication parameters with remote
participants involved in the communication.

Schema population augments the communication
schema instance with the communication capabilities
of the local device such as the media types supported,
including specific format (or sub-type) information
(e.g., real-media format of type video). The capability
information is further enriched with type-specific
information such as resolution and frame-rate of
video or the bit-rate of audio supported. The
populated schema instance is then aligned with the
communication needs declared in the schema
instance, employing user-feedback to resolve
inconsistencies, if any. The populated schema
information is also used in the schema negotiation
stage (described next) to align the capabilities of all
participants involved in the communication.

The need for schema negotiation arises the first
time a communication is initiated and whenever there
is a modification to the current communication
schema instance. Specifically, it is required in the
following scenarios: (a) the initiator of a new
communication instantiates the corresponding schema
with remote participant information for the first time,
(b) a participant in an ongoing communication adds
or deletes a participant, and (c) a participant in an
ongoing communication adds/deletes a medium type
to the current schema.

Addition or deletion of a participant requires re-
negotiation to inform other participants of the change
as well as to accommodate the communication
capabilities of the new set of participants. Addition or
deletion of a medium type requires renegotiation to
conform to the capabilities and preferences of the
communicating participants. Note that the addition of
a new instance of a medium-type (e.g. sending audio-
file myfile.mp3) does not require renegotiation as this
addition will occur only after the "audio" medium-
type has been negotiated. No new capabilities are
required of the end participants.

4.2. Schema negotiation

Schema negotiation is required to determine the
feasibility of the desired communication and to
ensure the consistency of the communication schema
instance across the participating end-points in a user-
communication session. A communication schema
instance defined by user A may require a video
connection to user B. However, if B's device is not
capable of video communication, this communication
is not possible. Second, even if B's device were

capable of video communication, B herself may not
wish to engage in video communication with A at that
time. In a multi-party communication scenario
between A, B, and C, as initiated by A, C may not
wish to communicate with B. Negotiation of the
schema instance is required to understand the
operating environment for the communication as well
as to account for user preferences in communication.
Apart from negotiating the initial schema instance
before actual communication starts, schema re-
negotiation may also be required when a
communication session is in progress.
We now describe our approach for schema

negotiation used for negotiating the initial
communication schema instance as well as
performing renegotiation. Each participant in a
communication session has a local copy of the
schema instance, which they may change at runtime.
Any change to the schema made locally may require
an update to the local schema instances at all
participating end-points. If two users in a session are
simultaneously altering their schemas, concurrency
problems arise. The synthesis engine uses a modified
non-blocking three-phase commit protocol [15] for
schema synchronization.'

Each schema instance change initiates a
negotiation process, which proceeds in three distinct
phases. The final phase is the commit phase.

Phase 1: The initiator reports the requested
change to the schema instance to all remote
participants, including any new participants being
added, by sending the desired schema instance.

Phase II: The remote parties receive the changes
and append their own un-committed changes, if any,
to the schema instance. If this is the first time a
schema instance is being negotiated or in case new
participants are being added, the new participants
also declare their device capabilities in the schema
instance. Each remote participant sends this modified
schema instance to the initiator.

Phase III: After the initiator receives the responses
from all participants, all modifications from remote
participants are merged. If the new schema instance
differs from the original intent of the initiator, user
feedback is employed to authorize the
communication. The initiator then sends a final
confirmation, either in the form of a consistent
schema instance to be used for communication or to
cancel the session.

This option was favored over synchronization using a distributed
lock, which disallows parallel schema instance modification.
Further, distributed locking protocols are not robust to unstable
network connections.

328

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

Since multiple parties may initiate schema
negotiation simultaneously, negotiation requests from
remote parties are queued together with the locally
generated negotiation requests in a synchronized
negotiation request queue. These requests are
handled in order to ensure the consistency of the
append operations described above.

4.3. Schema synthesis

As shown in Figure 3, the schema synthesis
process is invoked either directly after schema
population or after negotiation. Irrespective of the
path taken, the schema synthesis process is the same.
Its purpose is to transform the declarative
communication schema instance into an imperative
communication control script, executable on the user-
centric communication middleware (see Section 3.2).
An XML schema for a communication session

defines all device types and device instances that are
part of the session, followed by the attributes of all
participants, and the association between participants
and device instances in the session. The synthesis
algorithm is as follows:
1. Obtain the difference between the current XML

schema instance and the previous (already
synthesized) schema instance. If no previous
schema instance exists, the entire new schema
instance is used as the difference.

2. Augment the difference XML with context
information including session ID and connection
ID for each new entity (e.g., new participant or
new medium instance), if absent. Now the
difference XML is composed of one or more
connection blocks.

