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ABSTRACT

TRANSPARENTSHAPING OF EXISTING SOFTWARE TOSUPPORT
PERVASIVE AND AUTONOMIC COMPUTING

By

S. Masoud Sadjadi

As the computing and communication infrastructure continues to expand and diversify,

the need for adaptability in software is growing. Adaptability is especially important to

pervasive computing, which promises anywhere, anytime access to data and computing

resources. The need for adaptation in pervasive computing applications is particularly evi-

dent at the “wireless edge” of the Internet, where software in mobile devices must balance

several conflicting concerns, including quality-of-service, security, fault-tolerance, and en-

ergy consumption. We say that an application isadaptableif it can change its behavior

dynamically (at run time). Developing and maintaining adaptable software are nontrivial

tasks, however. Even more challenging is to enhance existing programs so that they execute

effectively in new, dynamic environments.

We propose a new programming model calledtransparent shaping, which supports dy-

namic adaptation in existing programs. The key insight in transparent shaping is the syn-

ergy resulting from the integration of four key fundamentaltechnologies:aspect-oriented

programmingto enable separation of concerns at development time,behavioral reflection

to enable software reconfiguration at run time,component-based designto enable indepen-

dent development and deployment of adaptive code, andadaptive middlewareto hide the

adaptive behavior from the functional code. The major contributions of this dissertation

can be summarized as follows.

First, we assess the effectiveness and expressiveness of language support in develop-

ing adaptable components separately from the functional code. In a case study, we use



the Adaptive Java language to design and evaluate a component calledMetaSocket, whose

behavior and structure can be adapted at run time in responseto external stimuli. We

demonstrate how MetaSockets can be used to support adaptation in mobile computing en-

vironments.

Second, we investigate how to enhance existing applicationcodetransparentlyin or-

der to support dynamic adaptation. We propose transparent reflective aspect programming

(TRAP), a development model that enables partial behavioral reflection in existing object-

oriented programs. The reflection model provided enables separation of crosscutting con-

cerns atrun timewith minimal overhead.

Third, we demonstrate the use of existing adaptive middleware frameworks to support

transparent shaping of distributed applications. As a proof of concept, we propose theACT

framework, which enables new behavior to be added dynamically (and transparently) to

running CORBA applications. We demonstrate how ACT can support both adaptation in

pervasive computing contexts and interoperability with other middleware frameworks.

Fourth, we assess the potential role of transparent shapingbeyond the domain of a sin-

gle program, specifically to support application integration. We propose several alternative

architectures that can be used to integrate heterogeneous applications, while the interoper-

ation is transparent with respect to the applications and distribution middleware.
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Chapter 1

Introduction

As the computing and communication infrastructure continues to expand and diversify,

the need for adaptability in software cannot be overstated.Adaptability is especially im-

portant topervasive computing, which promises anywhere, anytime access to data and

computing resources with few limitations and disruptions [11–15]. Pervasive computing is

becoming a reality by a convergence of the recent advances inelectronic technologies, es-

pecially wireless communication, and the growth of the Internet. The need for adaptability

in pervasive computing is particularly evident at the “wireless edge” of the Internet, where

software in mobile devices must balance conflicting concerns such as quality-of-service

(QoS) and energy consumption in responding to variability of conditions (e.g.,wireless

network loss rate). Adaptability is also important toautonomic computing, which promises

self-managed and long-running systems that require only limited human guidance [16–19].

Autonomic computing supports systems such as financial networks, transportation systems,

and water and power systems, which must continue to operate correctly during exceptional

situations. Such systems require adaptation in order to survive hardware component fail-

ures, network outages, software faults, and security attacks.

Developing and maintaining adaptable software are nontrivial tasks. We say a software

application isadaptableif it can change its behavior dynamically (at run time) as a response
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to transient changes in its execution environment (e.g.,to address dynamic network condi-

tions) or to permanent changes in its requirements (e.g.,to upgrade long-running mission-

critical systems). An adaptable application comprisesfunctionalcode, which implements

the business logic of the application and supports its imperative behavior, andadaptive

code, which implements the adaptation logic of the application and supports its adaptive

behavior. The difficulty of developing and maintaining adaptable applications comes from

the nature of the adaptive code, which tends tocrosscutthe functional code. Example

crosscutting concerns include QoS, mobility, fault tolerance, recovery, security, self au-

diting, and energy consumption. Even more challenging thandeveloping new adaptable

applications is enhancingexistingapplications, such that they execute effectively in new,

dynamic environments not envisioned during their design and development. For example,

many non-adaptive applications are being ported to mobile computing environments where

they require dynamic adaptation.

Separation of concerns[20–22] enables the separate development of the functional

code from the adaptive code of an application. This separation simplifies development

and maintenance, while promoting software reuse. Separation of concerns has become

an important principle in software engineering [23], and many development techniques

apply it to some degree. Examples include domain-specific languages, generative pro-

gramming, generic programming, constraint languages, feature-oriented development, and

aspect-oriented programming [24]. Presently, the most widely used approach appears to

be aspect-oriented programming (AOP) [1, 25, 26]. While object-oriented programming

abstracts out commonalities among classes in an inheritance tree, crosscutting concerns

are scattered among different classes, complicating the development and maintenance of

applications. AOP enables these concerns to be isolated from the rest of the application.

However, in traditional AOP the adaptive code is tangled with the functional code during

compilation. To support adaptable software, the programmer needs a way to maintain this

separation at run time.
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One way to support separation of concerns at run time is through the use of behavioral

reflection [27–29]. According to Maes [30],behavioralor computationalreflection refers

to the ability of a program to reason about, and possibly alter, its own behavior. Behav-

ioral reflection enables a system to “open up” its implementation details at run time [31].

A reflective system has a self representation, which deals with the computational aspects

(implementation) of the system, and iscausally connectedto the system, meaning that any

modifications either to the system or to its representation are reflected in the other. Since the

self representation of a reflective system is not tangled with the system, if we incorporate

the crosscutting concerns associated with the system as part of its self representation, then

the resulting code at run time is not tangled and can be reconfigured dynamically. When

combined with AOP, behavioral reflection enables dynamic weaving of cross-cutting con-

cerns into an application at run time [27, 32]. However, mechanisms are needed to enable

the dynamic loading and unloading of adaptive code during execution.

Software componentsare software units that can be independently developed, deployed,

and composed by third parties [33]. Well-defined interface specifications supported in

component-based design enable adaptive code to be developed independently from the

functional code, and potentially by different parties, using the interface as a contract.

Component-based design supports two types of composition.In static composition, a de-

veloper can combine several components at compile time to produce an application. In

dynamic composition, the developer can add, remove, or reconfigure components within

an application at runtime. By enabling the assembly of off-the-shelf components from dif-

ferent vendors, component-based design promotes softwarereuse. When combined with

behavioral reflection, component-based design enables a “plug-and-play” capability for

adaptive code to be incorporated with functional code at runtime that facilitates develop-

ment and maintenance of adaptable software.

Finally, in many cases it is desirable to hide the adaptive behavior from the appli-

cation using middleware. Traditionally,middlewareis intended to mask the distribution

3



of resources across a network and hide differences among computing platforms and net-

works [34–36]. As observed by several researchers [37–45],however, middleware is also

a natural place to incorporate the adaptation required for many different crosscutting con-

cerns.Adaptivemiddleware enables dynamic reconfiguration of middleware services while

an application is running, adjusting the middleware behavior to environmental changes dy-

namically.

This dissertation proposes a new programming model, calledtransparent shaping,

which supports the design and development of adaptable programs from existing pro-

grams without the need to modify the existing programs source code directly. The key

insight in transparent shaping is the synergy resulting from the integration of four key fun-

damental technologies:aspect-oriented programmingto enable separation of concerns at

development time,behavioral reflectionto enable software reconfiguration at run time,

component-based designto enable independent development and deployment of adaptive

code, andadaptive middlewareto encapsulate the adaptive code inside middleware.

Adaptable programs derived from an existing program share the business logic of the

existing program and differ only in their adaptive behavior. Because of such commonality,

instead of developing each adaptable program individually, transparent shaping provides a

model to produce afamily of adaptable programs from an existing program. Aprogram

family [46] is a set of programs whose extensive commonalities justify the expensive effort

required to study them as a whole rather than individually.

An adaptable program produced by transparent shaping comprises the original program

code, which is fixed during the program execution, and an adaptive code, which can be re-

placed with another adaptive code dynamically. Replacing one adaptive code with another

adaptive code converts an adaptable program into another adaptable program in the corre-

sponding family. This conversion is possible, since the adaptive code is not tangled into

the functional code. We use the termcomposerto refer to the entity that performs this

conversion. The composer might be a human – a software developer or an administrator in-
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teracting with a running program through a graphical user interface – or a piece of software

– a dynamic aspect weaver, a component loader, a runtime system, or a metaobject.

As illustrated in Figure 1.1, transparent shaping producesadaptable programs in two

steps. In the first step, an adapt-ready program is produced at compile, startup, or load

time using static transformation techniques. Anadapt-readyprogram is a program whose

behavior can be adapted at run time by a composer inserting orremoving adaptive code at

certain points in the execution path of the program, calledsensitive joinpoints. To support

such functionality, in the first step, transparent shaping weaves generic interceptors, called

hooks, at the sensitive joinpoints, which may reside inside the program code itself or inside

its supporting middleware. Example techniques for implementing hooks include aspects

at compile time, CORBA portable interceptors [47] at startup time, and byte-code rewrit-

ing [48] at load time. In the second step, the hooks in the adapt-ready program are used

by the composer to convert the adapt-ready program into an adaptable program, as need

arises. Adapt-ready programs derived from the same existing program are different in their

corresponding sensitive joinpoints and hooks.

X0
(existing program)

X1
(adapt-ready program)

X4X3

X8

First Step:
at compile, startup, or load time

Second Step:
at run time

X working program reversible design decisiondesign decision

X2
(adapt-ready program)

X5 X7X6

X9

subfamily boundary

Figure 1.1: A transparent shaping design tree illustratinga family of adaptable programs
produced from an existing program, which is the root of this tree. Children of the root are
adapt-ready programs. Other descendants are adaptable programs.

As an example, let us consider an existing distributed program (X0) originally devel-

oped for a wired and secured network. To enable this program to run efficiently in a mobile

computing environment, transparent shaping can be used to produce an adapt-ready ver-
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sion of this program (X1), which has hooks intercepting all the remote interactions(first

step). At run time, if the system detects a low quality wireless connection, the composer

can insert adaptive code for tolerating long periods of disconnection into the adapt-ready

program (producingX4 from X1). Later, if the user enters an insecure wireless network,

the composer can insert adaptive code for encryption/decryption of the remote interactions

into the program (producingX8 from X4). Finally, when the user returns to an area with

a secure and reliable wireless connection, the composer canremove the adaptive code for

both security and connection-management to avoid unnecessary performance overhead re-

sulted from the adaptive code (producingX4 from X8 andX1 from X4).

Thesis Statement. Transparent shaping provides a programming model for producing

adaptable programs from existing programs. Transparent shaping enables reuse of exist-

ing programs in new environments even though the specific characteristics of such new

environments were not anticipated during the original design of the existing programs.

The major contributions of this dissertation are summarized as follows.

1. We assessed the effectiveness and expressiveness of language support in developing

adaptable components separately from the functional code.Previously, our group

developedAdaptive Java[49], an extension to Java that contains constructs to sup-

port dynamic recomposition. We used Adaptive Java to investigate the process of

developing adaptable components [50–54]. Specifically, wedesigned and evaluated

a component calledMetaSocket, whose behavior and structure can be adapted at run

time in response to external stimuli (e.g.,wireless channel conditions). Our study

shows the use of new constructs in development of adaptable components improves

both expressiveness and effectiveness of the adaptive code.

2. We developed a technique to enhance existing applicationcodetransparentlyin order

to support dynamic adaptation. We proposed transparent reflective aspect program-

ming (TRAP), which enables partial behavioral reflection inexisting object-oriented
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programs [55, 56]. The reflection model provided enables separation of crosscut-

ting concerns atrun timewith minimal overhead. A prototype of TRAP for Java,

called TRAP/J, was developed and used to evaluate TRAP in practice. Results of

a case study show the improvement in the execution of an existing application in a

mobile computing environment, while the dynamic adaptation is transparent to the

application code.

3. We developed an technique to use of adaptive middleware tosupport transparent

shaping of distributed applications. As a proof of concept,we proposed theACT

framework, which enables new behavior to be added dynamically (and transparently)

to running CORBA applications [57, 58]. In addition, we demonstrated how ACT

enables interoperation among otherwise incompatible adaptive CORBA frameworks.

The results of evaluating the ACT framework show the overhead introduced by ACT

is negligible, while the adaptation provided is highly flexible.

4. To assess the potential role of transparent shaping beyond the domain of a single

program, we developed a technique that uses transparent shaping to support appli-

cation integration. We proposed several alternative architectures that can be used

to integrate heterogeneous applications, where the interoperation is transparent with

respect to the applications and distribution middleware. As a proof of concept, we

used the proposed architectures to provide transparent interoperation in heteroge-

neous applications developed in Java RMI, CORBA, and .NET Remoting. A case

study demonstrates the use of transparent shaping in integration of two existing ap-

plications.

The remainder of this dissertation is organized as follows.Chapter 2 provides a back-

ground on middleware and adaptation techniques, then introduces a taxonomy of adaptive

middleware, and classifies several representative adaptive middleware projects. Chapter 3

introduces MetaSockets. This chapter provides a background on Adaptive Java, describes
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the internal architecture of MetaSockets, and finally evaluates MetaSockets in a number of

case studies. Chapter 4 introduces TRAP and TRAP/J, and shows how TRAP/J can en-

able existing Java applications to support dynamic adaptation without the need to directly

modify their source code. Chapter 5 presents ACT. This chapter provides a background

on CORBA and its portable request interceptors, describes the ACT internal architecture,

and provides two case studies through which we demonstrate the use of ACT to enhance

existing CORBA applications with new adaptive code at run time transparently. Chapter 6

demonstrates the use of transparent shaping in applicationintegration and provides a case

study where two existing heterogeneous applications are integrated. Finally, Chapter 7

offers conclusions and discusses future research directions.
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Chapter 2

Background and Related Work

Developing distributed applications is a difficult task dueto three major problems: the com-

plexity of programming interprocess communication, the need to support services across

heterogeneous platforms, and the need to adapt to changing conditions. Traditional middle-

ware (such as CORBA, DCOM, and Java RMI) addresses the first two problems to some

extent through the use of a “black-box” approach (e.g., encapsulation in object-oriented

programming). However, traditional middleware is limitedin its ability to support adap-

tation. To address all three problems,adaptivemiddleware has evolved from traditional

middleware. In addition to the object-oriented programming paradigm, adaptive mid-

dleware employs several other key technologies including computational reflection [30],

component-based design [33], aspect-oriented programming [1], and software design pat-

terns [59].

Since the transparent shaping programming model benefits from results in adaptive

middleware research, in this chapter we review the work in this area. Section 2.1 pro-

vides a background on traditional middleware. Section 2.2 describes four key supporting

techniques used in the development of adaptive middleware.Section 2.3 proposes a three-

dimensional taxonomy that categorizes different adaptivemiddleware approaches, and de-

scribes and compares examples of each. Finally, Section 2.5discusses different approaches
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to transparent shaping.

2.1 Traditional Middleware

Middlewareis connectivity software that encapsulates a set of services residing above the

network operating system layer and below the user application layer, effectively the session

and presentation layers of the ISO OSI reference model [35].Middleware facilitates the

communication and coordination of application componentsthat are potentially distributed

across several networked hosts. Moreover, middleware provides application developers

with high-level programming abstractions, for example, use of remote objects instead of

socket programming [36]. In this manner, middleware can hide interprocess communica-

tion, mask the heterogeneity of the underlying systems (hardware devices, operating sys-

tems, and network protocols), and facilitate the use of multiple programming languages at

the application level. Middleware can also be considered asa “glue” that enables integra-

tion of different legacy applications [34].

Various paradigms [34, 35] have been used in the developmentof middleware. Em-

merich [35] provides a frequently referenced taxonomy of middleware, which classifies ap-

proaches according to four programming-language abstractions used for interaction among

distributed software components.Transactional middleware[60–62] supports distributed

transactions among processes running on distributed hosts. Message-oriented middle-

ware[63,64] facilitates asynchronous message exchange between clients and servers using

the message-queue programming abstraction [35].Procedural middleware[65,66] extends

the procedure call in procedural programming languages to includeremote procedure calls

(RPC), where the body of the procedure resides on a remote host and can be called the

same way as a local procedure. Finally,object-oriented middleware[67–69] is based on

both the object-oriented programming paradigm and the RPC architecture. It provides the

abstraction of aremote object, whose methods can be invoked as if the object were in the

same address space as its client.
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Since most research in adaptive middleware is based on the object-oriented paradigm,

we focus on that type in more detail. Basically, object-oriented middleware separates object

interfaces, which comprise a set of functionally related methods, fromtheir implementa-

tions, which define how objects should respond to messages received from remote objects.

Object-oriented middleware also provides a local representation for each remote object,

and hides the interprocess communication between a remote object and its local represen-

tation. The three major examples of object-oriented middleware are CORBA [67], Java

RMI [68], and DCOM/.NET [69,70]. We review each in turn.

TheCommon Object Request Broker Architecture (CORBA)[47] is a distributed object

framework proposed by the Object Management Group (OMG). CORBA supports dis-

tributed object-oriented computing across heterogeneoushardware devices, operating sys-

tems, network protocols, and programming languages. TheObject Request Broker (ORB)

allows objects to interact transparently with other objects (located locally or remotely). To

use a remote object, a client first acquires a reference, called an interoperable object refer-

ence (IOR), using either a static file containing the IOR or a CORBA naming service [47].

Next, the client invokes methods on this reference as if the object was located in the client

address space. TheInterface Definition Language (IDL)is a language for defining CORBA

interfaces. An IDL compiler generates the code for stubs andskeletons automatically. A

stubrepresents a remote object in the client address space and askeletonrepresents a client

in the remote address space. Stubs and skeletons marshal andunmarshal requests and re-

sponses to enable object interactions over a network.

Java remote method invocation (Java RMI)[68] was proposed by JavaSoft to support

the development of distributed Java-based applications. Java RMI supports distributed

computing across heterogeneous hardware devices and operating systems using the Java

Virtual Machine (JVM). Unlike CORBA, which is language independent, Java RMI sup-

ports only the Java language. Instead of CORBA marshalling and unmarshalling, Java RMI

uses object serialization, which preserves the type of the objects being serialized. Thereg-
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istry in Java RMI is similar to a CORBA naming service, which resolves a symbolic name

to an actual remote object reference. A server object registers itself with the registry, where

a client object can look up the remote object address. Java RMI can dynamically load the

class bytecode of an object that is passed between remote objects using Java reflection.

TheDistributed Component Object Model (DCOM)[69] was proposed by Microsoft as

a distributed extension to the Component Object Model (COM)[71]. Similar to CORBA,

DCOM supports heterogeneous programming languages, but unlike CORBA and Java

RMI, DCOM supports only Windows-based platforms. The DCOMobject proxyandob-

ject stubare the equivalent to the CORBA stub and skeleton, respectively. Unlike CORBA

and Java RMI, DCOM supports neither multiple inheritance nor exceptions at the IDL

level. However, with regard to inheritance, DCOM supports multiple interfaces using a

binary standard similar to the C++ vtable [69]. DCOM also supports dynamic invocation

using the IDispatch interface [69]. The .NET remoting platform [70, 72] is the follow-

on to DCOM. For more detailed comparisons of CORBA, Java RMI,and DCOM/.NET

remoting, please refer to [36,70,72–74].

2.2 Key Supporting Techniques for Adaptation

In addition to the foundation provided by the design and use of traditional middleware plat-

forms, numerous advances in programming paradigms [1, 23, 30, 33, 59, 75–81] have also

contributed to the emergence of adaptive middleware. Although many important contribu-

tions have been made in this area [23, 76–81], a review of the literature shows that four

paradigms, in addition to object-oriented paradigm, play key roles in supporting adaptive

middleware: computational reflection [30], component-based design [33], aspect-oriented

programming [1], and software design patterns [59,75].
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2.2.1 Computational Reflection

Computational reflection[30,82] refers to the ability of a program to reason about, and pos-

sibly alter, its own behavior.Reflectionenables a system to “open up” its implementation

details for such analysis without compromising portability or revealing the unnecessary

parts [31]. In other words, reflection exposes a system implementation at a level of abstrac-

tion that hides unnecessary details, but still enables changes to the system behavior [30,82].

As depicted in Figure 2.1, a reflective system (represented as base-levelobjects) has a self

representation (represented asmeta-levelobjects) that iscausally connectedto the system,

meaning that any modifications either to the system or to its representation are reflected in

the other [83]. Thebase-levelpart of a system deals with the “normal” (functional) aspects

of the system, whereas themeta-levelpart deals with the computation (implementation)

aspects of the system. Ameta-object protocol (MOP)is a meta-level interface that enables

“systematic” (as opposed to ad hoc) inspection and modification of the base-level objects.

Base Level

Meta LevelMeta-Object Protocols

Base-Level Objects

Meta-Level Objects

Figure 2.1: Relationship between meta-level objects and base-level objects.

Computational reflection has been studied for several yearsin the context of program-

ming languages [30, 82, 84–87] and operating systems [88–90]. Recently, reflection has

also been studied in middleware, where it enables adapting the behavior of a distributed

application by modifying the middleware implementation. Reflective middleware is often

concerned with adapting non-functional aspects of distributed applications including QoS,

performance, security, fault tolerance, and energy management. Section 2.4 describes sev-

eral examples of reflective middleware platforms [6,37,38,53,91–95].
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We also note that several reflective programming languages [49,96–98] have been pro-

posed recently to support development of distributed systems and reflective middleware.

MetaJava[96] extends Java reflection with behavioral reflection thatenables modifying

the behavior of the Java RMI package at run time (e.g.,encrypting requests before trans-

mitting them over a network).Program Control Logic (PCL)[97] provides a programming

framework that enables programmers to design, develop, andoptimize the performance of

adaptive distributed applications [97]. A source-to-source compiler is provided, which in-

puts meta code specified in a language very close to C++ and Java (PCLC and PCLJ respec-

tively) and outputs a program source in C++ or Java that is then compiled and linked with

the base program.Adaptive Java[49] is an extension to Java that introduces new language

constructs to support behavioral reflection. In its behavioral reflective meta-model archi-

tecture, Adaptive Java separates monitoring the behavior (introspection) from changing the

behavior (intercession), using “refractive” and “transmutative” meta methods, respectively.

Iguana/J[98] extends the Java Virtual Machine to intercept method invocation, object cre-

ation, and field read and write at run time. Iguana/J can adaptthe intercepted operations

by loading new code dynamically. These and other reflective languages [30,82,84–87] are

likely to facilitate the development of adaptive middleware and distributed applications.

2.2.2 Component-Based Design

Software componentsare software units that can be independently developed, deployed,

and composed by third parties [33]. Components are self-contained: components clearly

specify what they require and what they provide. Component-based design (CBD) sup-

ports the large scale reuse of software by enabling assemblyof “commodity-off-the-shelf”

(COTS) components from a variety of vendors [36]. The independent deployment of com-

ponents enableslate composition(also referred to aslate binding), which is essential for

adaptive systems. Late composition provides coupling of two compatible components at

run time through a well-defined interface. A system developed using CBD is an amalgam
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of components that can be reorganized easily.

Figure 2.2(a) depicts astaticcomposition approach, in which four components are com-

bined at compile time to produce an application. Of particular importance to dynamic

recomposition is binding time.Late, or dynamic, binding supports coupling of compat-

ible service clients and providers through well-defined interfaces at run time. As shown

in Figure 2.2(b), new components can be bound to an application at run time. Moreover,

object-oriented languages useindirect interfaces, primarily as a means to support inheri-

tance and polymorphism [33]. Effectively, method calls areredirected to the appropriate

method implementation. This level of indirection when coupled with dynamic class loading

and late binding, helps to support dynamic adaptation.

Compile Time

(a) Static composition.

……

Compile Time Run Time

(b) Static composition and dynamic recomposition.

Figure 2.2: Component-based design enables static composition and dynamic recomposi-
tion.

When applied to middleware, CBD provides a flexible and extensible system that can be

reconfigured by upgrading each individual component at maintenance time (and possibly

at run time) [6, 45, 53, 91, 93, 99, 100]. Specifically, a middleware can be customized to

specific application domains, through the integration of domain-specific components, and

can evolve using third-party components. Moreover, component-based middleware can

be dynamically adapted to its environment using late composition. Examples of major

component-based middleware solutions are DCOM [69] (discussed earlier), EJB [101],

and CCM [102]. Enterprise Java Beans (EJB)[101] is a middleware component model

for Java proposed by Sun Microsystems that enables Java developers to use off-the-shelf
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Java components, orbeans. Since EJB is built on top of Java technology, EJB components

can only be implemented using the Java language, however. The EJB component model

supports adaptation by automatically supporting servicessuch as transactions and security

for distributed applications. TheCORBA Component Model (CCM)[102] is a distributed

component model proposed by OMG that can be considered as a cross-platform, cross-

language superset of EJB. CCM supports adaptation by enabling injection of adaptive code

into component containers (i.e., the component themselves remain intact).

2.2.3 Aspect-Oriented Programming

The third major software development paradigm used in adaptive middleware is aspect-

oriented programming (AOP). Kiczales et al. [1] realized that complex programs are com-

posed of different interleavedcross-cutting concerns(properties or areas of interest such as

QoS, energy consumption, fault tolerance, and security). While object-oriented program-

ming abstracts out commonalities among classes in an inheritance tree, cross-cutting con-

cerns are still scattered among different classes, complicating the development and main-

tenance of applications. As depicted in Figure 2.3, AOP enables separation of crosscutting

concerns during development of the software. Specifically,the code implementing such

crosscutting concerns of the system, calledaspects, are developed separately from other

parts of the system. In AOP, locations in the program where aspect code can be woven,

calledpointcuts, are typically identified during development. Later, for example during

compilation, anaspect weavercan be used to weave different aspects of the program to-

gether to form a program with new behavior. AOP proponents argue that disentangling

crosscutting concerns leads to simpler development, maintenance, and evolution of soft-

ware [1,22]. Examples of AOP approaches include AspectJ [103], Hyper/J [104], DemeterJ

(DJ) [105], JAC [106], Kava [107], PROSE [32], and Composition Filters [78].

These benefits are important to adaptive middleware. AOP enables factorization and

separation of cross-cutting concerns from the middleware core [108], which promotes reuse
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Run Run 
TimeTime

AspectsBusiness Logic

Development Development 
TimeTime

Aspect 
Weaver

Compile Compile 
TimeTime

Figure 2.3: Conceptual representation of aspect-weaving.(Adapted from [1].)

of cross-cutting code and facilitates adaptation. Using AOP, customized versions of mid-

dleware can be generated for application-specific domains.Yang et al. [109] and David

et al. [27] both provide a two-step approach to dynamic weaving of aspects, in the con-

text of adaptive middleware, using a static AOP weaver during compile time and reflection

during run time.PROSE[32] is an extension to the standard JVM that supports dynamic

weaving of aspects into Java programs. Weaving instructions are defined using the JVM

debug interface (JVMDI). Other aspect-oriented middleware projects [28,42,53,110,111]

are described in detail in Section 2.4.

2.2.4 Software Design Patterns

Software design patterns[59, 75] provide a way to reuse the software designs that have

been successfully used for several years. The goal of software design patterns is to create

a common vocabulary for communicating insight and experience about recurring problems

and their known “refined” solutions [59].

It is very costly, time consuming, and error-prone to independently rediscover and rein-

vent solutions to middleware challenges. Schmidt and colleagues [75] have identified a
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relatively concise set of patterns that enables developingadaptive middleware. For exam-

ple, the virtual component pattern [112], used in TAO [44] and ZEN [45], enables adapting

a distributed application to the memory constraints of embedded devices by providing a

small middleware footprint including only a minimum core and a set of “virtual” compo-

nents, whose code can be dynamically loaded on demand. Numerous adaptive middleware

projects [6, 37, 42, 44, 45, 53, 93, 99, 110, 113, 114] benefit from the use of adaptive design

patterns, as discussed in Section 2.4.

2.3 A Taxonomy of Adaptive Middleware

Since the Transparent Shaping spans several related concepts in the design of adaptive mid-

dleware, we recognized the need to organize the extensive work in this area. Therefore, we

have developed a three-dimensional taxonomy, comprisingmiddleware layer, middleware

access type, andmiddleware composition timedimensions, for classifying adaptive mid-

dleware projects. The first dimension was introduced by Schmidt [2], while the second and

third are proposed by the author.

2.3.1 Middleware Layer

Schmidt [2] decomposes middleware services into four layers: host-infrastructure, distri-

bution, common, and domain-specific services. Figure 2.4 illustrates these layers.

Host-infrastructure middlewareresides directly atop the operating system kernel and

network protocols and provides a higher-level applicationprogramming interface (API)

than the ones provided by different operating systems and hides the heterogeneity of hard-

ware platforms, operating systems and, to some extent, network protocols. This middle-

ware layer provides generic services to the upper middleware layers by encapsulating func-

tionality that would otherwise require many tedious, error-prone, and non-portable codes,

such as socket programming and thread communication primitives. ACE [113] and Java

network package are examples of middleware in this layer.
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Hardware Devices

DomainDomain--Specific Middleware ServicesSpecific Middleware Services

Common Middleware ServicesCommon Middleware Services

Distribution MiddlewareDistribution Middleware

HostHost--Infrastructure MiddlewareInfrastructure Middleware

Figure 2.4: Middleware services decomposed into four layers, defined by Schmidt [2].

