Interoperable Grid Scheduling Strategies

lvan Roderd*, Francec Guin, Julita Corbala#, Liana Fond,
and S. Masoud Sadjadi

aComputer Architecture Department, Technical University of CataloniaQ))Spain
bIBM T.J. Watson Research Center, Hawthorne, New York, USA

¢School of Computing and Information Sciences, Florida Internationavérsity (FIU),
Miami, Florida, USA

Abstract

The increasing demand for resources of the high performance compystems has led
to new forms of collaboration of distributed systems such as interoperableygtems
that contain and manage their own resources. While with a single domain ¢me st
important tasks is the selection of the most appropriate set of resourcepadeth a job,
in an interoperable grid environment this problem shifts to selecting the mpsi@mate
domain containing the requiring resources for the job. In the Latin AmericahiGtiative,
our model consists of multiple domains. Each domain has its domain broker, etesih
of scheduling on top of brokers can be called meta-brokering or beskection.

In this paper, we describe and evaluate our broker selection strategpesticular, we
present and evaluate the “bestBrokerRank” policy and two differanants. The first one
uses the resource information in aggregated forms as input, and thelsao®ralso uses
the brokers average bounded slowdown as a dynamic performance. fetnicour evalua-
tions performed with simulation tools, we firstly state that the interoperable githsio is
better compared to the independent brokering one in terms of execution tihtesaource
utilization. We also show that the proposed resource aggregation algositenssalable
for an interoperable grid environment. Moreover, we show that thegsrftrmance re-
sults are obtained with our coordinated policy. Therefore, we conclad@ldiegating part
of the scheduling responsibilities to the underlying scheduling layers premeferation
of concerns and is a good way to balance the performance among theriffeokers and
schedulers.

Key words: Grid Interoperability, Broker Selection, Coordinated Job Scheduling,
Resource Management, Resource Aggregation.

* Corresponding author.

Email addressed:r oder o@c. upc. edu (lvan Rodero)f gui m@c. upc. edu
(Francec Guim)j ul i @c. upc. edu (Julita Corbalan), | f ong@us. i bm com
(Liana Fong)sadj adi @s. fi u. edu (S. Masoud Sadjadi).

Preprint submitted to Elsevier 2 December 2008

1 Introduction

Job scheduling strategies have been extensively studidtkifast decades. The
increasing demand for resources of the High Performance Gtmgpo(HPC) sys-
tems has led to new forms of collaboration of distributedeys. In these new
distributed scenarios, such as grid systems, traditiasteduling techniques have
evolved into more complex and sophisticated approachesavdiber factors, such
as the heterogeneity of resources or geographical distripthave been taken into
account. Moreover, the need for interoperability amongediint grid systems has
become increased in the last few years. These grid systenssposed of several
Virtual Organizations (VO) [8], sharing resources thatrspae or more adminis-
tration domain(s); in turn each domain is represented bygoigeresource broker
which acts as the gateway to that domain. Finally, each adtration domain is
composed of a set of different resources that are managédtelyotvn job sched-
ulers (e.qg., PBS [32], Loadleveler [22], SGE [37], etc.) leatwhich may have its
own local policies.

While within a single domain one of the most important taskhésselection of the

most appropriate set of resources to dispatch a job, in anopérable grid com-
puting environment this problem shifts to selecting the thampropriate domain.

In fact, there are two possibilities: dispatching the jolthe local resources of the
originator domain or forwarding it to another domain. Sieeeh domain is typi-

cally managed by one broker, the task of scheduling on topalers can be called
meta-brokeringr broker selection

In [34], we presented a study of the requirements for the +theikering approach.
We also introduced the Latin American Grid (LA Grid) inifia [27], which pro-
vides a multi-party collaborative environment that we usedarry out our design
and experiment. Our grid model consists of multiple domdtah domain has its
domain broker and consists of a collection of local dispatshlocal schedulers, or
even meta-schedulers. A domain can be viewed as the metdtdoiy functional
entity of an institution. This aspect of our model intendgdflect the reality of
many organizations having multiple local schedulers féfedent lines of business
or for various levels of services.

In our grid model, all domains support a common data aggi@gatodel that en-

ables both the encapsulation and sharing of its resourcksceduling details. A
peer-to-peer (P2P) relationship between domain brokelygiamically established
upon the agreement between peers. Users of a domain woetdéhtvith that spe-

cific domain broker to access resources of collaborativenpes. In [2], we pre-

sented our protocol, and the functionality results. Othératives have been pro-
posed for interoperating meta-scheduling systems suchRdB (3], HPC-Europa

[38], Gridway [12], Koala [26], or Viola [36]. However, norad these approaches
provide a comprehensive solution to broker selection Esic

In [35], we presented the eNANOS architecture that considérthe scheduling
layers that can be involved in a job execution all the way ftbmlocal resource
scheduling to brokering the interoperable grid systems.Kéy contribution of this
paper is the coordination between the different sched@liniies. In this paper, we
use the coordination philosophy of eNANOS to develop brekésction strategies.

We describe and evaluate our broker selection strateghesbasic broker selec-
tion policy is thebestBrokerRankolicy that selects the best broker to submit a job
based on available resource information. In case the jotom the local domain,
the resource match maker uses this policy and returns aoijgte resource(s) to
execute the job. Otherwise, the resource match maker selachppropriate bro-
ker and returns the broker ID instead to which the job will beMarded. We also
present two different variants of this policy. The first orsesl the resource infor-
mation as input to ranking. The resource information is igragated forms; details
are presented in later sections. The second one is base@ @odhdination with
the underlying scheduling level using the brokers averagmbed slowdown as a
dynamic performance metric.

To evaluate the performance of our policies, we extendedlvie simulator [15]
to suit our need. The Alvio simulator allows the researchesvaluate from local
data centers to interoperable grid environments simuttasig. To do this, we have
extended the existing Alvio models to include the charasties of interoperable
grid scenarios.

Based on our evaluations, we firstly state that the interdybergrid scenario is

better compared to the independent brokering in terms ofivads execution per-
formance and resource utilization. We also show that theuregs aggregation al-
gorithms are scalable in terms of resource information, sind their aggregation
processing time are acceptable for an interoperable gvidoerment. As explained

later, although the aggregation algorithms lose resounfogrmation accuracy, we
show that the broker selection policies using aggregatsalree data do not penal-
ize the global performance significantly. Moreover, we shbat the best perfor-

mance results are obtained with the coordinated policygusia brokers average
bounded slowdown, in addition to aggregated resourcermdtion. In fact, we state
that delegating part of the scheduling responsibilitieh&underlying scheduling
layers is a good way to balance the performance among theretiff brokers and

schedulers. We note that it is more difficult to balance théopmance among the
grid domains when the number of domains increases. Finedly;onclude that the
interoperable grid scenario introduced in this paper cagaplith the requirements
of the infrastructure for LA Grid project.

The rest of the paper is organized as follows. Section 2 gamedated work. Sec-
tions 3 and 4 present the aggregation algorithms and theebss#ection policies,
respectively. Section 5 presents the evaluation methgglofection 6 presents the
results and, finally, section 7 concludes the paper and stgygeme directions for

future work.

2 Related Work

The need for interoperability among different grid systemdifferent resource do-
mains was observed and studied previously, and some pdjace addressed this
topic such as GRIP [3] and HPC-Europa SPA [38]. Lately, sont@tivies have
been started exploring grid interoperability with simiédnjectives but through dif-
ferent approaches. The two main approaches for grid inéeatyility are: 1) extend-
ing the existing schedulers to make them interoperable2anding a meta-broker
to represent each domain that can be connected to existiegsiers in its domain
without modifying them.

GridWay has incorporated the support for multiple gridstglast release [40].
In the meta-scheduling layers, GridWay instances can camuate and interact
through its grid gateways to access resources belonginigféoesht domains. The
basic idea is to forward user requests to another domain Wiesourrent one is
overloaded. GridWay is based on Globus, and they are expeting with GT4
and gLite3. The Koala grid scheduler [26] is another initgtwhich is focused on
data and processor co-allocation. It was designed to woilRAB-2 multi-cluster
and lately on DAS-3 and Grid5000. To inter-connect thesketint grid domains,
they use inter-broker communication between differentl&aastances. Their pol-
icy is to use resources from a remote domain only if the lonalie saturated. They
use delegated matchmaking [19] to obtain the matched ressdirom one of the
peer Koala instances. VIOLA MetaScheduling Service [36inplementing Grid
interoperability via WS-Agreement [36] and is providing albecation of multiple
resources based on reservation. Although the previousiigdauced projects aim
to enable communication among different broker instanibey, are very specific.
They only consider instances of the same brokering systeatrparform job for-
warding among brokers only in very limited circumstancesrdbver, the policies
for selecting the broker to forward a job are still prelimina

The Grid Scheduling Architecture Research Group (GSA-RG)pErOGrid Forum
(OGF) [31] is currently working on enabling the grid scheatuihteraction. They
are working to define a common protocol and interface amohgdiders enabling
inter-grid resource usage, using standard tools (JSDL, A®®$S-Agreement).
However, the group is paying more attention to agreemeritey proposed the
Scheduling Description Language (SDL) to allow specifmatf scheduling poli-
cies based on “broker scheduling objectives/capabilif@sch as time constraints,
job dependencies, scheduling objectives, preferenceg, €bllowing a similar
idea, in [24] [23] authors proposed a Broker Property Desiomd_anguage (BPDL)
to be used to perform the broker selection. A preliminarylle#on of this ap-
proach can be found in [25]. Finally, the Grid Interoperatidow Community

Group (GIN-CG) of the OGF [9] also addresses the problem af igteroperabil-
ity driving and verifying interoperation strategies. Thaye more focused on in-
frastructure with five sub-groups: information serviceb, jubmission, data move-
ment, authorization, and applications. Performance atich@ation strategies are
not the current focus.

There are different resource models for grid systems. Onleeomost well known
models is the GLUE schema [11], used to provide a uniform rijgsmn of re-
sources and to facilitate interoperation between gridastfuctures. It was con-
ceived as a collaboration effort focusing on interopergbiletween US and EU
related projects. It was promoted by DataTAG [28] (EU) anDGL [21] (US) and
received contributions from DataGrid [6], Globus [10], RR[83] and GriPhyn
[13]. More recently it was included in OGF within the GLUE Worg Group.
GLUE has been widely used, for example by Globus Monitoring Biscovery
Service (MDS). Another schema is provided by the UNICORE fraoré [7].