3. Create an empty communication control script.
For each connection block in the difference XML,
(i) for each connection, if this connection did not
exist in the previous version of the schema, add to
the script a command to create a new session that
implements this connection, (ii) for each
participant, add to the script a command for
adding a participant to the corresponding session,
and (iii) for each medium instance, add to the
script a command for adding the medium instance
to the corresponding session.

4. Dispatch the communication control script to the
UCM layer.
The XML schema of any communication session

defines all devices, persons, and associations of the
session, in sequence as a tree. As the synthesis
algorithm processes the XML document as described
above, it is evident that code for all features of the
communication session will be generated.

4.4. Event handler

The synthesis engine architecture consists of an
event handler (Figure 3) for handling event
notifications from lower layers. These events can
either be system notifications, exceptions, or error
conditions. The event handler, dispatches the event to
the appropriate handler. Remote negotiation requests
are dispatched to the negotiation handler by adding
them to the synchronized negotiation request queue
(described in Section 4.2). Exception conditions such
as loss of communication with a specific participant
or temporary loss in network connectivity are
dispatched to the exception handler, which may either
initiate a re-negotiation request to handle the
exception or intimate the user via the UCI layer if the
exception cannot be handled internally due to schema
instance-specific constraints. Finally, communication
status updates such as the amount of progress in
media delivery are directly notified to the UCI layer.

The synthesis engine delivers four types of
notifications to the UCI layer. The notifyMediaStatus
and notifyParticipantStatus signals notify the UCI
about media delivery and participant connectivity.
The notifySIStatus signal notifies the UCI about
changes to the schema instance as a result of external
changes due to other participants such as addition of
new participant to an existing session or a change in
capabilities of an existing participant, etc. Finally, the
notifyException signals the UCI about exceptions
such as lost network connection, when it cannot be
handled internally.

5. Evaluation

To evaluate the effectiveness of the synthesis
engine, we incorporated a prototype of synthesis
engine into the CVM implementation [6]. The CVM
uses the Opera 8.5, a voice-enabled browser, that
enables creation, modification, and use of
communication schema instance using voice
commands. The synthesis engine prototype and the
lower layers are implemented in Java, deployed on
each node. JAIN SIP and Java Media Framework
(JMF) are used for control and data communications,
respectively. The current prototype propagates
communication errors to the user. A future extension
would be to add internal handling (obliviously to the
user) of a subset of exceptions.

5.1. Reduced development time

We now obtain an estimate of the reduction in
development time (and consequently, development
cost) using the automatic synthesis approach. To do
so, we used the open source Jabber chat application,

329

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

and also ourselves developed two Java-based
applications that provided person-to-person voice
call, and person-to-person video communication
service respectively. These implementations used
JMF and JAIN-SIP technologies. Table 2 summarizes
these applications, their code sizes in lines of code
(loc), their estimated development time using the
traditional approach, and also shows the approximate
specification and synthesis time for generating these
applications using the CVM prototype. To estimate
the development time by a trained programmer, we
used the study of Ferguson et al. [7], whose findings
reveal approximately 2500 lines of code per month
per programmer. These numbers demonstrate the
significance of our approach. Service creation time is
reduced by several orders of magnitude. Even if we
assume that only 25% of the code contributes to the
functional aspects of the software, improvements in
development time are still over two orders of
magnitude. Further, the automated process introduces
fewer bugs into the code-base, improving software
reliability. This underlines the importance of using
automated processes for synthesizing communication
applications rather than follow traditional design and
development.

5.2. Synthesis engine

To evaluate the time required for the actual
synthesis process, we deployed CVM to 7 machines
(desktops and laptops) in a combination of wired and
wireless local area network. Ten demo users were
created and used to represent 7 users communicating
with each other

To verify the correctness of the synchronization
protocol within the negotiation process, we initiated
simultaneous modifications to the schema instance at
different sites and verified the absence of any
inconsistencies in the schema instances at the various
end-points automatically over numerous iterations.

In addition, we instrumented the synthesis engine
to obtain the time required to perform schema
synthesis The plot in Figure 5 shows the average time
in seconds required for synthesis including the

negotiation/renegotiation stages when there are 2 to 7
participants present in a communication session. The
results of these experiments show that the synthesis
process scales linearly with the number of
participants, and the process itself is dominated by
the schema negotiation time. Higher numbers are not
depicted due to lack of experimental infrastructure;
however, we do not envision any issues limiting the
linear scaling for larger participant-sets. The
experiment demonstrates the practicality of schema
synthesis process with a distributed negotiation
algorithm; the negotiation time, which dominates the
overall synthesis time incurs an acceptable delay.

6

e)
'a

._

0

0a)

E

._4

a)

cn

5

4

3

2

0
0 1 2 3 4 5 6 7 8 9 10 11

Number of Participants

Figure 5: Average time required for
negotiation.

6. Related Work

The CVM approach shares some common traits
with the concept of model-driven engineering [2, 8,
12]. In contrast to general-purpose model-driven
development, automatic generation of communication
services is feasible in CVM for two reasons. First,
CVM is restricted to the scope of communication
services and does not bear the complexity of

Table 2. Reduced development time compared to traditional design and development.