Distribution middlewareresides atop the host-infrastructure services layer and provides

a high-level programming abstraction, such as remote method invocation, to its users. To

a great extent, this layer hides the distribution of resources over a network. Using ser-

vices provided in distribution services layer, application developers do not need to deal

with details of network programming (e.g., socket programming), which is a difficult task.

CORBA [67], Java RMI [68], and DCOM/.NET [69], discussed earlier, are examples of

standard APIs specified in this layer.

Common-middleware servicesreside atop the distribution layer and support distributed

applications with non-functional concerns such as qualityof service, fault tolerance, se-

curity, load balancing, event propagation, logging, persistence, real-time scheduling, and

transactions. The high-level services provided in this layer can be reused in many different

applications and are not limited to only a specific domain of applications. QuO [42] is an

example of middleware projects in this layer.

Finally, domain-specific middlewareresides atop the common services layer and is tai-

lored to a specific class of distributed applications. Unlike the common-services layer,

the high-level services in this layer can be reused only for aspecific domain. Boeing

Bold Stroke [115] component-based framework is an example of a proprietary middleware

project in this layer.
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2.3.2 Middleware Access Type

Studying several middleware projects, we recognized that there are two main methods to

incorporating middleware services into distributed applications: integration and intercep-

tion. We refer to the corresponding middleware services as integrated and intercepting

middleware, respectively.

In theintegrationmethod, a client of a middleware service interacts with the service by

sending request messages to the middleware serviceexplicitly. In other words, the client

is aware of the services provided by the middleware or the client is programmed against

the middleware API. A client can be an application program oranother middleware service

stacked on top of this middleware service. Figure 2.5 shows an application using middle-

ware services by sending request messages to the middlewareexplicitly. Typically, middle-

ware services adhere to a standard defined in different layers of middleware. CORBA [47]

is an example of such a standard in the distribution serviceslayer. TAO [44] and Dynam-

icTAO [37] are examples of adaptive middleware frameworks that adhere to the CORBA

standard (i.e., they are CORBA compatible) and provide adaptive real-timeservices. Using

the integrated middleware method, we can develop adaptive middleware that hides details

of its adaptive behavior from its users.

Application

Integrated Middleware Services

Operating System

Flow of Service Requests

Figure 2.5: Incorporating middleware using integration method.

In the interceptionmethod, a client application may benefit from the services provided

by a middleware servicetransparently. To provide transparency, an intercepting middle-
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ware service must capture and handle service request messages originally targeted to either

another middleware service or to an operating system service. Among other actions that an

intercepting service may perform as a response to an intercepted request, it may reply to the

request or it may modify the original request and allow the original target service to reply to

the modified request. Figure 2.6(a) illustrates a middleware service intercepting a service

request from an application to an operating system. Figure 2.6(b) illustrates a middleware

service intercepting a service request from an applicationto another middleware service.

IRL [116] is an example of an intercepting middleware service that provides fault-tolerant

CORBA service transparently to the CORBA applications and CORBA implementations.

One advantage of interception over the integration method for incorporating adaptive be-

havior to distributed applications is that the interception method promotes separation of

concerns;i.e., non-functional concerns can be developed separately fromfunctional con-

cerns. One disadvantage of interception over the integration method is the overhead that

the interception method introduce as a result of extra levels of indirection.

Application

Operating System

Intercepted Service Requests

Intercepting Middleware Services

(a)

Application

Integrated Middleware Services

Operating System

Intercepted Service Requests

Intercepting Middleware Services

(b)

Figure 2.6: Incorporating middleware using interception method.
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2.3.3 Middleware Composition Time

As illustrated in Figure 2.7, the lifetime of middleware services can be divided into devel-

opment time, compile time, startup (or load) time, and run time. Adaptive behavior can be

incorporated into middleware at any of these four times. If amiddleware approach allows

adaptive behavior to be incorporated into the middleware services at development, compile,

or startup time, we call itstaticmiddleware; and if the incorporation of adaptive behavior

can continue to run time, we call itdynamicmiddleware.

As illustrated in Figure 2.7, depending on the time adaptivebehavior is incorporated

into middleware, we identified three classes of static middleware: hardwired, customiz-

able, and configurable middleware. If adaptive code is tangled to the code for middleware

services during development time, the middleware is calledhardwiredmiddleware. Elec-

tra [117] is an example of hardwired middleware that incorporates the adaptive code for

fault tolerance into its CORBA compliant middleware services. If adaptive behavior is in-

corporated into middleware services during compile (or link) time, so that a developer can

generate customized versions of the middleware services, we call it customizablemiddle-

ware. Please note that the adaptable version is generated inresponse to the changes realized

after the application development time, but before application startup and run time. For

example, EmbeddedJava [118] minimizes the footprint of embedded applications during

the application compile time. Other examples include approaches that benefit from static

weaving of aspects [1] into application source code, compiler flags [45], and precompiler

directives [45]. If the incorporation of adaptive behaviorinto middleware services starts

either at development or compile time and ends at startup time, we call itconfigurable

middleware. Typically, the interception facilities are integrated with the functional code at

development time (e.g.,QuO [42]). Alternatively, the interception facilities canbe woven

into the functional code at compile time(e.g.,using AspectJ [103]) or at startup time (e.g.,

using a configuration file in ORBacus [119] or a command line argument in JacORB [120]).

Eternal [121], IRL [116], and Rocks [122] are among examplesof configurable evolution
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approaches.

Middleware Type

Dynamic 

Middleware

Mutable

Tunable

Configurable

Customizable

Hardwired

Develop. Time     Compile Time       Startup Time        Run Time Middleware Lifetime

Customizable Middleware: 
� Personal/Embedded Java

� Orbix/E
� Ensemble

Configurable Middleware: 
� Eternal, IRL, FTS, TAO-LB

� Rocks and Racks
� Orbix, ORBacus, JacORB

� QuO

Tunable Middleware: 
� TAO, ZEN, CIAO, 

� DynamicTAO, UIC, OpenCORBA
� ACE, Hadas, 

� FlexiNet

� Iguana/J, MetaXa, Guarana, Rjava, 

Mutable Middleware: 
� Open ORB, Open COM

Hardwired Middleware: 
� Electra

� Totem
� Horus

� Isis

Static 

Middleware

Figure 2.7: Middleware type according to the time of incorporating adaptive behavior.

As illustrated in Figure 2.7, depending on the starting timethat adaptive behavior is

incorporated into middleware, we identified two classes of dynamic middleware: tunable

and mutable middleware. If a middleware allows adaptive behavior to be incorporated into

middleware services starting at development, compile, or startup time and continuing to run

time, we call itmutablemiddleware. Hence, the process of making a program adaptable

can be continued while it is being used. Typically, the interception facilities are integrated

with the functional code either at development time (e.g.,TAO [44]) or at compile time

(e.g.,OpenCORBA [92]) or at startup time (e.g.,Eternal [121]) and using computational

reflection and dynamic code loading adaptive code is integrated with the functional code

dynamically. Intunablemiddleware, the middleware core services remain intact during

the incorporation of adaptive behavior. Hence, mutable middleware in general is capable

of evolving an application to something completely different and unexpected, but tunable

middleware limits the evolution to only the adaptive code and not the middleware core ser-
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vices. In other words, in mutable middleware there are no middleware core services. Tun-

able middleware enables fine-tuning of an application in response to the dynamic changes

that can be realized only after the application is started. Examples of tunable middleware

include the “two-phase” adaptation approaches employed byDavid et. al [27] and Yang

et. al [109], the component configurator pattern [75] used inDynamicTAO [37], and the

virtual component pattern [112] used in TAO [44] and ZEN [45]. Examples of techniques

used for dynamic middleware include reflection [38], late composition of components [45],

and dynamic weaving of aspects [28, 109]. OpenORB [38], alsodiscussed in Section 2.4,

is an example of mutable (but not tunable) middleware.

2.4 Adaptive Middleware Examples

Developing adaptable software using adaptive middleware frameworks is an active research

area. We summarize the state of this research in Figure 2.8. We note that this figure is not

exhaustive and only representative projects are included.This figure shows where we place

each project with respect to the middleware layers. The figure also shows what access type

is supported by each project (either integration or interception).

In the following discussion, we focus on those projects thatare most directly related to

our work. A survey of other adaptive middleware projects canbe found in [123]. Before

beginning our classification of adaptive middleware projects, we should emphasize that

a given project may provide services categorized in more than one middleware layer. In

such cases, we placed the project in the layer that matches the primary functionality of

the middleware project. If a middleware project supports more than one composition time,

we say that the project provides a hybrid adaptation. Finally, when related, details of how

supporting paradigms used in each project are discussed andcompared to other projects.
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Figure 2.8: State of research in developing adaptable software using adaptive middleware.

2.4.1 ACE, TAO, and Relatives

The distributed object computing (DOC) group has conductedseveral adaptive middle-

ware projects including ACE [113], TAO [44], CIAO [99], TAO-LB [114], and ZEN [45].

Schmidt’sAdaptive Communication Environment (ACE)[113, 124] is one of the earliest

middleware projects. ACE is a real-time object-oriented communication framework writ-

ten in C++. ACE employs software design patterns to support distributed applications with

efficiency and predictability, including low latency for delay-sensitive applications, high

performance for bandwidth-intensive applications, and predictability for real-time applica-

tions. Figure 2.9 illustrates the key components in the ACE framework. TheOS Adap-

tation Layerresides directly atop the native operating system APIs, providing a platform-

independent API. Hence, we place ACE in the host-infrastructure layer. ACE components

can be dynamically updated using the service configurator pattern [75] and C++ dynamic

binding feature. Therefore, we consider ACE as tunable (butnot mutable) middleware

because the ACE core remains intact during the tuning process. We consider ACE as an in-

tegrated middleware because a client of this middleware, for example TAO, must explicitly
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send request messages to this middleware.

Figure 2.9: ACE architecture [3].

Schmidt et al. [44] extended their ACE work to createthe ACE ORB (TAO), a CORBA

compliant real-time ORB built atop the ACE components, as shown in Figure 2.10. TAO

enhances the standard CORBA event service to provide real-time event dispatching and

scheduling required by real-time applications such as avionics, telecommunications and

network management systems. Earlier versions of TAO employthe strategy design pat-

tern [59] to encapsulate different aspects of the ORB internals, such as IIOP pluggable

protocols, concurrency, request demultiplexing, scheduling, and connection management.

A configuration file is used to specify the strategies used to implement these aspects during

startup time. TAO parses the configuration file and loads the required strategies. There-

fore, we consider TAO as configurable middleware. Recent versions of TAO decomposes

the C++ implementation of TAO into several core ORB components that can be dynami-

cally loaded on demand using the virtual component pattern [112]. Therefore, we consider

recent versions of TAO as tunable middleware. TAO naturallyresides in the distribution

layer because it is a CORBA compliant ORB. Similar to ACE, a client of TAO requires to

send request messages to used the services provided by TAO. Thus, we consider TAO as an

integrated middleware.
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The Component-Integrated ACE ORB (CIAO)[99], ZEN [45], andTAO load balanc-

ing (TAO-LB)[114] are follow-on middleware projects by the DOC group. CIAO is the

TAO implementation of CORBA Component Model (CCM) [47]. ZENis the TAO imple-

mentation in Java and Real-Time Java [125] that provides a micro-ORB architecture. ZEN

identifies several major ORB services, such as object adapters and transport protocols, that

can be moved out of the micro-ORB kernel. The virtual component pattern [112] is em-

ployed to make each service dynamically pluggable. Similarto TAO, CIAO and ZEN are

both also considered as integrated middleware. Finally, TAO-LB adds load balancing to

TAO [44] transparently from the application code. We consider TAO-LB as an intercepting

middleware because it uses the CORBA portable request interceptors to intercept requests

messages originally targeted to TAO.

REAL-TIME ORB CORE

Pluggable
Protocols

Pluggable
Protocols

Figure 2.10: TAO architecture [4].

2.4.2 DynamicTAO and UIC

Researchers at the University of Illinois have developed several adaptive middleware plat-

forms [6, 37, 93, 100]. Kon et al. [37] adopted earlier version of TAO [44], which itself is

considered as configurable middleware, and built a dynamically adaptive version of TAO
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called DynamicTAO using computational reflection. To provide real-time services, Dy-

namicTAO uses the Dynamic Soft Real-Time Scheduler (DSRT) [126] that provides QoS

guarantees to applications with soft real-time requirements. Reflection in DynamicTAO is

achieved using the service configurator pattern [75], whichenables configuration and im-

plementation decisions about the ORB services to be deferred until run time. Figure 2.11

illustrates the DynamicTAO reified structure. TheDomainConfigurator, TAOConfigurator,

and ServantConfigurator are all realizations of service configurator pattern in Dynamic-

TAO. A service configurator in DyanimcTAO exports theDynamicConfigurator interface,

which is a CORBA IDL interface, defined also as the MOP for inspecting, adapting, load-

ing, and unloading “component implementations” dynamically. Component implementa-

tions are organized in categories representing different aspects of the TAO ORB packaged

as dynamically loadable libraries that can be linked to the ORB at run time. We consider

DynamicTAO as tunable middleware. Similar to TAO, DynamicTAO is also considered as

an integrated middleware.

Servant1Configurator Servant2Configurator

TAOConfigurator

DomainConfigurator

ConcurrencyStrategy

SchedulingStrategy

SecurityStrategy

MonitoringStrategy

Figure 2.11: DynamicTAO reified structure [5].

Universal Interoperable Core (UIC)[6] is the successor of LegORB [93] both devel-

oped at UIUC. UIC, in addition to the small footprint provided in LegORB, can adopt one

or morepersonalitiessuch as CORBA, Java RMI, and DCOM for interoperability pur-
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poses. Figure 2.12 illustrates the interaction between theUIC core and its personalities.

UIC personalities can be either customized statically during the application compile time,

or tuned dynamically using late composition of components during run time. UIC mini-

mum ORB core runs uninterruptedly while ORB strategies and servants are dynamically

updated. We consider UIC as both customizable and repeatedly-tunable middleware. A

UIC client-side ORB for PalmOS can be as small as 16KB. UIC exploits customizable

adaptation for the rare and expensive changes during compile time, and exploits tunable

adaptation for the frequent and inexpensive changes duringrun time. Using UIC, the same

server objects can interoperate with different personalities without modifying their imple-

mentations. UIC naturally resides at the distribution layer. Similar to DynamicTAO, UIC

is also considered as an integrated middleware.

Abstract Core

SpecializationSpecialization

CORBA
Personality

JavaRMI
Personality

CORBA/JavaRMI
Personality

CORBA
Server

JavaRMI
Server

Multi-personalitySingle-personalities

UIC

Specialization

Figure 2.12: The UIC personalities [6].

2.4.3 QuO

Researchers at BBN Technologies have developed an adaptiveframework for CORBA and

Java RMI applications that supports QoS using aspect-oriented programming paradigm.

QuO [42] provides a high-level QoS abstraction at the common-services layer. Figure 2.13

illustrates QuO components residing between the application and distribution ORB. QuO

wraps CORBA stubs and skeletons using functional delegates. As illustrated in Figure 2.13,

29



the delegate intercepts outgoing requests and incoming replies. The delegate consults the

“contract,” using thepremethod and postmethod methods. The contract is part of the

QuO kernel that is aware of acceptable QoS regions and adaptsthe application behavior by

modifying requests and replies according to the current system status monitored by system

condition objects.

QuO provides a quality description language (QDL) to write contracts that specifies

QoS regions. Thequogen utility can be used to translate these contracts to high-level

languages such as C++ and Java. In addition, QuO provides an aspect-oriented structure

description language (ASL) that enables developers to write generic or application-specific

aspects. Later, thequogen utility can be used to generate delegates from CORBA ob-

ject interfaces written in IDL, aspects written in ASL, and contracts written in QDL. We

consider QuO as customizable middleware because QuO adaptsan application during the

application compile time using thequogen utility. The delegates in QuO are similar to the

statically shipped smart proxies in Squirrel [127] (described later). However, delegates can

also wrap skeletons on the server side whereas smart proxiesare only at the client side.

To use services provided by QuO, a client requires to send request messages to the QuO

framework explicitly. Thus, we consider QuO as an integrated middleware.

Figure 2.13: QuO architecture [7].
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2.4.4 Open ORB and Cousins

Researchers at Lancaster University have conducted several projects in multimedia middle-

ware [38, 83, 128, 129]. Blair et al. [83] have investigated the middleware implementation

for mobile multimedia applications which can be dynamically adapted in response to the

environmental changes in the context of Adapt project. In the Open ORB project [38],

the successor of the Adapt project, Blair et al. continued their investigation studying the

role of computational reflection in middleware. More recently, Blair et al. [128] designed

Open ORB v2 that adds a component-based design framework to the Open ORB reflec-

tive framework. OpenCOM [129] is the implementation of OpenORB v2, designed for

Microsoft COM systems. All above mentioned projects are greatly influenced by the ITU-

T/ISO RM-ODP [130], a meta standard for multimedia applications. Unlike TAO [44] and

DynamicTAO [37], none of Adapt, Open ORB, and Open ORB v2 projects are CORBA

compliant.

Open ORB uses reflection to provide dynamic adaptation. The implementation of the

Open ORB current reflective architecture is based on the reflection model illustrated in

Figure 2.14. Open ORB categorizes reflection into structural and behavioral reflection [5], a

distinction first introduced in [131].Structural reflectionis the ability of a system to inspect

and modify its internal architecture, andbehavioral reflectionis the ability of a system to

inspect and modify its computation. Structural reflection is modeled by the “architecture”

and “interface” meta-models, and the behavioral reflectionis modeled by the “interception”

and “resources” meta-models. Thearchitecture meta-modelprovides access to an object

using its object graph. Theinterface meta-modelprovides access to the methods, associated

attributes, and inheritance structure of each interface ofan object. Theinterception meta-

modelprovides interception hooks for each interface of an objectincluding message arrival,

dispatching, marshalling and unmarshalling interceptionhooks. Theresources meta-model

provides access to available resources per address space and enables resource reservation.

Unlike DynamicTAO [37] that uses reflection mainly to implement the service configurator
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pattern, Open ORB provides an ORB wide reflection. Therefore, we consider Open ORB

as mutable middleware. Similar to TAO, Open ORB is also considered as an integrated

middleware.

Base-level

Architecture
meta-object

Interface
meta-object

Interception
meta-object

Resource  meta-object
(per address space)

Base-level
component

Base-level
component

Meta-level

Figure 2.14: Open ORB reflection model [5].

Open ORB supports stream-oriented applications using “explicit binding,” as opposed

to the implicit binding provided in CORBA. In explicit binding, remote objects are bound

explicitly by a programmer. Figure 2.15 illustrates the result of an explicit binding in a

live video application, which represents the end-to-end communication path. Using the

Open ORB reflection meta-model (in this case only architecture meta-model), an MPEG

encoder can be replaced by an H.263 encoder that uses much lower bandwidth adapting the

application to situation that network bandwidth availableis decreasing at run time.
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Figure 2.15: Open binding in Open ORB [8].
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2.4.5 Infopipes and Squirrel

Infopipes [132], a subproject of Squirrel [127], is a middleware platform for information

flow, which is a joint work by University of Kaiserslautern and Oregon Graduate Institute

(OGI) base of the Infopipe abstraction [133] jointly introduced with GorgiaTech as part of

the Infosphere projects. The designers argue that CORBA stubs and skeletons generated

from IDL interfaces follow a standard protocol (marshalling and unmarshalling) that is not

suitable for multimedia applications with different QoS requirements. To solve this prob-

lem, Squirrel introducessmart proxies[9], which are service-specific stubs that include

adaptive code. A smart proxy for a specific application can bedeveloped and shipped to

the client program statically (during compile time) or dynamically (during run time). Fig-

ure 2.16 illustrates dynamic smart proxy shipping in a live video application. We consider

Squirrel at the distribution layer because, similar to CORBA stubs, Squirrel uses smart

proxies to hide the interprocess communication details from application developers. We

consider Squirrel as both tunable and mutable middleware because of its ability to stati-

cally and dynamically load smart proxies. The tuning in Squirrel can only occur once at

the remote object binding time and the configuration set at the binding time cannot be re-

configured later at run time. For a CORBA object to benefit fromthe services provided

by Squirrel, the object requires to send request messages toSquirrel explicitly. Thus, we

consider Squirrel as an integrated middleware.
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Smart Proxy
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Figure 2.16: Squirrel: dynamic shipping of a smart proxy [9].
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2.5 Toward Transparent Shaping

The transparent shapingprogramming model is intended to support production, mainte-

nance, and dynamic reconfiguration of adaptable program families, transparently to their

corresponding existing programs. Depending on where the hooks are incorporated in-

side an existing program during the first step of the shaping process, we identify three

approaches to transparent shaping. As illustrated in Figure 2.17, hooks can be incorporated

inside an application program itself, inside its supporting middleware, or inside the system

platform (network protocols and operating system).

Client Program Server Program

Application

Layer

Middleware

Layer

Program component Flow of service request Hook

process boundaries

NetworkNetwork

Requester 

Component

Provider

Component

System 

Platform

Interaction

Figure 2.17: Alternative places to insert hooks for transparent shaping.

In this dissertation, we investigate the first two approaches, where the hooks are in-

corporated either inside the application or inside adaptive middleware. For the former, we

propose solutions that weave the hooks inside existing programs using either language ex-

tensions or aspect-oriented programming, as described in Chapters 3 and 4, respectively.

For the latter, we propose techniques that leverage adaptive middleware mechanisms, such

as CORBA portable interceptors [47], as described in Chapter 5. Finally, in Chapter 6, we

demonstrate how the combination of these approaches can be used to support a higher level

of adaptation, namely, integration of otherwise incompatible applications.
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Chapter 3

Designing Adaptable Components

In transparent shaping, theadaptive code, which implements the adaptive behavior, must be

separately developed from thefunctional code, which implements the business logic of an

application. In addition, the adaptive code must be reconfigurable at run time. In an earlier

study, our group designed acomposable proxy[134] in Java that enables mobile Internet

users to collaborate via heterogeneous devices and networkconnections. This approach

is based on detachable Java I/O streams, which enable proxy filters and transcoders to be

dynamically inserted, removed, and reordered on a given data stream. Using this adapt-

able component, proxy services can be reconfigured dynamically. Although the result-

ing system performed well, our experience in this study showed that developing adaptive

code in object-oriented languages such as Java, which does not provide facilities to design

adaptable components, is difficult and error-prone. Also, in some cases we observed that

separation of adaptive code from functional code is almost impossible.

In this chapter, we explore the effectiveness and expressiveness of language support

in designing adaptable components. Previously, our group developedAdaptive Java[49],

which extends Java with new constructs and keywords to facilitate the design of adaptable

components. Adaptive Java adds behavioral reflection [30] to Java’s structural reflection,

enabling dynamic reconfiguration of software components. Using Adaptive Java behavioral
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reflection facilities, we designed and implemented an adaptable middleware component

called a MetaSocket. AMetaSocketis an adaptable communication component created

from existing Java socket classes, but its structure and behavior can be adapted at run time

in response to external stimuli such as dynamic wireless channel conditions. Although the

socket abstraction is relatively low-level (host-infrastructure services layer), its ubiquity in

distributed applications, as well as in middleware platforms, makes it a good place to begin

our studies.

A key concept in the MetaSocket model is that adaptive functionality related to com-

munication streams, possibly tangled throughout application code, is extracted and placed

in the MetaSocket layer. Application modules and higher-level middleware layers can in-

voke traditional socket operations using MetaSockets, while the MetaSockets themselves

can adapt (or be adapted) to changes in the environment. Thisseparation of concerns, de-

picted in Figure 3.1, leads to code that is easier to maintainand evolve to incorporate new

adaptive functionality.

High-Level Middleware

JVM

Application Code

Operating System

Adaptive Code

JVM

Application Code

Operating System

MetaSockets

High-Level Middleware

Figure 3.1: Separation of concerns using MetaSockets.

This chapter describes the internal architecture and the operation of MetaSockets and

presents a case study in the use of MetaSockets to support audio streaming over wireless

channels. The case study, in which iPAQ handheld computers are used as audio “com-

municators,” illustrates how MetaSockets interact with other adaptive components, such

as decision makers and event mediators, to realize run-timeadaptability in real-time com-
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munication services. The main contribution of this work is to show the effectiveness of

programming language support in the development of adaptable software and, through the

case study, to reveal several subtle design issues that needto be addressed in the design of

such software.

The remainder of this chapter is organized as follows. Section 3.1 provides background

information on the Adaptive Java programming language. In Section 3.2, we describe the

design and implementation of a MetaSocket variation that isbased on the JavaMulticast-

Socket class. Section 3.3 discusses a case study in the use of MetaSockets that supports

adaptive error control on wireless audio channels. Section3.4 presents results of experi-

ments that demonstrate the effectiveness of the proposed methods in adapting to dynamic

changes in packet loss rate. Section 3.5 discusses related work, and Section 3.6 summarizes

this chapter.

3.1 Adaptive Java Background

Adaptive Java [49] is an extension to Java that adds behavioral reflection to Java’s struc-

tural reflection, by introducing new language constructs. These constructs are rooted in

computational reflection [30, 82], which refers to the ability of a computational process to

reason about (and possibly alter) its own behavior. A key issue that arises in the application

of reflection to middleware platforms is the degree to which the system should be able to

change its own behavior. A completely open implementation implies that an application

can be recomposed entirely at run-time. In the extreme, all the default components of the

system can be destroyed and new ones instantiated, such thatthe goal of the base-level

computation is changed (A spreadsheet can be recomposed as avideo player!). On the

other hand, limiting adaptability also limits the ability of the system to survive adverse

situations.

The basic building blocks used in an Adaptive Java program are components, which in

this context can be equated to adaptable classes. The key programming concept in Adaptive
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Java is to provide three separate component interfaces: onefor performing normal impera-

tive operations on the object (computation), one for observing internal behavior (introspec-

tion), and one for changing internal behavior (intercession). Operations in the computation

dimension are referred to asinvocations. Operations in the introspection dimension are

calledrefractions; they offer a partial view of internal structure and behavior, but are not

allowed to change the state or behavior of the component. Operations in the intercession

dimension are calledtransmutations; they are used to modify the computational behavior

of the component.

An existing Java class can be converted into an adaptable component in two steps. In

the first step, abase-levelAdaptive Java component is constructed from the Java class

through an operation calledabsorption, which uses theabsorbs keyword. As part of the

absorption procedure, mutable methods calledinvocationsare created on the base-level

component to expose the functionality of the absorbed class. Invocations are mutable in

the sense that they can be added to and removed from existing components at run time

using meta-level transmutations. In the second step,metaficationenables the creation of

refractions and transmutations that operate on the base component. Meta components are

defined using themetafy keyword. The meta-level can also be given a meta-level (meta-

meta-level), which can be used to refract and transmute the meta-level. In theory, this

reification of meta-levels for other meta-levels could continue indefinitely [30]. Example

code is provided in Section 3.2.2.

Adaptive Java [49] is implemented using CUP [135], a parser generator for Java. CUP

takes the grammar productions for the Adaptive Java extensions and generates an LALR

parser, called ajc, which performs a source-to-source conversion of Adaptive Java code into

Java code. Semantic routines were added to this parser such that the generated Java code

could then be compiled using a standard Java compiler.
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3.2 MetaSocket Design and Implementation

In this section we describe the architecture and operation of MetaSockets. Our discussion

is limited to particular types of MetaSockets designed to enhance the quality of service for

multicast communication streams. However, the MetaSocketmodel is general: MetaSock-

ets can also be used for unicast communication and can be tailored to provide adaptive

functionality in other cross-cutting concerns, such as security, energy consumption, and

fault tolerance.

Figure 3.2 shows the absorption of a JavaMulticastSocket base-level class by aSendM-

Socket base-level component, and the metafication of this component to a MetaSendM-

Socket meta-level component. Figure 3.2(a) depicts a JavaMulticastSocket class and a

subset of its public methods:receive(), send(), close(), joinGroup(), andleaveGroup(). Fig-

ure 3.2(b) shows aSendMSocket component, which is designed to be used as asend-only

multicast socket. TheSendMSocket componentabsorbsthe JavaMulticastSocket class and

implementssend() andclose() invocations that can be used by other components. Other

methods of the base-level class are occluded. A link betweenan invocation and a method

indicates a dependency. For example, thesend() invocation depends on thesend() method,

because its implementation calls that method. Figure 3.2(c) shows aMetaSendMSocket

component, which metafies an instance of theSendMSocket component and provides a

refraction,getStatus(), and two transmutations,insertFilter() andremoveFilter(). The use

and operation of these primitives will be explained shortly.

In a similar manner, areceive-onlyMetaSocket can be created for use on the receiving

side of a communication channel. TheRecvMSocket base-level component absorbs a Java

MulticastSocket class. In addition to thereceive() andclose() invocations, this component

also providesjoinGroup() andleaveGroup() invocations, which are needed for joining and

leaving an IP multicast group. All these invocations dependon their respective counter-

parts in the JavaMulticastSocket class. TheMetaRecvMSocket metafies an instance of

RecvMSocket component and provides the same refractions and transmutations as does the
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Figure 3.2: MetaSocket absorption and metafication: (a) Java MulticastSocket as the base-
level class; (b)SendMSocket as the base-level component; (c)MetaSendMSocket, a filter-
oriented meta-level component.

