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Abstract

The increasing demand for resources of the high performance computingsystems has led
to new forms of collaboration of distributed systems such as interoperable grid systems
that contain and manage their own resources. While with a single domain one ofthe most
important tasks is the selection of the most appropriate set of resources to dispatch a job,
in an interoperable grid environment this problem shifts to selecting the most appropriate
domain containing the requiring resources for the job. In the Latin American Grid initiative,
our model consists of multiple domains. Each domain has its domain broker, and the task
of scheduling on top of brokers can be called meta-brokering or brokerselection.

In this paper, we describe and evaluate our broker selection strategies.In particular, we
present and evaluate the “bestBrokerRank” policy and two different variants. The first one
uses the resource information in aggregated forms as input, and the second one also uses
the brokers average bounded slowdown as a dynamic performance metric. From our evalua-
tions performed with simulation tools, we firstly state that the interoperable grid scenario is
better compared to the independent brokering one in terms of execution time and resource
utilization. We also show that the proposed resource aggregation algorithmsare scalable
for an interoperable grid environment. Moreover, we show that the bestperformance re-
sults are obtained with our coordinated policy. Therefore, we conclude that delegating part
of the scheduling responsibilities to the underlying scheduling layers promotes separation
of concerns and is a good way to balance the performance among the different brokers and
schedulers.
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1 Introduction

Job scheduling strategies have been extensively studied inthe last decades. The
increasing demand for resources of the High Performance Computing (HPC) sys-
tems has led to new forms of collaboration of distributed systems. In these new
distributed scenarios, such as grid systems, traditional scheduling techniques have
evolved into more complex and sophisticated approaches where other factors, such
as the heterogeneity of resources or geographical distribution, have been taken into
account. Moreover, the need for interoperability among different grid systems has
become increased in the last few years. These grid systems are composed of several
Virtual Organizations (VO) [8], sharing resources that span one or more adminis-
tration domain(s); in turn each domain is represented by onegrid resource broker
which acts as the gateway to that domain. Finally, each administration domain is
composed of a set of different resources that are managed by their own job sched-
ulers (e.g., PBS [32], Loadleveler [22], SGE [37], etc.), each of which may have its
own local policies.

While within a single domain one of the most important tasks isthe selection of the
most appropriate set of resources to dispatch a job, in an interoperable grid com-
puting environment this problem shifts to selecting the most appropriate domain.
In fact, there are two possibilities: dispatching the job tothe local resources of the
originator domain or forwarding it to another domain. Sinceeach domain is typi-
cally managed by one broker, the task of scheduling on top of brokers can be called
meta-brokeringor broker selection.

In [34], we presented a study of the requirements for the meta-brokering approach.
We also introduced the Latin American Grid (LA Grid) initiative [27], which pro-
vides a multi-party collaborative environment that we usedto carry out our design
and experiment. Our grid model consists of multiple domains. Each domain has its
domain broker and consists of a collection of local dispatchers, local schedulers, or
even meta-schedulers. A domain can be viewed as the meta-scheduling functional
entity of an institution. This aspect of our model intends toreflect the reality of
many organizations having multiple local schedulers for different lines of business
or for various levels of services.

In our grid model, all domains support a common data aggregation model that en-
ables both the encapsulation and sharing of its resources and scheduling details. A
peer-to-peer (P2P) relationship between domain brokers isdynamically established
upon the agreement between peers. Users of a domain would interact with that spe-
cific domain broker to access resources of collaborative partners. In [2], we pre-
sented our protocol, and the functionality results. Other initiatives have been pro-
posed for interoperating meta-scheduling systems such as GRIP [3], HPC-Europa
[38], Gridway [12], Koala [26], or Viola [36]. However, noneof these approaches
provide a comprehensive solution to broker selection policies.
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In [35], we presented the eNANOS architecture that considers all the scheduling
layers that can be involved in a job execution all the way fromthe local resource
scheduling to brokering the interoperable grid systems. The key contribution of this
paper is the coordination between the different schedulingentities. In this paper, we
use the coordination philosophy of eNANOS to develop brokerselection strategies.

We describe and evaluate our broker selection strategies. The basic broker selec-
tion policy is thebestBrokerRankpolicy that selects the best broker to submit a job
based on available resource information. In case the job is from the local domain,
the resource match maker uses this policy and returns an appropriate resource(s) to
execute the job. Otherwise, the resource match maker selects an appropriate bro-
ker and returns the broker ID instead to which the job will be forwarded. We also
present two different variants of this policy. The first one uses the resource infor-
mation as input to ranking. The resource information is in aggregated forms; details
are presented in later sections. The second one is based on the coordination with
the underlying scheduling level using the brokers average bounded slowdown as a
dynamic performance metric.

To evaluate the performance of our policies, we extended theAlvio simulator [15]
to suit our need. The Alvio simulator allows the researcher to evaluate from local
data centers to interoperable grid environments simultaneously. To do this, we have
extended the existing Alvio models to include the characteristics of interoperable
grid scenarios.

Based on our evaluations, we firstly state that the interoperable grid scenario is
better compared to the independent brokering in terms of workloads execution per-
formance and resource utilization. We also show that the resource aggregation al-
gorithms are scalable in terms of resource information size, and their aggregation
processing time are acceptable for an interoperable grid environment. As explained
later, although the aggregation algorithms lose resource information accuracy, we
show that the broker selection policies using aggregated resource data do not penal-
ize the global performance significantly. Moreover, we showthat the best perfor-
mance results are obtained with the coordinated policy using the brokers average
bounded slowdown, in addition to aggregated resource information. In fact, we state
that delegating part of the scheduling responsibilities tothe underlying scheduling
layers is a good way to balance the performance among the different brokers and
schedulers. We note that it is more difficult to balance the performance among the
grid domains when the number of domains increases. Finally,we conclude that the
interoperable grid scenario introduced in this paper complies with the requirements
of the infrastructure for LA Grid project.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tions 3 and 4 present the aggregation algorithms and the broker selection policies,
respectively. Section 5 presents the evaluation methodology. Section 6 presents the
results and, finally, section 7 concludes the paper and suggests some directions for
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future work.

2 Related Work

The need for interoperability among different grid systemsin different resource do-
mains was observed and studied previously, and some projects have addressed this
topic such as GRIP [3] and HPC-Europa SPA [38]. Lately, some initiatives have
been started exploring grid interoperability with similarobjectives but through dif-
ferent approaches. The two main approaches for grid interoperability are: 1) extend-
ing the existing schedulers to make them interoperable; and2) using a meta-broker
to represent each domain that can be connected to existing schedulers in its domain
without modifying them.

GridWay has incorporated the support for multiple grids in its last release [40].
In the meta-scheduling layers, GridWay instances can communicate and interact
through its grid gateways to access resources belonging to different domains. The
basic idea is to forward user requests to another domain whenthe current one is
overloaded. GridWay is based on Globus, and they are experimenting with GT4
and gLite3. The Koala grid scheduler [26] is another initiative, which is focused on
data and processor co-allocation. It was designed to work onDAS-2 multi-cluster
and lately on DAS-3 and Grid5000. To inter-connect these different grid domains,
they use inter-broker communication between different Koala instances. Their pol-
icy is to use resources from a remote domain only if the local one is saturated. They
use delegated matchmaking [19] to obtain the matched resources from one of the
peer Koala instances. VIOLA MetaScheduling Service [36] isimplementing Grid
interoperability via WS-Agreement [36] and is providing co-allocation of multiple
resources based on reservation. Although the previously introduced projects aim
to enable communication among different broker instances,they are very specific.
They only consider instances of the same brokering system and perform job for-
warding among brokers only in very limited circumstances. Moreover, the policies
for selecting the broker to forward a job are still preliminary.

The Grid Scheduling Architecture Research Group (GSA-RG) of Open Grid Forum
(OGF) [31] is currently working on enabling the grid scheduler interaction. They
are working to define a common protocol and interface among schedulers enabling
inter-grid resource usage, using standard tools (JSDL, OGSA, WS-Agreement).
However, the group is paying more attention to agreements. They proposed the
Scheduling Description Language (SDL) to allow specification of scheduling poli-
cies based on “broker scheduling objectives/capabilities” (such as time constraints,
job dependencies, scheduling objectives, preferences, etc.). Following a similar
idea, in [24] [23] authors proposed a Broker Property Description Language (BPDL)
to be used to perform the broker selection. A preliminary evaluation of this ap-
proach can be found in [25]. Finally, the Grid Interoperation Now Community

4



Group (GIN-CG) of the OGF [9] also addresses the problem of grid interoperabil-
ity driving and verifying interoperation strategies. Theyare more focused on in-
frastructure with five sub-groups: information services, job submission, data move-
ment, authorization, and applications. Performance and optimization strategies are
not the current focus.