The grid interoperability initiatives are not numerous aodhe best of our knowl-
edge, all of them use a common resource model for interchgngformation be-
tween grid domains. In LA Grid, we use a resource model whschn extension
of the one used in IBM Tivoli Dynamic Workload Broker (TDWB) [39\e also
consider the resource model in the aggregated form. Theeggtjon of resource
information is a usual way to save data transfers. It has bheggly used in differ-
ent areas such as networking [18]. Grid resource managesystegms have used
aggregation mechanisms previously such as in Legion [gidreuses an object-
based information store organization through the “coitectobjects. Information
about multiple objects is aggregated into these colleabigjects. Moreover, grid
information systems such as MDS [30] or Ganglia [29] providsource data in
aggregated form. MDS combines arbitrary GRIS (Grid Resourfgrhation Ser-
vice) services to provide aggregate view that can be exgplorsearched. Ganglia
is based on a hierarchical design, relies on a multicasteblisten/announce pro-
tocol to monitor state within clusters and uses a tree oftgoxpoint connections
amongst representative cluster nodes to federate clustdraggregate their state.
However, the existing approaches using resource aggoedaive not been applied
in interoperable scenarios. Because of the peculiaritiisese approaches, we de-
cided to explore our own model and aggregation algorithmsrder to optimize
our scheduling strategies.

3 The Resource Aggregation Algorithms

In an interoperable grid system that can be composed oféiffelomains the re-
source model is crucial. Our solution uses a common resouomel among the
different domains. As we have commented in the related weckian, to the best
of our knowledge, the other related projects to grid interapility also use a com-
mon resource model for interchanging information betweedsg Actually, the
GSA-RG of the OGF that is currently working on establishingl gmteroperabil-
ity recommendations, pointed out this issue in its publickivay documents [31].
Moreover, since the interoperable grid systems can be ceegpof numerous do-
mains, the amount of resource information exchanged betivedkers is a scalabil-
ity issue. Therefore, we interchange the resource infaomat an aggregated form
to save the data transferred, the latency time, and commitimicbandwidth. The
problem of aggregated data is the loss of details related¢h sesource descrip-
tion. However, this summarized information in the aggreddbrm is sufficient for
the selection of the best broker to submit a job.

Our resource model is defined by a set of resources similah&r cesource mod-
els (such as GLUE schema [11]), but we also include relatipssbetween the
resources. Moreover, we use a subset of resources thatemilséful for the ag-
gregation algorithms. For example, we have @amputingSystemesource that
includes attributes such as the processor vendor, the nushiPUs or the CPU
load. The relationships are defined by a type (sucheteyenceor contain) and
they have the source resource type and name, and the taegefldre details of the
model can be found in [1] and in the IBM Tivoli Dynamic Worklo&doker [39].
In our current implementation, we only use a subset of theurees and attributes
of the model for simplicity. For example, we do not considams resources such
asLogical Systenor Agentand resource attributes such as MmorVersionor
SwapSpacef the OperatingSystemesource, because they are not required for the
aggregation algorithms. We also simplify the relationstupnsidering only theef-
erencetype and we have restricted the order of the related ressulrc@articular,
for defining a computer in aggregated form, it is sufficienindude “reference”
relationships betweeGomputingSystemesources an@peratingSysteranes, and
betweenComputingSystemesources anBileSystenones.

An example of a set of resources defined with the regular resauodel is shown
in listing 1. We will use the same set of resources for the eggtion algorithms
examples in listings 3 and 5. In all examples the resource dfphe relationships
are abbreviated for readability (i.e., “CS” instead of “CortipgSystem”).

In this section, we present two different aggregation algors. The first one}IM-
PLE) aggregates the resource data as much as possible lookimgkamum com-
pression for scalability; this algorithm loses more detiinformation. It has as
input a set of resources and relationships that define carguind three fixed

HOST 1
Resource: Type=“ComputingSystem”, Name="Gfost1”
Attrs: vendor=“Intel”
clockSpeed=“3,000"
CPUULil=“80" (20% avg)
totalCPUs="4"

Relationship:
Relationship:
HOST 2

Resource:

SourceType=“CS”, SourceName=‘Cstl”,
SourceType=“CS”, SourceName=‘C®stl”,

Type=“ComputingSystem”, Name="Gfost2”

Attrs: vendor=“Intel”
clockSpeed=“2,600"
CPUULiI=*100" (50% avg)
totalCPUs="2"

Relationship:
Relationship:
HOST 3

Resource:

SourceType=“CS”, SourceName=‘C®st2",
SourceType=“CS”, SourceName=‘C®st2",

Type=“ComputingSystem”, Name="Gfost3”

Attrs: vendor=“Intel”
clockSpeed=“2,800"
CPUULil="720" (90% avg)
totalCPUs="8"

Relationship:

Relationship:

HOST 4

Resource: Type=“ComputingSystem”, Name="Qfost4”

Attrs: vendor=“Intel”

clockSpeed=2,600"
CPUULil="1,280" (80% avg)
totalCPUs="16"

SourceType="“CS”,
SourceType="“CS”,

SourceName="‘"C®st 3",
SourceName="C®st3”,

Relationship:
Relationship:
HOST5

Resource:

SourceType=“CS”, SourceName=‘Cst4”,
SourceType=“CS”, SourceName=‘Cst4”,

Type=“ComputingSystem”, Name="Gfost5”

Attrs: vendor="AVD"
clockSpeed=“2,200"
CPUULiI=*160" (40% avg)
totalCPUs="4"

Relationship:

Relationship:

HOST 6

Resource: Type=“ComputingSystem”, Name="Gf0st6”

Attrs: vendor="AVD"

clockSpeed=2,400"
CPUULiI="800" (50% avg)
totalCPUs="16"

SourceType=“CS”, SourceName=‘C®st5",
SourceType=“CS”, SourceName=‘C®st5",

SourceName="‘"Cst6”,
SourceName="C®st6”,

Relationship:
Relationship:

SourceType="“CS”,
SourceType="“CS”,

Resource: Type=“OperatingSystem”, Name=‘@®st1l”

Attrs: OSName=“Linux”
RamSize=“8,000"
RamAuvailable="1,600" (2@&)

Resource: Type=“FileSystem”, Name="Hfost1”

Attrs: RootPath="/"
sizeMB="120,000"
freeMB=96,000" (8®b)
TargetType="0S”, TargetName="Ofostl”

TargetType=“FS”, TargetName="E&ostl”

Resource: Type=“OperatingSystem”, Name=:@®st2"
Attrs: OSName=“Linux”
RamSize=“4,000"
RamAvailable="400" (106)
Resource: Type=“FileSystem”, Name="H$ost2"
Attrs: RootPath="/"

sizeMB="100,000"

freeMB=60,000" (6®b)
TargetType="0S", TargetName="O8ost2”
TargetType=‘FS”, TargetName="E®ost2”

Resource: Type=“OperatingSystem”, Name=‘®®st3”
Attrs: OSName="AlIX"
RamSize="16,000"
RamAuvailable="3,200" (2@&b)
Resource: Type=“FileSystem”, Name="Hsost3"
Attrs: RootPath="/"

sizeMB=“120,000"

freeMB="48,000" (40%b)
TargetType="0S”, TargetName="Ofo0st3”
TargetType="FS”, TargetName="E&o0st3”

Resource: Type=“OperatingSystem”, Name=‘@®st4"
Attrs: OSName="AIX"
RamSize=“64,000"
RamAuvailable="6,400" (1)
Resource: Type=“FileSystem”, Name="HBost4"
Attrs: RootPath="/"
sizeMB=200,000"
freeMB=100,000" (506)
TargetType="0S”, TargetName="O8ost4”
TargetType="FS”, TargetName="E&ost4”

Resource: Type=“OperatingSystem”, Name=‘®®st5”
Attrs: OSName=“Linux”
RamSize=16,000"
RamAuvailable="9,600" (6@&b)
Resource: Type=“FileSystem”, Name="H$ost5"
Attrs: RootPath="/"

sizeMB="120,000"

freeMB="60,000" (5®b)
TargetType="0S", TargetName="O8ost5"
TargetType=‘FS”, TargetName="E&o0st5"

Resource: Type=“OperatingSystem”, Name=‘®®st6”
Attrs: OSName=“Linux”
RamSize=128,000"
RamAvailable=“32,000" (2%)
Resource: Type=“FileSystem”, Name="RSst6”
Attrs: RootPath="/"
sizeMB=“250,000"
freeMB="100,000" (400)
TargetType="0S”, TargetName="O80st6”
TargetType="FS”, TargetName="E®o0st6”

TOTAL : 18 resources and 12 relationships

Listing 1: Set of computers described in the regular resmorodel

attributes for aggregating the information: the procesgpe for ComputingSys-
temresource, the operating system type @peratingSystemesource, and the file
system type foFileSystenresource. As output it returns a set of resources in ag-
gregated form and a set of relationships that describe tigenal resources. The
pseudo-code of the algorithm is shown in listing 2. The eXemplisting 3 shows

the same resources of listing 1 but aggregated $iMPLEalgorithm.

ComputeAggregatedinfo computes the information that contains a resource in

FUNCTI ON: getAggregatedDataSIMPLE

IN:
CATEGORI ES = {ProcType OSType FSTypé
RESOURCES = {r1,...,rn}
RELS = {rely,...,reln}, Vi=0,...,m:relj={source, target} A source,target ¢ RESOURCES

QUT:

AGGR.RESOURCES = {ary,...,ar}
AGGRRELS = {arely,...,arelp}, Vi=0,...,p:areli={source, target}
A source, target € AGGRRESOURCES

BEG N:

FOR k = 1 TO CATEGORI ES. sizd) {
FOREACH r; € RESOURCES A cat egor y(rj) ==CATEGORI ESy {
ary = computeAggregatedinfo (ark, ri)
FOREACH relj € RELS A relj. source==r; {
AGGR.RELS. insert(ar,, relj.target) /= Avoiding repeated instances */

}
}
}
FOR i = 1 TO AGGRRELS. sizd) {
reli. t arget = findAggregatedResource (AGGR.RESOURCES, rel;. t ar get)

RETURN AGGR.RESOURCES, AGGRRELS

Listing 2: SIMPLE resource aggregation algorithm pseuddec

Resource: Type=“ComputingSystem”, Name="OSitel”

Attrs: ProcessorType{(Intel ,<count=4>)}"
ProcessingSpeed#{2600-3000,< count=4>,<total=11000>)}"
CPUUtilization="{(80-1280 < count=4>,<total=2180>)}"
NumOfProcessors{(2-16,<count=4>,<total=30>)}"

Resource: Type=‘ComputingSystem”, Name="@8D"

Attrs: ProcessorType{(AMD <count=2>)}"
ProcessingSpeed#{2200-2400,< count=2>,<total=4600>)}"
CPUUtilization="{(160-800,< count=2>,<total=960>)}"
NumOfProcessors<{(4—16,< count=2>,<total=20>)}"

Resource: Type=“OperatingSystem”, Name=“@S$nux”

Attrs: OperatingSystemTypeH{Linux,<count=4>)}"
TotalPhysicalMemory={(4000-128000 < count=4>,<total=156000>)}"
FreePhysicalMemory={(400—-32000 < count=4>,<total=43600>)}"

Resource: Type=“OperatingSystem”, Name="GQ$X"

Attrs: OperatingSystemTypeH{AIX,<count=2>)}"
TotalPhysicalMemory={(16000-64000,< count=2>,< total=80000>)}"
FreePhysicalMemory={(3200-6400,< count=2>,<total=9600>)}"

Resource: Type=“FileSystem”, Name=“E8nique”

Attrs: TotalStorageCapacity{(100000-250000< count=6>,<total=910000>)}"

FreeStorageCapacity$(48000-100000 < count=6>,<total=464000>)}"

Relationship: SourceType=“CS”, SourceName=‘d&tel”, TargetType="0S”, TargetName=“Q%inux”
Relationship: SourceType=“CS”, SourceName=‘0&tel”, TargetType="0OS", TargetName="‘QaIX"

Relationship: SourceType=“CS”, SourceName='88D", TargetType="0S", TargetName="OS.inux”
Relationship: SourceType=“CS”, SourceName=‘0&tel”, TargetType=“FS”, TargetName=“‘FSunique”
Relationship: SourceType=“CS”, SourceName="G8D", TargetType="FS”, TargetName="FSunique”

TOTAL : 5 resources and 5 relationships

Listing 3: Same set of computers with the “SIMPLE” algorithm

aggregated form. Examples are the number of resourcesahatideen aggregated
in the same categorggun), the minimum and maximum values, and the sum of
all values fotal). The information contained in an aggregated resource nfay d
fer depending on the kind of resource. More statistical ic®tcan be included

if it is required. FindAggregatedResourcereturns the aggregated resource that
corresponds to the given resource in the original form (the that matches the
aggregation criteria).