MetaSendMSocket component. The code forMetaSendMSocket andMetaRecvMSocket

can be loaded at run time, using the JavaClass class and Javareflection package. This

dynamic loading of adaptive code enables Adaptive Java applications to adapt to unantici-

pated changes at run time.

3.2.1 Internal Architecture and Operation

Figure 3.3 illustrates the internal architecture of both aMetaSendMSocket and a

MetaRecvMSocket, as configured in our study. In this metafication, packets arepassed

through a pipeline ofFilter components, each of which processes the packet. Example

filter services include: auditing traffic and usage patterns, transcoding data streams into

lower-bandwidth versions, scanning for viruses, and implementing forward error correc-

tion (FEC) to make data streams more resilient to packet loss. In some cases, such as

auditing, a filter can act alone on either the sending or the receiving side of the channel. In

other cases, such as FEC, modification of the packet stream introduced by a filter on the

sender must be reversed by a peer filter on the receiver. In ourimplementation, when a

packet is processed by a filter, an application-level headeris prepended to the packet. On

the receiver, these headers identify the processing order and filters required to reverse the

transformations applied by the sender.
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Figure 3.3: MetaSocket internal architecture: (a)MetaSendMSocket, a send-only meta-
morphic multicast socket; (b)MetaRecvMSocket, a receive-only metamorphic multicast
socket.

Packet Buffers. The set ofFilter components configured in a MetaSocket pipeline ex-

change packets via a set ofPacketBuffer components. Each filter uses a source and destina-

tion packet buffer. Since a packet buffer may be used by multiple threads, its invocations,

including get() and put(), are defined assynchronized. All filters in the filter pipeline,

execute concurrently, where each filter retrieves a packet from its source packet buffer, pro-

cesses it, and places it into its destination packet buffer.The destination packet buffer of a

filter in the pipeline is either the source packet buffer of the next filter orlastPacketBuffer.

Inserting and Removing Filters. The transmutationsinsertFilter() andremoveFilter() are

used to change the filter configuration, and thegetStatus() refraction is used to read the cur-

rent configuration. TheinsertFilter() transmutation consists of three operations. First, it sets

the source packet buffer of the next filter in the pipeline to the new filter’s destination packet

buffer. Next, it sets the new filter’s source packet buffer tothe destination packet buffer of
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the previous filter in the pipeline. Finally, it starts the new filter. TheremoveFilter() trans-

mutation also consists of three operations. First, it stopsthe filter that should be removed.

Next, it flushes all the packets out of the filter’s destination packet buffer and destroys the

filter. Finally, it removes the filter from the pipeline and sets the source packet buffer of

the next filter to the destination packet buffer of the previous filter in the pipeline. The

getStatus() returns a list of filters IDs currently configured in the pipeline.

Sender Operation. Let us consider the sender, as shown in Figure 3.3(a). At the time of

metafication, aSendMSocket component is encapsulated by theMetaSendMSocket com-

ponent. Among other actions, thesend() invocation ofSendMSocket is replaced by a new

send() invocation defined by the meta-level component. After metafication, any call to the

base-levelsend() invocation is delegated to the meta-levelsend() invocation. This invoca-

tion adds aterminator headerto the datagram packet it receives, which identifies packets

that are ready for delivery to the application by the receiver. Next, the meta-levelsend()

invocation stores this packet infirstPacketBuffer (the first packet buffer of the pipeline).

Initially, both firstPacketBuffer andlastPacketBuffer refer to the same packet buffer. While

lastPacketBuffer may change as new filters are inserted, always pointing to thelast packet

buffer in the pipeline,firstPacketBuffer remains fixed. WhenSendMSocket is metafied

by MetaSendMSocket, a thread is created and assigned to theSendMSocket send() invo-

cation. This thread loops, retrieving a packet fromlastPacketBuffer, creating a datagram

packet, and passing it to the original base-levelsend() invocation, which in turn transmits

the packet to the multicast group using thesend() method of the underlyingMulticastSocket

base class.

Receiver Operation. On the receiver, as shown in Figure 3.3(b), aMetaRecvMSocket

encapsulates a base-levelRecvMSocket component. The receiver can be added to the mul-

ticast group, either before or after metafication, by calling its joinGroup() invocation. Once

metafied, a thread is assigned to theRecvMSocket receive() invocation. The thread loops
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continuously, callingreceive() and placing the returned packet infirstPacketBuffer. The

order of filters on the receiver is the mirror image of that on the sender with function in-

verted. Each filter in the pipeline processes a packet from its source packet buffer and

places it in its destination packet buffer. Similar to thesend() invocation on the sender,

metafication replaces the base-levelreceive() invocation with the meta-levelreceive() in-

vocation defined byMetaRecvMSocket. Instead of calling theRecvMSocket receive() in-

vocation, theMetaRecvMSocket receive() invocation retrieves packets directly fromlast-

PacketBuffer. Before returning the packet to the caller, however, thereceive() invocation

checks the packet’s MetaSocket header. If a terminator header is found at the beginning of

the packet, thenreceive() removes this header and returns the original packet to the caller.

Otherwise, additional filter processing needs to be performed on the packet before deliv-

ering it to the application. In this case,receive() generates aFilterMismatchEvent event

containing the packet and the position of the requiredFilter in the filter pipeline. (Every

Filter at the receiving side performs a similar task and compares the filter ID of the next

packet to its ID.) This event is sent to theEventMediator, a singleton component in each

addresss space that decouples event generators from event listeners [136]. Thereceive()

invocation waits until the event has been handled, meaning that the needed filter has been

inserted in the pipeline using theinsertFilter() transmutation. Additional details on event

handling are discussed in the next section.

3.2.2 Syntax of Absorption and Metafication

Figure 3.4 shows simplified Adaptive Java code for theSendMSocket component. A con-

structor is defined for this component that creates a newMulticastSocket and sets it as the

base-level object for this component (lines 4 to 6). Please note that the base-level object is

treated as a secret of the base-level component. A componentthat uses theSendMSocket

component does not necessarily need to know anything about the underlyingMulticast-

Socket or its interface. Two invocations,send() andclose() are defined, but they simply
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call their associated methods from the base object (lines 8 to 12). The code forRecvM-

Socket is similar. Once defined,SendMSocket andRecvMSocket can be used via their

invocations.

1 public componentSendMSocket
2 absorbsjava.net.MulticastSocket {
3
4 /* constructor */
5 public SendMSocket(...) {
6 setBase(new MulticastSocket(...));}
7
8 /* invocations */
9 public invocation void send(...) {

10 base.send(...); }
11 public invocation void close() {
12 base.close(); }
13 }

Figure 3.4: Excerpted code forSendMSocket.

The metafication of these base-level components can be defined at development time

or later, at run time. Simplified code forMetaSendMSocket is shown in Figure 3.5. At

any point during the execution of the application, a runningSendMSocket component can

be metafied by calling its constructor (lines 3 to 5). The instance ofSendMSocket passed

to the constructor of this meta-component is designated as the base-level component. As

described earlier, in addition to refractions and transmutations, an invocation,send(), is re-

defined in this meta-level component (lines 7 to 9). Defining an invocation at the meta-level

is used to replace an invocation of the base-level component. In this example, the new in-

vocation does not call the JavaMulticastSocket send() method. Instead, it places the packet

in firstPacketBuffer defined as a private field of this meta-component (line 23). Another pri-

vate field,filterPipeline, is an instance ofjava.util.Vector and keeps track of all the

filters currently configured in theMetaSendMSocket (line 22). The refractiongetStatus()

returns a byte array containing the IDs of these filters (lines 11 to 13). The transmutations

insertFilter() andremoveFilter() are used to insert and remove filters at specified positions

in the filter pipeline (lines 15 to 19). The code forMetaRecvMSocket is similar to that
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of MetaSendMSocket. In this case, however, thereceive() invocation is redefined in the

meta-level. In the new definition of this invocation, a packet from thelastPacketBuffer , if

available, is delivered to the caller.

1 public componentMetaSendMSocket metafy SendMSocket {
2
3 /* constructor */
4 public MetaSendMSocket(SendMSocket s) {
5 setBase(s); }
6
7 /* replacing the SendMSocket.send() */
8 public invocation void send(...) {...
9 firstPacketBuffer.put(packet); ...}

10
11 /* refractions */
12 public refraction byte[] getStatus() {
13 return filterPipeline.getStatus(); }
14
15 /* transmutations */
16 public transmutation void insertFilter(int pos, Filter f) {...
17 filterPipeline.add(pos, f); ...}
18 public transmutation Filter removeFilter(int pos) {...
19 return filterPipeline.remove(pos); }
20
21 /* private fields */
22 private Vector filterPipeline = new Vector();
23 PacketBuffer firstPacketBuffer = new PacketBuffer();
24 }

Figure 3.5: Excerpted code forMetaSendMSocket.

3.3 Case Study: Adapting an Audio Streaming Applica-
tion

The JavaMulticastSocket class is used in many distributed applications. The MetaSockets

described in the previous section provide the same imperative functionality to applica-

tions and can be used in place of regular Java sockets. In thissection, we use an example

Adaptive Java application to demonstrate how MetaSockets can further provide adaptive

functionality by interacting with other supporting components, such as decision makers

and event mediators. A key concept in this approach is that the adaptive functionality,

whether it be related to quality-of-service, fault tolerance, or security, is not tangled with
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the application code. Rather, the “base” application code uses only invocations provided

by MetaSockets, while the code that manipulates the behavior of MetaSockets is localized.

This separation of concerns, depicted in Figure 3.6, leads to code that is easier to maintain

and evolve to incorporate new adaptive functionality. In the following example, we use

MetaSockets to support adaptable quality-of-service by reacting to changes in the quality

of the wireless channel.

Java Virtual Machine
MulticastSocket

Java Virtual Machine

MetaSocket

Adaptive Code 

Adaptive Logic

(DM, FM, …)

Figure 3.6: Example of separation of concerns using MetaSockets.

3.3.1 ASA Architecture and Operation

In this study, we modified an audio streaming application (ASA) to use MetaSockets in-

stead of regular Java sockets, and we added components to manage the adaptive behavior.

We then experimented with ASA by streaming live audio from a desktop workstation to

multiple iPAQ handheld computers over an 802.11b wireless local area network (WLAN).

The experimental configuration is depicted in Figure 3.7.

Access
Point

Wireless
Receivers

Audio Stream

Wired 
Sender

...

Figure 3.7: Physical experimental configuration.

The ASA code comprises two main parts. On the sending station, theRecorderuses
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the javax.sound package to read live audio data from a system’s microphone. The

audio encoding uses a single channel with 8-bit samples. TheRecorder multicasts this data

to the receivers via a wireless access point using thesend() invocation of a MetaSocket.

Each packet contains 128 bytes, or 16 milliseconds of audio data; relatively small packets

are necessary to reduce jitter and minimize losses. On each receiving station, thePlayer

receives the audio data using thereceive() invocation of a MetaSocket and plays the data

using thejavax.sound package.

Figure 3.8 illustrates the major parts of the receiving sideof the ASA; the sending

side has a similar structure. Please note that we introduce new notations to distinguish

the type of interactions among components (One for invocations and another for refrac-

tions and/or transmutations). Most of the receiving systemexecutes on an iPAQ handheld

computer, but one program, called aTrader, executes on a desktop workstation. The two

systems communicate over the WLAN. In Adaptive Java, each address space comprises

one or more components, each of which in turn may comprise several interacting compo-

nents. The program running on the iPAQ in Figure 3.8 comprises five main components:

a Player, a DecisionMaker, an EventMediator, a ComponentLoader, and aMetaRecvM-

Socket. TheMetaRecvMSocket contains several components that together implement the

filter pipeline. As indicated, some of these components are metafied and therefore offer

refractive and transmutative interfaces, whereas others are simple base-level components

that offer only invocations to other components. The flow of events among components,

via anEventMediator, is also shown.

A DecisionMaker (DM) is an optional subcomponent within any Adaptive Java com-

ponent. According to a set of rules applied to the current situation, a DM controls all of

the nonfunctional behavior of the subcomponents of its container component. DMs are

arranged hierarchically, such that a given DM inherits rules from a higher-level DM and

might provide rules to lower-level DMs. (In our simple example application, the main

component on the iPAQ contains a single DM.) Depending on itsrules and the current sit-
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Figure 3.8: Interaction among components in the Audio Streaming Application.

uation, a DM might decide to metafy or change the configuration of an existing component

by invoking transmutations of the component. A transmutation might simply set the value

of an internal variable, or might involve the insertion or removal of a subcomponent (such

as a filter, in our example). In the insertion case, the DM contacts theComponentLoader

(CL) and requests the needed component. The CL is unique to anaddress space. If the

CL does not find the component in its cache, it sends a request to a componentTrader,

which may reside on another computing system. The Trader returns a component im-

plementation corresponding to a syntactic or semantic component request. In our current

implementation, we use simple identifiers to search for components. Eventually, the CL

uses thejava.lang.ClassLoader to load this implementation, creates an instance of

this class, and returns it to the local DM. The ability to dynamically load components is
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especially important for mobile devices, where resources might be limited and overhead

should be minimized.

Components can interact directly via invocations, refractions and transmutations. To

support asynchronous interactions, we implemented an event service. AnEventMediator

(EM) decouples event generators from eventlisteners[136]. The ASA sender and receiver

each contain a single EM that handles all events in the respective program. A listener regis-

ters its interest in an event by calling the EM’sregisterInterest() invocation. When an event

is detected by a component, it calls thenotify() invocation of the EM. The EM records the

event and subsequently alerts all listeners by calling their notify() invocations. To complete

the earlier discussion on missing filters, let us consider the situation in which the thread

in the receive() meta-level invocation detects that another filter needs to be configured in

the pipeline. AFilterMismatchEvent event is sent to the EM, which forwards it to the DM.

The DM decides to insert a new filter based on information carried by the event and the

pipeline status retrieved using thegetStatus() refraction. The DM requests the CL to load

the missing filter, after which the DM inserts it at the properlocation in the pipeline.

3.3.2 Filter Components

In this case study, we used two types of filters in MetaSockets. The first type provides

forward error correction (FEC) encoding and decoding functionality. The second type is

used to monitor packet loss conditions and to forward eventsof interest to the DM. In turn,

the DM may decide to insert, remove, or modify an FEC filter.

FEC is widely used in wireless networks, where factors such as signal strength, inter-

ference, and antennae alignment produce dynamic and location-dependent packet losses.

In current wireless LANs, these problems affect multicast connections more than unicast

connections, since the 802.11b MAC layer does not provide link-level acknowledgements

for multicast frames. FEC can be used to improve reliabilityby introducing redundancy

into the data channel. Our filters use (n, k) block erasure codes [137]. As shown in Fig-
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ure 3.9,k source packets are converted into a group ofn encoded packets, such that any

k of then encoded packets can be used to reconstruct thek source packets [137]. These

codes are ideal for wireless multicasting, since a single set of parity packets can correct

different packet losses among receivers.
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Figure 3.9: Operation of block erasure code.

The FECEncoder andFECDecoder components are extended from theFilter compo-

nent and use a Java FEC package . TheFECEncoder runs on the sender. This component

retrievesk packets from its source packet buffer, generatesn−k parity packets, and places

the originalk packets plus then − k parity packets into its destination packet buffer. The

FECDecoder runs at the receiving side and retrieves up tok packets from its source packet

buffer, decodes them if possible, and places the recovered original k packets in its desti-

nation packet buffer. Any unneeded parity packets are simply dropped. If fewer thank

out of then packets arrive, for a given FEC group, then theFECDecoder retrieves any

data packets and places them into its destination packet buffer. TheMetaFECEncoder and

MetaFECDecoder, shown in Figure 3.10, metafy theFECEncoder andFECDecoder com-

ponents, respectively. Each provides agetNK() refraction andsetNK() transmutation, which

are used at run time to read and set the values ofn andk. If a packet arrives with a dif-

ferentn or k value than is expected, theMetaFECDecoder fires aFECMismatchNKEvent

event. In response, the DM usessetNK() transmutation and adjusts the values fork andn

appropriately.

The second type of filter used in our case study monitors events related to packet loss
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Figure 3.10: Design of forward error correction filters.

rate and reports these to the DM. We developed two sets of filters. TheSendNetLossDe-

tector andRecvNetLossDetector filters monitor the raw loss rate of the wireless channel.

TheSendAppLossDetector andRecvAppLossDetector filters monitor the packet loss rate

as observed by the application, which may be lower than the raw packet loss rate due to

the use of FEC. The metafied versions of these filters is shown in Figure 3.11. In our ex-

periments,SendAppLossDetector is used as the first filter on the sender side, andRecvAp-

pLossDetector is used as the last filter on the receiver. Conversely,SendNetLossDetector

is the last filter on the sender, andRecvNetLossDetector is the first filter on the receiver.

The sender’s filters simply prepare packets by prepending a header containing the identifier

of the corresponding peer filter on the receiver. Each filter on the receiver uses sequence

numbers to calculate the packet loss rate over a specified window in the packet stream and

stores this information in a vector. Metafying these components provides refractions and

transmutations to read the current loss rate and to set or change upper and lower thresholds

with respect to the loss rate.

The sender’s DM (the global DM) and the receiver’s DM (the local DM) work together

and use a simple set of rules to make decisions about the use offilters and changes in their

behavior. If the loss rate observed by the application risesabove a specified threshold, then

the global DM can decide to insert an FEC filter in the pipelineor modify the(n, k) pa-
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Figure 3.11: Design of packet loss monitoring filters.

rameters of an existing FEC filter. On the other hand, if the raw packet loss rate on the

channel drops below a lower threshold, then the level of redundancy may be decreased, or

the FEC filter may be removed entirely. To realize this behavior, the local DM uses the

setUpperBound() andsetLowerBound() transmutations of the metafied filters. The local

DM also configures theMetaRecvAppLossDetector to generate anUnacceptableLossRa-

teEvent if the observed loss rate rises too high, by calling thesetInform(true) transmutation.

When this event fires, the global DM will eventually take action and attempt to reduce the

observed loss rate by inserting an FEC filter or changing the parameters of an existing

FEC filter. After firing such an event, the local DM callssetInform(false) for theMetaRec-

vAppLossDetector to suppress further events from this filter. At this time, thelocal DM
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also callssetInform(true) for the MetaRecvNetLossDetector, so that anAcceptableLoss-

RateEvent will fire if the network loss rate returns to a satisfactory level. When this event

fires, depending on its rules, the global DM can decide to reduce then-to-k ratio or to re-

move the FEC filter entirely. As in the first case, the local DM also callssetInform(false) for

theMetaRecvNetLossDetector to suppress further events. Any time a filter is inserted or

removed on the sender, aFilterMismatchEvent will eventually fire on the receiver, causing

the filter pipeline at the receiver to be adjusted accordingly.

3.4 Performance Evaluation

To evaluate the effect of MetaSockets on the performance of audio streaming, we conducted

several experiments using ASA. First, we report the effect of using MetaSockets in an

environment with simulated packet loss, followed by results with real packet loss on a

mobile computing testbed.

3.4.1 Adapting to Simulated Packet Loss

One well-known difficulty in conducting experimental research in wireless environments

is the ability to reproduce results, given the highly dynamic nature of the medium [138].

In this set of tests, we created artificial losses by droppingpackets in software according

to a predefined loss function. In this way, we are able to compare the effects of different

parameter settings on the behavior of MetaSockets.

In this experiment, the Recorder program is configured to record 8000 samples per sec-

ond of live audio, using a single channel at 8 bits per sample.Samples are collected into

128-byte packets packets, that is, each packet contains 16 milliseconds of audio data. We

used(8, 4) FEC filters. The upper threshold for theRecvAppLossDetector to generate an

UnAcceptableLossRateEvent is 30%, and the lower threshold for theRecvNetLossDetec-

tor to generate anAcceptableLossRateEvent is 10%.

Figure 3.12 plots packet loss as observed by the two loss monitoring filters on the re-
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ceiver. The Network Packet Loss curve experiences two periods of high packet loss. The

Application Packet Loss curve shows the effect of dynamic insertion and removal of the

FEC filter, according to the rules described in Section 3.3.2. When the program begins exe-

cution, the sender inserts aSendAppLossDetector filter into its MetaSocket, which quickly

causes the receiver to insert the correspondingRecvAppLossDetector. At packet set 8

(meaning the 800th packet), theRecvAppLossDetector filter detects that the loss rate has

passed the upper threshold. The filter fires anUnAcceptableLossRateEvent, causing the

local DM to request an FEC filter. The global DM decides, basedon its set of rules, to

insert two filters, anFECEncoder filter with default parametersn = 8 andk = 4, and

a SendNetLossDetector filter, at the second and third positions in theMetaSendMSocket

filter pipeline, respectively. When packets containing theheaders of the two new filters be-

gin arriving at the receiver, theRecvAppLossDetector detects a packet header that does not

match its own identifier. Therefore, it fires aFilterMismatchEvent at two different times,

one for each new packet type. These events result in the insertion of aRecvNetLossDetec-

tor filter and aFECDecoder filter at the first and second positions in theMetaRecvMSocket

filter pipeline, respectively.

As shown in Figure 3.12, the(8, 4) FEC code is very effective in reducing the packet

loss rate as observed by the application from packet set 8 to packet set 45. At packet set

45, theRecvNetLossDetector detects that the loss rate has dipped below the 10% lower

threshold, so it fires anAcceptableLossRateEvent. In response, the local DM sends a

request to the global DM to remove the FEC filter. The DM complies, since under low-

loss conditions, the 100% overhead of an(8, 4) FEC code simply wastes bandwidth. It

also removes theSendNetLossDetector filter in order to minimize data stream processing

under favorable conditions. The arrival of packets withoutthe two headers produces two

FilterMismatchEvent events at the receiving side, and the peer filters are removed. As a

result, the loss rate experienced by the application is again the same as the network loss

rate. At packet set 60, the FEC filter is again inserted, due tohigh loss rate, and it is later
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Figure 3.12: MetaSocket performance in an environment withreal packet loss.

removed at packet set 80. Considering Figure 3.12 as a whole,we see that the loss rate

observed by the application is very low, with the exception of two brief spikes. In order

to minimize overhead, FEC is applied only when necessary. This example illustrates how

Adaptive Java components can interact at run time to recompose the system in response

to changing conditions. While a task such as FEC filter management can be implemented

in an ad hoc manner, run-time metafication in Adaptive Java enables such concerns to be

added to the system after it is already deployed and executing.

3.4.2 Adapting to Real Packet Loss

Figure 3.13 provides a trace of an experiment, with real packet losses, that demonstrates

how MetaSockets adapt to loss rates due to user motion. One user sits at a desktop worksta-

tion in our research lab and speaks, while another listens onan iPAQ as he moves about an

adjacent hallway. The loss rate is very high while the user ismoving. In this particular test,

the iPAQ user stood outside the lab for approximately 30 seconds, walked up and down
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the hall for another 90 seconds, then stood relatively stillfor another 30 seconds. The up-

per threshold for theRecvAppLossDetector to generate anUnAcceptableLossRateEvent is

10%, and the lower threshold for theRecvNetLossDetector to generate anAcceptableLoss-

RateEvent is 1%. Figure 3.13 plots the packet loss as observed by the twoloss monitoring

filters on the receiver iPAQ. When the program begins execution, the sending process in-

serts aSendAppLossDetector filter into its MetaSocket, which quickly causes the receiver

to insert the correspondingRecvAppLossDetector. As shown in the Figure 3.13, the loss

rate is low at the beginning of the test, then increases quickly when the user starts walking.

TheRecvAppLossDetector filter detects that the loss rate has passed the upper threshold of

10% and fires anUnAcceptableLossRateEvent. The DM decides, based on its set of rules,

to insert two filters, anFECEncoder filter with default parameters (n = 20 andk = 4 in

this particular test), and aSendNetLossDetector filter. When packets containing the head-

ers of the two new filters begin arriving at the receiver, theRecvAppLossDetector detects

a packet header that does not match its own identifier. It firesa FilterMismatchEvent at

two different times, one for each new packet type. These events result in the insertion of a

RecvNetLossDetector filter and aFECDecoder filter in the opposite order as at the sender.

As shown in Figure 3.13, the(20, 4) FEC code is effective in reducing the packet loss

rate as observed by the application. The average loss rate inthe absence of FEC filters is

about 16%, while in the presence of FEC filters the loss rate isimproved to 3.5%. Near

packet 15,200 theRecvNetLossDetector detects that the loss rate has dipped below the 1%

lower threshold, so it fires anAcceptableLossRateEvent. In response, the local DM sends a

request to the global DM to remove the FEC filter. The DM complies, since under low-loss

conditions, the high overhead of an(20, 4) FEC code simply wastes bandwidth and energy.

It also removes theSendNetLossDetector filter in order to minimize data stream processing

under favorable conditions. The arrival of packets withoutthe two headers produces two

FilterMismatchEvent events at the receiving side, and the peer filters are removed. As a

result, the loss rate experienced by the application is again the same as the network loss
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Figure 3.13: MetaSocket performance in an environment withreal packet loss.

rate for the remainder of the experiment.

3.5 Related Work

In this section, we identify and discuss three categories ofprojects related to Adaptive Java

and MetaSockets.

The first category includes middleware projects that support adaptive behavior in Java

programs by extending the Java Virtual Machine. Examples include Iguana/J [98], Meta

Java [96], JDrums [139], Guaraná on Java [140], PROSE [32],and R-Java [141]. A ma-

jor benefit of implementing adaptation in this way is that theexecution of virtually any

bytecode instruction can be intercepted within a customized JVM. In contrast, only mes-

sages originally targeted for Java sockets can be intercepted and adapted dynamically using

MetaSockets. However, some researchers have noted that fine-grained interception at the

JVM level can produce significant performance overhead. Forexample, according to [98],

the time for common operations such as creating new objects can be increased by an order

of magnitude. Another advantage of JVM-supported adaptation is that it is usually trans-
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parent to the target Java program (no code modification required). On the other hand, using

a custom JVM tends to limit portability. Since our implementation of Adaptive Java uses

source-to-source compilation, MetaSockets can execute atop any standard JVM. Moreover,

to address the transparency issue, we developed a generatorframework, called TRAP/J,

which enables adaptable components such as MetaSockets to be woven into existing Java

programs without modifying the application source code. TRAP/J is introduced in the next

chapter.

The second category includes projects that use aspect-oriented programming [1] to

weave adaptive code into functional code. Although many projects in the AOP commu-

nity address compile-time weaving [103], a growing number of projects focus on run-time

composition [27, 32, 48, 107, 109, 142–147]. By defining a reflection-based component

model, Adaptive Java also supports run-time reconfiguration. A related concept is compo-

sition filters [78], which provide a mechanism for disentangling the cross-cutting concerns

of a software system. This system declares filters that intercept messages received and sent

by objects. As such, messages can be massaged and checked before they are delivered to an

object, separating aspects, such as security authentication or bounds checking, from the ob-

jects that send and receive these messages. Adaptive Java’sapproach to composition using

encapsulation could be used to instantiate a message filtering design where components are

extended and invocations added such that a call to an invocation would be filtered through

subsequent encapsulation layers. However, such a design would not have the source code

expressiveness provided by the declarative specification language in composition filters.

The third category of related work includes projects that, like Adaptive Java, extend

the Java syntax and provide new constructs to allow developers to write adaptable applica-

tions more expressively. Examples include Open Java [148],FRIENDS [94], PCL [97], R-

Java [141], and Handi-Wrap [149]. Open Java provides an approach supporting customized

compilers that define new compile-time MOPs [150]. For example, to support writing ex-

pressive programs that use a set of design patterns, Open Java enables a developer to build
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a customized compiler that understands the new syntax. The PCL project [97] also focuses

on language support for run-time adaptability. Our conceptof “wrapping” classes with

base components is similar to the use ofAdaptorsused in PCL. However, modification of

the base class in PCL appears to be limited to changing variable values, whereas Adaptive

Java transmutations can modify arbitrary structures or subcomponents. Moreover, by com-

bining encapsulation with metafication, Adaptive Java can be used to realize adaptations in

multiple meta-levels.

3.6 Summary

As a step toward transparent shaping, in this chapter we studied the effectiveness of new

programming language constructs and keywords to separate development of adaptive code

from functional code. We used Adaptive Java to develop an adaptable component, called

the MetaSocket, which can be used in existing socket-based Java applications.MetaSockets

can be reconfigured dynamically in response to external stimuli through the use of a filter

pipeline. The filter pipeline allows insertion and removal of filters dynamically. Since

the core MetaSocket code remains intact during the tuning process, we classify them as

repeatedly-tunable middleware (the corresponding taxonomy is introduced in Section 2).

The filters in MetaSockets can be developed by third parties and can be independent of

the functional code of an application. In other words, MetaSockets provide transparency

with respect to adaptive code. The code for MetaSockets is compiled by the Adaptive

Java compiler, which is a source-to-source compiler, so theresulting Java program can be

compiled by the standard Java compilers and run by the standard JVM.

In a case study, we used MetaSockets to support run time adaptation in iPAQ handheld

computers used as audio “communicators.” We described in detail how adaptive behavior

is implemented and how MetaSockets interact with other adaptive components, including

decision makers and event mediators. Results from experiments on a mobile computing

testbed demonstrate the effectiveness of these methods in responding to dynamic wireless
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channel conditions. While this chapter demonstrated the application of MetaSocket to

a specific communication service, we emphasize that the Adaptive Java mechanisms are

general: any component in the system can be metafied and adapted at run time.