There are different resource models for grid systems. One ofthe most well known
models is the GLUE schema [11], used to provide a uniform description of re-
sources and to facilitate interoperation between grid infrastructures. It was con-
ceived as a collaboration effort focusing on interoperability between US and EU
related projects. It was promoted by DataTAG [28] (EU) and iVDGL [21] (US) and
received contributions from DataGrid [6], Globus [10], PPDG [33] and GriPhyn
[13]. More recently it was included in OGF within the GLUE Working Group.
GLUE has been widely used, for example by Globus Monitoring and Discovery
Service (MDS). Another schema is provided by the UNICORE framework [7].

The grid interoperability initiatives are not numerous and, to the best of our knowl-
edge, all of them use a common resource model for interchanging information be-
tween grid domains. In LA Grid, we use a resource model which is an extension
of the one used in IBM Tivoli Dynamic Workload Broker (TDWB) [39].We also
consider the resource model in the aggregated form. The aggregation of resource
information is a usual way to save data transfers. It has beenwidely used in differ-
ent areas such as networking [18]. Grid resource managementsystems have used
aggregation mechanisms previously such as in Legion [5]. Legion uses an object-
based information store organization through the “collection” objects. Information
about multiple objects is aggregated into these collectionobjects. Moreover, grid
information systems such as MDS [30] or Ganglia [29] provideresource data in
aggregated form. MDS combines arbitrary GRIS (Grid Resource Information Ser-
vice) services to provide aggregate view that can be explored or searched. Ganglia
is based on a hierarchical design, relies on a multicast-based listen/announce pro-
tocol to monitor state within clusters and uses a tree of point-to-point connections
amongst representative cluster nodes to federate clustersand aggregate their state.
However, the existing approaches using resource aggregation have not been applied
in interoperable scenarios. Because of the peculiarities ofthese approaches, we de-
cided to explore our own model and aggregation algorithms inorder to optimize
our scheduling strategies.
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3 The Resource Aggregation Algorithms

In an interoperable grid system that can be composed of different domains the re-
source model is crucial. Our solution uses a common resourcemodel among the
different domains. As we have commented in the related work section, to the best
of our knowledge, the other related projects to grid interoperability also use a com-
mon resource model for interchanging information between grids. Actually, the
GSA-RG of the OGF that is currently working on establishing grid interoperabil-
ity recommendations, pointed out this issue in its public working documents [31].
Moreover, since the interoperable grid systems can be composed of numerous do-
mains, the amount of resource information exchanged between brokers is a scalabil-
ity issue. Therefore, we interchange the resource information in an aggregated form
to save the data transferred, the latency time, and communication bandwidth. The
problem of aggregated data is the loss of details related to each resource descrip-
tion. However, this summarized information in the aggregated form is sufficient for
the selection of the best broker to submit a job.

Our resource model is defined by a set of resources similar to other resource mod-
els (such as GLUE schema [11]), but we also include relationships between the
resources. Moreover, we use a subset of resources that will be useful for the ag-
gregation algorithms. For example, we have theComputingSystemresource that
includes attributes such as the processor vendor, the number of CPUs or the CPU
load. The relationships are defined by a type (such asreferenceor contain) and
they have the source resource type and name, and the target ones. The details of the
model can be found in [1] and in the IBM Tivoli Dynamic WorkloadBroker [39].
In our current implementation, we only use a subset of the resources and attributes
of the model for simplicity. For example, we do not consider some resources such
as Logical Systemor Agentand resource attributes such as theMinorVersionor
SwapSpaceof theOperatingSystemresource, because they are not required for the
aggregation algorithms. We also simplify the relationships considering only theref-
erencetype and we have restricted the order of the related resources. In particular,
for defining a computer in aggregated form, it is sufficient toinclude “reference”
relationships betweenComputingSystemresources andOperatingSystemones, and
betweenComputingSystemresources andFileSystemones.

An example of a set of resources defined with the regular resource model is shown
in listing 1. We will use the same set of resources for the aggregation algorithms
examples in listings 3 and 5. In all examples the resource type of the relationships
are abbreviated for readability (i.e., “CS” instead of “ComputingSystem”).

In this section, we present two different aggregation algorithms. The first one (SIM-
PLE) aggregates the resource data as much as possible looking for maximum com-
pression for scalability; this algorithm loses more detailed information. It has as
input a set of resources and relationships that define computers, and three fixed
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HOST 1
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 1” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 1”

A t t r s : vendor=“ I n t e l ” A t t r s : OSName=“Linux ”
c lockSpeed =“3 ,000” RamSize=“8 ,000”
CPUUti l=“80” (20% avg) RamAvai lab le=“1 ,600” (20%)
t o ta lCPUs =“4” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 1”

A t t r s : RootPath =“ / ”
sizeMB=“120 ,000”
freeMB=“96 ,000” (80%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 1” , Targe tType=“OS” , TargetName=“OSh o s t 1”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 1” , Targe tType=“FS ” , TargetName=“FSh o s t 1”
HOST 2
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 2” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 2”

A t t r s : vendor=“ I n t e l ” A t t r s : OSName=“Linux ”
c lockSpeed =“2 ,600” RamSize=“4 ,000”
CPUUti l=“100” (50% avg) RamAvai lab le=“400” (10%)
t o ta lCPUs =“2” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 2”

A t t r s : RootPath =“ / ”
sizeMB=“100 ,000”
freeMB=“60 ,000” (60%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 2” , Targe tType=“OS” , TargetName=“OSh o s t 2”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 2” , Targe tType=“FS ” , TargetName=“FSh o s t 2”
HOST 3
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 3” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 3”

A t t r s : vendor=“ I n t e l ” A t t r s : OSName=“AIX”
c lockSpeed =“2 ,800” RamSize=“16 ,000”
CPUUti l=“720” (90% avg) RamAvai lab le=“3 ,200” (20%)
t o ta lCPUs =“8” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 3”

A t t r s : RootPath =“ / ”
sizeMB=“120 ,000”
freeMB=“48 ,000” (40%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 3” , Targe tType=“OS” , TargetName=“OSh o s t 3”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 3” , Targe tType=“FS ” , TargetName=“FSh o s t 3”
HOST 4
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 4” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 4”

A t t r s : vendor=“ I n t e l ” A t t r s : OSName=“AIX”
c lockSpeed =“2 ,600” RamSize=“64 ,000”
CPUUti l=“1 ,280” (80% avg) RamAvai lab le=“6 ,400” (10%)
t o ta lCPUs =“16” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 4”

A t t r s : RootPath =“ / ”
sizeMB=“200 ,000”
freeMB=“100 ,000” (50%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 4” , Targe tType=“OS” , TargetName=“OSh o s t 4”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 4” , Targe tType=“FS ” , TargetName=“FSh o s t 4”
HOST 5
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 5” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 5”

A t t r s : vendor=“AMD” A t t r s : OSName=“Linux ”
c lockSpeed =“2 ,200” RamSize=“16 ,000”
CPUUti l=“160” (40% avg) RamAvai lab le=“9 ,600” (60%)
t o ta lCPUs =“4” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 5”

A t t r s : RootPath =“ / ”
sizeMB=“120 ,000”
freeMB=“60 ,000” (50%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 5” , Targe tType=“OS” , TargetName=“OSh o s t 5”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 5” , Targe tType=“FS ” , TargetName=“FSh o s t 5”
HOST 6
Resource : Type=“ComputingSystem ” , Name=“CSh o s t 6” Resource : Type=“Opera t ingSys tem ” , Name=“OSh o s t 6”

A t t r s : vendor=“AMD” A t t r s : OSName=“Linux ”
c lockSpeed =“2 ,400” RamSize=“128 ,000”
CPUUti l=“800” (50% avg) RamAvai lab le=“32 ,000” (25%)
t o ta lCPUs =“16” Resource : Type=“F i l eSys tem ” , Name=“FSh o s t 6”

A t t r s : RootPath =“ / ”
sizeMB=“250 ,000”
freeMB=“100 ,000” (40%)

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 6” , Targe tType=“OS” , TargetName=“OSh o s t 6”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSh o s t 6” , Targe tType=“FS ” , TargetName=“FSh o s t 6”

TOTAL : 18 resources and 12 relationships

Listing 1: Set of computers described in the regular resource model

attributes for aggregating the information: the processortype for ComputingSys-
temresource, the operating system type forOperatingSystemresource, and the file
system type forFileSystemresource. As output it returns a set of resources in ag-
gregated form and a set of relationships that describe the original resources. The
pseudo-code of the algorithm is shown in listing 2. The example of listing 3 shows
the same resources of listing 1 but aggregated withSIMPLEalgorithm.