The second algorithnQATEGORIZED) tries to find a good balance between the
accuracy of the resource data and the scalability. In andib the input set of re-
sources, relationships and fixed categories, it also cerssitlfferent attributes and
threshold values. These attributes and thresholds defineategories inside the
fixed categories. The subcategories increase the accufraieg aggregated form.
Actually, although in the algorithm shown in listing 4 we ubeee different at-
tributes for subcategories, we can use more attributesthetidetail information
is sufficient. We can increase the level of detail by definirggerthreshold values.
Therefore, as we have commented previously, the main pemidsis algorithm is
to avoid the loss of important resource characteristicsraintaining the benefits
of aggregation. For example, when we select a broker thdaaomnan aggregated
resource ofntel processor vendor ar@dPULoadattribute of subcategotyOW, we
can be sure that some Intel-based computers with low CPU |dbdreravailable.

FUNCTI ON: getAggregatedDataCATEGORIZED
IN:

CATEGORI ES = {ProcType, OSType, FSType}

ATTRI BUTES {ACPULoad, %JsedMVEM %JsedDl SK}

THRESHOLDS = {LOW0. 33, MEDI UM=0. 66, HI GH=1.0}

RESOURCES = {r1,...,rn}

RELS = {rely,...,reln}, Vi=0,...,m:relj={source, target} A source,target € RESOURCES

QUT:

AGGR.RESOURCES = {ary,...,arx}
AGGRRELS = {arely,...,arelp}, Vi=0,...,p:arelj={source, target }
A source, target € AGGRRESOURCES

BEG N:

FOR k = 1 TO CATEGORI ES. sizd) {
FOREACH rj € RESOURCES A cat egor y(rj) ==CATEGORI ESy {
FOREACH atrj € ATTRI BUTES {
SW TCH getAttributeValue (atrj, ri, THRESHOLDS) {
case LOWN c=1
case MEDI UM c=2
case H Gt c=3
}
aryk-1)+c = computeAggregatedinfo (arzk 1)c, i)
FOREACH relj € RELS A relj. source==r; {
AGGRRELS. insert(ary, relj.target) /= Avoiding repeated instances x/

}
}

}
FOR i = 1 TO AGGRRELS. sizd)

relj. t arget = findAggregatedResource (AGGR RESOURCES, rel;. t ar get)
}

RETURN cleanVector (AGGR.RESOURCES), AGGRRELS

Listing 4: CATEGORIZED resource aggregation algorithm pseadde

GetAttributeValue returns the discrete value of an attribute given a set otthre
olds that define the discrete categoriékeanVector deletes the elements of a vec-
tor that are empty because there are not aggregated resarowesponding to
certain categories and thresholds valueésmputeAggregatedinfo and findAg-
gregatedResourcdunctions were explained previously.

The example of listing 5 shows the same resources of the texaqus examples
but using theCATEGORIZEDalgorithm. Although the information is not as accu-
rate as the regular model, the number of aggregated resoainckrelationships is
higher than the one obtained with tB&MPLEalgorithm. Therefore, the precision
of resource information is better in the CATEGORIZED algamthVoreover, the
level of accuracy can be improved by increasing the numbeatd#gories and/or
subcategories.

Resource: Type=“ComputingSystem”, Name="O$itel _LOW"

Attrs: ProcessorType{(Intel ,<count=1>)}"
ProcessingSpeed#${3000,< count=I> <total=3000>)}"
CPUUtilization="{(80,< count=I> <total=80>)}"
NumOfProcessors{(4,< count=I> <total=4>)}"

Resource: Type=“ComputingSystem”, Name=‘O%te|_MED"

Attrs: ProcessorType=(Intel ,<count=1>)}"
ProcessingSpeed${2600,< count=I><total=2600>)}"
CPUUtilization="{(100,< count=I><total=100>)}"
NumOfProcessors{(2,< count=I> <total=2>)}"

Resource: Type=“ComputingSystem”, Name="O%itel _HIGH"

Attrs: ProcessorTypesf(Intel ,<count=2>)}"

ProcessingSpeed#${2600-2800,< count=2>,<total=5400>)}"

CPUUtilization="{(720-1280,< count=2>,< total=2000>)}"

NumOfProcessors<(8-16,<count=2>,<total=24>)}"
Resource: Type=“ComputingSystem”, Name="@8D_MED"

Attrs: ProcessorTypes{(AMD <count=2>)}"
ProcessingSpeed${2200-2400 < count=2>,<total=4600>)}"
CPUUtilization="{(160-800,< count=2>,<total=960>)}"
NumOfProcessors(4-16,<count=2>,<total=20>)}"

Resource: Type=“OperatingSystem”, Name="Q$nux _LOW"

Attrs: OperatingSystemTypeF{Linux,<count=3>)}"
TotalPhysicalMemory={(4000-128000 < count=3>,<total=140000>)}"
FreePhysicalMemory={(400-32000 < count=3>,<total=34000>)}"

Resource: Type=“OperatingSystem”, Name="QSnux -MED"

Attrs: OperatingSystemTypeH{(Linux,<count=1>)}"

TotalPhysicalMemory={(16000,< count=I>,<total=16000>)}"
FreePhysicalMemory={(9600,< count=1>,<total=9600>)}"
Resource: Type=“OperatingSystem”, Name="@$X LOW"

Attrs: OperatingSystemTypeF{AIX, <count=2>)}"
TotalPhysicalMemory={(16000-64000 < count=2>,<total=80000>)}"
FreePhysicalMemory={(3200-6400,< count=2>,< total=9600>)}"

Resource: Type=“FileSystem”, Name="H8ED"

Attrs: TotalStorageCapacity{(100000-250000< count=5>,<total=790000>)}"

FreeStorageCapacity#(48000-100000 < count=5>,<total=368000>)}"
Resource: Type=“FileSystem”, Name="ESIGH"

Attrs: TotalStorageCapacity(120000< count=I><total=120000>)}"

FreeStorageCapacity$(96000,<count=I><total=96000>)}"
Relationship: SourceType=‘CS”, SourceName=‘G8tel_LOW", TargetType=“0S", TargetName=“Q3.inux_LOW"
Relationship: SourceType=‘CS”, SourceName=‘G8tel_MED", TargetType=“0S", TargetName=“Q3.inux_LOW"
Relationship: SourceType=‘CS”, SourceName=‘G&tel_HIGH", TargetType=“0OS”, TargetName=“QAIX -LOW"
Relationship: SourceType=“CS”, SourceName="88D_MED", TargetType="0S", TargetName="QS.inux_LOW"
Relationship: SourceType=“CS”, SourceName="88D_MED", TargetType="0S", TargetName="“QS.inux_MED”
Relationship: SourceType=“CS”, SourceName='‘G&tel _LOW", TargetType=“FS”, TargetName="FHIGH"
Relationship: SourceType=“CS”, SourceName="G&tel _MED", TargetType="FS”, TargetName="F8/ED"
Relationship: SourceType=“CS”, SourceName='‘G&tel _HIGH", TargetType=“FS”, TargetName="F8/ED"
Relationship: SourceType=“CS”, SourceName="88D_MED", TargetType=“FS", TargetName="FMED"
TOTAL : 9 resources and 9 relationships

Listing 5: Same set of computers with the “CATEGORIZED” algjom

10

4 The Broker Selection Policies

In this section, we present theestBrokerRank policy that selects the best bro-
ker to submit a job in an interoperable grid scenario. Inipaldr, given a set of
job requirements and the resource information from diffebzokers, it returns the
broker that matches optimally with these requirements. Y8edonsider the accu-
mulated rank value of a regular matching algorithm on theusses of each broker
domain. Then, we also incorporate additional considematsuch as promoting the
job originator domain or giving dynamic priorities to thdfdrent brokers depend-
ing on the performance that they are achieving.

The algorithm of this policy is described in the pseudo-cofilésting 6. The most
important input parameters are the job requirements anbrtiieers resources. Job
requirements are, for example, the processor vendorlfitel, AMD) or the oper-
ating system (i.el.inux, AIX). Moreover, our optimization function also considers
soft requirements (also known as recommendations) su¢teas¢commended per-
centage of free virtual memory. Eventually, we define a set@ghting factors to
be applied to different resource characteristics. Thednoblre also represented as
resources that have the containment relationships witluress such as computers.
They follow the resource model that was discussed in thaquis\section.

FUNCTI ON: bestBrokerRank
N

JR = {jrq,..., irm} job requirements

B = {by,...,bn} brokers

PRIORITIES = {p1,...,pn} priorities of brokers

RESOURCES = {res,...,res,}, Vi=0,...,n:res defines conputers nmanaged by broker b;
RELS = {rely,..., reln}, Vi=0,...,n:rel; defines rel ationshi ps between resources res;

FACTORS = {CpuSpeed_FACTOR, NunCpus_FACTOR, FreeMemFACTOR ...}
QUT:

Rank val ue
BEG N:

initialize (RANKS, B. sizd))
FOR i=1 TO B. siz€) {
| F matchRequirements (JR, RESOURCES;, RELS) {
RANKS; = computeBrokerRank (RESOURCES;, RELS;, FACTORS) * PRI ORI TI ES;

EELSE {
RANKS = -1
}
}

RETURN getMaxValuelndex(RANKS)

Listing 6: BestBrokerRank policy pseudo-code

Initialize creates a new vector of the given size and initializes itsnelds to

11

0. The RANKSvector is used to store the obtained rank values of each broke
The matchRequirementsfunction returndrue if the given job requirements are
matched by any of the given resources. When the job requirsmes not matched
by a set of resources in a broker domain, it is not considerdtei subsequent steps.
ThecomputeBrokerRank function returns the accumulation of the rank values ob-
tained from the requirements matching in each broker regodmternally, it uses
thecomputeResourceRafunction that, given a particular broker resource, returns
the rank obtained from its main attributes matching (i.eocPype, OSType, Proc-
Speed) with an impact factor. Finally, tgetMaxValuelndex function returns the
index of the given vector that contains its maximum valuausl fit returns the index

of the broker with the best rank relative to the job requiretae

After selecting a broker, the selection of the local resesiito dispatch the job is
the responsibility of the broker following the policiesasished under its domain.
However, we note that part of theestBrokerRankunction implementation can be
re-used to select the local resource(s) to dispatch thegohuse it computes the
rank values of the resources in the local domain.