Referring back to the transparent shaping programming model, introduced in Chapter 1

and illustrated in Figure 1.1, Adaptive Java can be used to produce an adaptable program

family from an existing Java program. For example, if we start with an existing socket-

based Java program, first we can produce an adapt-ready version of this program by mod-

ifying all lines in the program that create an instance of anyJava socket classes, and then

compiling the program using the Adaptive Java compiler. Next, at run time we can insert

and remove filters in the adapt-ready program to produce other members of this adaptable

program family.

Although MetaSockets proved to be useful in supporting dynamic adaptation, our study

of them revealed the following two issues. First, to incorporate a MetaSocket into an exist-

ing program, we need to modify the program source code directly, which is not desirable.

Second, once the existing program is modified to use a MetaSocket instead of a Java socket,

dynamic adaptation is only possiblewithin the MetaSocket (e.g.,through the insertion and

removal of filters). In other words, we cannot replace one version of a MetaSocket with

another more appropriate version of the MetaSocket at run time. We address these issues

in the next chapter.
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Chapter 4

Transparent Shaping of Object-Oriented
Programs

In this part of our study, we developed an extension of transparent shaping that can be

used to support dynamic adaptation in existing programs developed in class-based, object-

oriented programming languages. We call this programming modelTransparent Reflective

Aspect Programming (TRAP). Unlike Adaptive Java [49], TRAP does not require any direct

modifications to the existing programs.

As an extension of transparent shaping, TRAP provide a programming model to pro-

duce a family of adaptable programs from an existing program. To enable a developer to

balance the flexibility of dynamic adaptation and the performance of adaptable programs,

TRAP employs atwo-stepapproach to dynamic adaptation. Specifically, TRAP enables

the developer to select, at compile time, a subset of classesin the existing program to be

reflective at run time. We say a class isreflectiveat run time if its behavior (e.g.,the imple-

mentation of its methods) can be inspected and modified dynamically. Many class-based,

object-oriented languages such as Java and C++ do not support such reflective classes at

run time. Therefore, programs developed in these programming languages are required to

be modified to accommodate dynamic reflection facilities.

To eliminate the need for direct modifications to an existingprogram, TRAP uses

compile- and load-time program transformation techniques(e.g., compile-time aspect

weaving [103], compile-time meta-object protocols [84, 148], and load-time meta-object
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protocols [48, 147]). Software generator tools produce an adapt-ready version of the pro-

gram augmented with the required hooks. The hooks provide the reflective facilities for the

selected classes required for dynamic adaptation. As the adapt-ready program executes,

new behavior can be introduced to the program by insertion and removal of adaptive code

via interfaces to the reflective classes.

Extensive use of behavioral reflection in adaptable programs incurs unnecessary over-

head and in extreme cases every message sent to an object mustbe intercepted and possibly

redirected [98]. To avoid this problem, TRAP enables a developer to selectwhatshould be

reflective (called spatial selection [151]) at compile timeandwhenthe reflection should be

active (called temporal selection [151]) at run time.

To validate these ideas, we developed TRAP/J, a prototype instantiation of TRAP for

Java programs. In this chapter, we focus on the operation of TRAP/J and describe the de-

tails of the techniques used to generate adapt-ready programs from existing Java programs,

as well as their corresponding subfamily of adaptable programs. In earlier work [109], our

group showed how to use aspect-oriented programming to selectively introduce behavioral

reflection into an existing program. However, the reflectionused there isad hocin that the

developer must invent the reflective mechanisms and supporting infrastructure for adapta-

tion, and must create an aspect that weaves this infrastructure into an existing program. In

contrast, TRAP/J employs asystematicapproach to dynamic adaptation. TRAP/J generates

the required reflective infrastructure and weaves it into anexisting program automatically.

The remainder of this chapter is organized as follows. Section 4.1 presents background

information. Section 4.2 describes the operation of TRAP/J. Section 4.3 presents a case

study, where we used TRAP/J to augment an existing audio-streaming application with

adaptive behavior, enabling it to operate more effectivelyacross wireless networks. Sec-

tion 4.4 categorizes related research projects, which address dynamic adaptation in dis-

tributed applications, and discusses how TRAP relates to them. Finally, Section 4.5 sum-

marizes this chapter.
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4.1 Background

Many approaches to developing adaptable software, including TRAP/J, use behavioral re-

flection, aspect-oriented programming, or a combination ofboth. In this section, we explain

how these technologies are supported in Java.

4.1.1 Behavioral Reflection and Java

Unfortunately, Java by itself does not support behavioral reflection. Java supports a

structural reflection through itsjava.reflect package and thejava.lang.Class

class [152]. The Java reflection facilities enable inspection of a Java program (e.g.,

to determine the class of a given object, and the methods and fields of that class) as

well as to perform limited operations (e.g., to get and set an object’s field value and

to invoke one of its methods using the method name provided asa string of charac-

ters) at run time. Moreover, theforName() static method of thejava.lang.Class

allows dynamic class loading in Java programs. Although Java supports structural

reflection, it does not support behavioral reflection [30]. TRAP/J and several other

projects [27, 49, 98, 107, 109, 140, 141, 148, 149, 151, 153, 154], discussed in Section 4.4,

provide behavioral reflection in Java programs.

4.1.2 Aspect-Oriented Programming and Java

AspectJ[103], used in TRAP/J, is a widely used AOP extension to Java.An aspect in As-

pectJ is a class-like language element, which is used to modularize a crosscutting concern.

An aspect has two parts: advice and pointcut.Adviceis an implementation of a crosscut-

ting concern and apointcutis a set of joinpoints, where the advice is woven. Ajoinpoint

is an identifiable point in the execution path of an application, such as a method call or an

access to a field. At compile time, a number of such aspects canbe selected to be woven

into a Java program using the AspectJ compiler, called aspect weaver, to produce a modi-

fied version of the program. As described next, TRAP/J uses AspectJ to augment existing

63



Java programs with the necessary “hooks” to produce adapt-ready versions of the existing

programs.

4.2 TRAP/J Operation

TRAP/J is an instance of TRAP in Java. To augment an existing Java program with the re-

quired hooks, TRAP/J uses the compile-time aspect weaving facilities provided in AspectJ.

TRAP/J leverages Java structural reflection to support dynamic adaptation.

4.2.1 Overview

TRAP/J operates in two phases. The first phase takes place at compile time, when TRAP/J

converts an existing Java program into an adapt-ready program. Figure 4.1 shows a high-

level representation of TRAP/J operation at compile time. The application source code is

compiled using the Java compiler (javac), and the compiled classes and a file containing a

list of class names are input to an Aspect Generator and a Reflective Class Generator. For

each class name in the list, these generators produce one aspect, one wrapper-level class,

and one meta-level class. Next, the generated aspects and reflective classes, along with the

original application source code, are passed to the AspectJcompiler (ajc), which weaves

the generated and original source code together to produce an adapt-ready application. The

second phase occurs at run time. New behavior can be introduced to the adapt-ready appli-

cation using the wrapper- and meta-level classes (henceforth referred to as the adaptation

infrastructure).

Figure 4.2 illustrates the interaction among the Java Virtual Machine (JVM) and the

administrative consoles (GUI). First, the adapt-ready application is loaded by the JVM. At

the time each metaobject is instantiated, it registers itself with the Java rmiregistry using a

unique ID. Next, if an adaptation is required, the composer dynamically adds new code to

the adapt-ready application at run time, using Java RMI to interact with the metaobjects.

As part of the behavioral reflection provided in the adaptation infrastructure, a meta-object
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Figure 4.1: TRAP/J operation at compile time.

protocol (MOP) is supported in TRAP/J that allows interception and reification of method

invocations targeted to objects of the classes selected at compile time to be adaptable.

4.2.2 TRAP/J Run-Time Model

To illustrate the operation of TRAP/J, let us consider a simple application comprising two

classes,Service andClient, and three objects, (client, s1, ands2). Figure 4.3 depicts a

simple run-time class graph for this application that is compliant with the run-time archi-

tecture of most class-based object-oriented languages. The class library containsService

andClient classes, and the heap containsclient, s1, ands2 objects. The “instantiates” re-

lationship among objects and their classes are shown using dashed arrows, and the “uses”

relationships among objects are depicted with solid arrows.
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Figure 4.4 illustrates a layered run-time class graph modelfor this application. Please

note that the base-level layer depicted in Figure 4.4 is equivalent to the class graph illus-

trated in Figure 4.3. For simplicity, only the “uses” relationships are represented in Fig-

ure 4.4. The wrapper level contains the generated wrapper classes for the selected subset

of base-level classes and their corresponding instances. The base-level client objects use

these wrapper-level instances instead of base-level service objects. As shown,s1 ands2

no longer refer to objects of the typeService, but instead refer to objects of typeService-

Wrapper class. The meta level contains the generated meta-level classes corresponding to

each selected base-level class and their corresponding instances. Each wrapper class has

exactly one associated meta-level class, and associated with each wrapper object can be

at most one metaobject. Please note that the behavior of eachobject in response to each

message is dynamically programmable, using the generic method execution MOP provided

in TRAP/J.

Finally, the delegate level contains adaptive code that candynamically override base-

level methods that are wrapped by the wrapper classes. Adaptive code is introduced into
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TRAP/J usingdelegateclasses. A delegate class can contain implementation for anarbi-

trary collection of base-level methods of the wrapped classes, enabling the localization of

a cross-cutting concern in a delegate class. A composer can program metaobjects dynam-

ically to redirect messages destined originally to base-level methods to their correspond-

ing implementations in delegate classes. Each metaobject can use one or more delegate

instances, enabling different cross-cutting concerns to be handled by different delegate

instances. Moreover, delegates can be shared among different metaobjects, effectively pro-

viding a means to support dynamic aspects.

For example, let us assume that we want to adapt the behavior of a socket object (in-

stantiated from a Java socket class such as theJava.net.MulticastSocket class) in an existing

Java program at run time. First, at compile time, we use TRAP/J generators to generate the

wrapper and metaobject classes associated with the socket class. Next, at run time, a com-

poser can program the metaobject associated with the socketobject to support dynamic

reconfiguration. Programming the metaobject can be done by introducing a delegate class

to the metaobject at run time. The metaobject then loads the delegate class, instantiates

an object of the delegate class, intercepts all subsequent messages originally targeted to

the socket object, and forwards the intercepted messages tothe delegate object. Let us as-

sume that the delegate object provides a new implementationfor thesend(...) method
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Figure 4.4: TRAP layered run-time model.

of the socket class. In this case, all subsequent messages tothe send(...) method are

handled by the delegate object and the other messages are handled by the original socket

object. Alternatively, the delegate object could modify the intercepted messages and then

forward them back to the socket object, resulting in a new behavior. TRAP/J allows the

composer to remove delegates at runtime, bringing the object behavior back to its original

implementation. Thus, TRAP/J is a non-invasive [155] approach to dynamic adaptation.
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4.3 Case Study: Transparent Shaping of ASA

To demonstrate how TRAP/J can be used to produce adaptable programs from an existing

program without the need to modify the existing program source code directly, we use

the same example application used in the previous Chapter. For completeness, a brief

description of ASA and our adaptation strategy is provided.

4.3.1 Example Application

ASA, introduced in Section 3.3.1, is an audio streaming application designed to stream

interactive audio from a microphone at one network node to multiple receiving nodes. The

original application was developed for wired networks. Ourgoal is to adapt this application

to wireless environments, where the packet loss rate is dynamic and location dependent.

In this case study, we configured the experiments in anad hocwireless network as

illustrated in Figure 4.5. A laptop workstation transmits an audio stream to multiple wire-

less iPAQs over an 802.11b (11Mbps) ad hoc wireless local area network (WLAN). Please

note that unlike in wired networks, in wireless networks factors such as signal strength, in-

terference, and antenna alignment produce dynamic and location-dependent packet losses.

In current WLANs, these problems affect multicast connections more than unicast con-

nections, since the 802.11b MAC layer does not provide link-level acknowledgements for

multicast frames.

Sender

Receiver

Receiver

Receiver
Ad-Hoc 

Wireless 

Network

Audio Stream Path

Figure 4.5: Audio streaming in a wireless LAN.
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Figure 4.6 illustrates the strategy we used to enable ASA to adapt to variable channel

conditions in wireless networks. This is the same strategy as the one used in Section 3.4.

However, we used TRAP/J to modify ASAtransparentlysuch that it uses MetaSockets in-

stead of Java multicast sockets. The particular MetaSocketadaptation used here is the dy-

namic insertion and removal offorward-error correction(FEC) filters [137]. Specifically,

an FEC encoder filter can be inserted and removed dynamicallyat the sending MetaSocket,

in synchronization with an FEC decoder being inserted and removed at each receiving

MetaSocket. Use of FEC under high packet loss conditions reduces the packet loss rate as

observed by the application. Under low packet loss conditions, however, FEC should be

removed so as not to waste bandwidth on redundant data.

Wireless Network
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Meta Level
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Java Virtual Machine

Audio Packet Path
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Figure 4.6: Adaptation strategy.

4.3.2 Making ASA Adapt-Ready

Figure 4.7 shows excerpted code for the originalSender class. Themain method creates a

new instance of theSender class and calls itsrun method. Therun method first creates an
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instance ofAudioRecorder andMulticastSocket and assigns them to the instance variables,

ar and ms, respectively. The multicast socket (ms) is used to send the audio datagram

packets to the receiver applications. Next, therun method executes an infinite loop that, for

each iteration, reads live audio data and transmits the datavia the mulitcast socket.

1 public class Sender
2 {
3 AudioRecorder ar;
4 MulticastSocket ms;
5 public void run()
6 { . . .
7 ar = new AudioRecorder(. . . );
8 ms = new MulticastSocket();
9 byte[] buf = new byte[500];

10 DatagramPacket packetToSend =
11 new DatagramPacket(buf, buf.length,
12 target address, target port);
13 while (!EndOfStream)
14 {
15 ar.read(buf, 0, 500);
16 ms.send(packetToSend);
17 } // end while . . .
18 }
19 } // end Sender

Figure 4.7: Excerpted code for theSender class.

Compile-Time Actions. The Sender.java file and a file containing only thejava.net-

.MulticastSocket class name are input to the TRAP/J aspect and reflective generators. The

TRAP/J class generators produce one aspect file, namedAbsorbing MulticastSocket.aj (for

base level), and two reflective classes, namedWrapperLevel MulticastSocket.java (wrap-

per level) andMetaLevel MulticastSocket.java (meta level). Next, the generated files and

the original application code are compiled using the AspectJ compiler (ajc) to produce the

adapt-ready program. We note that ifajc could accept.class files instead of.java files,

then we would not even need the original source code in order to make the application

adapt-ready.
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Generated Aspect. The aspect generated by TRAP/J defines an initializationpointcut

and the correspondingaround advice for eachpublic constructor of theMulticastSocket

class. Anaround advice causes an instance of the generated wrapper class, instead of

an instance ofMulticastSocket, to serve thesender. Figure 4.8 shows excerpted code

for the generatedAbsorbing MulticastSocket aspect. This figure shows the “initialization”

pointcut (lines 3-4) and its correspondingadvice (lines 6-11) for theMulticastSocket

constructor used in theSender class. Referring back to the layered class graph in Fig-

ure 4.4, thesender (client) uses an instance of the wrapper class instead of thebase class.

In addition to handlingpublic constructors, TRAP/J also defines apointcut and an

around advice to intercept allpublic final andpublic static methods.

1 public aspect Absorbing MulticastSocket
2 {
3 pointcut MulticastSocket() :
4 call(java.net.MulticastSocket.new()) && . . . ;
5
6 java.net.MulticastSocket around()
7 throws java.net.SocketException
8 : MulticastSocket()
9 {

10 return new WrapperLevel MulticastSocket();
11 }
12
13 pointcut MulticastSocket int(int p0) :
14 call(java.net.MulticastSocket.new(int))
15 && args(p0) && . . . ;
16
17 // Pointcuts and advices around the final public methods
18 pointcut getClass(WrapperLevel MulticastSocket
19 targetObj) :
20 . . . ;
21 }

Figure 4.8: Excerpted generated aspect code.

Generated Wrapper-Level Class. Figure 4.9 shows excerpted code for theWrapper-

Level MulticastSocket class, the generated wrapper class for theMulticastSocket. This

wrapper class extends theMulticastSocket class. All thepublic constructors are over-
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ridden by passing the parameters to the super class (base-level class) (lines 4-6). Also, all

thepublic instance methods are overridden (lines 8-29).

1 public class WrapperLevel MulticastSocket extends
2 MulticastSocket implements WrapperLevel Interface {
3
4 // Overriding the base-level constructors.
5 public WrapperLevel MulticastSocket()
6 throws SocketException { super(); }
7
8 // Overriding the base-level methods.
9 public void send(java.net.DatagramPacket p0)

10 throws IOException {
11 if(metaObject == null)
12 { super.send(p0); return; }
13 . . .
14 Class[] paramType = new Class[1];
15 paramType[0] = java.net.DatagramPacket.class;
16 Method method = WrapperLevel MulticastSocket.
17 class.getDeclaredMethod(“send”, paramType);
18
19 Object[] tempArgs = new Object[1];
20 tempArgs[0] = p0;
21 ChangeableBoolean isReplyReady =
22 new ChangeableBoolean(false);
23
24 try {
25 metaObject.invokeMetaMethod
26 (method, tempArgs, . . . );
27 } catch (java.io.IOException e) { throw e; }
28 catch (MetaMethodIsNotAvailable e) {}
29 }

Figure 4.9: Excerpted generated wrapper code.

To better explain how the generated code works, we walk through the details of how the

send method is overridden, as shown in Figure 4.9. The generatedsend method first checks

if the metaObject variable, referring to the metaobject corresponding to this wrapper-level

object, is null (lines 11-12). If so, then the base-level (super) method is called, as if the base-

level method had been invoked directly by another object, such as an instance ofsender.

Otherwise, a message containing the context information isdynamically created using Java

reflection and passed to the metaobject (metaObject) (lines 14-28). It might be the case

that a metaobject may need to call one or more of the base-level methods. To support such
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cases, which we suspect might be very common, the wrapper-level class provides access to

the base-level methods through the special wrapper-level methods whose names match the

base-level method names, but with an “Orig ” prefix.

Generated Meta-Level Class. Figure 4.10 shows excerpted code forMetaLevel Multi-

castSocket, the generated meta-level class for MulticastSocket. Thisclass keeps an in-

stance variable,delegates, which is of typeVector and refers to all the delegate objects

associated with a metaobject that implements one or more of the base-level methods. To

support dynamic adaptation of thestatic methods, a meta-level class provides thestat-

icDelegates instance variable and its corresponding insertion and removal methods (not

shown). Delegateclasses introduce new code to applications at run time by overriding a

collection of base-level methods selected from one or more of the adaptablebase-level

classes. An adaptable base-level class has corresponding wrapper- and meta-level classes,

generated by TRAP/J at compile time. metaobjects can be programmed dynamically by

inserting or removing delegate objects at run time. To enable a user to change the behavior

of a metaobject dynamically, the meta-level class implements theDelegateManagement

interface, which in turn extends the Java RMIRemote interface (lines 5-10). A composer

can remotely “program” a metaobject through Java RMI. TheinsertDelegate andremove-

Delegate methods are developed for this purpose.

The meta-object protocol developed for meta-level classesdefines only one method,

invokeMetaMethod, which first checks if any delegate is associated with this metaobject

(lines 12-22). If not, then aMetaMethodIsNotAvailable exception is thrown, which eventu-

ally causes the wrapper method to call the base-level methodas described before. Alterna-

tively, if one or more delegates is available, then the first delegate that overrides the method

is selected, a new method on the delegate is created using Java reflection, and the method

is invoked.
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1 public class MetaLevel MulticastSocket
2 extends UnicastRemoteObject
3 implements MetaLevel Interface,DelegateManagement{
4
5 private Vector delegates = new Vector();
6 public synchronized void insertDelegate
7 (int i, String delegateClassName)
8 throws RemoteException { . . . }
9 public synchronized void removeDelegate(int i)

10 throws RemoteException { . . . }
11
12 public synchronized Object invokeMetaMethod
13 (Method method, Object[] args,
14 ChangeableBoolean isReplyReady) throws Throwable{
15 // Finding a delegate that implements this method
16 . . .
17 if(!delegateFound) // No meta-level method available
18 throw new MetaMethodIsNotAvailable();
19 else
20 return newMethod.invoke(delegates.get(i-1),
21 tempArgs);
22 }

Figure 4.10: Excerpted generated metaobject code.

4.3.3 Adapting to Loss Rate

To evaluate the TRAP/J-enhanced audio application, we conducted two sets of experiments

similar to those in the previous chapter. The configuration use in these sets of experiments

are illustrated in Figure 4.5.

In the first sets of experiments, a user holding a receiving iPAQ is walking within the

wireless cell, receiving and playing a live audio stream. Figure 4.11 shows a sample of

the results. For the first 120 seconds, the program has no FEC capability. At 120 seconds,

the user walks away from the sender and enters an area with loss rate around 30%. The

adaptable application detects the high loss rate and inserts a (4,2) FEC filter, which greatly

reduces the packet loss rate as observed by the application,and improves the quality of

the audio as heard by the user. At 240 seconds, the user approaches the sender, where the

network loss rate is again low. The adaptable application detects the improved transmis-

sion and removes the FEC filters, avoiding the waste of bandwidth with redundant packets.
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Again at 360 seconds, the user walks away from the sender, resulting in the insertion of

FEC filters. This experiment demonstrates the utility of TRAP/J to transparently and auto-

matically enhance an existing application with new adaptive behavior.
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Figure 4.11: The effect of using FEC filters to adapt ASA to high loss rates on a wireless
network.

4.3.4 Balancing QoS and Energy Consumption

In the second set of experiments, we used two MetaSocket filters, SendNetLossDetector

andRecvNetLossDetector, which cooperate to monitor the raw loss rate of the wireless

channel. Similarly, theSendAppLossDetector andRecvAppLossDetector filters are used

to monitor the packet loss rate as observed by the application, which may be lower than the

raw packet loss rate due to the use of FEC. At present, a simplestate machine is used by

a decision maker (DM) component to govern changes in filter configuration. For example,

if the loss rate observed by the application rises above a specified threshold, then the DM

decides to insert an FEC filter in the pipeline. In case an FEC filter is already present in the

pipeline, DM decides to modify the(n, k) parameters of the FEC filter to increase improve

QoS. On the other hand, if the raw packet loss rate on the channel drops below a lower
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threshold, then the level of redundancy is decreased by modifying the parameters of the

FEC filter, or in case the FEC filter is not required anymore, DMremoves the FEC filter

entirely.

Figure 4.12 shows a trace of an experiment using the ASA described earlier, running

in ad hoc mode. A stationary user speaks into a laptop microphone, while another user

listens on an iPAQ as he changes his location in the wireless cell from time to time. In

this particular test, the iPAQ user remains in a low packet loss area for approximately 30

minutes, moves to a high packet loss area for another 40 minutes, moves back to the low

packet loss location for another 30 minutes, then reenters the high packet loss location. He

remains there until the iPAQ’s external battery drains and the network is disconnected.
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Figure 4.12: MetaSocket packet loss behavior with dynamic FEC filter insertion and re-
moval.

In this experiment, the upper threshold for theRecvAppLossDetector to generate anUn-

AcceptableLossRateEvent is 20%, and the lower threshold for theRecvNetLossDetector

to generate anAcceptableLossRateEvent is 5%. As shown in Figure 4.12, the FEC(4, 2)

code is effective in reducing the packet loss rate as observed by the application. Figure 4.13
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plots the remaining battery capacity as measured during theabove experiment and that for

a non-adaptive trace. The adaptive version extends the battery lifetime by approximately

27 minutes.
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Figure 4.13: Trace of energy consumption during experimentusing a software measure-
ment technique.

4.4 Related Work

Like TRAP/J, many approaches to constructing adaptable programs involveintercepting

interactions among objects in functional code, andredirectingthem to adaptive code. We

identify three categories of related work.

The first category includes approaches thatextend middlewareto support adaptive be-

havior. Since the traditional role of middleware is to hide resource distribution and platform

heterogeneity from the business logic of applications, it is a logical place to put adaptive

behavior related to other cross-cutting concerns, such as quality-of-service, energy man-

agement, fault tolerance, and security [6, 37, 44, 45, 92, 99, 113, 114, 116, 117, 119, 121,

122,127,156–158]. In addition to providing transparency to the functional code, some ap-
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proaches provide transparency to the distribution middleware code as well. For example,

IRL [116] and FTS [156,159] use CORBA portable interceptors[47] to intercept CORBA

messages transparently, and Eternal [121] intercepts calls to the TCP layer using the Linux

/proc file system. Adaptive middleware approaches provide an effective means to support

adaptability, but they are applicable only to programs thatare written for a specific middle-

ware platform such as CORBA, Java RMI, or DCOM/.NET. We discuss approaches in this

category in more details in the next chapter.

The second category provides such transparency byextending Java virtual machines

with facilities to intercept and redirect interactions in the functional code1. Exam-

ples of extensions to Java virtual machines (JVMs) include PROSE [32], Iguana/J [98],

metaXa [153], Guaraná [140], and R-Java [141]. These projects employ a variety of

techniques. For example, Guaraná extends the Kaffe open source JVM [160], whereas

PROSE and Iguana/J extend the standard JVM using command-line parameters (e.g.,

-Xbootclasspath and various HotSpot options) to introduce their specific JITcompil-

ers to the JVM and to disable the Java HotSpot option. Guaran´a and Iguana/J employ

meta-object protocols to provide dynamic adaptation to existing Java programs, whereas

PROSE employs a dynamic aspect weaving technique for this purpose, without modify-

ing the program and JVM source code. In general, approaches in this category are very

flexible with respect to dynamic reconfiguration, in that newcode can be introduced to the

application at run time. Iguana/J supportsunanticipatedadaptation at run time by allow-

ing new MOPs to be associated with classes and objects of a running application, without

the need for any pre- or post-processing of the application code at compile or load time.

However, while these solutions provide transparency with respect to the application source

code, extensions to the JVM may reduce their portability.

Finally, the third category includes approaches that transparentlyaugment the applica-

1According to the taxonomy of adaptive middleware introduced in Chapter 2, we consider JVM as host-
infrastructure middleware. However, for their specific characteristics, here we consider extensions to JVM in
a separate category than the middleware extensions category.
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tion code itselfwith facilities for interception and redirection. Exampleprojects include

OpenJava [148], FRIENDS [94], PCL [97], AspectJ [103], Composition Filters [78], AR-

CAD [27], Hyper/J [104], DemeterJ (DJ) [105], JAC [106], Reflex [151], Kava [107],

Dalang [161], Javassist [147], and JOIE [48]. Most of these systems are designed to work

in two phases. In the first phase, interception hooks are woven into the application code

at either compile time, using a pre- or post-processor, or atload time, using a specialized

class loader. For example, AspectJ enables aspect weaving at compile time. In contrast,

Reflex and Kava use bytecode rewriting at load time to supporttransparent generation of

adaptable programs. In the second phase, intercepted operations are forwarded to adaptive

code using reflection.

TRAP/J belongs to this last category and employs a two-phaseapproach to adapta-

tion. TRAP/J is completely transparent with respect to the original application source code

and does not require an extended JVM. By supporting compile-time selection of classes

for possible later adaptation, TRAP/J enables the developer to balance flexibility and effi-

ciency. Reflex [151] also address this issue by allowing a meta-level architect to select an

application-specific MOP that best fits the application requirements. A default MOP can

be used when an application-specific MOP is not needed. TRAP/J complements Reflex

by providing a generic MOP that could serve as the default MOP. TRAP/J is most similar

to ARCAD [27], which also provides a two-phase approach to dynamic adaptation. AR-

CAD also uses AspectJ at compile time and behavioral reflection at run time. However,

the partial behavioral reflection [151] provided in TRAP/J is more fine-grained than that

of ARCAD. Specifically, TRAP/J supports method invocation reflection, enabling an arbi-

trary subset of an object’s methods to be selected for interception and reification; ARCAD

does not support such fine-grained reflection. The ability ofTRAP/J to avoid unnecessary

reifications is due to its multi-layer architecture.

80



4.5 Summary

In this chapter, we introduced TRAP, which is a language-based approach to transparent

shaping. TRAP enables production of adaptable program families from existing programs

developed in class-based, object-oriented programming languages. We described the de-

sign and operation of TRAP/J, which is an instance of TRAP in Java. TRAP/J enables

dynamic reconfiguration of Java applications without the need to modify the application

source code directly and without extending the JVM. TRAP/J operates in two phases. At

compile time, TRAP/J produces an adapt-ready version of an existing Java program. Later

at run time, TRAP/J enables adding new behavior to the adapt-ready program dynamically

through insertion and removal of delegates into the adapt-ready program. As such, other

members of the adaptable program family associated with theadapt-ready program can

be produced dynamically. A case study in a wireless network environment was used to

demonstrate the operation and effectiveness of TRAP/J.

In TRAP/J, an adaptation hook is realized by a pair of wrapperand meta classes asso-

ciated with a class in an existing Java program, and adaptivecode is realized by delegates,

which can modify the behavior of the class by overriding the implementation of its meth-

ods. We developed a delegate using a MetaSocket, which in itsturn supports dynamic

adaptation through insertion and removal of filters. As a result, unlike the approach in the

previous chapter, at run time, a MetaSocket can be replaced with a more appropriate one,

if required.

Although TRAP/J is not an adaptive middleware, it can be usedto weave adaptive

middleware components (e.g.,MetaSockets) into distributed applications. Therefore, we

classify it according to the taxonomy introduced in Section2. First, TRAP/J operates in

the application layer because it is a language-based approach that can be used to transform

existing application code. Second, TRAP/J can be used to transparently weave adaptive

middleware services into applications, so it supports an intercepting technique for access-

ing middleware services. Finally, TRAP/J supports tunableadaptation since the original
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application code remains intact during run time.