ComputeAggregatedInfo computes the information that contains a resource in
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FUNCTION: getAggregatedDataSIMPLE

IN:

CATEGORIES = {ProcType, OSType, FSType}
RESOURCES = {r1, . . . , rn}
RELS = {rel1, . . . , relm}, ∀i = 0, . . . ,m : rel i = {source,target} ∧ source,target ∈ RESOURCES

OUT:

AGGR RESOURCES = {ar1, . . . ,ark}
AGGR RELS = {arel1, . . . ,arelp}, ∀i = 0, . . . , p : areli = {source,target}

∧ source,target ∈ AGGR RESOURCES

BEGIN:

FOR k = 1 TO CATEGORIES.size() {
FOREACH r i ∈ RESOURCES ∧ category(r i)==CATEGORIESk {

ark = computeAggregatedInfo (ark, r i)
FOREACH rel j ∈ RELS ∧ rel j.source==r i {

AGGR RELS.insert(ark, rel j.target) /* Avoiding repeated instances */
}

}
}
FOR i = 1 TO AGGR RELS.size() {

rel i.target = findAggregatedResource(AGGR RESOURCES, rel i.target)
}

RETURN AGGR RESOURCES, AGGR RELS

Listing 2: SIMPLE resource aggregation algorithm pseudo-code

Resource : Type=“ComputingSystem ” , Name=“CSI n t e l ”
A t t r s : P rocesso rType =“{( I n t e l ,<coun t=4>)}”

P rocess i ngSpeed =“{(2600−3000,< coun t=4>,< t o t a l =11000>)}”
C P U U t i l i z a t i o n =“{(80−1280,< coun t=4>,< t o t a l =2180>)}”
NumOfProcessors=“{(2−16,< coun t=4>,< t o t a l =30>)}”

Resource : Type=“ComputingSystem ” , Name=“CSAMD”
A t t r s : P rocesso rType =“{(AMD,<coun t=2>)}”

P rocess i ngSpeed =“{(2200−2400,< coun t=2>,< t o t a l =4600>)}”
C P U U t i l i z a t i o n =“{(160−800,< coun t=2>,< t o t a l =960>)}”
NumOfProcessors=“{(4−16,< coun t=2>,< t o t a l =20>)}”

Resource : Type=“Opera t ingSys tem ” , Name=“OSLinux ”
A t t r s : Opera t ingSys temType=“{( Linux ,<coun t=4>)}”

To ta lPhys ica lMemory=“{(4000−128000,< coun t=4>,< t o t a l =156000>)}”
FreePhys ica lMemory=“{(400−32000,< coun t=4>,< t o t a l =43600>)}”

Resource : Type=“Opera t ingSys tem ” , Name=“OSAIX”
A t t r s : Opera t ingSys temType=“{(AIX,<coun t=2>)}”

To ta lPhys ica lMemory=“{(16000−64000,< coun t=2>,< t o t a l =80000>)}”
FreePhys ica lMemory=“{(3200−6400,< coun t=2>,< t o t a l =9600>)}”

Resource : Type=“F i l eSys tem ” , Name=“FSun ique ”
A t t r s : T o t a l S t o r a g e C a p a c i t y =“{(100000−250000,< coun t=6>,< t o t a l =910000>)}”

F r e e S t o r a g e C a p a c i t y =“{(48000−100000,< coun t=6>,< t o t a l =464000>)}”

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l ” , Targe tType=“OS” , TargetName=“OSLinux ”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l ” , Targe tType=“OS” , TargetName=“OSAIX”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSAMD” , Targe tType=“OS” , TargetName=“OSLinux ”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l ” , Targe tType=“FS ” , TargetName=“FSun ique ”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSAMD” , Targe tType=“FS ” , TargetName=“FSun ique ”

TOTAL : 5 resources and 5 relationships

Listing 3: Same set of computers with the “SIMPLE” algorithm

aggregated form. Examples are the number of resources that have been aggregated
in the same category (count), the minimum and maximum values, and the sum of
all values (total). The information contained in an aggregated resource may dif-
fer depending on the kind of resource. More statistical metrics can be included
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if it is required.FindAggregatedResourcereturns the aggregated resource that
corresponds to the given resource in the original form (the one that matches the
aggregation criteria).

The second algorithm (CATEGORIZED ) tries to find a good balance between the
accuracy of the resource data and the scalability. In addition to the input set of re-
sources, relationships and fixed categories, it also considers different attributes and
threshold values. These attributes and thresholds define subcategories inside the
fixed categories. The subcategories increase the accuracy of the aggregated form.
Actually, although in the algorithm shown in listing 4 we usethree different at-
tributes for subcategories, we can use more attributes until the detail information
is sufficient. We can increase the level of detail by defining more threshold values.
Therefore, as we have commented previously, the main purpose of this algorithm is
to avoid the loss of important resource characteristics butmaintaining the benefits
of aggregation. For example, when we select a broker that contains an aggregated
resource ofIntel processor vendor andCPULoadattribute of subcategoryLOW, we
can be sure that some Intel-based computers with low CPU load will are available.

FUNCTION: getAggregatedDataCATEGORIZED

IN:

CATEGORIES = {ProcType, OSType, FSType}
ATTRIBUTES = {%CPULoad, %UsedMEM, %UsedDISK}
THRESHOLDS = {LOW=0.33, MEDIUM=0.66, HIGH=1.0}
RESOURCES = {r1, . . . , rn}
RELS = {rel1, . . . , relm}, ∀i = 0, . . . ,m : rel i = {source,target} ∧ source,target ∈ RESOURCES

OUT:

AGGR RESOURCES = {ar1, ...,ark}
AGGR RELS = {arel1, . . . ,arelp}, ∀i = 0, . . . , p : areli = {source,target}

∧ source,target ∈ AGGR RESOURCES

BEGIN:

FOR k = 1 TO CATEGORIES.size() {
FOREACH r i ∈ RESOURCES ∧ category(r i)==CATEGORIESk {

FOREACH atr j ∈ ATTRIBUTES {
SWITCH getAttributeValue (atr j, r i, THRESHOLDS) {

case LOW: c=1
case MEDIUM: c=2
case HIGH: c=3

}
ar3(k−1)+c = computeAggregatedInfo (ar3(k−1)+c, r i)
FOREACH rel j ∈ RELS ∧ rel j.source==r i {

AGGR RELS.insert(ark, rel j.target) /* Avoiding repeated instances */
}

}
}
FOR i = 1 TO AGGR RELS.size()

rel i.target = findAggregatedResource(AGGR RESOURCES, rel i.target)
}

RETURN cleanVector (AGGR RESOURCES), AGGR RELS

Listing 4: CATEGORIZED resource aggregation algorithm pseudo-code
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GetAttributeValue returns the discrete value of an attribute given a set of thresh-
olds that define the discrete categories.CleanVectordeletes the elements of a vec-
tor that are empty because there are not aggregated resources corresponding to
certain categories and thresholds values.ComputeAggregatedInfo and findAg-
gregatedResourcefunctions were explained previously.

The example of listing 5 shows the same resources of the two previous examples
but using theCATEGORIZEDalgorithm. Although the information is not as accu-
rate as the regular model, the number of aggregated resources and relationships is
higher than the one obtained with theSIMPLEalgorithm. Therefore, the precision
of resource information is better in the CATEGORIZED algorithm. Moreover, the
level of accuracy can be improved by increasing the number ofcategories and/or
subcategories.

Resource : Type=“ComputingSystem ” , Name=“CSI n t e l LOW”
A t t r s : P rocesso rType =“{( I n t e l ,<coun t=1>)}”

P rocess i ngSpeed =“{(3000,< coun t=1>,< t o t a l =3000>)}”
C P U U t i l i z a t i o n =“{(80,< coun t=1>,< t o t a l =80>)}”
NumOfProcessors=“{(4,< coun t=1>,< t o t a l =4>)}”

Resource : Type=“ComputingSystem ” , Name=“CSI n t e l MED”
A t t r s : P rocesso rType =“{( I n t e l ,<coun t=1>)}”

P rocess i ngSpeed =“{(2600,< coun t=1>,< t o t a l =2600>)}”
C P U U t i l i z a t i o n =“{(100,< coun t=1>,< t o t a l =100>)}”
NumOfProcessors=“{(2,< coun t=1>,< t o t a l =2>)}”

Resource : Type=“ComputingSystem ” , Name=“CSI n t e l HIGH”
A t t r s : P rocesso rType =“{( I n t e l ,<coun t=2>)}”

P rocess i ngSpeed =“{(2600−2800,< coun t=2>,< t o t a l =5400>)}”
C P U U t i l i z a t i o n =“{(720−1280,< coun t=2>,< t o t a l =2000>)}”
NumOfProcessors=“{(8−16,< coun t=2>,< t o t a l =24>)}”

Resource : Type=“ComputingSystem ” , Name=“CSAMD MED”
A t t r s : P rocesso rType =“{(AMD,<coun t=2>)}”

P rocess i ngSpeed =“{(2200−2400,< coun t=2>,< t o t a l =4600>)}”
C P U U t i l i z a t i o n =“{(160−800,< coun t=2>,< t o t a l =960>)}”
NumOfProcessors=“{(4−16,< coun t=2>,< t o t a l =20>)}”