We evaluate two different variants of thestBrokerRanlolicy. In the first one
(bestBrokerRank AGGR policy), the resources are defined in aggregated form.
We also implemented the two different resource aggregatigorithms, namely,
SIMPLEandCATEGORIZEDThe main differences between these two variants are
the input parameters and themputeResourceRafknction implementation. The
new resource input parameters are defined in listing 7 thddce RESOURCES
andRELSof listing 6. Since the resource data is expressed in aggeédarm, the
actual information may differ significantly from the aggaded form. For exam-
ple “NumOfProcessors=(1-4 count=15>,<total=31>)" that means 15 comput-
ers with a total of 31 CPUs having from 1 to 4 CPUs per comput#rerahan, for
example,'3 computers with single CPU, 10 computers with 2 CPUs, and two with
4 CPUs". Thus, when we consider the aggregated form the resourcemation

is significantly less accurate (see other examples in thewolg section). Conse-
guently, to compute the rank values from the aggregatedwiateake maximum
and minimum values contained in the resources for the regugnts and a combi-
nation of average values for refining the selection. Furtteee, since the resource
matching is performed at the broker level, the informatimsslcan result to a non-
optimal broker selection decisions. Therefore, the atgorimay unintentionally
decide to submit a job to a broker with insufficient resoursbgen another broker

IN:

AGGR.RESOURCES = {ary,..., arg}
AGCGR.RELS = {arely,..., arelp}, Vi=0,...,p:arel = {source, target }
A source, target € AGGRRESOURCES

Listing 7: Aggregated resources definition as input

12

is able to dispatch the job immediately.

The second varianbgéstBrokerRank_ SLOW policy) also uses the aggregated re-
source form but it coordinates with the brokering layer. &ntigular, it takes the
broker average slowdown metric as the main characteristibe matching opti-
mization function. We definéa broker average slowdown’as the mean of the
average bounded slowdown of its resources. The averageledstowdown of the
resources is computed from its finished jobs. Moreover, éseurce matching is
performed in a more relaxed manner. It means that the ahgobnsiders less job
requirements attributes in the matching process. For ebanipe selected domain
must contain at least a machine or a set of machines with énG&gJs to allocate
the job but it is not mandatory to have these CPUs availableeagiwbmission mo-
ment. Figure 1 depicts the bestBrokerRa8lkOW policy in a simplified scenario.

M]N (AVG(BSLD), - priority,)

[; Job requirements bestBrokerRank_SLOW

—

AVG(BSLD)
+ priority
AVG(BSLD) VG(BSLD)
+ priority + prlonty

@ —> Broker1 4—% Broker 2 4—" Broker N

User z BSLD(resource;)
@ 3 Ranks AV(I(BSLD)
" #resources
m DOMAIN 2 i DOMAIN N E

gy Vg

Resources Resources Resources

Fig. 1. BestBrokerRansLOW policy schema

The bestBrokerRankLOW policy uses th€EATEGORIZEDesource aggregation
algorithm because, as we will show in later sections, tlgerdhm provides a good
tradeoff between scalability and resource informatiorueacy. This policy can be
seen as a subset bestBrokerR&WGR but giving more priority to the resources
which are achieving better performance. Actually, this veagy to balance the per-
formance among the different brokers. Since the brokerdbown is the main at-
tribute for matching the brokers rather than the resouricenmation, it gives more
priority to the underlying scheduling levels (local quepiand resource manage-
ment systems) in the job scheduling process. Thus, the jabsbe potentially
qgueued in the local systems for longer time. In fact, with phevious policy the
average broker slowdown is always 1 because the jobs aresobiyitted to a cen-
ter when it has enough free resources to be allocated imbeddid not, they are
gueued at the brokering level. Consequently, from the pdiniew of the local
resources this policy may reduce their performance mdiutcg may improve the
global system performance.

5 Evaluation Methodology

We have used simulation mechanisms for our policy evaloatibhese simulations
allow us to research policies for large and complex configoma with numerous
jobs and high demand of resources and to easily include ratidhs and refine-
ments in the policies.

5.1 The Alvio simulation framework

The Alvio Simulator [15] is a C++ event driven simulator thaishbeen designed
and developed to evaluate scheduling policies in HPC actites. It supports
evaluation of schedulers in a large range of facilities floal centers to inter-
operable grid environments simultaneously. It allows aesle on job scheduling
strategies in very different scenarios that may be composdifferent VOs. It has
been designed in order to provide an easy mechanism to eitsefiohctionalities.
Thus, extending this simulator with our models (i.e., agdiew scheduling strate-
gies or new resource models) required only a reasonablergrobaffort in terms
of development and design.

5.1.1 Local systems model

The simulator models different components which interadbcal and distributed
architectures. Conceptually, it is divided into three maantg theSimulator En-
ging the Scheduling Policeand theComputational Resource ModéCRM). A
simulation of a local scheduling scenario allows us to sateil given policy with
a given architecture. Currently, the following local pasisihave been modeled:

e Local Resource Selection Policies (RSP): First Fit, First @ooius Fit, and
Less Consume policies.

e Local Job Scheduling Polices (LJSP): the First Come FirsveSenlicy, the
backfilling policy, and finally, the Resource Usage Aware lhidiclg (RUA-
Backfilling [16]). For backfilling policies, the different pperties of the wait
gueue and backfilling queue are modeled (Sort Job First, LXWdHarst Come
First Serve) and different numbers of reservations cantasspecified.

Like other simulators, given a workload and an architectigfition, Alvio is able

to simulate how the jobs would be scheduled using a specliisgheduling policy
(such as First Come First Serve, or the backfilling polici&ae main contribution
of this simulator at this level is that it not only allows thedeling of the jobflow

in the system, but also the simulation of different resowlé@cation policies. To
do this, it uses a reservation table that models how eachsjalidcated to each
node of the architecture. As a result, the researcher isabkidate how different

14

combinations of scheduling policies and resource selegalicies impact on the
performance of the system.

The other new capability of this simulator is the ability todel the local resource
usage on the jobs that are running in the system. For eaclthelesearcher can
specify the different fields that are specified in the FemelStandard Workload
Format (SWF) [4]. However, at the local level, in addition be tSWF fields, for

each job, the user can specify the memory, ethernet and riebaodwidths. Con-

sequently, depending on the configuration of the simulatibe impact of con-

sidering the penalty introduced in the job runtime due t@uese sharing can be
evaluated, as it implements a job runtime model and resowadel that try to

estimate the penalty introduced in the job runtime whenisgaesources.

5.1.2 Multi-site systems model

The simulator allows the local scenario to be extended bynlgaseveral instances
of this scenario. As depicted in figure 2, different machifeg., clusters, sin-
gle box servers, etc.) can be specified (including theirigecture definition, local

job scheduling policy, and local resource selection pdlayd the different meta-
scheduling policies that can be specified to schedule tree Johen the simulation
starts, all the different layers of the model are instaatlatrom the local reserva-

Job
Submission

[
: :_ Scﬂ:::la;ller
Submission

Submission Submission

Machine 1 Machine 2 4 Machine 3
—————— S ———————

Scheduler | Scheduler |

I _ITTTh

Local Resource | Local Resource |

Manager | Manager |

|

ro‘ & Job
QOO Scheduler | startJob
——————— i

Wait Queuel

A i
Local Resource
Manager
fivia Proces.s1
.......... dobis ”j
-

CPU1 Job Allocation .Job §

CPU2| JobAllocation Jobi | o ——""proiocc o JobAllocation i
 :
CPU3 K Job i

CPU4 |

CPUS Job Allocation
CPU 6 Job Allocation

Fig. 2. Brokering system

15

tion tables (which model how the jobs are mapped to the psocskto the broker-
ing component that manages the jobs submitted to the system.

In grid scenarios, a grid resource broker usually requinesspecification of the
job requirements from the user. In many cases, the metaistihg policies use
these requirements to carry out the matchmaking with thed lesources. To allow
this, we have extended the Standard Workload Format (SWHR)doify the job
requirements in the workload to be simulated. Each requrgns composed of
an identifier (e.g.\endo)), an operator (e.gEQUAL) and a value (e.gintel). In
the current version of the simulator, the following reqoments can be specified
for each grid job: memory in MB (e.g1024 MB, processor vendor (e.gntel,
AMD), processor clock speed in MHZ (e.4200 MH2, operating system (e.g.,
Linux, AIX), number of processors (e.d. processorsand disk size in MB (e.g.,
1000 MB. Concerning the meta-scheduling policies, two differentlk of policies
can be used:

e Multi-site scheduling policies: the non-centralized |$%patcher policy [14].
In this scenario, jobs are scheduled by their own dispatahdrthere are no
centralized scheduling decisions.

e Brokering scheduling policies: First Come First Serve, ReaéliEarliest Dead-
line First, or Job Rank (JR)-backfilling policies for the jotheduling, and re-
source selection based on the matchmaking approach.

5.1.3 Interoperable grid systems model

In our recent research work, we have focused on evaluating-brekering policies
[34] based on P2P approaches. To do this, we have extendédli/tbeomponents
to model the different components that are included in systems.

In a meta-brokering model, many different components astaitiated inside the
simulator. Firstly, themeta-systenentity is created. This is a conceptual compo-
nent that models the different elements that are includédammeta-environment
(such as the different domains, generic prediction sesyiete.). It can contain a
centralized meta-broker scheduling entity which potdigt@an implement central-
ized based meta-brokering policies. It also allows P2P theikering strategies to
be evaluated (see figure 3). This meta-system componerginsrat set of different
domain elements. Each of them contains a meta-brokerirmty émdt is responsible
for managing the jobs submitted to that domain. Furthermbiontains a set of
machines that model typical HPC local resources. Thus,itfexeht centers of the
local-scenarios of the simulation model are also insttediaFor each of the ma-
chine components, a local scheduling policy (such as trst Eome First Serve or
the EASY-Backfilling), a resource selection policy (suchhesFirst Fit or the First
Continuous Fit) and a reservation table are created.