As part of our future studies, we plan to develop TRAP/C++ andTRAP/C# to provide

dynamic adaptation in existing C++ and C# programs, respectively.
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Chapter 5

Transparent Shaping of CORBA
Programs

Although TRAP is transparent to application code, the adaptation behavior is still wo-

ven into the application, which must be recompiled. Implementing transparent shap-

ing in middleware can produce even greater transparency. Asobserved by several re-

searchers [6, 28, 37–45, 91, 92, 99, 113, 114, 116, 117, 119, 121, 122, 127, 156–158, 162],

middleware is a natural place to incorporate adaptive behavior and to hide unanticipated

conditions from existing distributed applications. In this part of our study, we investi-

gate enhancements to CORBA ORBs to support dynamic reconfiguration of middleware

services transparently both to the application and middleware code. Moreover, we ad-

dress interoperation among otherwise incompatible adaptive middleware frameworks (e.g.,

QuO [42] and Open ORB [38]) to enable existing programs to benefit from more than one

adaptive framework. The result of this study is a middleware-based extension of transpar-

ent shaping, which supports dynamic adaptation in existingCORBA applications. We call

this programming model theAdaptive CORBA Template (ACT).

As an extension of transparent shaping, ACT can be used to produce an adapt-ready

version of an existing CORBA program by introducing a hook, which intercepts all

CORBA remote interactions, into the program at compile time. To do so, ACT uses

CORBA portable interceptors [47], supported in CORBA compliant ORBs (described

later). Portable interceptors can be incorporated into a CORBA program at startup time
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using a command-line parameter. Later at run time, these hooks can be used to insert adap-

tive code into the adapt-ready program, which in turn can adapt the requests, replies, and

exceptions passing through the ORBs. In this manner, ACT enables run-time improve-

ments to the program in response to unanticipated changes inits execution environment,

effectively producing other members of the adaptable program family dynamically.

We refer to ACT as atemplate, because it is independent of programming languages

and CORBA ORB implementations. As depicted in Figure 5.1, ACT can be instantiated in

a programming language, such as Java and C++, that supports dynamic code loading and

is supported by CORBA. Moreover, ACT can be used to extend existing adaptive CORBA

frameworks such as QuO [42]. To evaluate the performance andfunctionality of ACT,

we constructed a prototype of ACT in Java, calledACT/J. ACT/J supports unanticipated

adaptation for crosscutting concerns such as QoS and system-resource management. Our

experimental results show that the overhead introduced by the ACT/J infrastructure is neg-

ligible, while the adaptations offered are highly flexible.

ACT/QuOACT/C++ACT/J

Adaptive CORBA Template

instantiates instantiates instantiates

Figure 5.1: ACT as a template that can be instantiated in different programming languages
and can be used to enhance existing adaptive CORBA frameworks.

The remainder of this chapter is organized as follows. Section 5.1 provides a back-

ground on CORBA portable interceptors. Section 5.2 describes the ACT architecture. Sec-

tion 5.3 introduces the generic proxy, which facilitates transparent development of adaptive
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code with respect to application code. Section 5.4 introduces ACT/J and its operation. Sec-

tion 5.5 describes a case study, where we used the generic proxy in ACT/J to implement

transparent self-optimization in an existing CORBA application, enabling it to accommo-

date changing conditions of a wireless network infrastructure. Section 5.6 describes an-

other case study, where we coupled ACT and QuO, calledACT/QuO, as an example of

how ACT enables integration of different middleware frameworks. Section 5.7 categorizes

research projects and discusses how ACT relates to other approaches. Finally, Section 5.8

summarizes the chapter.

5.1 Background

In this section, we provide a background on CORBA and review CORBA portable inter-

ceptors as defined by OMG [47]. Although we have briefly introduce CORBA in Section 2,

here we introduce it again with more details for completeness.

5.1.1 CORBA

The Common Object Request Broker Architecture (CORBA)[47] is a distributed object

framework proposed by the Object Management Group (OMG). CORBA supports dis-

tributed object-oriented computing across heterogeneoushardware devices, operating sys-

tems, network protocols, and programming languages. Figure 5.2 illustrates the CORBA

components described as follows. TheObject Request Broker (ORB), the core of CORBA,

allows objects to interact transparently with other objects (located locally or remotely). A

CORBA object is represented by its interface, is identified by its reference, and is realized

in an object-oriented program as a local object called theservant. The client of a CORBA

object first acquires a reference to the CORBA object using either an interoperable object

reference (IOR) file or a CORBA naming service [47]. Next, theclient calls methods on

this reference as if the object were located in the client address space. TheInterface Defi-

nition Language (IDL)is a language for defining CORBA interfaces. An IDL compiler is
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used to automatically generate the code for stubs and skeletons. AnIDL stub represents a

servant locally in the client address space and anIDL skeletonrepresents a client locally

in the servant address space. IDL stubs and skeletons marshal and unmarshal requests and

responses to enable object interactions over a network.

Figure 5.2: CORBA architecture [10].

Thedynamic invocation interface (DII)enables clients to directly access the underlying

request mechanisms at run time to generate dynamic requeststo objects, whose type (inter-

face) were not known at the time the client program was compiled. Theinterface repository

provides the type information that a client needs to dynamically create a request. Thedy-

namic skeleton interface (DSI)enables an ORB to deliver requests to a servant, which does

not have compile-time knowledge of the type of the object it supports (e.g.,a gateway object

may not know the type of the target objects to which it is forwarding requests). Theim-

plementation repositoryenables late deployment of CORBA objects. The implementation

repository receives the first request targeted to a CORBA object, looks up the object meta

information in its database, activates the object, and forwards the request “permanently” to

the target object. Permanent forwarding, in contrast to transient forwarding, also causes au-

tomatic forwarding of all future requests from the same client and to the same target object

directly from the client ORB. Theobject adapteractivates servants and dispatches requests

to them. TheORB interfaceprovides access to standard ORB services, such as resolving
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the CORBA initial services such as the CORBA naming service.The general inter-ORB

protocol (GIOP)is a standard for inter-ORB communication, which enables interoperabil-

ity among different CORBA-compliant ORBs. TheInternet inter-ORB protocol (IIOP)is

a specific mapping of the GIOP specification developed to use the TCP/IP protocol stack.

5.1.2 CORBA Portable Request Interceptors

CORBA Portable Request Interceptorsprovide a transparent mechanism to intercept mes-

sages (reified requests, replies, and exceptions) inside the ORBs of a CORBA application.

According to the specification, a request interceptor is considered as part of an ORB and

must be registered with the ORB at its initialization time (notably, a request interceptor

cannot be registered with the ORB at run time). Figure 5.3 shows the flow of a CORBA

request/reply sequence with interceptors present in a typical CORBA application. This ap-

plication comprises two autonomous programs hosted on two computers connected by a

network. Let us assume that the client has a valid CORBA reference to the CORBA object

realized by the servant. The client’s request to the servantis first received by the stub,

which represents the CORBA object at the client side. The stub marshals the request and

sends it to the client ORB, where the request is intercepted by the client request intercep-

tor. The interceptor can inspect requests, create new requests, and raise exceptions. For

example, theForwardRequest exception can be used to forward a particular request to a

differentCORBA object. However, to ensure portability, interceptors are not allowed to

reply to intercepted requests or to modify the parameters [47]. This restriction limits the

ability of request interceptors alone to adapt the behaviorof CORBA applications.

Continuing the example, let us assume that the client-request interceptor in Figure 5.3

simply passes the request unmodified. In this case the clientORB sends the request to the

server ORB, where it is intercepted by the server-request interceptor. Again, let us assume

that the request is passed unmodified, in which case it is delivered to the servant by way

of a skeleton, which unmarshals the request. The servant replies to the request, by way of
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Figure 5.3: A simple CORBA application with request interceptors.

the server ORB, where the reply also is intercepted. Eventually, the reply will be received

by the client ORB and is intercepted by the client-request interceptor before it reaches the

client.

As we shall discuss in Section 5, the generic interceptors inACT are in fact CORBA

portable interceptors. The interceptors provide “hooks” into the interaction between clients

and servants. Moreover, they use theForwardRequest exception to deliver requests to a

proxy, a CORBA object that is not prohibited from replying to or modifying the request.

5.2 ACT Architecture and Operation

ACT is intended to support the construction and enhancementof adaptive CORBA frame-

works. ACT enables CORBA applications to support unanticipated adaptation at run time

without the need to modify, recompile, and relink the application source code. We intro-

duce ACT by defining its core components and by describing their interaction with the rest

of the system.
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5.2.1 ACT Core Components

Figure 5.4 shows the flow of a request/reply sequence in a simple CORBA application us-

ing ACT. For clarity, details such as stubs and skeletons arenot shown. ACT comprises

two main components: a generic interceptor and an ACT core. Ageneric interceptoris a

specialized request interceptor that is registered with the ORB of a CORBA application at

startup time. Theclient generic interceptor intercepts all outgoing requests and incoming

replies (or exceptions) and forwards them to its ACT core. Similarly, theservergeneric

interceptor intercepts all the incoming requests and outgoing replies (or exceptions) and

forwards them to its ACT core. A CORBA application is calledadapt-readyif a generic

interceptor is registered with all its ORBs at startup time.If, in addition to the generic inter-

ceptors, all the ACT core components are also loaded into theapplication, the application

is calledACT-ready. Making the application ACT-ready can be done either at startup time

or at run time.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure

System Platform

Network

Client GI 

Client ORB

Server GI

Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

Figure 5.4: ACT configuration in the context of a simple CORBAapplication.

Figure 5.5 shows the flow of a request/reply sequence intercepted by the client ACT
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core. The components of the core include dynamic interceptors, a proxy, a decision maker,

and an event mediator. Each component is described in turn.

Client ORB

Dynamic

Interceptors

Client ACT Core

Rule-Based
Interceptor

Proxy Decision 
Maker

Event 
Mediator

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

Figure 5.5: ACT core components interacting with the rest ofthe system.

Dynamic Interceptors. According to the CORBA specification [47], a request intercep-

tor is required to be registered with an ORB at the ORB initialization time. The ACT

core enables registration of request interceptors after the ORB initialization time (at run

time) by publishing a CORBA interceptor-registration service. Such request interceptors

are calleddynamic interceptors. Dynamic interceptors can be unregistered with the ORB

at run time also. In contrast, a request interceptor that is registered with the ORB at startup

time is called astatic interceptorand cannot be unregistered with the ORB during run time.

We note that the code developed for a static interceptor and that for a dynamic interceptor

can be identical, the difference being the time at which theyare registered. In ACT, only

generic interceptors are static.

A rule-based interceptoris a particular type of dynamic interceptor that uses a set of

rules to direct the operations on intercepted requests. Therules can be inserted, removed,

and modified at run time. Arule consists of two objects: a condition and an action. To
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determine whether a rule matches a request, a rule-based interceptor consults its condition

object. Once a match is found, the interceptor sends the request to the action object of the

rule. Since it is part of a CORBA portable interceptor, the action object cannot itself reply

to the request or modify the request parameters [47]. The action object can, however, send

new requests, record statistics, or raise aForwardRequest exception, causing the request to

be forwarded to another CORBA object such as a proxy.

Proxies. A proxyis a surrogate for a CORBA object that provides the same set ofmethods

as the CORBA object. Unlike a request interceptor, a proxy isnot prohibited from replying

to intercepted requests. A proxy can reply to the intercepted request by sending a new

request (possibly with modified arguments) to either the target object or to another object.

Alternatively, a proxy can reply to the intercepted requests using local data (e.g.,cached

replies).

Decision Makers. A decision makerassists proxies in replying to intercepted requests as

depicted in Figure 5.5. A decision maker receives requests from a proxy and, similar to a

rule-based interceptor, uses a set of rules to direct the operation on the intercepted requests.

However, unlike a rule-based interceptor, a decision makeris not prohibited from replying

to the requests.

Event Mediators. An event mediatoris a CORBA object that decouples event generators

from event listeners using a publish/subscribe approach. We adopted this concept from

the work by Bacon et al. [136]. An event mediator publishes a listener service, enabling

registration of CORBA objects as event listeners. The eventmediator is informed of events

through a notification service. An event mediator forwards acopy of a new event to all

listeners that have registered interest in this type of event.
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5.2.2 Interaction among ACT Components

To describe the interactions among the ACT components, we provide a detailed sequence

diagram [163] in Figure 5.6. The diagram shows the flow of a request/reply sequence in an

ACT-ready application. The configuration shown in Figures 5.4 and 5.5 is used as the basis

for this particular sequence diagram. Here, we consider only the activities on the client side

and, for clarity, stubs and skeletons are not shown.
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#12 #13
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#23 #24

#25#26
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#32 #31 #30

#28 #29

#33 #34

#35#36#37

Client Client ORB Client GI Client RBI Proxy DM EM Server ORB

GI: generic interceptor

RBI: rule-based interceptor

DM: decision maker     

EM: event mediator

request message

return  message (reply or exception)

Figure 5.6: Request/reply sequence in the client side of an ACT-ready application.

First, the request from the client to the servant is forwarded to the proxy (messages

#1 to #11). After the request is received by the client ORB (#1), it is intercepted by the

client generic interceptor (#2), where it is forwarded to the client rule-based interceptor
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(#3). The client rule-based interceptor checks its active rules. In this scenario, we assume

it finds a rule that matches the request. The rule raises aForwardRequest exception, which

is passed to the client generic interceptor (#4) and then to the client ORB (#5), where the

request target is changed to the proxy (#6). Before the new request is sent to the proxy, it

is intercepted again by the client generic and rule-based interceptors (#7 and #8), but this

time no exception is raised (#9 and #10), and the calls simplyreturn. The proxy receives

the request (#11).

Next, the proxy processes the request and forwards it to the servant (messages #12

to #21). The proxy consults the decision maker (#12), where an event may be raised to

handle an unknown situation (#13 and #14). The decision maker may adapt the client

application by modifying the request parameters, sending new requests to other objects,

or directing the proxy to reply to the request (e.g.,using cached replies). We assume that

in this scenario, the decision maker modifies the request parameters and directs the proxy

to send the modified request to the servant (#15) via the client ORB (#16). The modified

request is also intercepted by the client generic and rule-based interceptors (#17 and #18)

but again no exception is raised (#19 and #20). Therefore, the modified request is sent to

the server ORB (#21).

The reverse sequence of actions occurs at the server application (not shown) and the

reply to the modified request is returned to the client ORB (#22). The reply is intercepted

by the client generic and rule-based interceptors (#23 and #24), where no exception is

raised (#25 and #26). The reply is sent back to the proxy (#27), where it is forwarded to

the decision maker (#28) for possible modifications and possible event raising (#29, #30,

and #31).

Finally, using the reply from the servant and the direction given by the decision maker,

the proxy replies to the client’s request (#32). The reply isintercepted by the client generic

and rule-based interceptors (#33 and #34). Again no exception is raised (#35 and #36), and

the client ORB sends the reply back to the client (#37).
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The extensive redirecting of messages in ACT raises the issue of performance overhead.

We deem such overhead as necessary to provide flexibility andtransparency. Moreover, our

experimental results, described in Section 5.6, indicate that the overhead is actually quite

small.

5.3 Generic Proxy

To enable dynamic weaving of adaptive functionality that iscommon to multiple appli-

cations, ACT needs to intercept and adapt CORBA requests, replies, and exceptions in a

manner independent of the semantics (the application logic) and syntax (the CORBA inter-

faces defined in the application) of specific applications.

5.3.1 Architecture

The generic proxyis a particular CORBA object that is able to receiveany CORBA re-

quest (hence the label “generic”). To determine how to handle a particular request, the

generic proxy accesses the CORBA interface repository [47], which provides all the IDL

descriptions for CORBA requests. The repository executes as a separate process and is

usually accessed through the ORB. Most CORBA ORBs provide a configuration file or

support a command-line argument that allows the user to introduce the interface repository

to the application ORB. Providing IDL information to the generic proxy in this manner im-

plies no need to modify or recompile the application source code. The interface repository,

however, requires access to the CORBA IDL files used in the application.

In default operation, the generic proxy intercepts CORBA requests, acquires the re-

quest specifications from a CORBA interface repository, creates similar CORBA requests

and sends them to the original targets, and forwards repliesfrom those targets back to the

original clients. A generic proxy also publishes a CORBA service that can be used to

register adecision maker.
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5.3.2 Operation

Figure 5.7 illustrates the sequence of a request/reply in the ACT core, which contains a

rule-based interceptor, a generic proxy, and a rule-based decision maker. First, a request

from the client application is intercepted by the rule-based interceptor, which checks its

rules for possible matches. A default rule, initially inserted in its knowledge base, directs

the rule-based interceptor to raise aForwardRequest exception, which results in its for-

warding the request to the generic proxy. When the generic proxy receives the request, it

acquires the request interface definition via the application ORB, which in turn retrieves the

information from the interface repository. The proxy creates a new request and forwards

it to the rule-based decision maker. The rule-based decision maker checks its knowledge

base for possible matches to the request. Depending on the implementation of the rules,

the decision maker may return either a modified request to thegeneric proxy or a reply to

the request. If the decision maker returns the request (or a modified request), the generic

proxy will continue its operation by invoking the request. If the reply to the request is re-

turned by the decision maker, the proxy replies to the original request using the reply from

the decision maker. The generic proxy uses the CORBA dynamicskeleton interface (DSI)

[47] to receive any type of request. The generic proxy and therule-based decision maker

use the CORBA dynamic invocation interface (DII) [47] to create and invoke a new request

dynamically.

5.4 ACT/J Implementation

We have developed an instance of ACT in Java, calledACT/J, to evaluate ACT in practice.

ACT/J was tested over ORBacus [119], a CORBA-compliant ORB distributed by IONA

Technologies. ORBacus [119], like JacORB [120], TAO [44], and many other CORBA

ORBs, supports CORBA portable interceptors [47], the only requirement for using ACT.

To make a CORBA application ACT-ready at the application startup time, we need to

resolve the following bootstrapping issues. First, we needto register a generic interceptor
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Figure 5.7: Incorporating generic proxy in the ACT core.

with the application ORB. Like many other ORBs, ORBacus [119] uses a configuration file

that enables an administrator to register a CORBA portable interceptor with the application

ORB. JacORB [120] and TAO [44] use a similar approach. Second, since the components

in the ACT core are also CORBA objects, they require an ORB to support their operation

(registration of services, and so on). Therefore, we need either to obtain a reference to the

application ORB for this purpose, or to create a new ORB. ORBacus does provide such a

reference, although the CORBA specification does not support this feature. To implement

ACT/J over an ORB that does not provide such a reference, we simply create a new ORB,

although its use introduces additional overhead.

To test the operation of ACT/J, we developed two administrative consoles: the Inter-

ceptor Registration Console and the Rule Management Console. Please note that in this
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study the composer is assumed to be a human, who performs dynamic adaptation using

the administrative consoles. Figure 5.8 shows theInterceptor Registration Console, which

enables a user to manually register a dynamic interceptor. This console first obtains a

generic interceptor name from the user and checks if the generic interceptor is registered

with the CORBA naming service. Next, the user can register a dynamic interceptor with

the generic interceptor. Figure 5.9 shows theRule Management Console, which allows a

user to manually insert rules into rule-based interceptors.

Figure 5.8: Interceptor Registration Console

Figure 5.9: Rule Management Console

5.5 Case Study: Transparent Self Optimization

To evaluate the effectiveness of ACT/J to support self-management in existing CORBA

applications, without modifying the application code, we conducted a case study in which

self-optimization is enabled in an existing application. Additional experiments involving

IP handoff, are described in an accompanying technical report [164]. We begin with a brief
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overview of the application and the experimental environment, followed by the description

of the experiment. The experiment shows how ACT/J could be used to support autonomic

computing in either a generic or application-specific manner.

5.5.1 The Example Application and Experimental Environment

For the application, we adopted an existing distributed image retrieval application devel-

oped by BBN Technologies [165]. The application has two parts, a client that requests and

displays images, and a server that stores the images and replies to requests for them. In

this study, we treat the application as though it were used for surveillance, with a mobile

user executing the client code on a laptop and monitoring a physical facility through con-

tinuous still images from multiple camera sources. For the experiment described later in

this section, we executed the server on a desktop computer connected to a 100 Mbps wired

network and the client on a laptop computer connected to a three-cell 802.11b wireless

network. Both the desktop and laptop systems are running theLinux operating system.

Figure 5.10 shows the physical configuration of the three access points used in the

experiment. (The wireless cells are drawn as circles for simplicity – the actual cell shapes

are irregular, due to the physical construction of the building and orientation of antennas.)

AP-1 and AP-3 provide 11Mbps connections, whereas AP-2 provides only 2Mbps. The

desktop running the server application is close to AP-1. AP-1 and AP-2 are managed

by our Computer Science and Engineering Department, whereas AP-3 is managed by the

College of Engineering. This difference implies that the IPaddress assigned to the client

laptop needs to change as the user moves from a CSE wireless cell to a College cell.

Figure 5.11 shows an example image from the experiment. The server provides four

different versions of each image, varying in size and quality. Typical comparative file sizes

are 90KB, 25KB, 14KB, and 4KB.
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Figure 5.10: The configuration of the access points used in the experiment.

5.5.2 Self-Management and Self-Optimization

To investigate how ACT/J can support self-management, we developed an application-

specific rule that maintains the frame rate of the application by controlling the image size

or inserting inter-frame delays dynamically. The originalimage retrieval application op-

erates in a default mode, which retrieves and plays images asfast as possible. ACT/J

enables a developer to weave the rule into the application atrun-time, thereby providing

new functionality (frame rate control) transparently withrespect to the application. The

self-optimization rule maintains the frame rate of the application in the presence of dy-

namic changes to the wireless network loss rate, the network(wired/wireless) traffic, and

CPU availability.

Figure 5.12 shows the Automatic Adaptation Console, which diplays the application

status and also enables the user to user to enter quality-of-service preferences. As shown in

this figure, the rule uses several parameters to decide on when and how to adapt the appli-

cation in order to maintain the frame rate. These parametershave default values as shown

in the figure, but can be modified at run time by the user. TheAverage Frame Rate
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Figure 5.11: An image from the experiment.

Period indicates the period during which the average frame rate should be calculated to be

considered for adaptation. TheStabilizing Period specifies the amount of time that

the rule should wait until the last adaptation stabilizes; also if a sudden change occurs in

the environment such as hand-off from one wireless cell to another one, the system should

wait for this period before it decides on the stability of thesystem. The rule detects a stable

situation using theAcceptable Rate Deviation ; when the frame rate deviation goes

below this value, the system is considered stable. Similarly, the rule detects an unstable

situation, if the instantaneous frame rate deviation goes beyond theUnacceptable Rate

Deviation value. The rule also maintains a history of the round-trip delay associated with

each request in each wireless cell. Using this history and the above parameters, the rule can

decide to maintain the frame rate either by increasing/decreasing the inter-frame delay or

by changing the request to ask for a different version of the image with smaller/larger size.

The default behavior of the rule is to display images that areas large as possible, given the

constraints of the environment.

Figure 5.13 shows a trace demonstrating automatic adaptation of the application in the

following scenario. In this experiment, the user has selected a desired frame rate of 2

frames per second, as shown in Figure 5.12. For the first 60 seconds of the experiment,
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Figure 5.12: Automatic Adaptation Console.

the user stays close to the location A (Figure 5.10). The ruledetects that the desired frame

rate is lower than the maximum possible frame rate, based on observed round-trip times.

Hence, it inserts an inter-frame delay of approximately 200milliseconds to maintain the

frame rate at about 2 frames per second. At point 120 seconds,the user starts walking from

location A to location B for 60 seconds. The automatic adaptation rule maintains the frame

rate by decreasing the inter-frame delay during this period. At point 180 seconds, the user

begins walking from location B to location C and back again, returning to location B at 360

seconds. During this period, because the AP-2 access point provides 2Mbps, the automatic

adaptation rule detects that the current frame rate is lowerthan that desired. It first removes

the inter-frame delay, but the frame rate does not reach to 2 frames per second. Therefore,

it reduces the quality of the image by asking for a smaller image size. Now the frame

increases beyond that desired, so the automatic adaptationrule inserts an inter-frame delay
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of 400 milliseconds to maintain the frame rate at 2 frames persecond. Although there is

some oscillation, the rate stabilizes by time 360 seconds. At this point, the user continues

walking from location B to location A, prompting the rule to reverse the actions. First the

inter-frame delay is increased to maintain the frame rate, followed by an increase in image

size. In this manner, the rule brings the application back toits original behavior. Again,

because the current frame rate is higher that expected, an inter-frame delay of about 200

milliseconds is inserted to maintain the frame rate at 2 frames per second.

Frame Rate Using Automatic Adaptation
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Figure 5.13: Maintaining the application frame rate using automatic adaptation.

This result is promising and demonstrates that it is possible to add self-management

behavior to an application transparently to the application code. Moreover, the use of

a generic proxy enables self-optimization functionality,both application-independent and

application-specific, to be added to the application, even at run time.

5.6 Case Study: Coupling ACT and QuO

To investigate the integration of ACT with an existing CORBAframework, we combined

ACT/J with the Quality Objects (QuO) framework [42], developed by BBN Technologies
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and released under an open-source license. QuO is a powerfuladaptive framework that sup-

ports dynamic adaptability in CORBA and Java RMI applications. ACT and QuO can work

together in two major ways. First, ACT enables legacy CORBA applications to incorporate

and benefit from QuO functionality, without modifying the source code of the application

(indeed, even if the the source code is unavailable). Such a need may arise if the application

is to be executed in an environment where conditions might bequite different than origi-

nally planned. Second, combining QuO and ACT enables weaving of adaptive code into

distributed applications at both compile time and run time;we describe a specific example

later in this section. We begin a brief overview of QuO, for completeness, followed by a

discussion of how ACT and QuO interact and a description of anexperiment in which they

were combined to enhance an extant application.

5.6.1 QuO Background

QuO employs aspect-oriented programming [1] to separate the non-functional (systematic)

aspects from the functional aspects of an application. Figure 5.14 illustrates a very simple

QuO application. The client wrapper (ordelegate) is the main point of contact between

the client and the QuO core. The client wrapper is generated from a program written in

the aspect-oriented structural description language (ASL) [7]. The QuO core comprises a

contract and several system conditions. Acontract is written in the contract-description

language (CDL) [7] and defines acceptable regions of operation. System conditionscan be

considered as software “sensors” that record values representing the state of the execution

environment. QuO combines the code for the QuO core and the code for wrapper into a

package called aqosket. Using an aspect weaver calledquogen, QuO weaves a qosket into

an application at compile time.

As shown in Figure 5.14, a request from the client is first received by the client wrapper.

In a typical CORBA application, a client has a reference to a CORBA object stub. In QuO,

however, the application developer explicitly creates theclient wrapper, which wraps the
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Figure 5.14: A simplified depiction of the QuO architecture.

stub (not shown). The client wrapper consults the contract in the client QuO core. The

contract evaluates the current acceptable region of operation according to the details of the

request and the status of the system as monitored by the system-condition objects. Once

the current region of operation is identified, the actions specified in the contract are carried

out. These actions might include returning a cached reply tothe client, sending a request

different than the original, forwarding the request with modified parameters, or redirecting

the request to another CORBA object. If the reply is not generated locally, the request (or a

modified request) is passed to the client ORB. The request is then sent to the server side of

the application, where the reverse sequence of actions occurs. The reply generated by the

servant, possibly modified by the server QuO core, will eventually reach the client ORB,

where it is passed to the client wrapper. The client wrapper consults the client QuO core

again for possible modifications and, finally, returns the reply to the client.
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5.6.2 Dynamic Weaving of Qoskets Using ACT

Combining ACT with QuO enables transparent weaving of new qoskets into applications

at run time. We identify three types of applications that maybenefit from such a capability.

First, dependable applications are required to operate continuously without interruption;

code for handling newly discovered faults can be added to these applications as they ex-

ecute. Second, embedded applications are required to provide very small footprints; a

minimal adaptive core can be compiled with the application,and optional adaptive code

can be swapped in and out as needed during run time. Third, thesource code for some

legacy CORBA applications may be unavailable, or modifyingthe source code may be un-

desirable. Such applications can be adapted transparentlyusing ACT and QuO, without

modifying or even recompiling the application source code.

Figure 5.15 shows a request/reply sequence in a simple CORBAapplication using both

QuO and ACT. The client and server generic interceptors are registered with the client and

server ORBs, respectively, at startup time. To weave a new qosket into the application at

run time, a new rule can be inserted in the client rule-based interceptor. The new rule can

direct the rule-based interceptor to load the code for a proxy and a decision maker. The

proxy in this case is simply a modified QuO wrapper, and the decision maker is exactly

the contract defined in the new qosket. The rule then intercepts all incoming and outgoing

requests/replies and forwards them to the proxy, where theyare processed as if the qosket

had been woven in to the application at compile time.

5.6.3 Example: Supporting Unanticipated Adaptation

To evaluate the performance and functionality of the hybridACT/QuO architecture de-

scribed above, we used it to insert new adaptive functionality into the image retrieval appli-

cation (introduced before) at run time. This application supports several different types of

qoskets, which can be woven into the application at startup time. A particular qosket called

“UserAdapt” enables a user to modify the application interactively by directing it to retrieve
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Figure 5.15: Coupling ACT and QuO.

different versions of the images. For example, selecting small instead of large versions of

images can be used to reduce bandwidth consumption and delay.

First, we incorporated ACT/J into this application by introducing generic interceptors.