Resource : Type=“Opera t ingSys tem ” , Name=“OSLinux LOW”
A t t r s : Opera t ingSys temType=“{( Linux ,<coun t=3>)}”

To ta lPhys ica lMemory=“{(4000−128000,< coun t=3>,< t o t a l =140000>)}”
FreePhys ica lMemory=“{(400−32000,< coun t=3>,< t o t a l =34000>)}”

Resource : Type=“Opera t ingSys tem ” , Name=“OSLinux MED”
A t t r s : Opera t ingSys temType=“{( Linux ,<coun t=1>)}”

To ta lPhys ica lMemory=“{(16000,< coun t=1>,< t o t a l =16000>)}”
FreePhys ica lMemory=“{(9600,< coun t=1>,< t o t a l =9600>)}”

Resource : Type=“Opera t ingSys tem ” , Name=“OSAIX LOW”
A t t r s : Opera t ingSys temType=“{(AIX,<coun t=2>)}”

To ta lPhys ica lMemory=“{(16000−64000,< coun t=2>,< t o t a l =80000>)}”
FreePhys ica lMemory=“{(3200−6400,< coun t=2>,< t o t a l =9600>)}”

Resource : Type=“F i l eSys tem ” , Name=“FSMED”
A t t r s : T o t a l S t o r a g e C a p a c i t y =“{(100000−250000,< coun t=5>,< t o t a l =790000>)}”

F r e e S t o r a g e C a p a c i t y =“{(48000−100000,< coun t=5>,< t o t a l =368000>)}”
Resource : Type=“F i l eSys tem ” , Name=“FSHIGH”

A t t r s : T o t a l S t o r a g e C a p a c i t y =“{(120000 ,< coun t=1>,< t o t a l =120000>)}”
F r e e S t o r a g e C a p a c i t y =“{(96000,< coun t=1>,< t o t a l =96000>)}”

R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l LOW” , Targe tType=“OS” , TargetName=“OSLinux LOW”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l MED” , Targe tType=“OS” , TargetName=“OSLinux LOW”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l HIGH” , Targe tType=“OS” , TargetName=“OSAIX LOW”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSAMD MED” , Targe tType=“OS” , TargetName=“OSLinux LOW”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSAMD MED” , Targe tType=“OS” , TargetName=“OSLinux MED”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l LOW” , Targe tType=“FS ” , TargetName=“FSHIGH”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l MED” , Targe tType=“FS ” , TargetName=“FSMED”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSI n t e l HIGH” , Targe tType=“FS ” , TargetName=“FSMED”
R e l a t i o n s h i p : SourceType=“CS” , SourceName=“CSAMD MED” , Targe tType=“FS ” , TargetName=“FSMED”

TOTAL : 9 resources and 9 relationships

Listing 5: Same set of computers with the “CATEGORIZED” algorithm
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4 The Broker Selection Policies

In this section, we present thebestBrokerRank policy that selects the best bro-
ker to submit a job in an interoperable grid scenario. In particular, given a set of
job requirements and the resource information from different brokers, it returns the
broker that matches optimally with these requirements. We first consider the accu-
mulated rank value of a regular matching algorithm on the resources of each broker
domain. Then, we also incorporate additional considerations such as promoting the
job originator domain or giving dynamic priorities to the different brokers depend-
ing on the performance that they are achieving.

The algorithm of this policy is described in the pseudo-codeof listing 6. The most
important input parameters are the job requirements and thebrokers resources. Job
requirements are, for example, the processor vendor (i.e.,Intel, AMD) or the oper-
ating system (i.e.,Linux, AIX). Moreover, our optimization function also considers
soft requirements (also known as recommendations) such as the recommended per-
centage of free virtual memory. Eventually, we define a set ofweighting factors to
be applied to different resource characteristics. The brokers are also represented as
resources that have the containment relationships with resources such as computers.
They follow the resource model that was discussed in the previous section.

FUNCTION: bestBrokerRank

IN:

JR = { jr 1, . . . , jr m} job requirements
B = {b1, . . . ,bn} brokers
PRIORITIES = {p1, . . . , pn} priorities of brokers
RESOURCES = {res1, . . . , resn}, ∀i = 0, . . . ,n : resi defines computers managed by broker bi

RELS = {rel1, . . . , reln}, ∀i = 0, . . . ,n : rel i defines relationships between resources resi

FACTORS = {CpuSpeed FACTOR, NumCpus FACTOR, FreeMem FACTOR, . . .}

OUT:

Rank value

BEGIN:

initialize (RANKS, B.size())
FOR i=1 TO B.size() {
IF matchRequirements (JR, RESOURCESi, RELSi){

RANKSi = computeBrokerRank (RESOURCESi, RELSi, FACTORS) * PRIORITIESi

}
ELSE {

RANKSi = -1
}

}

RETURN getMaxValueIndex(RANKS)

Listing 6: BestBrokerRank policy pseudo-code

Initialize creates a new vector of the given size and initializes its elements to
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0. The RANKSvector is used to store the obtained rank values of each broker.
The matchRequirementsfunction returnstrue if the given job requirements are
matched by any of the given resources. When the job requirements are not matched
by a set of resources in a broker domain, it is not considered in the subsequent steps.
ThecomputeBrokerRank function returns the accumulation of the rank values ob-
tained from the requirements matching in each broker resource. Internally, it uses
thecomputeResourceRankfunction that, given a particular broker resource, returns
the rank obtained from its main attributes matching (i.e., ProcType, OSType, Proc-
Speed) with an impact factor. Finally, thegetMaxValueIndex function returns the
index of the given vector that contains its maximum value. Thus, it returns the index
of the broker with the best rank relative to the job requirements.

After selecting a broker, the selection of the local resources to dispatch the job is
the responsibility of the broker following the policies established under its domain.
However, we note that part of thebestBrokerRankfunction implementation can be
re-used to select the local resource(s) to dispatch the job because it computes the
rank values of the resources in the local domain.

We evaluate two different variants of thebestBrokerRankpolicy. In the first one
(bestBrokerRank AGGR policy), the resources are defined in aggregated form.
We also implemented the two different resource aggregationalgorithms, namely,
SIMPLEandCATEGORIZED. The main differences between these two variants are
the input parameters and thecomputeResourceRankfunction implementation. The
new resource input parameters are defined in listing 7 that replaceRESOURCES
andRELSof listing 6. Since the resource data is expressed in aggregated form, the
actual information may differ significantly from the aggregated form. For exam-
ple “NumOfProcessors=(1-4,<count=15>,<total=31>)” that means 15 comput-
ers with a total of 31 CPUs having from 1 to 4 CPUs per computer, rather than, for
example,“3 computers with single CPU, 10 computers with 2 CPUs, and two with
4 CPUs”. Thus, when we consider the aggregated form the resource information
is significantly less accurate (see other examples in the following section). Conse-
quently, to compute the rank values from the aggregated datawe take maximum
and minimum values contained in the resources for the requirements and a combi-
nation of average values for refining the selection. Furthermore, since the resource
matching is performed at the broker level, the information loss can result to a non-
optimal broker selection decisions. Therefore, the algorithm may unintentionally
decide to submit a job to a broker with insufficient resourceswhen another broker

IN:

AGGR RESOURCES = {ar1, . . . ,ark}
AGGR RELS = {arel1, . . . ,arelp}, ∀i = 0, . . . , p : areli = {source,target}

∧ source,target ∈ AGGR RESOURCES
...

Listing 7: Aggregated resources definition as input
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is able to dispatch the job immediately.

The second variant (bestBrokerRank SLOW policy) also uses the aggregated re-
source form but it coordinates with the brokering layer. In particular, it takes the
broker average slowdown metric as the main characteristic in the matching opti-
mization function. We define“a broker average slowdown”as the mean of the
average bounded slowdown of its resources. The average bounded slowdown of the
resources is computed from its finished jobs. Moreover, the resource matching is
performed in a more relaxed manner. It means that the algorithm considers less job
requirements attributes in the matching process. For example, the selected domain
must contain at least a machine or a set of machines with enough CPUs to allocate
the job but it is not mandatory to have these CPUs available at the submission mo-
ment. Figure 1 depicts the bestBrokerRankSLOW policy in a simplified scenario.