We have included in the simulator a prototype of the previoirdroducedBest-

16

* P2P Communication Protocol
Domain A * Receive Aggregated Info Domain B
e Forward Job

Meta-Brokering Policy Meta-Brokering Policy

S
>

A

Meta-Scheduling Policy Meta-Scheduling Policy
¢ Submit Job Submit Job ¢ Submit Job Submit Job
Scheduli Job Queue ine 1 Scheduli Job Queue !
cheduling cheduling
Policy ©OOOG hine 2 Policy ~OO®O® hine 2
T 4 T y
AllocateJob T ne M| AllocateJob T E———— | ne M|
| =D ==
AIIo?atlon . Allocation >
Resource g Resource g
Selection Policy | % Time Selection Policy | & Time
Reservation Table| Reservation Table
Selection Policy Selection Policy

Fig. 3. Meta-brokering model with a P2P approach

BrokerRankpolicy and the resource aggregation algorithms. As we hauetgxl
out, this basically selects the most appropriate brokeulbonst a job based on a set
of ranks values corresponding to the different broker$emathan using the local
information directly. However, since we consider forwaigljobs between brokers,
in our coordinated approach the different scheduling kayee important (for ex-
ample, when we use the average slowdown of the brokers as an@ufg in the
one variant of our policies).

5.2 The workloads

In our evaluation, we have used traces of the DAS-2, Grid58008 Sharcnet sys-
tems from the Grid Workloads Archive [20][17]. We have s&dectwo weeks of
job submissions for each workload trace. Thus, we have addide initial warm
up period of the systems (around the first 50,000 jobs) tothlldpunrepresentative
data. The selected trace fragments are sized with 11,3B3fgolDAS-2, 12,719
jobs for Grid5000, and 13,283 for Sharcnet. Thereby, wherevaduate the full
interoperable system with up to 18 domains, we are consigeriound a quarter
million jobs, 180 clusters, and more than 30,000 availabbe@ssors.

We have analyzed the traces in order to select represaenfadigments. We have
manually reduced the inter arrivals times of the jobs. lasmeg the stream of jobs
allows us to increase the pressure on the system incrergehtrioad. Moreover,

we have adjusted the execution times and we have limited #raary and CPU

demand (up to 512 CPUSs) to scale the experiments accordingetiuaed scenario
which simplifies the analysis of the results.

Figure 4 shows the distribution of the workloads job argvalhe DAS-2 distribu-
tion is approximately linear and the Sharcnet one is by chuhkthe latter one,
we have pairs of intervals where many jobs arrive and wheseethare no job ar-

17

rivals. In the figure, we can also find two different Grid5008rittoads. The one as
GRID50000UTLIER is an unrepresentative portion of the trace bec#usena-
jority of jobs arrive at the first 30% of the workload duratiand the rest of time
there are only a few job arrivals. In fact, the simulationhatihe outlier trace gave
us irregular and incoherent results compared to the othekleaxls. However, the
other Grid5000 workload follows a more uniform distributiand it will be used in
our experiments. More details regarding these traces céwubd in [20].

In our experiments, we have defined three different domagdesyone for each
workload system!DOM _small” for DAS-2, “DOM _medium”for Grid5000, and
“DOM _big” for Sharcnet. The resources of each domain are based oesdads
in terms of number of clusters, CPU architecture, and OS. Ma@ethey are scaled
in terms of memory and disk demand. For the DAS-2 system, we hedeled 6
resources with a total of 400 CPUs, 12 resources with a tot886fCPUs for the
Grid5000 system, and 12 resources with a total of 3,712 CPUthé&Sharcnet
system. However, to simplify the experiments, we have amassubset of the CPU
available architecturesntel, AMD, andPowerPQ and Operating Systemkifiux,
AlX, andSolarig. While DAS-2 is a homogeneous multi-cluster (only hagl and
Linux), the other two systems are quite heterogeneous in termmbeauof CPUs,
architectures and OS (for example, Grid5000 has 508, 40% AMD and 10%
PowerPG and 60%Linux, 30%AIX and 10%Solaris.

The original traces do not include resource requirementedach job. To fix this,
we have generated a requirements trace per workload to ldebysthe simulator
as explained in the previous sub-section. To generate tegs@ements, we have
used a perl script that defines the jobs requirements basdideooriginal trace,
the resources characteristics, and a combination of ingmatnpeters. In particular,
we have used the CPU and memory demand, and for the disk titihizae have
used a combination of the job duration with the CPU and memeage, with a
randomized factor. For the remaining attributes we havd psecentages for each
CPU architecture and OS type, applying a random distributyooursts (sized from
310 6).

500000
450000 ——

y

= DAS2

400000 = GRID5000
SHARCNET
350000 —— #4&
-== GRID5000_OUTLIER

\

2 4 |
g 300000 —]
£ 250000 - —J ; i
£ 200000 — i
< 150000 ,/ A i
100000 ol | et oz
s0000 A fem

0

Fig. 4. Workloads job arrivals

18

5.3 Metrics

We use the following metrics for evaluating our strategies:

e Total workload execution time
e Average job waiting time
e Average bounded slowdown (BSLD). We define BSLD for a given job:

runtimeop, + waittimegp
"maxruntimejop, threshold

BSLDjop = max(l) , threshold= 60 seconds

e Average CPUs and nodes utilization

The units for the first two metrics are seconds and hours,ferage CPUs and
nodes utilization are percentages, and the slowdown hasit® In our experi-
ments, we try to minimize all the metrics except the averagel @Rd nodes uti-
lization that should be maximized.

6 Results

In this section, we show the results obtained from expertméascribed in the pre-
vious section. In the simulations, we have evaluated therigtgns and scheduling
strategies that we have presented in the earlier part ofaperp

In the evaluation, firstly, we compare the scenario of hauntigpendent grid sys-
tems with an interoperable scenario having the same gridsising ourbestBro-
kerRankpolicy for the broker selection. Afterwards, the presergealuation is fo-
cused on evaluating the performance of the different vésiaithebestBrokerRank
broker selection policy, using the aggregation algorittand being coordinated
with the underlying scheduling level. We also study if thgmegation algorithms
can scale to large grid interoperable systems with severabths and thousands
of resources.

6.1 Interoperable versus independent grids

In this sub-section, we present the evaluation of two dffeiscenarios. In the first
one, we have simulated the scenario where each domain dekdtie jobs that
users have submitted originally to the system. Here we atalthe performance
of each of the different domains without any connection agntivem. Based on
the eNANOS resource selection strategy (it considersipgsin a matchmaking
algorithm) for each broker (one per domain) we have evatlater different con-

19

figurations: balancing the prioritieb4dl), giving more priority to the CPUcpu),
to memory (nen), and to disk disk). For example, while indpu) configuration
the factor that multiplies the number of CPUs in the matchmglalgorithm may
be two or three times higher than factor that multiplies ttee fmemory, inlgal)
configuration the factors are similar.

In the second scenario, using the same workloads, we egdhmteffect of routing
jobs between brokers in an interoperable grid environmamarticular, we have
modeled a scenario where the brokers establish agreeméhteach other and
share their resources in a P2P fashion. We have used tharégstBrokerRank
policy for the broker selection. In the evaluation we conepam interoperable sys-
tem versus regular independent brokering systems. In teisasio, we also eval-
uate the impact of forwarding between brokers. To do thishaxe evaluated two
different configurationsownthat considers local jobs with more priority, aaqgual
that considers local and remote jobs having equal prisritie

Although we are interested in precise evaluation of thequer&nce of our policies
as well as the effect of having connections between therdiftedomains, we do
not include some P2P issues such as the connection timeeagrjob routing
overhead, or the loss of peering connections. These furadtie@s will be available
in future implementations.

Table 1 shows the results of the different scenarios andgunafiions. We present
for each experiment: the workload execution time, tH8 pBrcentile of the average
waiting time and bounded slowdown (BSLD), the percentage dff QRemory
and disk conflictd , and the percentage of re-scheduled fobEhe row labeled as
“overall” is the combination of the independent grid workloads. Theans that
we take the average values of the different workloads andnieémum workload
execution time to compare with the interoperable grid sdesaThe workloads
labeled asinteroperable” are the combinations of the three different workloads
(DAS-2, Grid5000 and Sharcnet), using an interoperablg ggenario with three
different domains (one domain per workload type).

Figures 5a, 5b and 5c¢ show the clusters utilization for egstem using the differ-
ent configurations. The X axis shows the different clustatsthe average of them.
The workloads and configurations used are the same as tablee Lutilization of
the cluster is computed by the percentage of the processeiuse by running jobs
with respect to the maximum computing power available indluster in a given
interval of time. The total computing power is calculatednyltiplying the num-
ber of processors available in the system by the length efittierval. Figure 6
shows the job execution and forwarding distribution amdregdifferent domains.

LA conflict is found for a given resource when it has insufficient CPUs/memorytdisk
match the job requirements.

2 A re-schedulingis performed when there is no resource in the system that matches the
job requirements.

20

Workload Config Exec Wait BSLD % Conflicts %Re-

Name Time (h) | Time (s) cpu ‘ mem ‘ disk | Scheduled
DAS-2 bal 159.38 998 9.053 | 78.10 | 10.40 | 11.50 37.32
DAS-2 cpu 150.65 842 8.974 | 80.00 | 8.74 | 11.26 31.64
DAS-2 mem 162.06 881 9.744 | 72.85 | 9.44 | 17.71 36.96
DAS-2 disk | 165.745| 1,106 | 10.308 | 76.89 | 9.53 | 13.59 34.85

Grid5000 bal 763.07 11,720 | 8.330 | 73.19 | 16.16 | 10.65 51.57
Grid5000 cpu 744.79 11,914 | 8.342 | 75.73 | 13.99 | 10.29 51.20
Grid5000 mem 769.48 11,876 8.332 | 7456 | 16.29 | 9.14 51.64
Grid5000 disk 778.30 11,266 | 8.315 | 74.00 | 16.24 | 9.76 51.81
Sharcnet bal 344.62 795 2.754 | 82.69 | 8.47 8.85 11.61
Sharcnet cpu 338.32 699 2.732 | 83.40 | 7.53 9.07 11.27
Sharcnet mem 346.55 1,191 3.282 | 80.89 | 8.92 | 10.19 13.10
Sharcnet disk 349.21 865 2775 | 79.43 | 8.62 | 11.96 11.62

Overall ’ 778.30 ’ 4,513 ’ 6.91 ’ 77.64’ 11.19’ 11.16’ 29.35
Interoperable| equal 743,58 65 1.058 | 50.96 | 32.54 | 16.50 4.02
Interoperable| own 748.70 69 1.124 | 57.21 | 27.56 | 15.22 6.37

Table 1. Evaluation results with Alvio

The workload execution times are similar with the differeanfigurations, espe-
cially with the Grid5000 and Sharcnet systems (the timeediifice is between 2-
4%). However, with the DAS-2 system, the execution timeetdédhce between the
configurations is up to 8%. Moreover, the execution time rtgn with thecpu
configuration in the three systems.