To do so, we started the application with a command-line parameter directing it to an OR-

Bacus configuration file defining how to load, create and register a generic interceptor with

the application ORB. At this point the application is adapt-ready. Figure 5.16 compares the

round-trip delay for retrieving images of varying size, using both the original application

and the adapt-ready version. As shown, this overhead is negligible.

Next, we developed a new qosket calledUserAdaptFrameRate to weave to the applica-

tion at run time using ACT/J. This qosket enables the user to interactively control the rate

at which images are retrieved. Figure 5.17 and 5.18 show the code that define the contract

(in CDL) and the wrapper (in ADL) for the new qosket, respectively. We defined three

regions of operationsFast, Normal, andSlow in the contract, enabling the user to control

the frame rate, for example, to conserve bandwidth. As illustrated in Figure 5.18, this

control is accomplished by inserting appropriate delays. For theFast region, we did not
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Figure 5.16: Round-trip delay in ACT/QuO application.

insert any delay, but for theNormal andSlow regions, we inserted 50 and 100 milliseconds

frame-interval delays, respectively. We used thequogen utility to compile the new qosket.

1 contract UserAdaptFrameRate ( syscond quo::ValueSC
2 quo sc::ValueSCImpl userFrameRate )
3 {
4 region Fast (userFrameRate == 2) {}
5 region Normal (userFrameRate == 1) {}
6 region Slow (userFrameRate == 0) {}
7 };

Figure 5.17: Code for the contract of the new qosket written in CDL.

5.6.4 Experimental Results

To demonstrate the interaction between ACT and QuO, we ran anexperiment that involves

both static and dynamic weaving of qoskets into this application. The experiment is in-

tended to represent run-time upgrading of a surveillance system (implemented using the

image retrieval application) to add a new feature that controls the frame rate. Figure 5.19

shows a sample image from a camera in an instructional laboratory.
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1 behavior UserAdaptFrameRate ()
2 {
3 void slide::SlideShow::read(in long gifNumber,
4 out string size, out octetArray buf)
5 {
6 before METHODCALL
7 {
8 region Fast {}
9 region Normal { ... Thread.sleep(50 ); ... }

10 region Slow { ... Thread.sleep(100); ... }
11 }
12 } ...
13 }

Figure 5.18: Excerpted code for the wrapper of the new qosketwritten in ASL.

Figure 5.19: Sample image of a monitored instructional laboratory.

We executed the server on a desktop computer connected to a 100 Mbps wired network

and the client on a laptop computer connected to an 11Mbps 802.11b wireless network;

both systems are running the Linux operating system. At startup the“UserAdapt” qosket is

woven into the application by specifying the wrapper class as a command-line parameter.

Later, at run time, we used our Interceptor Registration Console to weave the“UserAdapt-

FrameRate” qosket into the application. Figures 5.20 and 5.21 show screen dumps of the

application as it displays large and small versions of an image, respectively.

Figure 5.22 shows a trace of the rate at which frames are displayed at the client applica-

tion. During the experiment, a user modifies the applicationas follows. When application
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Figure 5.20: Screen capture of a 252 KB version of images displayed in the ACT/QuO
application.

starts, large versions of frames (the default option) are retrieved from the server as fast as

possible. The size of these images, combined with the limited bandwidth of the wireless

network, produces a frame rate of approximately 2 images persecond for the first 30 sec-

onds of this experiment. At this point, the user selects the small-images option by way of

the GUI in the“UserAdapt” qosket, thereby increasing the frame rate to approximately14

images per second.

At 60 seconds into the experiment, the user dynamically weaves theUserAdaptFrame-

Rate qosket into the application, using the interactive administration utilities described in

Section 5.4. Figure 5.22 shows a short, downward spike in theframe rate caused by the

delay for weaving the new qosket. We consider such a one-timedelay to be acceptable for

this type of application. Immediately after the qosket is inserted, an interactive console is
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Figure 5.21: Screen capture of a 19 KB version of images displayed in the ACT/QuO
application.

displayed by the qosket, enabling the user to choose from thethree options (Fast, Normal,

andSlow) interactively at run time. TheFast option is the default. At 90 seconds into the

experiment, the user selects theNormal option; the additional 50 msec delay reduces the

frame rate to approximately 7.5 images per second. At 120 seconds, the user chooses the

Slow option (100 msec delay), which reduces the frame rate to approximately 5.5 images

per second. At 150 seconds, the user chooses the Fast option again, which increases the

frame rate to 14 images per second.

This experiment illustrates how ACT can be used to dynamically incorporate new be-

havior (in this case, a new QuO qosket) into a CORBA application at run time. The process

is transparent to the application, in that we did not modify the application code or the

QuO code. We simply started the application with generic interceptors registered with the
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Figure 5.22: Dynamic adaptation in a ACT/QuO hybrid application.

application ORB.

5.7 Related Work

ACT is intended to complement adaptive middleware frameworks and to support interop-

eration among incompatible frameworks. Specifically, ACT can be used to dynamically

load components of one adaptive framework into an existing CORBA application that was

developed using a different framework. By transparently intercepting requests and replies,

ACT enables such applications to exploit adaptive functionality defined in other frame-

works. We refer to such a system as aframework gateway. Next, we discuss several

adaptive middleware frameworks and their relationship to ACT. We group the frameworks

into three categories: aspect-oriented middleware, reflective middleware, and interception-

based middleware.

Aspect-Oriented Middleware. Aspect-oriented middleware enables separation of func-

tional aspects from its non-functional aspects (e.g.,quality-of-service, security, and fault-
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tolerance) of a distributed application. One of the most extensive projects in this area is

Quality Objects (QuO) [42], which provides an adaptable framework to support QoS in

CORBA applications. QuO weaves QoS aspects, referred to asqoskets, into the applica-

tions at compile time by wrapping stubs and skeletons with specializeddelegates, which

intercept requests and replies for possible modifications [42]. In Section 5.6, we showed

how ACT can interact with QuO transparently to enable unanticipated adaptation by dy-

namically weaving new qoskets into the application at run time. In a related project, Ja-

cobsen et al. [166] developed an annotated version of CORBA IDL that enables weaving

of semantic properties (such as synchronization and security) into the CORBA skeleton at

compile time. AspectIX [28] is an aspect-oriented distribution middleware that is based

on the distributed object model [167], in which an object comprises multiple fragments

distributed across nodes. AspectIX enables dynamic weaving of non-functional aspects

into object fragments. Although AspectIX is CORBA compliant, its dynamic adaptation

feature cannot be used when it interoperates with other non-AspectIX, but CORBA com-

pliant ORBs. To solve this problem, ACT could be used as a framework gateway that hosts

fragments of a distributed object at the non-AspectIX ORBs.Squirrel [127] is an adaptive

distribution middleware, specialized for streaming data,that supports QoS for multimedia

applications. Again, ACT could be used as a gateway that enables interoperation among

non-Squirrel and Squirrel ORBs. Specifically, ACT can enable non-Squirrel ORBs to ac-

cept and usesmart proxies[79] transparently so that they could better communicate with

Squirrel ORBs.

Reflective Middleware. Reflective middleware uses computational reflection to enables

inspection and modification of middleware dynamically during application execution [5].

DynamicTAO [37] and UIC [6] are CORBA-compliant reflective ORBs that employ the

component-configurator pattern [75] to support dynamic adaptation. OpenORB [38] is a

reflective ORB that provides explicit binding of remote objects and enables unanticipated
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dynamic adaptation using structural and behavioral reflection [83]. The Coyote project [98]

also addresses unanticipated dynamic adaptation in distributed applications using Iguana/J.

ZEN [45] is a Java ORB that use Java reflection and the virtual component pattern [112]

to provide a minimal-footprint ORB that loads ORB components on demand. To exploit

the adaptive features provided by these ORBs, one must use the same ORB in all the au-

tonomous programs that constitute the CORBA application. ACT could be used as a gate-

way between a non-reflective CORBA-compliant ORB and a reflective ORB, as well as

between two reflective ORBs of different types, to enable interoperation while exploiting

the adaptive features of the reflective ORBs. To do so, ACT canhost different reflective

ORBs transparently while intercepting all CORBA requests,replies, and exceptions and

passing them to the appropriate reflective ORB.

Intercepting Middleware. The concept of transparently intercepting CORBA requests

and replies has been used in several projects. Friedman et al. [159] use CORBA portable

interceptors [47] to enhance the client side of a CORBA application by introducing proxies

that can cache replies and forward requests to other CORBA objects. This work is among

the first to exploit CORBA portable interceptors for transparent adaptation. In the IRL

project, Baldoni et al. [116] use portable interceptors to transparently introduce their imple-

mentation of fault-tolerant CORBA [47] to CORBA-compliantORBs. Moser et al. [121]

also use an interception-based approach to transparently introduce their implementation

of fault-tolerant CORBA (Eternal [121] over Totem [168]) toCORBA applications. Eter-

nal, however, employs an operating-system interception-based approach instead of using

CORBA portable interceptors. In ALICE project, Haahr et al.[169] usemobility gateways,

which are proxies at the edge of wired network, to support mobility of CORBA applica-

tions by intercepting requests to/from mobile hosts. In general, the above projects focus

on modifying program behavior in a particular way, for example, to enhance fault toler-

ance. In contrast, ACT uses the concept of generic interceptors to enable adaptation of
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different types (security, fault tolerance, QoS, mobility) in ways that were not anticipated

at application development time. Moreover, generic interception enables ACT to be used

as a framework gateway.

5.8 Summary

In this chapter, we introduced ACT, an extension of transparent shaping in CORBA. ACT

can be used to produce families of adaptable program from existing CORBA programs.

Specifically, ACT can be used to develop new adaptive CORBA frameworks and to enhance

existing frameworks with unanticipated adaptive functionality and interoperability features.

ACT can adapt legacy CORBA applications at run time without the need to modify or

recompile their source code. We developed ACT/J, an instance of ACT in Java. Two case

studies were conducted, where we used ACT/J to accommodate changing conditions of a

wireless network infrastructure and to integrate ACT and QuO [42]. The results of our

experiments show that the overhead introduced by ACT is negligible. We also showed that

ACT can enable transparent integration of new adaptive codeinto extant QuO applications.

We can use the taxonomy of adaptive middleware introduced inSection 2 to classify

ACT. First, ACT is considered in the common services middleware layer because it uses

CORBA, which is a distribution middleware, and can be used toimplement high-level ser-

vices such as those defined in CORBA services [170]. For example, ACT can be used

to control the QoS in distribution middleware, to apply new security policies at run time,

to enable transparent fault tolerance (FT-CORBA can be implemented using ACT), and

to perform dynamic type checking. Second, ACT services are accessed by distributed

applications transparently; hence, ACT is considered as intercepting middleware. ACT

transparently intercepts CORBA requests and modifies them as required. Finally, ACT is

considered as tunable middleware because it supports dynamic reconfiguration of distribu-

tion services while the core functionality of CORBA is not modified at run time.
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Chapter 6

Transparent Application Integration

In the previous chapters, we focused on transparent adaptation for pervasive and autonomic

computing. Specifically, in Chapters 4 and 5, we introduced TRAP and ACT as language-

and middleware-based approaches to transparent shaping, respectively. In addition, we

provided two transparent shaping tools, namely, TRAP/J andACT/J, to demonstrate the

usefulness of transparent shaping in the course of several case studies. In general, the case

studies in the previous chapters provided relatively low-level adaptation in single applica-

tions. In this chapter, we demonstrate that the same transparent shaping tools can be used

beyond a single application and for a higher level type of adaptation, namely, application

integration.

To integrate two heterogeneous applications, possibly developed in different program-

ming languages and targeted to run on different platforms, we need to convert data and

commands between the two applications on an ongoing basis. The advent of middleware in

the 1990’s, which hides differences among programming languages, computing platforms,

and network protocols [34–36], mitigated the difficulty of application integration. The ma-

turity of middleware technologies resulted in several successful approaches toenterprise-

wideapplication integration [171,172], where applications developed and managed by the

same enterprise are made to interoperate with one another.

Ironically, the difficulty of application integration, once alleviated by middleware, has

reappeared with the proliferation ofheterogeneousmiddleware technologies [173]. As

115



a result, there is a need for a “middlewarefor middleware” to enable Internet-wide and

business-to-business application integration [173].

The Web Services Architecture [174] offers one approach to addressing this problem.

A Web serviceis a program delivered over the Internet that provides a service described

in the Web Service Description Language (WSDL) [175] and communicates with other

programs using the SOAP messages [176]. WSDL and SOAP are both independent of spe-

cific platforms, programming languages, and middleware technologies. Moreover, SOAP

leverages the optional use of HTTP protocol, which allows bypassing firewalls, thereby

enabling Internet scalability in application integration.

Although Web services have been successfully used to integrate applications, they do

not provide atransparentsolution to integrate existing applications. The challenge is to

integrate existing applications without the need to modifytheir source code directly. In this

chapter, we show how transparent shaping can be used to support transparent application

integration.

The rest of this chapter is organized as follows. Section 6.1provides background on

web services. Section 6.2 introduces several alternative architectures supporting applica-

tion integration. Section 6.3 presents a case study, where we use transparent shaping to

integrate two existing applications, one developed in CORBA and the other in the .NET

platform. Section 6.4 categorizes research projects and commercial products addressing

application integration and discusses how transparent shaping relates to them. Finally, Sec-

tion 6.5 summarizes this chapter.

6.1 Web Services Background

A service-oriented architecture, as depicted in Figure 6.1, is composed of at least aprovider

program, which is a program capable of performing the actions associated with a service

defined in a service description, and arequester program, which is a program capable
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of using the service provided by a service provider.1 In this model, we assume that a

program is executed inside a process, with a boundary distinguishing local and remote

interactions, and is composed of a number of software components, which are units of

software composition hosted inside a program process2. A component implementing a

service is called aprovider componentand a component requesting a service is called

a requester component. Figure 6.1 also shows that the application-to-application (A2A)

interaction is accomplished through the use of a middlewaretechnology over a network.

The network can be the Internet, an Intranet, or simply an inter-process communication

(IPC).

Requester Program Provider Program

Application

Layer

Middleware

Layer

Program component Flow of service request A2A Interaction

process boundaries

NetworkNetwork

Requester 

Component

Provider

Component

System 

Platform

Figure 6.1: A simplified service-oriented architecture.

In the case of Web services, the middleware is composed of twolayers: a SOAP mes-

saging layer governed by a WSDL layer (described below).Web servicesare software

programs delivered over the Internet that are accessible byother programs using the ser-

vice descriptor of the Web service defined in WSDL and throughthe SOAP messaging

protocol.

1We use the terms “provider program” and “requester program”instead of the terms “provider agent” and
“requester agent” used in [174] to avoid the confusion with agents in agent-based systems and to provide
consistency with the terms used in the other chapters of thisdissertation.

2The example programs provided in this chapter are all developed in object-oriented languages. For
simplicity, the terms component and object have been used interchangeably. However, this does not imply
that a service-oriented system must be either implemented using object-oriented languages or designed using
an object-oriented paradigm.
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SOAP. SOAP [176] is an XML-based messaging protocol independent of specific plat-

forms, programming languages, middleware technologies, and transport protocols. SOAP

messages are used for interactions among Web service providers and requesters. Unlike

object-oriented middleware such as CORBA, which requires an object-oriented model of

interaction, SOAP provides a simple message exchange amonginteracting parties. As a re-

sult, SOAP can be used as a layer of abstraction on top of othermiddleware technologies;

essentially providing a “middleware for middleware.”

A SOAP message is an XML document with one element, called an envelope, and two

children elements, called header and body. The contents of header and body elements are

arbitrary XML. Figure 6.2 shows the structure of a SOAP message. The header is an op-

tional element, whereas the body is not optional and there must be exactly one body defined

in each SOAP message. To provide the developers with the convenience of a procedure-

call abstraction, a pair of related SOAP messages can be usedto realize a request and its

corresponding response. SOAP messaging isasynchronous, that is, after sending a request

message, the service requester will not be blocked waiting for the response message to

arrive. For more information about details of SOAP messages, please refer to [176–178].

1 ≺?xml version=“1.0” encoding=“UTF-8” ?≻
2 ≺soap:Envelope xmlns:soap=“http://schemas.xmlsoap.org/soap/envelope/ . . .≻
3 ≺soap:Header≻
4 ≺!– Header contents in defined in arbitrary XML. –≻
5 ≺/soap:Header≻
6 ≺soap:Body≻
7 ≺!– Body contents in defined in arbitrary XML. –≻
8 ≺/soap:Body≻
9 ≺/soap:Envelope≻

Figure 6.2: SOAP message structure.

WSDL. Web Services Description Language (WSDL) [175, 179] is an XML-based lan-

guage for describing valid message exchanges among servicerequesters and providers.

The SOAP messaging protocol provides only basic communication and does not describe
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what pattern of message exchanges are required to be followed by service requesters and

providers to perform a successful interaction. WSDL addresses this issue by describing an

interface to a Web service and providing the convenience of remote procedure calls (or even

more complicated interactions such as back-and-forth interactions). For more information

about details of WSDL, please refer to [175,178,179].

6.2 Transparent Shaping and Application Integration

Several different approaches have been employed in the literature to integrate applica-

tions [180]. Regardless of what approaches are being employed, to integrate two het-

erogeneous applications, essentially we need to translatethe syntax and semantics of the

two applications during execution. In the rest of this section, we first introduce alternative

architectures for application integration and describe how transparent shaping can be used

to providetransparentapplication integration. Next, we discuss the role of Web services

in the process of application integration.

6.2.1 Alternative Architectures for Application Integrat ion

Depending onwherethe translation is performed (e.g.,inside the requester program, inside

the provider program, or inside a separate program), we distinguish three approaches to

application integration as follows.

Hosting translator components inside a bridge program. An intuitive approach to in-

tegrate two applications is to use abridge program, which sits between the two programs,

intercepts all the interactions, and translates the interactions from one application semantic

and syntax to the other. The architecture for this approach is illustrated in Figure 6.3. The

bridge program hosts atranslator component, which encapsulates the logic for translation.

A translator component plays the role of a provider component for the requester compo-

nent, as well as the role of a requester component for the provider component. We note that
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a translation may involve more than one requester and provider components and it may not

be as simple as a one-to-one mapping of requester and provider components.

Requester Program Bridge Program

Application

Layer

Middleware

Layer

Program components Flow of service request A2A Interaction

NetworkNetwork

Requester 

Component

System 

Platform

Provider Program

NetworkNetwork

Provider

Component

Translator component

Figure 6.3: Hosting translator components inside a bridge program.

Using this architecture is beneficial for the following reasons. First, hosting translator

components inside a separate process (the bridge program) does not require modifications

to the requester and provider programs. Second, a bridge program can host several transla-

tor components, where each translator component may provide translation to one or more

requester and provider programs. Third, the localization of translator components in one

location (the bridge program) simplifies the maintenance ofapplication integration. For ex-

ample, security policies can be applied in the bridge program once, which will be effective

to all the translator components hosted by the bridge.

The main disadvantage of this architecture is the overhead imposed to the interactions

because of one extra level of process-to-process redirection (in case the bridge program

is located on the same machine as the requester and/or provider programs) or machine-

to-machine redirection (in case the bridge program is located on a separate machine). The

single-point-of-failure and the bottleneck problem are other disadvantages of this approach.

Hosting Translator Components inside the Requester Program. To avoid the over-

head of the extra level of process-to-process or machine-to-machine redirection imposed

by the previous architecture, the translator component could instead be hosted inside the

requester program, as illustrated in Figure 6.4. However,transparentinterception and redi-
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rection of interactions to the translator component in thisapproach are not as simple as in

the previous approach.

Requester Program

Application

Layer

Middleware

Layer

Program components Flow of service request A2A Interaction

System 

Platform

Provider Program

NetworkNetwork

Translator component

Figure 6.4: Hosting the translator components inside the requester program.

Transparent shaping can be used to provide a transparent application integration by

transparently augmenting existing applications with hooks intercepting and redirecting the

interactions to adaptive code, which implements the translator. The hooks can be inserted

into the application code using a language-based approach such as TRAP or inserted into

the supporting middleware using a middleware-based approach such as ACT.

Hosting Translator Components inside the Provider Program. Figure 6.5 shows the

architecture of heterogeneous application integration where the provider program hosts the

translator. Hosting a translator component inside a provider program is beneficial if several

requester programs use the same translator. Instead of modifying all requester programs to

host the translator, only the provider program can be modified for this purpose. However, if

the translation process is CPU-intensive, this approach may not scale well with the number

of requester programs.

As in the previous approach, transparent shaping can be usedto host the translator

components inside the provider program in a non-invasive manner. However, depending

on the specific middleware technologies and the programminglanguages used to develop

requester and provider programs, also depending on the tools available in transparent shap-

ing, it might be easier to host translator components insidethe requester program than

121



Requester Program

Application

Layer

Middleware

Layer

Program components Flow of service request A2A Interaction

System 

Platform

Provider Program

NetworkNetwork

Translator component

Figure 6.5: Hosting the translator components inside the provider program.

inside the provider program. For example, let us assume thatwe want to integrate a re-

quester program developed in Java and a provider program developed in C++. Since the

tools currently provided in transparent shaping, namely, TRAP/J and ACT/J, support only

Java programs, we can only shape the requester program transparently.

6.2.2 The Role of Web Services in Application Integration

Providing direct translations forN heterogeneous middleware technologies requiresN2

translators to cover all possible application integrations. Using a common language reduces

the number of translators fromN2 to N , assuming that one side of the interaction, either

requester or provider program, always uses the common language. Web services provide

one such language.

Figure 6.6(a) and 6.6(b) show two architectures enabling a requester program to use a

Web service by hosting the translator component either inside a requester-side bridge or

inside the requester program, respectively. Similarly, Figure 6.7(a) and 6.7(b) show two

architectures enabling a provider program to be exposed as aWeb service by hosting the

translator component either inside a provider-side bridgeor inside the provider program,

respectively. To integrate requester and provider programs, none of which is a Web ser-

vice requester or provider, we can use a combination of architectures in Figures 6.6(a)

and 6.6(b) and Figures 6.7(a) and 6.7(b). Out of the four possible combinations, Fig-

ure 6.8(a) and 6.8(b) illustrate only two of them. These two architectures enable integration
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of two heterogeneous applications through Web services by hosting the translator compo-

nents either inside requester- and provider-side bridge programs or inside the requester and

provider programs, respectively.

Requester Program Requester-Side Bridge

IntranetIntranet

Web Service Provider

InternetInternet

WSDL

SOAP

WSDL

SOAP

(a) Using a requester-side bridge.

Requester Program Web Service Provider

InternetInternet

WSDL

SOAP

WSDL

SOAP

(b) Shaping the requester.

Program components Flow of service request A2A InteractionTranslator component

Figure 6.6: Alternative requester-side architectures forapplication integration through Web
services.

Many existing distributed applications have been developed in heterogeneous platforms

such as Java RMI [68], CORBA [47], and .NET [70]. Appendix A provides a complete

solution for transparent integration of such heterogeneous applications using transparent

shaping and Web services in the course of a simple stock quoteexample.

6.3 Case Study: Integrating Two Existing Applications

To show how transparent shaping can be used to integrateexistingapplications transpar-

ently, in this section we integrate an existing CORBA application with an existing .NET
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Figure 6.7: Alternative provider-side architectures for application integration through Web
services.

application through Web services. The architecture that weuse for this integration is the

one illustrated in Figure 6.8(b), where the Web service translators are hosted inside the

requester and provider programs. In the remainder of this section, we first introduce each

of the two applications briefly. Next, we describe our strategy for how to shape each ap-

plication to interoperate with Web services. Finally, we describe the details of the shaping

process.

6.3.1 The Image Retrieval Application

The first application is a distributed image retrieval application developed by BBN Tech-

nologies distributed with the QuO framework [42]. We previously introduced and used this

application in Chapter 5. The application is a CORBA application developed in Java. It
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Figure 6.8: Two combinations out of four possible combinations resulting from combining
Figures 6.6(a) and 6.6(b) and Figures 6.7(a) and 6.7(b).

has two parts, aclient program(calledSlideClient ) that requests and displays images,

and aserver program(calledSlideService ) that stores images and replies to the client

program requests.

The image retrieval application by itself can benefit from the QuO framework, which

supports several adaptive behaviors. However, in this study we disabled the QuO frame-

work and used the application only as a CORBA application. A screen dump of the client

program GUI is depicted in Figure 6.9, which shows an aerial photograph retrieved from

the server program. The client program continuously sends requests to the server program

asking for images. After each request is replied, the retrieved image is displayed.
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Figure 6.9: A screen dump of the client program GUI showing anaerial photograph of the
Sarasota bay.

6.3.2 The Sample Grabber Application

The second application is a sample grabber application (called SampleGrabberNET ) that

is part of theDirectShow.NET framework developed by NETMaster3. This applica-

tion is a .NET application written in C# and is freely available at the Code Project web

site (URL: http://www.codeproject.com/ ). It uses the interfaces provided in the

DirectShow.NET framework to interoperate with DirectShow.

DirectShow[181] is a standard Microsoft Win32 API that can be used from aWindows

application to interact with compliant movie and video devices installed on a Windows

computer. DirectShow is developed as COM components [71] and can be used through

COM programming in a Visual C++ program. TheDirectShow.NET framework by NET-

Master enables a convenient use of DirectShow in C#. All the DirectShow interfaces writ-

ten in IDL is rewritten in C# that are compliant with the DirectShow documents for Visual

C++ provided by Microsoft.

Figure 6.10 shows a screen dump of the frame grabber application GUI. On the left

side of the GUI, a preview panel shows a live video stream captured from a video camera

3NETMaster is an active member of the Code Project. The Code Project (URL: http://www.-
codeproject.com/ ) is a place for a large number of free C++, C# and .NET articles, code snippets,
discussions, and news on the Internet. It organizes the papers and programs developed by its members and
provides them freely to be used or improved by others.
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installed on a Windows XP machine. On the right side, an imagepanel shows a bitmap

image grabbed from the camera using the “Grab” toolbar button.

Figure 6.10: A screen dump of the sample grabber applicationGUI. The left panel shows
a preview of the live video captured from a video camera and the right panel shows a still
image grabbed using the “Grab” toolbar button.

Similar to other DirectShow applications, the frame grabber application first builds a

filter graphand then controls the filter graph and responds to the events fired in the graph.

The filter graph for the sample grabber application is illustrated in Figure 6.11. Basically, a

filter graph is a directed graph of filters, which are the basicbuilding blocks of DirectShow

applications and generally perform a single operation on a multimedia stream. For example,

a filter may read multimedia files, capture video from a video capture device, encode or

decode a particular stream format (e.g.,MPEG-1 video), or send data to a graphics or a

sound card.

Ds.NET Video Capture Device
Capture

Smart Tee
Input Capture

Preview AVI Decompressor 0001
XForm In XForm Out

AVI Decompressor
XForm In XForm Out

Ds.NET Grabber
Input Output

Video Renderer
Input

Figure 6.11: The filter graph of the .NET frame grabber application taken by the GraphEdit
tool.
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The filter graph first captures a live video stream from a videocapture device using the

Ds.NET Video Capture Device filter. Next, it makes two copies of the video stream

using theSmart Tee filter and decompresses them using twoAVI Decompressor filters.

Finally, it provides a preview of the video stream using theVideo Renderer filter and

enables frame grabbing using theDs.NET Grabber filter. Once the “Grab” button is

pressed, the request is handled by grabbing a frame using theDs.NET Grabber filter.

GraphEdit [181] is one of the standard tools distributed with Microsoft DirectShow.

Using GraphEdit, we can discover the graph used in a DirectShow application while it is

running without the need to look into the application sourcecode. Figure 6.11 shows the

the filter graph of the sample grabber application that is obtained by the GraphEdit tool.

6.3.3 Application Integration Strategy

Our goal is to enable the client program in the CORBA image retrieval application to re-

trieve live images from the .NET frame grabber application.To make this possible, we

need to shape both applications to interoperate with each other. As described in Section 6.2,

there are several architectures that we can choose for this application integration. Also, as

described in Sections A.2, A.3, and A.4, there are several solutions to implement each

architecture.

Among the architectures, we selected the one illustrated inFigure 6.8(b), which is the

result of combining the architectures illustrated in Figures 6.6(b) and 6.7(b). This architec-

ture provides an application integration through the use ofWeb services, where the Web

services translator components are hosted inside the requester and provider programs. The

.NET frame grabber application plays the role of a provider program and must be exposed

as a frame grabber Web service. On the other side, the client program of the image retrieval

application plays the role of a requester program and must beshaped to use the frame

grabber Web service.

In the rest of this section, first we describe how transparentshaping is used to expose

128



the frame grabber application as a Web service. Next, we describe how the image retrieval

client program is shaped to use this Web service.

6.3.4 Exposing the Frame Grabber Application as a Web Service

As explained in Section A.4.2, we have two solutions to expose a .NET server program as

a Web service using the architecture in Figure 6.7(b). The first solution uses an IIS Web

server to host the translator and provider components, while the second solution uses the

.NET server program itself as a Web service. The latter solution is better than the former,

if the none of the types to be exposed by the .NET server program is a .NET specific

types [182,183]. Since we do not need to use any of the .NET specific types to expose the

frame grabber application as a Web service, we pick the second solution.

However, the frame grabber application is a .NETstandaloneapplication (as opposed

to a .NET remoting application). Therefore, no .NET remoting service is exposed by the

frame grabber application itself. So, we first need to shape the .NET frame grabber applica-

tion to become a .NET remoting application and then use it as aWeb service. As we do not

have a C# version of the TRAP generator framework, we cannot do this part transparently

from the application source code. We note that when the TRAP/C# becomes available, this

part can be done automatically (i.e., there will be no need to directly modify the source

code of the .NET frame grabber application).