Fig. 1. BestBrokerRankSLOW policy schema

The bestBrokerRankSLOW policy uses theCATEGORIZEDresource aggregation
algorithm because, as we will show in later sections, this algorithm provides a good
tradeoff between scalability and resource information accuracy. This policy can be
seen as a subset bestBrokerRankAGGR but giving more priority to the resources
which are achieving better performance. Actually, this is away to balance the per-
formance among the different brokers. Since the broker slowdown is the main at-
tribute for matching the brokers rather than the resource information, it gives more
priority to the underlying scheduling levels (local queuing and resource manage-
ment systems) in the job scheduling process. Thus, the jobs can be potentially
queued in the local systems for longer time. In fact, with theprevious policy the
average broker slowdown is always 1 because the jobs are onlysubmitted to a cen-
ter when it has enough free resources to be allocated immediately; if not, they are
queued at the brokering level. Consequently, from the point of view of the local
resources this policy may reduce their performance metricsbut it may improve the
global system performance.
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5 Evaluation Methodology

We have used simulation mechanisms for our policy evaluations. These simulations
allow us to research policies for large and complex configurations with numerous
jobs and high demand of resources and to easily include modifications and refine-
ments in the policies.

5.1 The Alvio simulation framework

The Alvio Simulator [15] is a C++ event driven simulator that has been designed
and developed to evaluate scheduling policies in HPC architectures. It supports
evaluation of schedulers in a large range of facilities fromlocal centers to inter-
operable grid environments simultaneously. It allows research on job scheduling
strategies in very different scenarios that may be composedof different VOs. It has
been designed in order to provide an easy mechanism to extendits functionalities.
Thus, extending this simulator with our models (i.e., adding new scheduling strate-
gies or new resource models) required only a reasonable amount of effort in terms
of development and design.

5.1.1 Local systems model

The simulator models different components which interact in local and distributed
architectures. Conceptually, it is divided into three main parts: theSimulator En-
gine, the Scheduling Policesand theComputational Resource Model(CRM). A
simulation of a local scheduling scenario allows us to simulate a given policy with
a given architecture. Currently, the following local policies have been modeled:

• Local Resource Selection Policies (RSP): First Fit, First Continuous Fit, and
Less Consume policies.

• Local Job Scheduling Polices (LJSP): the First Come First Serve policy, the
backfilling policy, and finally, the Resource Usage Aware backfilling (RUA-
Backfilling [16]). For backfilling policies, the different properties of the wait
queue and backfilling queue are modeled (Sort Job First, LXWF and First Come
First Serve) and different numbers of reservations can alsobe specified.

Like other simulators, given a workload and an architecturedefinition, Alvio is able
to simulate how the jobs would be scheduled using a specific job scheduling policy
(such as First Come First Serve, or the backfilling policies).The main contribution
of this simulator at this level is that it not only allows the modeling of the jobflow
in the system, but also the simulation of different resourceallocation policies. To
do this, it uses a reservation table that models how each job is allocated to each
node of the architecture. As a result, the researcher is ableto validate how different
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combinations of scheduling policies and resource selection policies impact on the
performance of the system.

The other new capability of this simulator is the ability to model the local resource
usage on the jobs that are running in the system. For each job,the researcher can
specify the different fields that are specified in the Feitelson Standard Workload
Format (SWF) [4]. However, at the local level, in addition to the SWF fields, for
each job, the user can specify the memory, ethernet and network bandwidths. Con-
sequently, depending on the configuration of the simulation, the impact of con-
sidering the penalty introduced in the job runtime due to resource sharing can be
evaluated, as it implements a job runtime model and resourcemodel that try to
estimate the penalty introduced in the job runtime when sharing resources.

5.1.2 Multi-site systems model

The simulator allows the local scenario to be extended by having several instances
of this scenario. As depicted in figure 2, different machines(e.g., clusters, sin-
gle box servers, etc.) can be specified (including their architecture definition, local
job scheduling policy, and local resource selection policy) and the different meta-
scheduling policies that can be specified to schedule the jobs. When the simulation
starts, all the different layers of the model are instantiated, from the local reserva-

Fig. 2. Brokering system
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tion tables (which model how the jobs are mapped to the processors) to the broker-
ing component that manages the jobs submitted to the system.

In grid scenarios, a grid resource broker usually requires the specification of the
job requirements from the user. In many cases, the meta-scheduling policies use
these requirements to carry out the matchmaking with the local resources. To allow
this, we have extended the Standard Workload Format (SWF) to specify the job
requirements in the workload to be simulated. Each requirement is composed of
an identifier (e.g.,Vendor), an operator (e.g.,EQUAL) and a value (e.g.,Intel). In
the current version of the simulator, the following requirements can be specified
for each grid job: memory in MB (e.g.,1024 MB), processor vendor (e.g.,Intel,
AMD), processor clock speed in MHZ (e.g.,1200 MHZ), operating system (e.g.,
Linux, AIX), number of processors (e.g.,4 processors) and disk size in MB (e.g.,
1000 MB). Concerning the meta-scheduling policies, two different kinds of policies
can be used:

• Multi-site scheduling policies: the non-centralized ISIS-Dispatcher policy [14].
In this scenario, jobs are scheduled by their own dispatcherand there are no
centralized scheduling decisions.

• Brokering scheduling policies: First Come First Serve, RealTime, Earliest Dead-
line First, or Job Rank (JR)-backfilling policies for the job scheduling, and re-
source selection based on the matchmaking approach.

5.1.3 Interoperable grid systems model

In our recent research work, we have focused on evaluating meta-brokering policies
[34] based on P2P approaches. To do this, we have extended theAlvio components
to model the different components that are included in such systems.

In a meta-brokering model, many different components are instantiated inside the
simulator. Firstly, themeta-systementity is created. This is a conceptual compo-
nent that models the different elements that are included inthe meta-environment
(such as the different domains, generic prediction services, etc.). It can contain a
centralized meta-broker scheduling entity which potentially can implement central-
ized based meta-brokering policies. It also allows P2P meta-brokering strategies to
be evaluated (see figure 3). This meta-system component contains a set of different
domain elements. Each of them contains a meta-brokering entity that is responsible
for managing the jobs submitted to that domain. Furthermore, it contains a set of
machines that model typical HPC local resources. Thus, the different centers of the
local-scenarios of the simulation model are also instantiated. For each of the ma-
chine components, a local scheduling policy (such as the First Come First Serve or
the EASY-Backfilling), a resource selection policy (such as the First Fit or the First
Continuous Fit) and a reservation table are created.

We have included in the simulator a prototype of the previously introducedBest-
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Fig. 3. Meta-brokering model with a P2P approach

BrokerRankpolicy and the resource aggregation algorithms. As we have pointed
out, this basically selects the most appropriate broker to submit a job based on a set
of ranks values corresponding to the different brokers, rather than using the local
information directly. However, since we consider forwarding jobs between brokers,
in our coordinated approach the different scheduling layers are important (for ex-
ample, when we use the average slowdown of the brokers as a QoSmetric in the
one variant of our policies).

5.2 The workloads

In our evaluation, we have used traces of the DAS-2, Grid5000, and Sharcnet sys-
tems from the Grid Workloads Archive [20][17]. We have selected two weeks of
job submissions for each workload trace. Thus, we have avoided the initial warm
up period of the systems (around the first 50,000 jobs) to skipthe unrepresentative
data. The selected trace fragments are sized with 11,318 jobs for DAS-2, 12,719
jobs for Grid5000, and 13,283 for Sharcnet. Thereby, when weevaluate the full
interoperable system with up to 18 domains, we are considering around a quarter
million jobs, 180 clusters, and more than 30,000 available processors.

We have analyzed the traces in order to select representative fragments. We have
manually reduced the inter arrivals times of the jobs. Increasing the stream of jobs
allows us to increase the pressure on the system incrementing the load. Moreover,
we have adjusted the execution times and we have limited the memory and CPU
demand (up to 512 CPUs) to scale the experiments according to areduced scenario
which simplifies the analysis of the results.

Figure 4 shows the distribution of the workloads job arrivals. The DAS-2 distribu-
tion is approximately linear and the Sharcnet one is by chunks. In the latter one,
we have pairs of intervals where many jobs arrive and where there are no job ar-
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rivals. In the figure, we can also find two different Grid5000 workloads. The one as
GRID5000OUTLIER is an unrepresentative portion of the trace becausethe ma-
jority of jobs arrive at the first 30% of the workload durationand the rest of time
there are only a few job arrivals. In fact, the simulation with the outlier trace gave
us irregular and incoherent results compared to the other workloads. However, the
other Grid5000 workload follows a more uniform distribution and it will be used in
our experiments. More details regarding these traces can befound in [20].

In our experiments, we have defined three different domain types, one for each
workload system:“DOM small” for DAS-2, “DOM medium” for Grid5000, and
“DOM big” for Sharcnet. The resources of each domain are based on real testbeds
in terms of number of clusters, CPU architecture, and OS. Moreover, they are scaled
in terms of memory and disk demand. For the DAS-2 system, we have modeled 6
resources with a total of 400 CPUs, 12 resources with a total of985 CPUs for the
Grid5000 system, and 12 resources with a total of 3,712 CPUs for the Sharcnet
system. However, to simplify the experiments, we have chosen a subset of the CPU
available architectures (Intel, AMD, andPowerPC) and Operating Systems (Linux,
AIX, andSolaris). While DAS-2 is a homogeneous multi-cluster (only hasIntel and
Linux), the other two systems are quite heterogeneous in term of number of CPUs,
architectures and OS (for example, Grid5000 has 50%Intel, 40%AMD and 10%
PowerPC, and 60%Linux, 30%AIX and 10%Solaris).