80

60

B Grid5000_bal
W Grid5000_cpu
B Grid5000_mem
B Grid5000_disk
® |nter_equal

u Inter_own

50
40
30
20

1 2 3 4 5 6 AVG

(a) DAS-2 clusters utilization

80

80

B Grid5000_bal
B Grid5000_cpu
= Grid5000_mem
B Grid5000_disk -
B Inter_equal
H Inter_own

B Grid5000_bal
B Grid5000_cpu
B Grid5000_mem
W Grid5000_disk
W Inter_equal

W Inter_own

70 70

60 60

50 50

40 40

30 30

20 20

0 -
1 2 3 4 5 6 7 8 9 10 11 12 AVG 1 2 3 4 5 6 7 8 9 10 11 12 AVG

(b) Grid5000 clusters utilization (c) Sharcnet clusters utilization

Fig. 5. Resources utilization

21

In general, the waiting times and BSLD are lower with tpel configuration, ex-
cept with the Grid5000 system that shows better resultstivédiskconfiguration.
However, the best global performance results are obtaimadcpuandbal config-
urations. The CPU conflicts are around 78% on average and lmationy and disk
conflicts are only around 11% on average. It is also shownftnagach configu-
ration the conflicts percentage related to the configuratioreases. Moreover, the
resource utilization is increased in the clusters thataianmhore resources belong-
ing to the given configuration.

The percentage of re-scheduled jobs substantially diffepending on the systems.
For example, the Grid5000 system has higher job re-scheglbkecause it is the
most heterogeneous system. In general, we can see thatputitonfiguration the
percentage of re-scheduled jobs is lower and withnieenconfiguration is higher.
Thus, it can be observed that the changes in the attributestigs have a more
substantial effect than when the systems are more homoggen€is makes sense
because the jobs can be distributed more easily among tbaerces as there are
fewer restrictions in terms of architectures or OS requésts.

In the interoperable grid scenarios, the joint workloadscexion time is similar to
the maximum of the single workload executions. The mainaeas the distribu-
tion type of the job inter-arrivals and the restrictions @b jequirements. As can
be observed in the figure 6, in both interoperable scenan®&tid5000 is highly
demanded. Again, this is caused by the fact that it has maexdgeneous re-
sources. Therefore, the majority of the Grid5000 workla#uksjcan find resources
that match its requirements only in this system.

The results with the interoperable grid scenario are bettapared to the indepen-
dent brokering one in terms of waiting time and slowdown. Téwults are similar
with both interoperable configurations but, in generalhwiliteequalconfiguration
they show better results. The results also show that theictsdistribution is quite
different compared to previous ones. Since there are maitabie resources to al-
locate the jobs, the number of conflicts and re-scheduliegs@nificantly lower.

Target Target

51, 5 .., S o440 N
o%% . T .
DOM3 . s 3 DOM3 .
. . ¢ 4 b .
. . 3 . . .
.o . & ¢ .
. . . A X3 . .
& o .
¥ S X2 .
N e 3 B o
: N oo d P
; o,
‘ % ® .
2
N
2T e t
o -
W + o . %

o
DOM 1

DOM 2

DOM 2 éource DOM 1 DOM 2 DOM Source

(a) With equalconfiguration (b) With own configuration

Fig. 6. Job execution among the domains

22

In particular, the percentage of CPU conflicts is lower andsequently, the per-
centage of memory and disk conflicts is higher. We can alsoeapye that the
percentage of job re-scheduling is a bit lower with dugialconfiguration. The re-
source utilization has been increased around 5% in Grida@@®harcnet systems,
and has been reduced in the DAS-2 system. This can be explaynthe fact that
DAS-2 and Sharcnet jobs finish before the total workload dweg teceive just a
few forwarded jobs from the Grid5000 system. Moreover, fgbiistates that with
the equal configuration the majority of the job forwarding goes to thed5000
system. However, with thewn configuration the resource utilization is substan-
tially higher because the quantity of job forwarding is sarhat lower as can be
seen in figure 6 as well.

6.2 Scalability of the resource data aggregation algorithm

Since the broker selection policies that we present in #yepdepend on resource
aggregation algorithms, in this sub-section, we evaluaestalability of the two
proposed aggregation algorithms. To this end, we have peeit the experiments
with different number of resources, from 10 to 10,000 conmausystems. The
experiments were conducted by executing a Java progranmtbments the ag-
gregation algorithms on a commodity computer (an Intel aue with 1Gb of
memory). As input the program receives a file that includestagattribute val-
ues that define the computers. Firstly, the program tramsféiese attributes to our
regular resource model. Afterwards, it applies an aggi@gatgorithm and returns
the aggregated resource data and computes the spent tineadroexperiment, we
repeat this process with 5 different input files and we compl¢ average value.
However, as we will show later, the variability of the resmicharacteristics does
not affect significantly to the scalability results. Theumfiles with the computers
definition are generated by a perl script that we have deeelophe script gener-
ates a file with the definition of the specified number of coramitThe definition
of these computers are obtained randomly from a set of paeasnguch as 6 pro-
cessor vendor types, 8 processor speed types, 8 operasiteyrsiypes, etc.

In order to evaluate the scalability of the resource agdm@galgorithms, we have
measured the metrics that are shown in figure 7. All of themirategarithmic
scale. Figures 7a and 7b show the number of resources atidmstaps used for
describing the same resources, respectively. They shovesidts with regular re-
source model@riginal) and with the two aggregation algorithntihpleandCat-
egorized. We can appreciate that both figures follow a similar pattétowever,
in figure 7a the difference between the number of resourctstive aggregation
algorithms and the regular form is larger. In general, wtiikenumber of resources
and relationships increases in a linear manner with thdaegesource form, with
both aggregation algorithms the number of resources aatiaeships is almost
constant. In particular, for up to 100 computers the numibeesources and rela-

23

100000 100000
-=- Original / -=- Original /
10000 — |-+ Simple 10000 - -+ Simple
-s- Categorized / -»- Categorized /./
1000 /'/ 1000
/
100 //

Resources

100
-

Relationships

—
10 — . 10 —
1 ‘ ‘ ‘ 1 ‘ ‘ ‘
10 100 1000 10000 10 100 1000 10000
Computers # Computers
() Number of resources (b) Number of relationships
10000 100.00
- : /
1000 +— +S\”rr?;:: g 10007 /
-s Categorized 2
g / E o /7
10 //_. g 0.10
— —
1 ‘ ‘ ‘ 0.01 ‘ : :
10 100 1000 10000 10 100 1000 10000
Computers # Computers
(c) Size of aggregated data (d) Execution time

Fig. 7. Results from the evaluation of the aggregation algorithms

tionships for the aggregated forms is around 10 times lohemn the regular one.
For more than 100 computers the number of resources in aaggaeprm is up to
1,000 times lower than the number of resources in the reguier Although both
aggregation algorithms follow the same pattern, the nurobegsources and rela-
tionships with theCategorizedalgorithm is around 10 times higher than with the
Simplealgorithm.

Figure 7c shows the size of the resource information, inotyithe attributes and
their values. The pattern that it follows is similar to thadescribed previously
for the number of resources and relationships. This is éxgtadue to the fact
that the size of the resource information is proportionahtonumber of resources
and relationships that it contains. However, in this casddifference between the
different algorithms is quite smaller. The size with theuleg form is around 100
times larger than with the aggregated forms, and the size thg Categorized
algorithm is around 6 times larger than with tBenplealgorithm.

Figure 7d shows the processing time required for both aggjiggalgorithms. With
100 computers or less the execution time of both algorithengery similar. For
more than 100 computers the execution time ofG@laéegorizedalgorithm is longer
than the execution time of tifeimplealgorithm. However, the execution time dif-
ference between the two aggregation algorithms is lessibarconds in the worse
case (with 10,000 computers).

24

Therefore, we conclude that the two aggregation algoritrascalable in terms of
resource information size, and the execution time of theeggdion algorithms is
acceptable for an interoperable grid environment. With@agegorizedalgorithm
the execution time is longer than with ti®mplealgorithm, and the size of the
resource information with th€ategorizedalgorithm is also larger than with the
Simplealgorithm. However, the accuracy of the resource data isnbetter with
the Categorizedalgorithm.

6.3 Performance results

In this sub-section, we evaluate the different broker $eleolicies in differ-
ent grid interoperable scenarios. We have defined them wffigreht number of
domains (from 3 to 18) in order to evaluate the performanat stalability of
the different broker selection strategies. We have takea aference the origi-
nal bestBrokerRanlpolicy (REGULARIn the figures), and we have compared it
to three different variants. One of them uses3m@apleresource aggregation algo-
rithm (AGGRSIMPIin the figures). The second one uses@ategorizedesource
aggregation algorithmAGGRCAT in the figures). The last one is thestBroker-
Rank SLOWpolicy (SLOWIn figures).

In order to perform the evaluations presented below, we ldavee some mod-
ifications in the simulation environment. In particular, Wave modified a little

the Grid5000 domain in order to reduce its difference witn ¢kher two domains
in terms of heterogeneity of the resources. We also haveased the workloads
pressure in order to better compare the performance medscdts in more loaded
systems with more demand of resources and with more reqoestsit of time.

Figure 8 shows the performance results obtained with tHerdiit policies in the
different interoperable scenarios using different corabons of the three work-
loads (DAS-2, Grid5000, and Sharcnet): 3 DOMs (one instafieach workload),

6 DOMs (two instances of each workload, etc. They are nomedlbecause our
objective is to compare the policies. Figure 8a shows thad wadrkload execution
time. Figure 8b shows the average bounded slowdown of thieelsoFigures 8c
and 8d shows the percentage of forwarded jobs to anotheebawnkl re-scheduled
jobs in the grid domain, respectively. It is worth notingttira the first two fig-
ures, which are the most important ones, the maximum dift&rdbetween two
policies is less than 14%. We note that in each figure the wesstlt is obtained
by the AGGRSIMP policy (value equal to 1). It is also worth noting that we do
not consider the processing time of the matchmaking algoritThus, the differ-
ence between theREGULARpolicy and the policies that uses aggregated resource
information may be smaller.

Figure 9 shows the resource utilization results of the saofieips and scenarios

25

of the previously commented figures. Figure 9a shows theagearesource utiliza-
tion and figure 9b shows the standard deviation that givesme ints about the
performance balancing of the different brokers.

1.00 " 1.00 2
0.99 -# SLOW / -& SLOW /

T —— AGGR_SIMP 0.96 T— —— AGGR_SIMP
e~ AGGR_CAT _» - AGGR_CAT

098 —— | __ REcULAR —— REGULAR

092 +—— L TECLLAR |
0.97 /

0.88
0.96 .-7 r//-/'
0.95 '_///I 0.84 .:’_././/.