Our goal is to minimize the modifications to the frame grabberapplication source code.

Therefore, we only put a hook inside the application and put the rest of the code regarding

making the application as a .NET remoting application in a separate program. These two

programs are loaded inside another program, calledShape.exe , which is listed in Fig-

ure 6.12 (lines 1 to 14). The modified .NET frame grabber program is inside theSample-

GrabberNET.exe assembly4, the .NET remoting code is inside theDotNETServer.exe

assembly, and the configuration file for theShape.exe is inside theShape.exe.config

4A .NET assembly is simply a .NET executable file (i.e., a .EXE file) or a .NET library file (i.e.,a .DLL
file).
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file. The excerpted code for theShape.exe.config configuration file is listed in Fig-

ure 6.12 (lines 16 to 23).

1 // The host application defined in Shape.cs
2 public class Shape {
3 static private string configFilename, dotNETServer, sampleGrabberNET;
4 public static void Main(string [] args) {
5 if (args.Length != 3) return;
6 configFilename = args[0]; dotNETServer = args[1]; sampleGrabberNET = args[2];
7 try {
8 RemotingConfiguration.Configure(configFilename);
9 AppDomain ad = AppDomain.CurrentDomain;

10 ad.ExecuteAssembly(dotNETServer);
11 ad.ExecuteAssembly(sampleGrabberNET);
12 } catch(Exception e) {}
13 String keyState = “”; keyState = Console.ReadLine();
14 }
15
16 // The configuration file defined in Shape.exe.config
17 ≺configuration≻ ≺system.runtime.remoting≻ ≺application name=”Server”≻
18 ≺service≻
19 ≺wellknown mode=”Singleton” type=”SampleGrabberWebService.
20 SampleGrabberObject, SampleGrabberObject” objectUri=”SampleGrabberObject” /≻
21 ≺/service≻
22 ≺channels≻ ≺channel port=”9000” ref=”http” /≻ ≺/channels≻
23 ≺/application≻ ≺/system.runtime.remoting≻ ≺/configuration≻

Figure 6.12: Excerpted code for the Shape program that hostsboth the .NET server and
frame grabber assemblies.

The command line that we use to run the provider program is thefollowing: Shape.-

exe Shape.exe.config DotNETServer.exe SampleGrabberNET .exe . As listed

in Figure 6.12, first, the configuration file is parsed and the instructions are followed (line

8), which provides flexibility to configure theShape program at startup time as discussed

before. Next, theDotNETServer.exe and theSampleGrabberNET.exe are executed

using the .NET reflection facilities (lines 10 and 11).

To put a hook inside theSampleGrabberNET.exe assembly, we added onepublic

method to the frame grabber application that basically grabs a new frame and returns it

as a bitmap image. Figure 6.13 lists all the code that we directly added to the sample

grabber application (the added code is initalic). The hook is thepublic Image grab-
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Sample WovenCode() method inside theMainForm class (lines 8 to 16). Basically, this

method calls thetoolBar ButtonClick() method (line 11) to grab a frame. By using

the codetoolBarButtonClick() method to grab a frame, we make the calls to thehook

method appear to the original application as if the user has clicked on the “Grab” button.

1 // The MainFormcs file used in the SampleGrabberNET.exeprogram
2 using System.Threading;
3 namespace SampleGrabberNET {
4 public class MainForm : System.Windows.Forms.Form, ISampleGrabberCB {
5 private object lockObject = new Object();
6 private Image image = null;
7 private Bitmap bmp = null;
8 public Image grabSample WovenCode() {
9 lock(lockObject) {

10 image = null;
11 toolBar ButtonClick(this, new ToolBarButtonClickEventArgs(toolBarBtnGrab));
12 if ( image == null) try { Monitor.Wait(lockObject); } catch ( . . . ) { . . . }
13 Monitor.Pulse(lockObject);
14 }
15 return bmp;
16 }
17
18 void OnCaptureDone() { . . .
19 lock(lockObject) {
20 Image o = bmp; bmp = new Bitmap(b);
21 if( o != null ) o.Dispose();
22 Monitor.Pulse(lockObject);
23 }
24 }
25
26 static private MainForm instance = null;
27 static public MainForm getInstance() {
28 if (instance == null) instance = new MainForm();
29 return instance;
30 }
31 [STAThread] static void Main() {
32 // Application.Run(new MainForm());
33 Application.Run(getInstance());
34 } }

Figure 6.13: Direct modifications to the .NET frame grabber application source code.

Unfortunately, implementing the hook was not as easy as we expected. Grabbing a

frame in a DirectShow application is done through the use of afilter graph, which works

asynchronously with respect to the thread executing the DirectShow application [181]. In
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other words, the thread that asks for a frame does not block until the frame is grabbed and

returned by the filter graph. Instead, the filter graph will send an event to the application

when the frame is ready to be returned. The event is handled inthe original program in-

side theOnCaptureDone method. To ensure that the thread calling the hook method is

notified when the frame is ready, we used a lock object kept in the lockObject variable

(line 5). The calling thread waits on the lock object (line 12) until theOnCaptureDone()

method is called as a result of frame being ready. The lock object is pulsed inside the

OnCaptureDone() method to notify the calling thread that the frame is ready tobe re-

turned (line 22).

Finally, we need to enable the code inside theDotNETServer.exe assembly to be

able to get a hold of the hook inside theSampleGrabberNET.exe assembly. For this

purpose, we made theMainFrame class as a singleton class [59] (lines 26 to 30 and 32 to

33). In this way, the instance of theMainForm class inside theSampleGrabberNET.exe

will be accessible to the code inside theDotNETServer.exe .

Figure 6.14 shows the excerpted code of theSampleGrabberObject class defined in

theSampleGrabberObject.cs file and used in theDotNETServer.exe program. First,

the .NET reflection facilities is used to get a hold of the hook, which is thepublic Image

grabSample WovenCode() method (lines 3 to 10). Specifically, the( getInstance())

method of theMainForm singleton class is used to get a reference to the singleton ob-

ject of this class, which is kept in themf variable (line 8). Themf variable is used to get a

reference to the hook, which is kept in themi variable (line 9).

Next, the public short[] GrabFrame( int nQuality ) method is defined

(lines 11 to 22), which is the method that is exposed by theDotNETServer.exe pro-

gram that can be used from a .NET client application or a Web service requester program

(described next). This method first calls the hook method, which gets a live frame from

the camera and returns aBitmap image (lines 12 to 13). Next, it converts theBitmap

image to ajpeg image using thenQuality (lines 14 to 20).nQuality can vary from 0
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1 // The SampleGrabberObject.csfile used in the DotNETServer.exeprogram
2 public class SampleGrabberObject : MarshalByRefObject {
3 private MethodInfo mi; private Object mf = null;
4 public SampleGrabberObject() {
5 AppDomain ad = AppDomain.CurrentDomain;
6 Assembly [] assemblies = ad.GetAssemblies();
7 // Finding the main form using the .NET reflection facilities (not shown).
8 mf = mainForm.InvokeMember(”getInstance”, . . . );
9 mi = mf.GetType().GetMethod(”grabSample WovenCode”);

10 }
11 public short[] GrabFrame( int nQuality ) {
12 object [] parameters = new object[0];
13 Bitmap bitmap = (bitmap)mi.Invoke( mf, parameters );
14 ImageCodecInfo myImageCodecInfo = GetEncoderInfo(”image/jpeg”);
15 EncoderParameters encps = new EncoderParameters( 1 );
16 EncoderParameter encp = new EncoderParameter( Encoder.Quality, (long)nQuality);
17 encps.Param[0] = encp;
18 MemoryStream ms = new MemoryStream();
19 bitmap.Save( ms, myImageCodecInfo, encps );
20 ms.Close();
21 return converyByteArray2ShortArray( ms.ToArray() );
22 }
23 }

Figure 6.14: Shape.

to 100, wherenQuality=100 means to compress the image with 100% quality. Finally,

it converts thebyte[] data to theshort[] for compatibility reasons (unsignedByte

defined in the XML schema data types is not interpreted in the same way in the C# and

Java languages) and returns the image (line 21).

Now that the provider program is ready to run, we need to generate the Web service de-

scription of our provider program (to be used in the shaping of the CORBA client program).

We used theSOAPsuds.exe utility with the -sdl option that generates a WSDL schema

file. The excerpted WSDL description is listed in Figure 6.15. This WSDL describes an

abstractapplication-level service description (interface) to theWeb service (lines 3 to 16)

as well as aconcreteprotocol-dependent details of how to access the service (lines 18 to

33).

The abstract description part (lines 3 to 16) describes the interface to the Web service

using themessage elements (lines 3 to 8), which defines what type of messages can be sent
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1 ≺?xml version=‘1.0’ encoding=‘UTF-8’?≻
2 ≺definitions name=‘SampleGrabberObject’ . . .≻ ≺types≻ . . .≺/types≻
3 ≺message name=‘SampleGrabberObject.GrabFrameInput’≻
4 ≺part name=‘nQuality’ type=‘xsd:int’/≻
5 ≺/message≻
6 ≺message name=‘SampleGrabberObject.GrabFrameOutput’≻
7 ≺part name=‘return’ type=‘ns2:ArrayOfShort’/≻
8 ≺/message≻
9 ≺portType name=‘SampleGrabberObjectPortType’≻

10 ≺operation name=‘GrabFrame’ parameterOrder=‘nQuality’≻
11 ≺input name=‘GrabFrameRequest’
12 message=‘tns:SampleGrabberObject.GrabFrameInput’/≻
13 ≺output name=‘GrabFrameResponse’
14 message=‘tns:SampleGrabberObject.GrabFrameOutput’/≻
15 ≺/operation≻
16 ≺/portType≻
17
18 ≺binding name=‘SampleGrabberObjectBinding’
19 type=‘tns:SampleGrabberObjectPortType’≻
20 ≺soap:binding style=‘rpc’ transport=‘http://schemas.xmlsoap.org/soap/http’/≻ . . .
21 ≺operation name=‘GrabFrame’≻
22 ≺soap:operation soapAction=‘. . . ’/≻ . . .
23 ≺input name=‘GrabFrameRequest’≻ ≺soap:body . . . /≻ ≺/input≻
24 ≺output name=‘GrabFrameResponse’≻ ≺soap:body . . . /≻ ≺/output≻
25 ≺/operation≻
26 ≺/binding≻
27
28 ≺service name=‘SampleGrabberObjectService’≻
29 ≺port name=‘SampleGrabberObjectPort’ binding=‘tns:SampleGrabberObjectBinding’≻
30 ≺soap:address location=
31 ‘http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject’/≻
32 ≺/port≻
33 ≺/service≻
34 ≺/definitions≻

Figure 6.15: The excerpted WSDL description of the sample grabber Web service.

to and received from the Web service, and theportType element (lines 9 to 16), which

defines all the operations that are supported by the Web service. TheGrabFrame operation

(lines 10 to 15) defines the valid message exchange pattern supported by the Web service.

The concrete description part (lines 18 to 33) complements the abstract part using the

binding element (lines 18 to 26), which basically describeshow a given interaction is

performed overwhatspecific transport protocol, and theservice element (lines 28 to 33)

that describeswhereto access the service. The how part describes how marshalingand
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unmarshaling is performed using theoperation element inside thebinding element

(lines 21 to 25). The what part is described in line 20 using the transport attribute. The

where part is described using theport element (lines 29 to 32).

6.3.5 Transparent Shaping of the Image Retrieval Client Program

According to our strategy, we follow the architecture illustrated in Figure 6.6(b) to shape

the CORBA client program to interoperate with the .NET framegrabber program that is

exposed as a Web service provider program. As described in Section A.2, we have two

solutions that can be used to host the translator component inside the CORBA client pro-

grams. Among the two solutions, we picked the first solution,where we use the ACT

framework (introduced in Chapter 5) to host a proxy object that plays the role of the Web

service translator for the client program.

To intercept and redirect the CORBA requests, first, we make the client program adapt-

ready by running the program using two extra command-line parameters:java client

ORBconfig file:client.cfg.5 Next, we insert a new rule to the rule-based decision

maker of the ACT core that intercepts all the CORBA requests.

Figure 6.16 lists the excerpted code of the condition and action classes of the rule.

The condition part of the rule is defined in theSlideService Condtion.java file

(lines 1 to 8) that returnstrue always to make all the intercepted CORBA request to

be forwarded to the action part of the rule. The action part ofthe rule is defined in the

SlideService Action.java file (lines 10 to 25). In the constructor of theSlide-

Service Action class (lines 12 to 17), an instance of the translator component (defined

in the SlideService ClientLocalProxy.java file, which is described next) is cre-

ated.

Once the rule is inserted, all CORBA requests will be reified by the CORBA ORB and

will eventually be intercepted by theprocess() method of theSlideService Action

5For details of how ACT works, please refer to Chapter 5.
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1 // The condition class defined in SlideServiceCondtion.java
2 public class SlideService Condition extends InBandDMCondition {
3 public SlideService Condition(ActiveRule activeRule, ORB orb) { super(. . . ); }
4 public boolean check(org.omg.CORBA.Object targetObj, FullInterfaceDescription
5 fullIntDesc, ServerRequest serverRequest, Request request) {
6 return true;
7 }
8 }
9

10 // The action class defined in SlideServiceAction.java
11 public class SlideService Action extends edu.msu.cse.sens.act.dm.InBandDMAction {
12 public SlideService Action(ActiveRule activeRule, org.omg.CORBA.ORB orb) {
13 super(activeRule, orb);
14 SlideService ClientLocalProxy slideService ClientLocalProxy =
15 new SlideService ClientLocalProxy(orb);
16 // publishing the SlideService ClientLocalProxy CORBA object in the naming service
17 }
18 public boolean process(org.omg.CORBA.Object targetObj, FullInterfaceDescription
19 fullIntDesc, ServerRequest serverRequest, Request request) {
20 request = createReq(slideService ClientLocalProxy, serverRequest, fullIntDesc, opNum);
21 request.invoke();
22 org.omg.CORBA.Any res any = request.result().value();
23 serverRequest.set result(res any);
24 return true;
25 }

Figure 6.16: Excerpted code for the condition and action classes for shaping the CORBA
image retrieval client program using the ACT framework.

class (lines 18 to 25). Theprocess() method creates another CORBA request similar to

the one intercepted, except that its target object isslideService ClientLocalProxy .

The SlideService ClientLocalProxy class is defined in theSlide-

Service ClientLocalProxy.java file that is listed in Figure 6.17. First, a reference

to the SampleGrabberObject Web service is obtained (lines 4 to 13). We used the

Java WSDP framework to generate the stub class corresponding to the Web service using

the WSDL file listed in Figure 6.15. Next, all calls to the original CORBA object are

forwarded to the Web service (lines 14 to 27).

Figure 6.18 lists the IDL description used in the original ofthe CORBA image retrieval

application. TheSlideShow interface defines six methods (lines 4 to 9). As listed in

Figure 6.17 (lines 21 to 26), all theread*() methods defined in the IDL file are mapped
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1 // The proxy defined in SlideServiceClientLocalProxy.java
2 public class SlideService ClientLocalProxy extends SlideShowPOA
3 implements Serializable, SlideShowOperations {
4 private SampleGrabberObjectPortType sampleGrabberObject = null;
5 public SlideService ClientLocalProxy(ORB orb) { . . .
6 string endpoint = ”http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject”;
7 try {
8 Stub stub = (Stub)(new SampleGrabberObjectService Impl().
9 getSampleGrabberObjectPort());

10 stub. setProperty(javax.xml.rpc.Stub.ENDPOINT ADDRESS PROPERTY, endpoint);
11 sampleGrabberObject = (SampleGrabberObjectPortType)stub;
12 } catch (Exception ex) {. . . }
13 }
14 private byte[] grabFrame( int nQuality ) {
15 byte [] frameByteArray = null; short[] frameShortArray = null;
16 try { frameShortArray = sampleGrabberObject.GrabFrame( nQuality ); }
17 catch(Exception e) {. . . }
18 frameByteArray = convertShortArray2ByteArray( frameShortArray );
19 return frameByteArray;
20 } . . .
21 public void readBig(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
22 pixHolder.value = grabFrame( 75 ); sizeHolder.value = ”big”;
23 } . . .
24 public void readSmall(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
25 pixHolder.value = grabFrame( 25 ); sizeHolder.value = ”small”;
26 } . . .
27 public int getNumberOfGifs() { return -1; }
28 }

Figure 6.17: Excerpted code for the Web service translator component defined as a proxy
object in the ACT framework.

to theGrabFrame() method of the Web service exposed by the provider program. The

getNumberOfGifs() method simply returns -1 (line 27) to indicate that the images being

retrieved are live images (as opposed to being retrieved from a number of stored images at

the server side).

Figure 6.19 depicts two screen dumps of the GUI of the CORBA image retrieval pro-

gram. Figure 6.19(a) depicts the client application while it is using the CORBA server

application, where the image shows a stored aerial image. Figure 6.19(b) depicts the client

application after it has been shaped dynamically to use the frame grabber Web service,

where the captured image shows a live picture of a user from the camera installed at the

machine running the provider program.
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1 // The slide show interface defined in SlideShow.idl
2 module com { module bbn { module quo { module examples { module bette {
3 interface SlideShow {
4 void readSmall ( in long gifNumber, out string size, out octetArray buf );
5 void readSmallProcessed ( in long gifNumber, out string size, out octetArray buf );
6 void readBig ( in long gifNumber, out string size, out octetArray buf );
7 void readBigProcessed ( in long gifNumber, out string size, out octetArray buf );
8 void read ( in long gifNumber, out string size, out octetArray buf );
9 long getNumberOfGifs ( );

10 };
11 }; }; }; }; };

Figure 6.18: The slide show IDL file.

(a) Before integration. (b) After integration.

Figure 6.19: Two screen dumps of the CORBA image retrieval client program GUI. One
before the application integration and the other after the integration.

6.4 Related Work

In this section, we categorize several research projects, standard specifications, and com-

mercial products that support application integration. Based on the transparency and flex-

ibility of the adaptation mechanisms used to support application integration, we identify

three categories as follows.

First Category. In the first category, we consider approaches that provide transparency

with respect to either an existing provider program or an existing requester program, but

not both. To provide transparency to provider or requester programs, approaches in this
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category typically use either the architecture illustrated in Figure 6.4 or in Figure 6.5, re-

spectively. However, please note that the existence of translator components is not trans-

parent to the programs hosting the translators. Therefore,the programs hosting translator

components are required to be either developed from scratchor modified directly by a

developer.

Examples of research projects in this category include the Automated Interface Code

Generator (AIAG) [184], the Cal-Aggie Wrap-O-Matic project (CAWOM) [185], and the

World Wide Web Factory (W4F) [186]. AIAG [184] supports application integration by

providing an interface wrapper model, which enables developers to treat distributed ob-

jects as local objects. AIAG is an automatic wrapper generator built on top of JavaSpaces.

AIAG can be used to generate the required glue code to be used in client programs. CA-

WOM [185] provides a tool that generates wrappers enabling command-line systems to be

accessed by client programs developed in CORBA. This approach provides transparency

for existing command-line systems. Examples of the use of CAWOM include wrapping

the JDB debugger, which enables distributed debugging, andwrapping the Appache Web

server, which enables remote administration. Finally, W4F[186] is a Java toolkit that gen-

erates wrapper for Web resources. This toolkit provides a mapping mechanism for Java and

XML.

Microsoft Visual Studio .NET [187] and IBM WebSphere StudioApplication Devel-

oper [188] are among numerous commercial development environments that also fall in

this category. Visual Studio .NET provides a set of visual tools enabling developers to in-

tegrate existing .NET programs with Web services. One example of such visual tools is the

Add Web Reference GUI introduced in Section A.4 (see Figure A.19), which generates the

proxy required to interoperate with Web services. Similarly, WebSphere provides a set of

visual tools enabling a developer to transform existing components (e.g.,Java beans, EJB

beans, and SQL statements) into Web services.

In addition to the development environments and visual tools, a number of command-
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line tools are also supported by Sun Microsystems and Microsoft to enable fast application

integration bygeneratingthe required glue code. For example, Sun Microsystems Java

Web Services Developer Pack (Java WSDP) [189], which is a free toolkit for develop-

ing Web services, provides command-line tools such aswscompile.bat , which can be

used to generate stubs and skeletons from WSDL files. Microsoft also provides a set of

command-line tools includingsoapsuds.exe , which generates a WSDL file from a .NET

assembly file (and vice versa), andwsdl.exe , which generates code for Web service re-

quester and provider programs from WSDL files, XSD schemas, and .discomap discovery

documents. Examples of the use of these tools have been provided in Sections A.2, A.3,

A.4, and 6.3.

Second Category. In the second category, we consider approaches that providetrans-

parency with respect to both the provider and requester programs. Approaches in this

category typically use the architectures illustrated in Figures 6.3, where a bridge program

is used to host the translator components. Although such approaches provide transparency

with respect to both requester and provider programs, they suffer from extra overhead im-

posed by one more level of process-to-process or machine-to-machine redirection. In ad-

dition, if only one bridge is used for integrating several programs, then the approaches in

this category may also suffer from the single-point-of-failure and performance bottleneck

problems. However, as described before, we note that localizing the translator components

in one process has several advantages, among which the ease of maintenance is the most

notable one.

Examples of standard specifications and commercial products in this category include

SCOAP [190], CORBA Web services [191], Soap2Corba [171, 192], IONA Artix [193],

and Apache Web Services Invocation Framework (WSIF) [194].Typically, the goal in

these approaches is to provide anautomatictranslation mechanism. In general, unless the

automatic translation guarantees both syntax and semantictranslations, such approaches
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may fail their purpose [173]. As an analogy, translating a conversation from English to

French using a word-by-word translation approach, although may make sense in some few

examples, but it generally fails the purpose. The reason behind such failure is that the se-

mantics of application interactions are not captured only in the interface descriptions (e.g.,

CORBA IDL and Web services WSDL). By translating just the syntax of CORBA IDL to

WSDL for example, we cannot guarantee the semantic of heterogeneous applications are

translated also.

For example, an object reference in CORBA cannot be mapped toa Web service ad-

dress, because such addressing is not provided in Web services. In addition, consider

exception and faults implemented in different ways in different middleware technologies

cannot be easily translated to one another. Some proposals such as WS-Addressing [195],

WSDL 2.0 [175], WS-Events [196], WS-Eventing [197], and WS-Notification [198] are

examples of attempts to address these issues. Soap2Corba [192] provides a partial so-

lution to representing a CORBA object references for Web services by translating object

references to Web service “contexts” that are managed in a bridge between CORBA and

web services applications. IONA Artix [193] and Apache Web Services Invocation Frame-

work (WSIF) [194] provide a muti-middleware approach to application integration through

multi-middleware routing and switching [173]. These two projects benefit from the WSDL

abstractions and binding extensions and maximize the possibilities of integration.

Finally, an example of research projects in this category isthe on-the-fly wrapping of

Web services [199]. In this project, Web services are wrapped to be used by Java programs

developed in Jini [200].Jini is a service-based framework originally developed to support

integration of devices as services. The wrapping process isfacilitated by theWSDL2Java

andWSDL2Jini generator tools, which generate the glue code part of the bridge program

and the translator component. Please note that a developer is required to complete the code

for the bridge and to make sure the semantics of translationsare correct. Using the Jini

lookup service, the bridge publishes the wrapped Web service as a Jini service, which can
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be used transparently by Jini client programs.

Third Category. We consider transparent shaping in a third category. Similar to the ap-

proaches in the second category, transparent shaping provides transparency to provider and

requester programs, and in addition, provides flexibility with respect to where the translator

components are hosted. Transparent shaping provides alternative solutions to application

integration as illustrated in Figures 6.3, 6.4, or 6.5. As discussed before, depending on the

application needs and the integration requirements, one ofthese three architectures may be

more appropriate. Transparent shaping benefits from the techniques provided in the first

two categories and is considered as a complementary approach to the former approaches.

We have shown how transparent shaping benefits from the techniques provided by the first

category in Sections A.2, A.3, A.4, and 6.3. We plan to employthe automatic translation

techniques provided by the approaches in the second category in our future work.

6.5 Summary

In this chapter, we have demonstrated how transparent shaping can be used to facilitate

transparent application integration. Using TRAP/J and ACT/J, we provided alternative so-

lutions to integrate heterogeneous applications. A case study was described, in which we

used transparent shaping to integrate two existing applications, one of them was developed

in CORBA and the other in .NET platform. Finally, we classified the approaches to appli-

cation integration and discussed how transparent shaping relates to them. For our future

work, we plan to extend the tools supporting transparent shaping and use the automatic

translation techniques provided by other approaches to application integration. Specifi-

cally, for the former, our group is currently developing an implementation of TRAP for

C++, and we plan to develop an implementation for C#. For the the latter, we plan to use

Artix [193] as a supporting tool in transparent shaping.

We note that several challenges remain in the domain of transparent application inte-
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gration, including automatic translation of the semanticsof heterogeneous applications and

automatic discovery of appropriate Web services. The ever increasing maturity of business

standards, which have been supporting the automated interactions in business-to-business

application integration over the past 20 years, addresses these issues to some extent [172].

Examples of some electronic businesses based on Web services include ebXML, Roset-

taNet, UCCNet, and XMethods. Also, the automatic service locating, which is one of the

goals of Web services, has been specified in the Universal Description, Discovery, and In-

tegration (UDDI) [201] specification. UDDI is a Web service for registering other Web

services descriptions.
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Chapter 7

Conclusions

Transparent shaping supports reuse of existing programs innew, dynamic environments

even though the specific characteristics of such new environments were not anticipated

during the original design of the programs. In particular, many popular programs, not de-

signed to be adaptable, are being ported to dynamic environments. Transparent shaping

enables dynamic adaptation in such programs and promotes coarse-grained reuse of soft-

ware. In the rest of this chapter, we summarize our specific contributions and achievements,

and discuss the future work.

7.1 Contributions

This dissertation produced four main contributions. We first summarize the contributions,

and then discuss our achievements as a whole.

1. Assessment of language support in dynamic adaptation.In the first part of our

study, we assessed how appropriate programming language constructs can facilitate the de-

velopment of adaptable programs. We used Adaptive Java, which extends Java with behav-

ioral reflection, to design a component calledMetaSocket, whose behavior and structure

can be adapted at run time in response to external stimuli (e.g.,wireless channel condi-
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tions). We evaluated the use of MetaSockets in a case study, where we provided dynamic

adaptation in an audio streaming application. In this case study, the adaptation hooks

were realized by the MetaSocket infrastructure and adaptive code was realized by filters

in MetaSockets.

Although MetaSockets proved to be useful in supporting dynamic adaptation, our study

of them revealed the following two issues. First, to incorporate a MetaSocket into an exist-

ing program, we need to modify the program source code directly, which is not desirable.

Second, once the existing program is modified to use a MetaSocket instead of a Java socket,

dynamic adaptation is only possiblewithin the MetaSocket (e.g.,through the insertion and

removal of filters). In other words, we cannot replace one version of a MetaSocket with

another more appropriate version of the MetaSocket at run time.

2. Transparent, dynamic adaptation in object-oriented programs. In the second part

of our study, we designed an extension of transparent shaping called Transparent Reflec-

tive Aspect Programming (TRAP), which supports dynamic adaptation in existing object-

oriented programstransparently. A prototype of TRAP for Java, calledTRAP/J, was de-

veloped and used to evaluate the TRAP concept. TRAP/J employs the structural reflection

provided in Java and the aspect weaver provided in AspectJ [103] to support partial behav-

ioral reflection [151] in existing Java programs. TRAP/J first generates wrapper and meta

classes and weaves them into an existing program at compile time to generate an adapt-

ready version of the program. Next, the adapt-ready programcan be adapted at run time by

insertion and removal of delegates.

In TRAP/J, a hook is realized by a pair of wrapper and meta classes associated with

a class in the existing Java program, and adaptive code is realized by delegates, which

can modify the behavior of the class by overriding the implementation of its methods.

We developed a delegate using a MetaSocket, which in its turnsupports dynamic adapta-

tion through insertion and removal of filters. As a result, atrun time, a MetaSocket can
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be replaced with a more appropriate one, if required. Results of this study showed the

improvement in the execution of the audio streaming application in a mobile computing

environment, while the adaptation is completely transparent to the application code.

3. Transparent, dynamic adaptation in CORBA programs. In the third part of

our study, we designed and evaluated another extension of transparent shaping, called

the Adaptive CORBA Template (ACT), which supports dynamic adaptation in existing

CORBA programs transparently. ACT implements interception and redirection inside the

supporting middleware instead of the program code itself. In addition, ACT enables inter-

operation among otherwise incompatible adaptive CORBA frameworks.

We developed an instance of ACT in Java, calledACT/J, to evaluate ACT in prac-

tice. In case studies, we showed the overhead introduced by ACT/J is negligible, while the

adaptation provided is highly flexible. Specifically, we used ACT/J to enable an existing

image retrieval program, originally designed for wired network, to continue working cor-

rectly in a mobile computing environment, where network maybecome disconnected and

reconnected at any point in the execution of the program. In ACT, hooks are realized by a

generic CORBA portable interceptor and adaptive code is realized by rule-based dynamic

interceptors and their corresponding rules.