The original traces do not include resource requirements for each job. To fix this,
we have generated a requirements trace per workload to be used by the simulator
as explained in the previous sub-section. To generate theserequirements, we have
used a perl script that defines the jobs requirements based onthe original trace,
the resources characteristics, and a combination of input parameters. In particular,
we have used the CPU and memory demand, and for the disk utilization we have
used a combination of the job duration with the CPU and memory usage, with a
randomized factor. For the remaining attributes we have used percentages for each
CPU architecture and OS type, applying a random distributionby bursts (sized from
3 to 6).

Fig. 4. Workloads job arrivals

18



5.3 Metrics

We use the following metrics for evaluating our strategies:

• Total workload execution time
• Average job waiting time
• Average bounded slowdown (BSLD). We define BSLD for a given job:

BSLDjob = max

(

1,
runtimejob +waittimejob

max(runtimejob, threshold)

)

, threshold= 60seconds

• Average CPUs and nodes utilization

The units for the first two metrics are seconds and hours, for average CPUs and
nodes utilization are percentages, and the slowdown has no units. In our experi-
ments, we try to minimize all the metrics except the average CPU and nodes uti-
lization that should be maximized.

6 Results

In this section, we show the results obtained from experiments described in the pre-
vious section. In the simulations, we have evaluated the algorithms and scheduling
strategies that we have presented in the earlier part of the paper.

In the evaluation, firstly, we compare the scenario of havingindependent grid sys-
tems with an interoperable scenario having the same grids and using ourbestBro-
kerRankpolicy for the broker selection. Afterwards, the presentedevaluation is fo-
cused on evaluating the performance of the different variants of thebestBrokerRank
broker selection policy, using the aggregation algorithmsand being coordinated
with the underlying scheduling level. We also study if the aggregation algorithms
can scale to large grid interoperable systems with several domains and thousands
of resources.

6.1 Interoperable versus independent grids

In this sub-section, we present the evaluation of two different scenarios. In the first
one, we have simulated the scenario where each domain schedules the jobs that
users have submitted originally to the system. Here we evaluate the performance
of each of the different domains without any connection among them. Based on
the eNANOS resource selection strategy (it considers priorities in a matchmaking
algorithm) for each broker (one per domain) we have evaluated four different con-
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figurations: balancing the priorities (bal), giving more priority to the CPUs (cpu),
to memory (mem), and to disk (disk). For example, while in (cpu) configuration
the factor that multiplies the number of CPUs in the matchmaking algorithm may
be two or three times higher than factor that multiplies the free memory, in (bal)
configuration the factors are similar.

In the second scenario, using the same workloads, we evaluate the effect of routing
jobs between brokers in an interoperable grid environment.In particular, we have
modeled a scenario where the brokers establish agreements with each other and
share their resources in a P2P fashion. We have used the regular bestBrokerRank
policy for the broker selection. In the evaluation we compare an interoperable sys-
tem versus regular independent brokering systems. In this scenario, we also eval-
uate the impact of forwarding between brokers. To do this, wehave evaluated two
different configurations:ownthat considers local jobs with more priority, andequal
that considers local and remote jobs having equal priorities.

Although we are interested in precise evaluation of the performance of our policies
as well as the effect of having connections between the different domains, we do
not include some P2P issues such as the connection time overhead, job routing
overhead, or the loss of peering connections. These functionalities will be available
in future implementations.

Table 1 shows the results of the different scenarios and configurations. We present
for each experiment: the workload execution time, the 95th percentile of the average
waiting time and bounded slowdown (BSLD), the percentage of CPU, memory
and disk conflicts1 , and the percentage of re-scheduled jobs2 . The row labeled as
“overall” is the combination of the independent grid workloads. This means that
we take the average values of the different workloads and themaximum workload
execution time to compare with the interoperable grid scenarios. The workloads
labeled as“interoperable” are the combinations of the three different workloads
(DAS-2, Grid5000 and Sharcnet), using an interoperable grid scenario with three
different domains (one domain per workload type).

Figures 5a, 5b and 5c show the clusters utilization for each system using the differ-
ent configurations. The X axis shows the different clusters and the average of them.
The workloads and configurations used are the same as table 1.The utilization of
the cluster is computed by the percentage of the processor time use by running jobs
with respect to the maximum computing power available in thecluster in a given
interval of time. The total computing power is calculated bymultiplying the num-
ber of processors available in the system by the length of this interval. Figure 6
shows the job execution and forwarding distribution among the different domains.

1 A conflict is found for a given resource when it has insufficient CPUs/memory/diskto
match the job requirements.
2 A re-schedulingis performed when there is no resource in the system that matches the
job requirements.
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Workload Config Exec Wait BSLD % Conflicts %Re-

Name Time (h) Time (s) cpu mem disk Scheduled

DAS-2 bal 159.38 998 9.053 78.10 10.40 11.50 37.32

DAS-2 cpu 150.65 842 8.974 80.00 8.74 11.26 31.64

DAS-2 mem 162.06 881 9.744 72.85 9.44 17.71 36.96

DAS-2 disk 165.745 1,106 10.308 76.89 9.53 13.59 34.85

Grid5000 bal 763.07 11,720 8.330 73.19 16.16 10.65 51.57

Grid5000 cpu 744.79 11,914 8.342 75.73 13.99 10.29 51.20

Grid5000 mem 769.48 11,876 8.332 74.56 16.29 9.14 51.64

Grid5000 disk 778.30 11,266 8.315 74.00 16.24 9.76 51.81

Sharcnet bal 344.62 795 2.754 82.69 8.47 8.85 11.61

Sharcnet cpu 338.32 699 2.732 83.40 7.53 9.07 11.27

Sharcnet mem 346.55 1,191 3.282 80.89 8.92 10.19 13.10

Sharcnet disk 349.21 865 2.775 79.43 8.62 11.96 11.62

Overall 778.30 4,513 6.91 77.64 11.19 11.16 29.35

Interoperable equal 743,58 65 1.058 50.96 32.54 16.50 4.02

Interoperable own 748.70 69 1.124 57.21 27.56 15.22 6.37

Table 1. Evaluation results with Alvio

The workload execution times are similar with the differentconfigurations, espe-
cially with the Grid5000 and Sharcnet systems (the time difference is between 2-
4%). However, with the DAS-2 system, the execution time difference between the
configurations is up to 8%. Moreover, the execution time is shorter with thecpu
configuration in the three systems.

(a) DAS-2 clusters utilization

(b) Grid5000 clusters utilization (c) Sharcnet clusters utilization

Fig. 5. Resources utilization
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In general, the waiting times and BSLD are lower with thecpuconfiguration, ex-
cept with the Grid5000 system that shows better results withthediskconfiguration.
However, the best global performance results are obtained with cpuandbal config-
urations. The CPU conflicts are around 78% on average and both memory and disk
conflicts are only around 11% on average. It is also shown thatfor each configu-
ration the conflicts percentage related to the configurationincreases. Moreover, the
resource utilization is increased in the clusters that contain more resources belong-
ing to the given configuration.

The percentage of re-scheduled jobs substantially differsdepending on the systems.
For example, the Grid5000 system has higher job re-scheduling because it is the
most heterogeneous system. In general, we can see that withcpuconfiguration the
percentage of re-scheduled jobs is lower and with thememconfiguration is higher.
Thus, it can be observed that the changes in the attributes priorities have a more
substantial effect than when the systems are more homogeneous. This makes sense
because the jobs can be distributed more easily among the resources as there are
fewer restrictions in terms of architectures or OS requirements.

In the interoperable grid scenarios, the joint workloads execution time is similar to
the maximum of the single workload executions. The main reason is the distribu-
tion type of the job inter-arrivals and the restrictions of job requirements. As can
be observed in the figure 6, in both interoperable scenarios the Grid5000 is highly
demanded. Again, this is caused by the fact that it has more heterogeneous re-
sources. Therefore, the majority of the Grid5000 workload jobs can find resources
that match its requirements only in this system.

The results with the interoperable grid scenario are bettercompared to the indepen-
dent brokering one in terms of waiting time and slowdown. Theresults are similar
with both interoperable configurations but, in general, with theequalconfiguration
they show better results. The results also show that the conflicts distribution is quite
different compared to previous ones. Since there are more available resources to al-
locate the jobs, the number of conflicts and re-scheduling are significantly lower.