0.94

0.80

3 DOMs 6 DOMs 9 DOMs 18 DOMs 3 DOMs 6 DOMs 9 DOMs 18 DOMs

(a) Relative workload execution time (b) Relative bounded slowdown
1.00 A 1.00 A
-&- SLOW /
-& sLow 0.95 —— | . acGR_siMP
0.92 7 | _+ AGGR_sIMP —e AGGR_CAT
-+~ AGGR_CAT 0.90 T | __ recuiar
084 -—— | —— REGULAR 2 0.85 // "
0.76 0.80 ‘/’;‘:?//
/i:/ 0.75
0.68 = ; e
.//., 070 —
0.60 T T T T 0.65 T T r T
3 DOMs 6 DOMs 9 DOMs 18 DOMs 3 DOMs 6 DOMs 9 DOMs 18 DOMs
(c) Percentage of forwarded jobs (d) Percentage of re-scheduled jobs

Fig. 8. Normalized performance results

50 16
.\L
49 5 1 - SLOW
48 : — 1 —& AGGR_SIMP
14 —— -8 AGGR_CAT
:; ‘:‘\\o\ T~ 13 | [== RECULAR / s
45 NS 12 //;/
T = slow \ 11 'C/
43 +——
I aecpved ~ | S ——
41 | | = REGULAR \ 9 p———
40 T T T T 8 T T T T
3 DOMs 6 DOMs 9 DOMs 18 DOMs 3 DOMs 6 DOMs 9 DOMs 18 DOMs
(a) Average resource utilization (%) (b) Standard deviation

Fig. 9. Resource utilization results

6.3.1 Resource aggregation algorithms

In general, in figure 8 the performance results withA@&GR CAT policy are bet-
ter than the results with th@RGGR SIMP policy (for example, 5% concerning the
bounded slowdown). With these two policies, the workloadceion time and
average bounded slowdown increase when the number of deinaieases, espe-
cially with 18 domains. The execution time increases 4.2% Wie AGGRSIMP
policy and increases 3% with ttRGGRCAT policy. The average bounded slow-
down increases around 13% with tA&GRSIMP policy and increases 11% with

26

the AGGRCAT policy. Both policies show also less performance thatRIE&U-
LAR policy with every metric. The execution time is around 1.5%rse on av-
erage, the average bounded slowdown is 2.8% worse on ayehggpercentage
of forwarded jobs is 9.25% worse on average, and the pegemtare-scheduled
jobs is 9.75% worse on average. TAGGRSIMP, AGGRCAT and REGULAR
policies follow similar patterns in the execution time, eage bounded slowdown
and percentage of forwarded jobs figures. However, whilepreentage of re-
scheduled jobs with thREGULARpolicy is almost constant, witAGGR SIMP
andAGGRCAT policies it increases significantly with 9 and 18 domains.

The average resource utilization wAGGR SIMPandAGGR CAT policies is sig-
nificant lower than with th®ULARpolicy (around 5% on average with respect
to theREGULARpolicy). However, they follow the same pattern: the resewrti-
lization decreases when the number of domains increases ABER SIMP and
AGGRCATpolicies have very similar results. However, with W& GR SIMP pol-

icy the resource utilization has a marked decrease with h&dts. The standard
deviation (SD) withAGGRSIMP and AGGR CAT policies is larger than with the
REGULAR policyaround 30% on average with respect to REEGULARpolicy).
The SD is especially larger with t @ GGR SIMP policy. The difference between
the standard deviation witAGGR SIMP and AGGRCAT policies is around 10%
on average. Moreover, SD increases with every policy whenntimber of do-
mains increases. With thRREGULARpolicy the increase is linear, and with the
AGGRCAT policy it is almost linear except with 18 domains that it igrsfi-
cantly higher. With 3 domains botAGGR SIMP and AGGR CAT policies have
similar values. However, with 6 and more domains the SD axx¢e a lot with the
AGGRSIMPpolicy (up to 15% with respect to tieGGR CAT policy). It indicates
that with AGGRSIMP andAGGR CAT policies the performance balancing of the
brokers is worse than with tiREGULARpolicy, especially with théd\GGR SIMP

policy.

The results show that the performance metrics can be detjka@den the number
of domains increases. They also indicate h&GR SIMP and AGGR CAT poli-
cies obtain worse results in general. However, this degiadés not drastic, and
the differences between tiRREGULARpolicy and the policies that use aggregated
resource form are not very large.

6.3.2 Coordination with the underlying levels

The performance results of figure 8 with tB&OWpolicy are better than the re-
sults with theREGULARpolicy in most of the cases. The execution time is around
1% better on average, the average bounded slowdown is 3.8%6 ba average,
the percentage of forwarded jobs is around 2% better on geegexcept with 18
domains that is a bit worse, and the percentage of re-sob@¢hbs is 5% better on
average.

27

As the previously discussefiGGRSIMP and AGGR CAT policies, the workload
execution time and average bounded slowdown increase Vilgenuimber of do-
mains increases. However, the execution time increasgs$tan 1% and the aver-
age bounded slowdown increases less than 4%. MoreovesLtb¥Vand REGU-
LARpolicies follow similar patterns in terms of execution tianed average bounded
slowdown. The percentage of re-scheduled jobs patterfféselnt to the other poli-
cies. The percentage slightly decreases when the numbentfids increases. This
behavior is due to the fact that, with tis&OWpolicy, part of the responsibility of
the job scheduling is in the local schedulers. Thus, the gsbgjueued in the local
schedulers rather than being re-scheduled at the broker. lay

The average resource utilization with tBEOWpolicy is 4% larger on average than
with the REGULARpolicy. However, they follow the same pattern: the resource
utilization decreases when the number of domains incredibegotal resource uti-
lization increase is around 6% with tls.OWpolicy. The standard deviation with
theSLOWpolicy is 10% smaller than with tiREGULARpolicy. However, they fol-
low very similar patterns. It indicates that with t8&&OWpolicy the performance
balancing of the brokers is better than with REGULARpolicy.

Figure 10 shows the evolution of the average bounded slowdawhe differ-
ent clusters in two different domains (DAS-2 and Sharcnsi)githeSLOWpol-
icy. Each data series of the figure shows the bounded slowdbarcluster. They
clearly converge to a similar value, which is very close @ tibital workload aver-
age bounded slowdown. This indicates that the coordindtategy can perform a
good balancing of performance among the different clusiaseover, it is shown
that the different clusters follow similar patterns. Sincdghe DAS-2 system the
resources are homogeneous, probably it is easier to balamperformance. How-
ever, in the Sharcnet case the performance balancing isveobse and there are
some peaks during the workload execution. These peaks oaxpkened with the
fact that the Sharcnet workload distribution has job subrorspeaks. Moreover,
the performance balancing is worse probably because ther&taesources are
more heterogeneous.

Figure 11 shows the evolution of the average bounded slowduvwhe brokers
using theSLOWDpolicy with different number of domains. In this case, eaaktad
series shows the bounded slowdown of a brokers rather thiaisteic \We note that
with three domains the bounded slowdown is quite well badné&lowever, when
the number of domains increases the balance of the diffémeahiers slowdown
is worse. This degradation fits with the performance resfltfsigure 8. We saw
that with theSLOWDpolicy, as the rest of the policies, the average bounded-slow
down increase when the number of domains increases. Comggaevorse gen-
eral performance results in a degraded broker performaaiea&ing. Moreover, in
contrast to balancing the clusters slowdown of a given brddedancing the brokers
slowdown is much more difficult, especially when the numidetamains is large.

28

1.0 1.0

09 n 09
a NS 9 -
3 T g
o 06 \VJN T o6 /4
S os NS e~ 7 8.l /
© TSN R §
g 0.4 L/M = E 04 “\ 7 /?Z
S 03 S o3 L —

02 02— — 2

0.1 Z 0.1 |’\ 4_;7;;/

0.0 0.0 =

Finished Jobs Finished Jobs
(a) DAS-2 (b) Sharcnet

Fig. 10. Evolution of the clusters normalized AVG slowdown

1.0 1.0
M— o
g o I o o i e 5
g)~ B —
T o — &=) —
s o AN £ S
= | N S [0 el B
02 M“\"J 02
— — —
Finished Jobs Finished Jobs
(a) 3VOs (b) 6 VOs
1.0 1.0
09] 09 i ——F=
90 =— 3 ===
g 0.6 I JJM g 06 —Af TS If
8 os TP T & o -l d
E 04 H i E 0.4 = =g ! e
S 03 i S 03 —7—’; —— i
Z 02l p = o2 —f '—nﬂ_"ij’ __I‘f
] | L — 1 S e Sy
g = | ———
Finished Jobs Finished Jobs
(c) 9 VOs (d) 18 VOs

Fig. 11. Evolution of the domains normalized AVG bounded slowdown

Figures 12 and 13 show the histogram of the job forwardingrgrdifferent do-
mains with theAGGR CAT andSLOWpolicies, respectively. They do not consider
the job execution inside a domain, for this reason the mrstof the figures with
same source and target domains are marked as “n/a”. As ibwrsim the figures
legend, the dark regions indicate more density of forwajdes, and the light ones
indicate less number of forwarded jobs. In fact, this is baptvay to analyze the
performance balancing among the different brokers or dosaéoreover, it better
visualizes which brokers are more demanded, which onesresfguwarding more
jobs, and what the patterns of the job forwarding are.

We note theSLOWpolicy can achieve better balancing of the job forwardingpam
domains. This observation fits with figure 8 where 81®OWpolicy has the best re-
sults. It is also shown that with tlRGGR CAT policy the forwarding is more than
with SLOWpolicy because it has more dark regions. The balance isrlvattethe
SLOWpolicy than with theAGGRCAT policy. On one hand the forwarding distri-
bution is well defined with th&LOWpolicy: the target domains are usually near

29

P
16 | (] j na
b - 5
13 | nia

12 nia
I :- ‘[H o high density
10 nia
e I
o [

low density

target domain
©

A}T
JEnl?% :
s
o

target domain
target domain

source
123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 domain

(a) With 6 VOs (b) With 9 VOs (c) With 18 VOs

Fig. 12. Job forwarding among domains with AGGAT configuration

T T HE‘ 13 [|
1 | [ra g2 ola | high density
wia 1 nia [
s 1 nia
nia
e

1
o
9 wa
8 nla F
7 i low density
6 i

source 5 F%ﬁ
4
3
2
1

target domain
target domai

source
domain

target domain
O

e

a
nia
) domain
12 3 456 7 8 9 =5
o]
nia source
1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 domain

(a) With 6 VOs (b) With 9 VOs (c) With 18 VOs

Fig. 13. Job forwarding among domains with SLOW configuration

the source domains (the dark regions are found near the rthhgb the figures),
and with theAGGRCAT policy the forwarding distribution is not uniform. Fur-
thermore, in figure 12 there are some rows with only lighteaegj and the other
rows have lots of dark regions. This indicates that some dwnaceive lots of
forwarded jobs and other domains receive just a few.