Application Type Application loc Est. development time Spec/ Synthesis Time

Multi-user Text chat Jabber-1.4.2 5528 2 months <5 minutes

Person-to-person voice call Custom 9478 4 months < 5 minutes

Person-to-person video comm. Custom 16784 7 months < 5 minutes

330

1

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

generating general-purpose applications. The
complexity of communication logic can be carefully
regulated through the design of the schema modeling
language. Second, CVM utilizes communication
middleware components (e.g., those of ACE [14])
and server-side architectures (e.g., [1]) as building
blocks to generate communication applications. Such
existing components encapsulate procedures,
patterns, and algorithms governing basic
communication services (e.g., session establishment
of person-to-person voice call, transmission of an
image file, and real-time video streaming), which are
well understood. The role of CVM is limited to the
identification and composition of such components
[10].

Heckel and Voigt [8] describe how models in
UML are transformed into BPEL4WS using the
concept of pair grammars. We use a similar approach
in the UCI but our modeling language G-CML is far
more restrictive than UML and hence far more
manageable and its synthesis can be automated.

The work in [2] generates code from models using
tool suites for specific application domains that were
developed using a generic modeling environment.
Examples of other approaches to code generation
from higher-level specifications and languages
include domain-specific languages, generative
programming, generic programming, constraint
languages, feature-oriented development, and aspect-
oriented programming [5]. In our work, a generic SE
generates control scripts from a CML description of
communication logic, with restricted utility to the
communication domain.

7. Conclusions

We have presented a new paradigm for providing
user-centric multimedia communication services
through declarative specification and automatic
generation, rather than through design and
development. Specification is simplified by
identifying the key features of multimedia
communication from a user's perspective, which are
then captured in an XML-based communication
modeling language (CML) definition. Our prototype
further simplifies specification by providing a simple
graphical interface. Automatic generation is made
possible by a systematic three-step process of schema
population, schema negotiation, and schema
synthesis, combined with an event handler that allows
the automatic handling of system events, exceptions,

and error conditions. The proposed paradigm enables
the rapid creation of multimedia communication
services, a core necessity in sustaining and improving
the pace of innovation in this domain.

References
[1] G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J.

C. Ramming, "An Open Architecture for Next-
generation Telecommunication Services", ACM
Transactions on Internet Technology IV(1) pp:83-123,
February 2004.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J.
Sztipanovits, and S. Neema "Developing Applications
Using Model-Driven Design Environments", IEEE
Computer, pages 33 - 40, February 2006.

[3] P. P. Chen. "The Entity-Relationship Model: Toward a
Unified View of Data", ACM Trans. Database Syst. 1,
1, 9-36, 1976.

[4] P. J. Clarke, V. Hristidis, Y. Wang, N. Prabakar and Y.
Deng. "A Declarative Approach for Specifying User-
Centric Communication", Symposium on
Collaborative Technologies and Systems (CTS), 2006.

[5] K. Czarnecki and U. Eisenecker. "Generative
Programming", Addison Wesley, 2000.

[6] Y. Deng, M. Sadjadi, P. Clarke, C. Zhang, V. Hristidis,
R. Rangaswami, and N. Prabakar. "A Communication
Virtual Machine", IEEE COMPSAC, September 2006

[7] P. Ferguson, W. S. Humphrey, S. Khajenoori, S.
Macke, and A, "Matvya. Results of Applying the
Personal Software Process ", IEEE Computer 30(5) pp
24-3 1, May 1997.

[8] R. Heckel and H. Voigt. ,,Model-based Development
of Executable Business Processes for Web Services",
LNCS vol. 3098, pages 559-584. Springer, Jun. 2004.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister. "System Architecture Directions for Networked
Sensors", In ASPLOS, pp. 93-74, 2000.

[10] P. K. McKinley, M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. "Composing Adaptive Software", IEEE
Computer, pages 56-64, July 2004.

[11] D. C. Schmidt. "Middleware for Real-time and
Embedded Systems", Comm. of the ACM, 45(6), June
2002.

[12] D. C. Schmidt, "Model-Driven Enginering", IEEE
Computer, February 2006, 25-31.

[13] D. C. Schmidt. "Applying Patterns and Frameworks to
Develop Object-Oriented Communication Software",
volume 1 of Handbook of Programming Languages.
MacMillan Computer Publishing, 1997.

[14] D. C. Schmidt and S. D. Huston, "C++ Network
Programming: Mastering Complexity Using ACE and
Patterns", Addison-Wesley Longman, 2002.

[15] D. Skeen, "Nonblocking Commit Protocols", pages
133-142, SIGMOD 1981.

331

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:19 from IEEE Xplore. Restrictions apply.