(a) Withequalconfiguration (b) With ownconfiguration

Fig. 6. Job execution among the domains
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In particular, the percentage of CPU conflicts is lower and, consequently, the per-
centage of memory and disk conflicts is higher. We can also appreciate that the
percentage of job re-scheduling is a bit lower with theequalconfiguration. The re-
source utilization has been increased around 5% in Grid5000and Sharcnet systems,
and has been reduced in the DAS-2 system. This can be explained by the fact that
DAS-2 and Sharcnet jobs finish before the total workload and they receive just a
few forwarded jobs from the Grid5000 system. Moreover, figure 6 states that with
the equalconfiguration the majority of the job forwarding goes to the Grid5000
system. However, with theown configuration the resource utilization is substan-
tially higher because the quantity of job forwarding is somewhat lower as can be
seen in figure 6 as well.

6.2 Scalability of the resource data aggregation algorithms

Since the broker selection policies that we present in this paper depend on resource
aggregation algorithms, in this sub-section, we evaluate the scalability of the two
proposed aggregation algorithms. To this end, we have performed the experiments
with different number of resources, from 10 to 10,000 computing systems. The
experiments were conducted by executing a Java program thatimplements the ag-
gregation algorithms on a commodity computer (an Intel coreduo with 1Gb of
memory). As input the program receives a file that includes a set of attribute val-
ues that define the computers. Firstly, the program transforms these attributes to our
regular resource model. Afterwards, it applies an aggregation algorithm and returns
the aggregated resource data and computes the spent time. For each experiment, we
repeat this process with 5 different input files and we compute the average value.
However, as we will show later, the variability of the resource characteristics does
not affect significantly to the scalability results. The input files with the computers
definition are generated by a perl script that we have developed. The script gener-
ates a file with the definition of the specified number of computers. The definition
of these computers are obtained randomly from a set of parameters such as 6 pro-
cessor vendor types, 8 processor speed types, 8 operating system types, etc.

In order to evaluate the scalability of the resource aggregation algorithms, we have
measured the metrics that are shown in figure 7. All of them arein logarithmic
scale. Figures 7a and 7b show the number of resources and relationships used for
describing the same resources, respectively. They show theresults with regular re-
source model (Original) and with the two aggregation algorithms (SimpleandCat-
egorized). We can appreciate that both figures follow a similar pattern. However,
in figure 7a the difference between the number of resources with the aggregation
algorithms and the regular form is larger. In general, whilethe number of resources
and relationships increases in a linear manner with the regular resource form, with
both aggregation algorithms the number of resources and relationships is almost
constant. In particular, for up to 100 computers the number of resources and rela-
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(a) Number of resources (b) Number of relationships

(c) Size of aggregated data (d) Execution time

Fig. 7. Results from the evaluation of the aggregation algorithms

tionships for the aggregated forms is around 10 times lower than the regular one.
For more than 100 computers the number of resources in aggregated form is up to
1,000 times lower than the number of resources in the regularone. Although both
aggregation algorithms follow the same pattern, the numberof resources and rela-
tionships with theCategorizedalgorithm is around 10 times higher than with the
Simplealgorithm.

Figure 7c shows the size of the resource information, including the attributes and
their values. The pattern that it follows is similar to thosedescribed previously
for the number of resources and relationships. This is explained due to the fact
that the size of the resource information is proportional tothe number of resources
and relationships that it contains. However, in this case the difference between the
different algorithms is quite smaller. The size with the regular form is around 100
times larger than with the aggregated forms, and the size with the Categorized
algorithm is around 6 times larger than with theSimplealgorithm.

Figure 7d shows the processing time required for both aggregation algorithms. With
100 computers or less the execution time of both algorithms is very similar. For
more than 100 computers the execution time of theCategorizedalgorithm is longer
than the execution time of theSimplealgorithm. However, the execution time dif-
ference between the two aggregation algorithms is less than50 seconds in the worse
case (with 10,000 computers).

24



Therefore, we conclude that the two aggregation algorithmsare scalable in terms of
resource information size, and the execution time of the aggregation algorithms is
acceptable for an interoperable grid environment. With theCategorizedalgorithm
the execution time is longer than with theSimplealgorithm, and the size of the
resource information with theCategorizedalgorithm is also larger than with the
Simplealgorithm. However, the accuracy of the resource data is much better with
theCategorizedalgorithm.

6.3 Performance results

In this sub-section, we evaluate the different broker selection policies in differ-
ent grid interoperable scenarios. We have defined them with different number of
domains (from 3 to 18) in order to evaluate the performance and scalability of
the different broker selection strategies. We have taken asa reference the origi-
nal bestBrokerRankpolicy (REGULARin the figures), and we have compared it
to three different variants. One of them uses theSimpleresource aggregation algo-
rithm (AGGRSIMP in the figures). The second one uses theCategorizedresource
aggregation algorithm (AGGRCAT in the figures). The last one is thebestBroker-
RankSLOWpolicy (SLOWin figures).

In order to perform the evaluations presented below, we havedone some mod-
ifications in the simulation environment. In particular, wehave modified a little
the Grid5000 domain in order to reduce its difference with the other two domains
in terms of heterogeneity of the resources. We also have increased the workloads
pressure in order to better compare the performance metricsresults in more loaded
systems with more demand of resources and with more requestsper unit of time.

Figure 8 shows the performance results obtained with the different policies in the
different interoperable scenarios using different combinations of the three work-
loads (DAS-2, Grid5000, and Sharcnet): 3 DOMs (one instanceof each workload),
6 DOMs (two instances of each workload, etc. They are normalized because our
objective is to compare the policies. Figure 8a shows the total workload execution
time. Figure 8b shows the average bounded slowdown of the brokers. Figures 8c
and 8d shows the percentage of forwarded jobs to another broker and re-scheduled
jobs in the grid domain, respectively. It is worth noting that in the first two fig-
ures, which are the most important ones, the maximum difference between two
policies is less than 14%. We note that in each figure the worstresult is obtained
by theAGGRSIMP policy (value equal to 1). It is also worth noting that we do
not consider the processing time of the matchmaking algorithm. Thus, the differ-
ence between theREGULARpolicy and the policies that uses aggregated resource
information may be smaller.

Figure 9 shows the resource utilization results of the same policies and scenarios
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of the previously commented figures. Figure 9a shows the average resource utiliza-
tion and figure 9b shows the standard deviation that gives us some hints about the
performance balancing of the different brokers.

(a) Relative workload execution time (b) Relative bounded slowdown

(c) Percentage of forwarded jobs (d) Percentage of re-scheduled jobs

Fig. 8. Normalized performance results

(a) Average resource utilization (%) (b) Standard deviation

Fig. 9. Resource utilization results

6.3.1 Resource aggregation algorithms

In general, in figure 8 the performance results with theAGGRCATpolicy are bet-
ter than the results with theAGGRSIMPpolicy (for example, 5% concerning the
bounded slowdown). With these two policies, the workload execution time and
average bounded slowdown increase when the number of domains increases, espe-
cially with 18 domains. The execution time increases 4.2% with theAGGRSIMP
policy and increases 3% with theAGGRCATpolicy. The average bounded slow-
down increases around 13% with theAGGRSIMPpolicy and increases 11% with
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theAGGRCATpolicy. Both policies show also less performance that theREGU-
LAR policy with every metric. The execution time is around 1.5% worse on av-
erage, the average bounded slowdown is 2.8% worse on average, the percentage
of forwarded jobs is 9.25% worse on average, and the percentage of re-scheduled
jobs is 9.75% worse on average. TheAGGRSIMP, AGGRCAT andREGULAR
policies follow similar patterns in the execution time, average bounded slowdown
and percentage of forwarded jobs figures. However, while thepercentage of re-
scheduled jobs with theREGULARpolicy is almost constant, withAGGRSIMP
andAGGRCATpolicies it increases significantly with 9 and 18 domains.

The average resource utilization withAGGRSIMPandAGGRCATpolicies is sig-
nificant lower than with theREGULARpolicy (around 5% on average with respect
to theREGULARpolicy). However, they follow the same pattern: the resource uti-
lization decreases when the number of domains increases. Both AGGRSIMPand
AGGRCATpolicies have very similar results. However, with theAGGRSIMPpol-
icy the resource utilization has a marked decrease with 18 domains. The standard
deviation (SD) withAGGRSIMPandAGGRCATpolicies is larger than with the
REGULAR policy(around 30% on average with respect to theREGULARpolicy).
The SD is especially larger with theAGGRSIMPpolicy. The difference between
the standard deviation withAGGRSIMPandAGGRCATpolicies is around 10%
on average. Moreover, SD increases with every policy when the number of do-
mains increases. With theREGULARpolicy the increase is linear, and with the
AGGRCAT policy it is almost linear except with 18 domains that it is signifi-
cantly higher. With 3 domains bothAGGRSIMP and AGGRCAT policies have
similar values. However, with 6 and more domains the SD increases a lot with the
AGGRSIMPpolicy (up to 15% with respect to theAGGRCATpolicy). It indicates
that withAGGRSIMPandAGGRCATpolicies the performance balancing of the
brokers is worse than with theREGULARpolicy, especially with theAGGRSIMP
policy.