7 Conclusions and Future Work

In this paper, we have addressed the problem of broker swiantgrid interoper-
able scenarios. We have described and evaluateoesiBrokerRankolicy which
selects the best broker to submit a job given a set of resanfoamation. We
also have described and evaluated two variant of this palisyng resource infor-
mation in aggregated form, and coordinating the scheduwliitly the underlying
layers based on the brokers average bounded slowdown, itioadd aggregated
resource information. We also have presented two differesdurce aggregation
algorithms that have been used by our broker selectionipslic

Using our simulation platform, we have performed variousleations. Firstly, we
have compared independent grid systems to the interogesabhario of these sys-

30

tems. We also have evaluated two different interoperalbéiguarations:own that
considers local jobs with more priority, aedualwhich consider local and remote
jobs with equal priority. The results with the interoperaigkid scenario are bet-
ter compared to those of the independent brokering one mstef waiting time
and slowdown. Moreover, the number of conflicts and re-salivagl are signifi-
cantly smaller and the resource utilization has been $jightreased. The results
are similar in both interoperable configurations but, inegyah with theequalcon-
figuration they are better. Thus, we conclude that an ineradge grid scenario
can improve the global system performance compared to tependent grid sys-
tems. However, we have not taken into account some P2P jssu@sas protocols
overhead or the loss of peering connections.

Before evaluating broker selection policies, we have stuthie scalability ofSim-

ple and Categorizedresource aggregation algorithms. The results show that the
algorithms are scalable in terms of resource informatine,sind their aggregation
processing time is acceptable for an interoperable grid@mment. Although with

the Categorizedalgorithm the execution time is longer, and the resourcarmé-

tion size is larger than with th&implealgorithm, the accuracy of the resource data
is much better with th&€ategorizedalgorithm. However, we did not address the
gain in matching time with aggregated resource information

We have evaluated the performance of broker selectionipsl@omparing the reg-
ularbestBrokerRangolicy (REGULAR with its two variantsbestBrokerRanlAGGR
andbestBrokerRanlSLOW The first one considers the resource information in ag-
gregated form using the two described resource aggregationthms AGGR SIMP
andAGGRCAT), and the second one uses the brokers average bounded slowdo
as well as the aggregated resource foBh@W. We have obtained the best results
with the SLOWpolicy. The execution time is 1% better, and the average tedn
slowdown is almost 4% better with respect to REGULARpolicy. The resource
utilization is 4% higher. The worst results have been oletiwith thebestBroker-
Rank AGGRpolicies. On average, their execution time is 1,5% worsetheid av-
erage bounded slowdown is almost 3% worse with respect tRE@ULARpolicy.
The resource utilization is 5% lower on average. In genevigh the AGGRCAT
policy we have obtained better results than withA&GR SIMPpolicy. The differ-
ence between both policies is up to 5% in the average bounaed@wvyn. Through
the study of the standard deviation of broker resourcezatiton, the evolution of
the brokers slowdown, and job forwarding, we claim that3h®©Wpolicy balances
the performance among the brokers better than the otheigmliTherefore, the re-
sults obtained with our evaluation clearly support the argat that coordination
with the underlying scheduling levels in interoperablelgcenarios can improve
workloads execution as well as resource utilization.

There are different lines of work that we plan to address enrtbar future. On

one hand, we are targeted to include the P2P details in ouelstalimprove the
simulations. We will also add these features to our negotigirotocol that was

31

presented in [2]. On the other hand, we plan to validate thalt® of our broker
selection strategies in a real scenario with real appbaoatiWe will use the LA Grid
infrastructure with HPC applications such as the Weathee&eb and Forecasting
(WRF) [41].

8 Acknowledgements

This paper has been supported by the Spanish Ministry oh&eiand Education
under contract TIN200760625C0201. This work is also parhefltatin American
(LA Grid) project and in part was supported by IBM.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

N. Bobroff, G. Dasgupta, L. Fong, Y. Liu, B. Viswanathan, Frigdetti, J. Wagner, A
Distributed Job Scheduling and Flow Management System, ACM Operatingrdys
Review 42 (2008) 63—70.

N. Bobroff, L. Fong, Y. Liu, J. Martinez, I. Rodero, S. Sadjadd, Villegas,
Enabling Interoperability among Meta-Schedulers, in: IEEE Internati®yaposium
on Cluster Computing and the Grid (CCGrid), Lyon, France, 2008, pp-3105.

J. Brooke, D. Fellows, K. Garwood, C. Goble, Semantic Matching 1l ®esource
Descriptions, in: European Acrossgrids Conference, Nicosia,d8r&®04, pp. 240—
249, LNCS 3165.

S. Chapin, W. Cirne, D. Feitelson, J. Jones, S. Leutenegger,cbwiggelshohn,
W. Smith, D. Talby, Benchmarks and Standards for the Evaluation of Padaltel
Schedulers, in: Job Scheduling Strategies for Parallel Processi8&R)S1999, pp.
66-89, LNCS 1659.

S. Chapin, D. Katramatos, J. Karpovich, A. Grimshaw, The Legiorsodee
Management System, in: Job Scheduling Strategies for Parallel Prag¢3SBPP),
Puerto Rico, 1999, pp. 162-178, LNCS 1659.

DataGrid Project Web Site.
http://ww. eu-datagrid.org

D. Erwin, D. Snelling, UNICORE: A Grid Computing Environment, in: Intational
Euro-Par Conference on Parallel Processing, Manchester, UK, pp. 825-834.

I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Ergblin
Scalable Virtual Organizations, International Journal of High Perfaa&omputing
Applications 15 (3) (2001) 200-222.

OGF Grid Interoperation Now Community Group (GIN-CG) Web Site.
http://forge.gridforumorg/sf/projects/gin

32

[10] The Globus Project (Globus Alliance) Web Site.
http://ww. gl obus. org

[11] OGF GLUE Working Group (GLUE) Web Site.
http://forge. ogf.org/sf/projects/glue-wy

[12] GridWay Project Web Site.
http://ww. gridway. org

[13] Grid Physics Networks (GriPhyn) Web Site.
http://ww. gri phyn.org

[14] F. Guim, J. Corbalan, A Job Self-Scheduling Policy for HPC Iriftatures, in: Job
Scheduling Strategies for Parallel Processing (JSSPP), 2008,4f5,3INCS 4942.

[15] F. Guim, J. Corbalan, J. Labarta, Modeling the Impact of Resoutwir®) in
Backfilling Policies Using the Alvio Simulator, in: Annual Meeting of the IEEE
International Symposium on Modeling, Analysis, and Simulation of Computér an
Telecommunication Systems (MASCOTS), Istambul, 2007.

[16] F. Guim, J. Corbalan, J. Labarta, Resource Sharing UsageeAResource Selection
Policies for Backfilling Strategies, in: High Performance Computing & Simulation
Conference (HPCS), Cyprus, 2008.

[17] Grid Workloads Archive Web Site.
http://gwa. ew .tudelft.nl/

[18] A. Helvaci, C. Cetinkaya, M. Yildirim, Using Rerouting to Improve Aggate Based
Resource Allocation, Journal of Networks 3 (2008) 1-12.

[19] A. losup, D. Epema, T. Tannenbaum, M. Farrelle, M. Livny, tr@perable Grids
through Delegated MatchMaking, in: International Conference for Higiformance
Computing, Networking, Storage and Analysis (SC07), Reno, Nev&dd, 2

[20] A. losup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, [pelha, The Grid
Workloads Archive, Future Generation Computer Systems 24 (20086852

[21] International Virtual Data Grid Laboratory (iVDGL) Web Site.
http://igoc.ivdgl.indiana.edu

[22] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, J. Skovirarkldad Management
with LoadLeveler, IBM Redbooks, 2001.

[23] A. Kertesz, P. Kacsuk, I. Rodero, F. Guim, J. Corbalan, Metak&ring Requirements
and Research Directions in State-of-the-art Grid Resource Managemi9116,
Tech. rep., Institute on Resource Management and Scheduling (2007).

[24] A. Kertesz, |. Rodero, F. Guim, BPDL: A Data Model for Grid Resme Broker
Capabilities, TR-0074, Tech. rep., Institute on Resource Managemei@ceduling
(2007).

[25] A. Kertesz, |. Rodero, F. Guim, Meta-Brokering Solutions for &mging Grid
Middleware Limitations, in: Workshop on Secure, Trusted, Manageablg an
Controllable Grid Services (SGS) in conjunction with International Euno-Pa
Conference on Parallel Processing, Gran Canaria, Spain, 2008.

33

[26] KOALA Co-Allocating Grid Scheduler Web Site.
http://ww. st.ew .tudel ft.nl/koal a/

[27] Latin American Grid (LA Grid) Web Site.
http://1atinanericangrid. org/

[28] O. Martin, J. Martin-Flatin, E. Martelli, P. Moroni, H. Newman, S. RgvD. Nae,
The DataTAG transatlantic testbed, Future Generation Computer Systems08) (20
443-456.

[29] M. Massie, B. Chun, D. Culler, The Ganglia Distributed Monitoringt8ys Design,
Implementation, and Experience, Parallel Computing 30 (2004) 817-840.

[30] Globus Monitoring and Discovery System (MDS) Web Site.
http://ww. gl obus. or g/ nds/

[31] OGF Grid Scheduling Architecture Research Group (GSA-RG) Biah
https://forge.gridforumorg/sf/projects/gsa-rg

[32] Portable Batch System (PBS) Web Site.
http://ww. nas. nasa. gov/ Sof t war e/ PBS

[33] Particle Physics Data Grid (PPDG) Web Site.
http://ww. ppdg. net

[34] I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, S. Sadjadi, king for an Evolution
of Grid Scheduling: Meta-brokering, Grid Middleware and Servicesalléhges and
Solutions (2008) 105-119.

[35] I. Rodero, F. Guim, J. Corbalan, J. Labarta, eNANOS: Cootdith&cheduling in Grid
Environments, in: International Conference on Parallel Computing (PaMalaga,
Spain, 2005, pp. 81-88.

[36] J. Seidel, O. Waldrich, W. Ziegler, P. Wieder, R. Yahyapour, g$hA for Resource
Management and Scheduling - a Survey, TR-0096, Tech. rep., Institu=source
Management and Scheduling (2007).

[37] SGE execution scripts Web Site.
http://ww. sun. conl sof t war e/ gri dwar e/

[38] HPC-Europa Project Web Site.
http://ww. hpc- europa. org

[39] IBM Tivoli Dynamic Workload Broker Web Site.
http://ww+ 306.1i bm conif software/tivoli/products/
dynam c- wor kl oad- br oker

[40] T. Vazquez, E. Huedo, R. Montero, |. Lorente, Evaluation of tdity Computing
Model Based on the Federation of Grid Infrastructures, in: Internalti&uro-Par
Conference on Parallel Processing, Rennes, France, 2007, 88&L.

[41] The Weather Research and Forecasting Model Web Site.
http://ww. wr f-nodel . org/index. php

34