The results show that the performance metrics can be degraded when the number
of domains increases. They also indicate thatAGGRSIMP andAGGRCAT poli-
cies obtain worse results in general. However, this degradation is not drastic, and
the differences between theREGULARpolicy and the policies that use aggregated
resource form are not very large.

6.3.2 Coordination with the underlying levels

The performance results of figure 8 with theSLOWpolicy are better than the re-
sults with theREGULARpolicy in most of the cases. The execution time is around
1% better on average, the average bounded slowdown is 3.9% better on average,
the percentage of forwarded jobs is around 2% better on average, except with 18
domains that is a bit worse, and the percentage of re-scheduled jobs is 5% better on
average.
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As the previously discussedAGGRSIMP andAGGRCAT policies, the workload
execution time and average bounded slowdown increase when the number of do-
mains increases. However, the execution time increases less than 1% and the aver-
age bounded slowdown increases less than 4%. Moreover, theSLOWandREGU-
LARpolicies follow similar patterns in terms of execution timeand average bounded
slowdown. The percentage of re-scheduled jobs pattern is different to the other poli-
cies. The percentage slightly decreases when the number of domains increases. This
behavior is due to the fact that, with theSLOWpolicy, part of the responsibility of
the job scheduling is in the local schedulers. Thus, the jobsare queued in the local
schedulers rather than being re-scheduled at the broker layer.

The average resource utilization with theSLOWpolicy is 4% larger on average than
with the REGULARpolicy. However, they follow the same pattern: the resource
utilization decreases when the number of domains increases. The total resource uti-
lization increase is around 6% with theSLOWpolicy. The standard deviation with
theSLOWpolicy is 10% smaller than with theREGULARpolicy. However, they fol-
low very similar patterns. It indicates that with theSLOWpolicy the performance
balancing of the brokers is better than with theREGULARpolicy.

Figure 10 shows the evolution of the average bounded slowdown of the differ-
ent clusters in two different domains (DAS-2 and Sharcnet) using theSLOWpol-
icy. Each data series of the figure shows the bounded slowdownof a cluster. They
clearly converge to a similar value, which is very close to the total workload aver-
age bounded slowdown. This indicates that the coordinated strategy can perform a
good balancing of performance among the different clusters. Moreover, it is shown
that the different clusters follow similar patterns. Sincein the DAS-2 system the
resources are homogeneous, probably it is easier to balancethe performance. How-
ever, in the Sharcnet case the performance balancing is a bitworse and there are
some peaks during the workload execution. These peaks can beexplained with the
fact that the Sharcnet workload distribution has job submission peaks. Moreover,
the performance balancing is worse probably because the Sharcnet resources are
more heterogeneous.

Figure 11 shows the evolution of the average bounded slowdown of the brokers
using theSLOWpolicy with different number of domains. In this case, each data
series shows the bounded slowdown of a brokers rather than a cluster. We note that
with three domains the bounded slowdown is quite well balanced. However, when
the number of domains increases the balance of the differentbrokers slowdown
is worse. This degradation fits with the performance resultsof figure 8. We saw
that with theSLOWpolicy, as the rest of the policies, the average bounded slow-
down increase when the number of domains increases. Consequently, a worse gen-
eral performance results in a degraded broker performance balancing. Moreover, in
contrast to balancing the clusters slowdown of a given broker, balancing the brokers
slowdown is much more difficult, especially when the number of domains is large.
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(a) DAS-2 (b) Sharcnet

Fig. 10. Evolution of the clusters normalized AVG slowdown

(a) 3 VOs (b) 6 VOs

(c) 9 VOs (d) 18 VOs

Fig. 11. Evolution of the domains normalized AVG bounded slowdown

Figures 12 and 13 show the histogram of the job forwarding among different do-
mains with theAGGRCATandSLOWpolicies, respectively. They do not consider
the job execution inside a domain, for this reason the positions of the figures with
same source and target domains are marked as “n/a”. As it is shown in the figures
legend, the dark regions indicate more density of forwardedjobs, and the light ones
indicate less number of forwarded jobs. In fact, this is another way to analyze the
performance balancing among the different brokers or domains. Moreover, it better
visualizes which brokers are more demanded, which ones require forwarding more
jobs, and what the patterns of the job forwarding are.

We note theSLOWpolicy can achieve better balancing of the job forwarding among
domains. This observation fits with figure 8 where theSLOWpolicy has the best re-
sults. It is also shown that with theAGGRCATpolicy the forwarding is more than
with SLOWpolicy because it has more dark regions. The balance is better with the
SLOWpolicy than with theAGGRCATpolicy. On one hand the forwarding distri-
bution is well defined with theSLOWpolicy: the target domains are usually near
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(a) With 6 VOs (b) With 9 VOs (c) With 18 VOs

Fig. 12. Job forwarding among domains with AGGRCAT configuration

(a) With 6 VOs (b) With 9 VOs (c) With 18 VOs

Fig. 13. Job forwarding among domains with SLOW configuration

the source domains (the dark regions are found near the diagonal of the figures),
and with theAGGRCAT policy the forwarding distribution is not uniform. Fur-
thermore, in figure 12 there are some rows with only light regions, and the other
rows have lots of dark regions. This indicates that some domains receive lots of
forwarded jobs and other domains receive just a few.

7 Conclusions and Future Work

In this paper, we have addressed the problem of broker selection in grid interoper-
able scenarios. We have described and evaluated thebestBrokerRankpolicy which
selects the best broker to submit a job given a set of resourceinformation. We
also have described and evaluated two variant of this policy: using resource infor-
mation in aggregated form, and coordinating the schedulingwith the underlying
layers based on the brokers average bounded slowdown, in addition to aggregated
resource information. We also have presented two differentresource aggregation
algorithms that have been used by our broker selection policies.

Using our simulation platform, we have performed various evaluations. Firstly, we
have compared independent grid systems to the interoperable scenario of these sys-
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tems. We also have evaluated two different interoperable configurations:own that
considers local jobs with more priority, andequalwhich consider local and remote
jobs with equal priority. The results with the interoperable grid scenario are bet-
ter compared to those of the independent brokering one in terms of waiting time
and slowdown. Moreover, the number of conflicts and re-scheduling are signifi-
cantly smaller and the resource utilization has been slightly increased. The results
are similar in both interoperable configurations but, in general, with theequalcon-
figuration they are better. Thus, we conclude that an interoperable grid scenario
can improve the global system performance compared to the independent grid sys-
tems. However, we have not taken into account some P2P issues, such as protocols
overhead or the loss of peering connections.

Before evaluating broker selection policies, we have studied the scalability ofSim-
ple and Categorizedresource aggregation algorithms. The results show that the
algorithms are scalable in terms of resource information size, and their aggregation
processing time is acceptable for an interoperable grid environment. Although with
theCategorizedalgorithm the execution time is longer, and the resource informa-
tion size is larger than with theSimplealgorithm, the accuracy of the resource data
is much better with theCategorizedalgorithm. However, we did not address the
gain in matching time with aggregated resource information.

We have evaluated the performance of broker selection policies comparing the reg-
ularbestBrokerRankpolicy (REGULAR) with its two variants:bestBrokerRankAGGR
andbestBrokerRankSLOW. The first one considers the resource information in ag-
gregated form using the two described resource aggregationalgorithms (AGGRSIMP
andAGGRCAT), and the second one uses the brokers average bounded slowdown
as well as the aggregated resource form (SLOW). We have obtained the best results
with theSLOWpolicy. The execution time is 1% better, and the average bounded
slowdown is almost 4% better with respect to theREGULARpolicy. The resource
utilization is 4% higher. The worst results have been obtained with thebestBroker-
RankAGGRpolicies. On average, their execution time is 1,5% worse andtheir av-
erage bounded slowdown is almost 3% worse with respect to theREGULARpolicy.
The resource utilization is 5% lower on average. In general,with theAGGRCAT
policy we have obtained better results than with theAGGRSIMPpolicy. The differ-
ence between both policies is up to 5% in the average bounded slowdown. Through
the study of the standard deviation of broker resource utilization, the evolution of
the brokers slowdown, and job forwarding, we claim that theSLOWpolicy balances
the performance among the brokers better than the other policies. Therefore, the re-
sults obtained with our evaluation clearly support the argument that coordination
with the underlying scheduling levels in interoperable grid scenarios can improve
workloads execution as well as resource utilization.

There are different lines of work that we plan to address in the near future. On
one hand, we are targeted to include the P2P details in our models to improve the
simulations. We will also add these features to our negotiation protocol that was
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presented in [2]. On the other hand, we plan to validate the results of our broker
selection strategies in a real scenario with real applications. We will use the LA Grid
infrastructure with HPC applications such as the Weather Research and Forecasting
(WRF) [41].
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