4. Transparent application integration. Finally, in the last part of our study, we as-

sessed the potential role of transparent shaping beyond thescope of a single program. We

demonstrated how transparent shaping can be used to supportapplication integration. We

proposed several alternative architectures and showed howtransparent shaping can sup-

port interoperability, via Web service, for Java RMI, CORBA, and .NET applications. A

case study demonstrated the use of transparent shaping in integration of an image retrieval

application developed in CORBA and a frame grabber application developed in .NET.
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7.2 Achievements

Figure 7.1 summarizes the achievements of this dissertation as a whole and shows how

the contributions discussed above are related to one another. Transparent shaping is pro-

posed as a new programming model, which supports dynamic adaptation in existing pro-

grams. Two instances of transparent shaping are provided: TRAP and ACT. TRAP employs

a language-based approach and augments the existing programs with partial behavioral

reflection using transformers at compile time. In contrast,ACT employs a middleware-

based approach and augments the supporting middleware witha generic interceptor using

CORBA portable interceptors. Prototype implementations of TRAP and ACT are provided

in Java (TRAP/J and ACT/J, respectively).
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ACT/J

Proxies: Generic Proxy

TRAP/J

Audio Streaming App.

Filters: FEC, Encryption/Dec., Compression/Dec.

QoS Security QoS vs. Energy Man.
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App. IntegrationSelf-Management/Optimization
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Figure 7.1: Achievements of this dissertation viewed as a whole.

TRAP/J and ACT/J are two concrete instances of transparent shaping, which can be

used in the development of adaptable software several core assets supporting such product

lines are developed. The core artifacts have been developed, including examples of hooks,

adaptive code, and existing programs. The hooks in TRAP/J are pairs of wrappers and
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meta classes, which are generated by TRAP/J generators automatically. In ACT/J, there is

only one hook, which is the generic portable interceptor. The generic portable interceptor

was developed once and can be reused in any CORBA program. Adaptive code in TRAP/J

is realized by developing delegates. A reusable delegate using MetaSockets and filters

is provided. A generic proxy was developed for ACT/J that canbe used in any existing

CORBA applications. The generic proxy can receive any CORBArequest and can adapt it

using adaptive code realized by rules. Other reusable adaptive code (e.g.,filters, delegates,

and rules) can be developed incrementally during the life time of a product line.

We have used TRAP/J and ACT/J to support dynamic adaptation in three existing ap-

plications, namely, an audio streaming application previously developed in our group [53],

an image retrieval application developed by BBN [42], and a frame grabber application de-

veloped by NETMaster and distributed by Code Project [202].We conducted several case

studies using these applications, where we addressed a number of crosscutting concerns

including QoS, security, energy consumption, self-management, and application integra-

tion. Our results have been well received by the community through publications in several

conferences and workshops. We look forward to continuing these investigations and fur-

ther contributing to the understanding of the important, yet still emerging, area of dynamic

adaptation to support pervasive and autonomic computing.

7.3 Future Work

The work presented in this dissertation opens a door to several future research directions.

In the rest of this chapter, we discuss five directions of future work, which complement this

dissertation.

Expanding the set of supported existing programs. The set of existing programs sup-

ported by transparent shaping can be greatly expanded. Figure 7.2 shows the areas where

we plan to work in near future. To support existing programs developed in C++ and C# pro-

148



gramming languages, TRAP/C++ and TRAP/C# need to be developed. In fact, members

of our group have already started implementing the TRAP/C++using compile-time meta-

object protocols supported by Open C++ [84], instead of a compile-time aspect weaver

used in TRAP/J. Also, to support CORBA programs developed using C++ ORBs, we plan

to develop ACT/C++.

Audio Streaming App.

ACTTRAP

Transparent Shaping
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Proxies: Generic Proxy
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Filters: FEC, Encryption/Dec., Compression/Dec.
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Figure 7.2: Expanding the set of existing programs supported by transparent shaping.

Transparent shaping can be instantiated using techniques other than those used in TRAP

and ACT. In a related research project, called the Kernel Middleware eXchange (KMX),

our group is investigating the use of iptables [203], which are a means of intercepting and

redirecting network packets passing through an operating system kernel. A case study was

conducted using a video streaming application previously developed in our group [204].

Originally, this application was developed as an adaptableprogram, which is capable of

compensating the packet loss of aone-hopwireless network. In a preliminary study, our

group adapted the flow of a video stream over amulti-hopwireless ad hoc network by in-

tercepting and adapting the flow inside the intermediary nodes, which were used as routers.

Using iptables as kernel-level hooks and transient proxiesas adaptive code running inside
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the intermediate nodes, we showed how the flow of a video stream can be adapted inside

the network completely transparent from the application code. This research project is still

ongoing and we plan to implement a complete instance of transparent shaping to support

dynamic adaptation of multimedia streams in existing distributed, multimedia programs.

Coordinating the behavior of adaptable programs. Designing distributed systems that

can adapt to their environments requires not only adaptation of individual components,

but coordinated adaptation across system layers and acrossplatforms [6, 205–208]. Our

work can be complemented by studies in the design of an adaptation coordinator to or-

chestrate the adaptation provided by adaptive components that address overlapping or even

conflicting concerns (e.g.,preserving both QoS and energy in handheld devices). Different

components are likely to have been developed by different parties, and the developer must

be able to integrate separately-designed adaptive mechanisms such that they cooperate to

meet the needs of the application. One problem is that many ofthe adaptive software solu-

tions proposed for different layers have been developed independently, and even solutions

within the same layer are often not compatible. As illustrated in Figure 7.3, tools and

methods are needed to enable developers to integrate the operation of adaptive components

across layers of a single system and among different systems.

Client Program Server Program

Application
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Middleware
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Program component Flow of service request Hook

process boundaries

NetworkNetwork

Requester 

Component

Provider

Component

Operating

System

Interaction

Cross-Layer 
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Cross-Layer 

Adaptation

Inter-Process 

Adaptation

Flow of Control/Monitor

Figure 7.3: Future work on adaptation coordination.
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Providing safe adaptation in adaptable programs. During the adaptation process, tech-

niques are needed to ensure that the system continues to execute in an acceptable, orsafe

manner. Although transparent shaping enables dynamic insertion and removal of adaptive

code, it does not guarantee a safe adaptation. For example, adaptive code may encap-

sulate part of the state of a running program and removing it without care may result in

loss of state and unacceptable behavior by the running program. Our group and others

are currently investigating this problem using a variety ofmethods, including dependency

analysis [209–213] and explicit management of state information [214].

Providing security in adaptable programs. Security deals with protecting an adaptable

program from malicious entities. An important issue is how to prevent the adaptation mech-

anisms from being exploited by a would-be attacker. In addition to verifying the sources

of inserted components, the core of an adaptive software system must be extremely well

protected from attackers. For example, the confidentialityand authenticity of messages

related to adaptation must be ensured through strong encryption. The current prototypes of

transparent shaping contain little support for preventingmalicious entities from misusing

the adaptation facilities. We plan to provide such support in the future versions of TRAP/J

and ACT/J.

Constructing product lines for adaptable software. Product line software engineer-

ing [215–218] provides a disciplined methodology to produce program families. Trans-

parent shaping can be used to construct software product lines specialized for “mass cus-

tomization” [217] of existing programs to new environments. We plan to investigate de-

sign of reactiveproduct lines (as opposed to proactive), where the product lines start from

existing programs. The core assets of such product lines comprises existing programs,

adaptation hooks, and adaptive code.
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Appendix A

Transparent Integration of
Heterogeneous Distributed Applications

To show how transparent shaping and Web services can be used to integrate heterogeneous

distributed applications, in this appendix we demonstratetransparent integration of applica-

tions developed in Java RMI [68], CORBA [47], and .NET [70] using a simple stock quote

example. First, in Section A.1, we introduce a stock quote Web service. Next, in Sec-

tions A.2, A.3, and A.4, we use transparent shaping to integrate Web services with Java

RMI, CORBA, and .NET applications, respectively. Specifically, for each of these three

platforms, we show how a client program can be transparentlyshaped to use a Web Service

(using architectures illustrated in Figures 6.6(a) and 6.6(b)) and how a server program can

be exposed as a Web Service (using architectures illustrated in Figures 6.7(a) and 6.7(b)).1

As discussed in Section 6.2, once two applications interoperate with Web services, then

they are able to interoperate with each other via Web services.

A.1 A Stock Quote Web Service

Throughout this appendix, we use a stock quote Web service provided by XMethods (URL:

http://www.xmethods.net/). This Web service, namednet.xmethods.services.-

1Please note that the terms client and server programs are used equivalently with the terms requester and
provider programs, respectively. Similarly, the terms client and server objects are equivalent to the terms
requester and provider objects, and to the terms requester and provider components, respectively.
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stockquote.StockQuote , provides stock quotes with 20 minutes of delay. The inter-

face to this Web service is defined with the following method:float getQuote(string

symbol) .

Figure A.1 shows a SOAP request representing thegetQuote(‘‘Microsoft")

method call. We note that this SOAP message does not have a header element. The method

call is defined in the body element (lines 4 to 6). Similarly, Figure A.2 shows a SOAP

response representing thefloat result = -1 . The actual reply is defined in the body

element (lines 4 to 6).

1 ≺?xml version=“1.0” encoding=“UTF-8” ?≻
2 ≺soap:Envelope xmlns:n=“urn:xmethods-delayed-quotes” . . .≻
3 ≺soap:Body . . .≻
4 ≺n:getQuote≻
5 ≺symbol xsi:type=“xs:string”≻Microsoft≺/symbol≻
6 ≺/n:getQuote≻
7 ≺/soap:Body≻
8 ≺/soap:Envelope≻

Figure A.1: A SOAP request example.

1 ≺?xml version=“1.0” encoding=“UTF-8” ?≻
2 ≺soap:Envelope xmlns:n=“urn:xmethods-delayed-quotes” . . .≻
3 ≺soap:Body≻
4 ≺n:getQuoteResponse ≻
5 ≺Result xsi:type=“xsd:float”≻-1.0≺/Result≻
6 ≺/n:getQuoteResponse≻
7 ≺/soap:Body≻
8 ≺/soap:Envelope≻

Figure A.2: A SOAP response example.

Figure A.3 shows the corresponding WSDL of this Web service (available athttp://-

services.xmethods.net/soap/urn:xmethods-delayed-quo tes.wsdl ). This

WSDL describes anabstractapplication-level service description (interface) to theWeb

service (lines 4 to 16) as well asconcreteprotocol-dependent details of how to access the

service (lines 18 to 39).
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The abstract description part (lines 4 to 16) describes the interface to the Web service

using themessage elements (lines 4 to 9), which defines what type of messages can be sent

to and received from the Web service, and theportType element (lines 11 to 16), which

defines all the operations supported by the Web service. ThegetQuote operation (lines

12 to 15) defines the valid message exchange pattern supported by the Web service. The

SOAP messages in Figures A.1 and A.2 are examples of theinput andoutput messages,

1 ≺?xml version=“1.0” encoding=“UTF-8” ?≻
2 ≺definitions name=“net.xmethods.services.stockquote.StockQuote” . . .≻
3
4 ≺message name=“getQuoteResponse1”≻
5 ≺part name=“Result” type=“xsd:float” /≻
6 ≺/message≻
7 ≺message name=“getQuoteRequest1”≻
8 ≺part name=“symbol” type=“xsd:string” /≻
9 ≺/message≻

10
11 ≺portType name=“net.xmethods.services.stockquote.StockQuotePortType”≻
12 ≺operation name=“getQuote” parameterOrder=“symbol”≻
13 ≺input message=“tns:getQuoteRequest1” /≻
14 ≺output message=“tns:getQuoteResponse1” /≻
15 ≺/operation≻
16 ≺/portType≻
17
18 ≺binding name=“net.xmethods.services.stockquote.StockQuoteBinding”
19 type=“tns:net.xmethods.services.stockquote.StockQuotePortType”≻
20 ≺soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” /≻
21 ≺operation name=“getQuote”≻
22 ≺soap:operation soapAction=“urn:xmethods-delayed-quotes#getQuote” /≻
23 ≺input≻
24 ≺soap:body use=“encoded” namespace=“urn:xmethods-delayed-quotes”
25 encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/” /≻
26 ≺/input≻
27 ≺output≻
28 ≺soap:body use=“encoded” namespace=“urn:xmethods-delayed-quotes”
29 encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/” /≻
30 ≺/output≻
31 ≺/operation≻
32 ≺/binding≻
33
34 ≺service name=“net.xmethods.services.stockquote.StockQuoteService”≻
35 ≺port name=“net.xmethods.services.stockquote.StockQuotePort”
36 binding=“tns:net.xmethods.services.stockquote.StockQuoteBinding”≻
37 ≺soap:address location=“http://targethost:9090/soap” /≻
38 ≺/port≻
39 ≺/service≻
40 ≺/definitions≻

Figure A.3: WSDL for net.xmethods.services.stockquote.StockQuote.
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respectively, in theoperation description.

The concrete description part (lines 18 to 39) complements the abstract part using the

binding andservice element. Thebinding element describeshowa given interaction

is performed overwhatspecific transport protocol (lines 18 to 32). Theservice element

describeswhereto access the service (lines 34 to 39). Thehow part describes how mar-

shaling and unmarshaling is performed using theoperation element inside thebinding

element (lines 21 to 31). Thewhat part is described in line 20 using thetransport at-

tribute. Thewherepart is described using theport element (lines 35 to 38).

A.2 Transparent Integration of Java RMI Applications
and Web Services

Typically, a Java RMI application is composed of a client andserver programs.

Figure A.4 lists excerpted code for a client/server stock quote application devel-

oped in Java RMI. The code in this figure shows the contents of three files: the

StockQuoteInterface.java file (lines 1 to 4) defines the interface to a stock quote

remote object, theStockQuoteServer.java file (lines 5 to 20) defines the server pro-

gram that hosts a stock quote remote object, and finally theStockQuoteClient.java

file (lines 22 to 33) defines the client program that uses the stock quote service provided

by the remote object. In the rest of this section, we show how the client and server pro-

grams can be transparently shaped to interoperate with Web service requester and provider

programs, respectively.

A.2.1 Enabling Java RMI Client Applications to Use Web Services

In this part, we use the architectures illustrated in Figures 6.6(a) and 6.6(b) to enable the

Java RMI client program to use the delayed stock quote Web service developed by XMeth-

ods (URL: http://www.xmethods.net/ ) introduced in Section 6.1.

First, let us discuss the architecture in Figure 6.6(b), where the Web service provider
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1 // The interface defined in StockQuoteInterface.java
2 public interface StockQuoteInterface extends Remote {
3 public float getQuote(String symbol) throws RemoteException;
4 }
5
6 // The server application defined in StockQuoteServer.java
7 public class StockQuoteServer extends UnicastRemoteObject {
8 implements StockQuoteInterface { . . .
9 public float getQuote(String symbol) throws RemoteException {

10 if (symbol.equalsIgnoreCase(“Microsoft”)) return 1;
11 else if (symbol.equalsIgnoreCase( “IBM”)) return 2;
12 else return -1;
13 }
14 public static void main(String args[]) {
15 try {
16 StockQuoteInterface obj = new StockQuoteServer();
17 Naming.rebind(“StockQuoteServer”, obj);
18 } catch (Exception e) {. . . }
19 }
20 }
21
22 // The client application defined in StockQuoteClient.java
23 public class StockQuoteClient {
24 public static void main(String[] args) {
25 try {
26 StockQuoteInterface stockQuote = (StockQuoteInterface)Naming.lookup(args[0]);
27 while (true) {
28 System.out.println(“Stock quote for IBM is: ” + stockQuote.getQuote(“IBM”));
29 Thread.sleep(1000);
30 }
31 } catch (Exception e) {. . . }
32 }
33 }

Figure A.4: A stock quote application developed in Java RMI.

is the XMethods Web server and the requester program is our Java RMI client application.

We used the TRAP/J generator framework introduced in Chapter 4 to shape the Java RMI

client program to host a translator, and for the translator to be able to intercept, translate,

and forward all the Java RMI requests to the XMethods Web service.

Looking more closely to the Java RMI client program shown in Figure A.4 (lines 22

to 33), we can see that a reference to the remote object is obtained through a call to the

lookup() static method of thejava.rmi.Naming class (line 26). Using TRAP/J, we

make thejava.rmi.Naming class adaptable so that we can overwrite the implementation
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of its lookup() method transparently. Next, we provide a specific implementation for the

lookup() method. Instead of its normal operation (that is contactinga Java RMI registry

to find the reference to the remote object), it instantiates atranslator object and returns a

reference to the translator object to the client program.

Figures A.5 and A.6 show the excerpted code for the files generated by TRAP/J gener-

ators as a result of making thejava.rmi.Naming class adaptable. The generated aspect

is defined in theAbsorbing Naming aj.java file (Figure A.5) that defines apointcut

to the calls to thelookup() method of thejava.rmi.Naming class (lines 3 to 4). The

around advice calls thelookup() static method of the wrapper-level class associated

with theNaming class instead of thelookup() method of theNaming class (lines 5 to 8).

1 // Generated aspect defined in Absorbing Naming aj.java
2 public aspect Absorbing Naming aj {
3 pointcut lookup String(String p0) :
4 call(public static Remote lookup(String)) && . . . ;
5 Remote around(String p0) throws . . . , RemoteException
6 : lookup String(p0) {
7 return (Remote)WrapperLevel Naming.lookup(p0);
8 }
9 }

Figure A.5: Excerpted code of the aspect generated by TRAP/Jto shape the Java RMI
client application.

The generated wrapper-level class is defined in theWrapperLevel Naming.java file

(Figure A.6, lines 1 to 19). It basically reifies calls to thelookup() method (lines 4 to 9)

and forwards the reified method calls to theinvokeMetaMethod() method of the static

meta-class (staticMetaClass ) associated with the wrapper class (lines 11 to 13). In case

the reply to a method call is not provided by thestaticMetaClass class, thelookup()

method of thejava.rmi.Naming class is called (lines 14 to 16). Finally, the reply is

returned (line 17).

The generated meta-level class is defined in theMetaLevel Nameing.java class

(Figure A.6, lines 21 to 29). The static part of this class instantiates a meta-level class
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1 // Generated wrapper-level class defined in WrapperLevel Naming.java
2 public class WrapperLevel Naming implements WrapperLevel Interface { . . .
3 public static Remote lookup(String p0) throws . . . {
4 Class[] paramType = new Class[1]; paramType[0] = String.class;
5 Method method = null;
6 try { method = WrapperLevel Naming.class.getMethod(“lookup”, paramType); }
7 catch (Exception e) {. . . }
8 Object[] tempArgs = new Object[1]; tempArgs[0] = p0;
9 ChangeableBoolean isReplyReady = new ChangeableBoolean(false);

10 Remote retVar = null;
11 try { retVar = (Remote) MetaLevel Naming.staticMetaClass.
12 invokeMetaMethod(method, tempArgs, isReplyReady);
13 } catch (Exception e) {. . . }
14 if(!isReplyReady.booleanValue()) {
15 retVar = (Remote)Naming.lookup(p0);
16 }
17 return retVar;
18 } . . .
19 }
20
21 // Generated meta-level class defined in MetaLevel Nameing.java
22 public class MetaLevel Naming extends UnicastRemoteObject
23 implements MetaLevel Interface, DelegateManagement {
24 public synchronized Object invokeMetaMethod(
25 Method method,Object[] args,ChangeableBoolean isReplyReady) throws . . . { . . . }
26 static public MetaLevel Naming staticMetaClass;
27 static { try { staticMetaClass = new MetaLevel Naming();} catch (Exception e) {} }
28 private MetaLevel Naming() throws RemoteException { . . . }
29 }

Figure A.6: Excerpted code of the reflective classes generated by TRAP/J to shape the Java
RMI client application.

(staticMetaClass ) associated with the wrapper-level class using its privateconstruc-

tor (lines 26 to 28). This class provides theinvokeMetaMethod() method that forward

reified method calls to delegates that overwrite the corresponding method implementation.

Compiling the generated code listed in Figures A.5 and A.6 together with the Java RMI

client program using the AspectJ [103] compiler, an adapt-ready version of the client pro-

gram is created. This adapt-ready program is adapted at startup time using a configuration

file. The configuration file instructs the adapt-ready program to insert a delegate to the

staticMetaClass . The delegate provides the new implementation for thelookup()

method.

159



Figure A.7 shows excerpted code of the delegate class definedin the

Delegate Naming lookup.java file (lines 1 to 6) and the translator component defined

in the StockQuoteProxy.java file (lines 8 to 25). TheDelegate Naming lookup

class simply provides a new implementation for thelookup() method that return an

instance of theStockQuoteProxy instead of using the Java RMI registry to find a refer-

ence to the Java RMI remote object (lines 3 to 5). TheStockQuoteProxy class provides

an implementation of the translator component that for the Java RMI client program

plays the role of a Java RMI remote object and for the XMethodsdelayed stock quote

Web service plays the role of a requester object. A referenceto the delayed stock quote

Web service (stockQuoteWebService ) is obtained using the WSDL available atURL:

http://services.xmethods.net/soap/urn:xmethods-dela yed-quotes.wsdl

(listed in Figure A.3) and the Java Web Services Developer Pack (Java WSDP) version 1.4

(lines 11 to 20). The implementation of thegetQuote() method (lines 21 to 24) simply

returns the result from the call to thegetQuote() of the XMethods stock quote Web

service.

Because the stock quote example is very simple and because the XMethods stock

quote Web service provides a similar service as that of our Java RMI remote object, the

code for translation is very simple. As can be seen from the excerpted code for the

StockQuoteProxy class, the developer did not need to provide any semantic transla-

tion. However, the code for translation, no matter how complicated, can be encapsulated in

theStockQuoteProxy class. A more complicated example of application integration is

provided in Section 6.3.

To make this application integration a bit more interesting, we listed an alternative

code for the translator class in Figure A.8. Basically, thisimplementation provides a fault-

tolerance service for the Java RMI client program. It keeps areference to the original

Java RMI remote object (origStockQuoteServer line 4 and lines 8 to 11) as well as

a reference to the XMethods stock quote Web service (stockQuoteWebService line 6
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1 // The delegate defined in DelegateNaming lookup.java
2 public class Delegate Naming lookup implements Delegate Interface {
3 public static Remote lookup(String p0, ChangeableBooleanisReplyReady) throws . . . {
4 return new StockQuoteProxy(p0);
5 }
6 }
7
8 // The proxy defined in StockQuoteProxy.java
9 public class StockQuoteProxy extends UnicastRemoteObject

10 implements StockQuoteInterface { . . .
11 private NetXmethodsServicesStockquoteStockQuotePortType stockQuoteWebService;
12 public StockQuoteProxy(String p0) throws RemoteException { super();
13 try {
14 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService Impl().
15 getNetXmethodsServicesStockquoteStockQuotePort());
16 stub. setProperty(javax.xml.rpc.Stub.ENDPOINT ADDRESS PROPERTY,
17 ”http://64.124.140.30:9090/soap”);
18 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
19 } catch (Exception ex) {. . . }
20 }
21 public float getQuote(String symbol) throws RemoteException {
22 try { return stockQuoteWebService.getQuote(symbol); }
23 catch (Exception e) {. . . }
24 }
25 }

Figure A.7: Excerpted code of the delegate and proxy classes.

and lines 12 to 18). ThegetQuote() implementation is now fault-tolerant (lines 20 to

30). By default, the translator object first tries the original Java RMI remote object (line

22). In case this remote object fails to respond (e.g.,the network connection is temporarily

disconnected, or the remote object, or for some reason it hascrashed), the XMethods Web

service is used (line 24). The translator component prefersto use the Java RMI remote

object for the next calls (lines 25 to 27), because the Java RMI remote object imposes less

delay than the XMethods Web service.

Alternatively, we can integrate the Java RMI client programwith the XMethods delayed

stock quote Web service using the other approach illustrated in Figure 6.6(a), where the

translator component is hosted inside a bridge program. Thecode for the proxy component

would be the same as the proxy class listed in Figures A.7 or A.8, except that it would have

a main() method that instantiates and registers the proxy class as that of the Java RMI
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1 // The proxy defined in StockQuoteProxy.java
2 public class StockQuoteProxy extends UnicastRemoteObject
3 implements StockQuoteInterface { . . .
4 private StockQuoteInterface origStockQuoteServer;
5 private String StockQuoteServerName;
6 private NetXmethodsServicesStockquoteStockQuotePortType stockQuoteWebService;
7 public StockQuoteProxy(String p0) throws RemoteException {
8 super(); StockQuoteServerName = p0;
9 try { origStockQuoteServer = (StockQuoteInterface)

10 Naming.lookup(StockQuoteServerName);
11 } catch (Exception e) {. . . }
12 try {
13 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService Impl().
14 getNetXmethodsServicesStockquoteStockQuotePort());
15 stub. setProperty(javax.xml.rpc.Stub.ENDPOINT ADDRESS PROPERTY,
16 ”http://64.124.140.30:9090/soap”);
17 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
18 } catch (Exception ex) {. . . }
19 }
20 public float getQuote(String symbol) throws RemoteException {
21 float retVal = -1;
22 try { retVal = origStockQuoteServer.getQuote(symbol); }
23 catch (Exception e) {
24 retVal = stockQuoteWebService.getQuote(symbol);
25 try { origStockQuoteServer = (StockQuoteInterface)
26 Naming.lookup(StockQuoteServerName);
27 } catch (Exception e1) {}
28 }
29 return retVal;
30 }

Figure A.8: Excerpted code of the proxy class that adds fault-tolerance to the Java RMI
client application by using a Web Service if the Java RMI server is not available.

server program (similar to the code in Figure A.4 lines 14 to 19). For brevity, we do not list

the code for this approach.

A.2.2 Exposing Java RMI Server Applications as Web Services

In this part, we show how the Java RMI server program (listed in Figure A.4, lines 6 to

20) can be exposed as a Web service using the architectures illustrated in Figures 6.7(a)

and 6.7(b).

First, let us discuss the architecture in Figure 6.7(a), where we use a Web server as a

server-side bridge program to host the translator component. For the Web server, we use the
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Tomcat Web server from Apache Software Foundation redistributed with the Java WSDP

version 1.4 (URL: http://java.sun.com/webservices/jwsdp/index.jsp ).

Figure A.9 lists the excerpted code for the translator component that we de-

veloped and deployed on a Tomcat Web server. The interface isdefined in the

StockQuoteWSInterface.java file (lines 1 to 4) and the Web service is defined in the

StockQuoteWS.java file (lines 6 to 18). Basically, the Web service obtains a reference

to the Java RMI remote object (lines 8 to 13) and implements thegetQuote() method by

forwarding the calls to the Java RMI remote object (lines 14 to 17).

1 // The Web service interface defined in StockQuoteWSInterface.java
2 public interface StockQuoteWSInterface extends Remote {
3 public float getQuote(String symbol) throws RemoteException;
4 }
5
6 // The Web service implementation defined in StockQuoteWS.java
7 public class StockQuoteWS implements StockQuoteWSInterface {
8 static StockQuoteInterface stockQuoteRMIServer;
9 static {

10 try { stockQuoteRMIServer = (StockQuoteInterface)
11 Naming.lookup(“//localhost/StockQuoteServer”); }
12 catch (Exception e) { . . . }
13 }
14 public float getQuote(String symbol) {
15 try {return stockQuoteRMIServer.getQuote(symbol);}
16 catch (Exception e) { return -1;}
17 }
18 }

Figure A.9: Excerpted code of the Web service.

Alternatively, as illustrated in Figure 6.7(b), we can hostthe translator program in-

side the Java RMI server program. For this approach, we can use TRAP/J to overwrite

the implementation of therebind() method of thejava.rmi.Naming class. When the

rebind() method is called (Figure A.4 line 17), the new implementation of therebind()

method (provided in a delegate class) that instantiates a proxy object. The proxy object

keeps a reference to the original Java RMI remote object and exposes itself as a Web ser-

vice. When a requester program sends a message to the Web service (the proxy object), it
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simply forwards the request to the original Java RMI remote object, which is a local object

for the proxy object, and replies to thegetQuote() SOAP messages using the result form

the Java RMI object.

A.3 Transparent Integration of CORBA Applications and
Web Services

Similar to Java RMI applications, a typical CORBA application is composed of a client

and server programs. Figures A.10, A.11, and A.12 list the excerpted code for a

simple implementation of the stock quote application in CORBA: the stock quote in-

terface is defined in theStockQuoteInterface.idl file, the server code is de-

fined in the StockQuoteServer.java file, and the client code is defined in the

StockQuoteClient.java file. In the rest of this section, we show how the client and

server programs were transparently shaped to interoperatewith Web service requester and

provider programs.

1 // The stock quote interface defined in StockQuoteInterface.idl
2 module edu { module msu { module cse { module sens { module StockQuote {
3 interface StockQuoteInterface { float getQuote(in string symbol); }
4 }; }; }; }; };

Figure A.10: The stock quote interface defined in IDL.

A.3.1 Enabling CORBA Client Applications to Use Web Services

We use the architectures illustrated in Figures 6.6(a) and 6.6(b) to enable the CORBA client

application to use the delayed Quote Web service.

First, we use the architecture in Figure 6.6(b), where the translator component is hosted

inside the client program, to make the CORBA client program interoperate with the XMeth-

ods delayed stock quote Web service. Before describing the code listed in Figures A.13

and A.14, let us take a closer look at the client program listed in Figure A.12. First, a
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1 // The stock quote server implemented in CORBA defined in StockQuoteServer.java
2 public class StockQuoteServer extends StockQuoteInterfacePOA {
3 public float getQuote(String symbol) { . . . }
4 public static void main(String[] args) {
5 try {
6 ORB orb = ORB.init( args, null );
7 POA poa = POAHelper.narrow( orb.resolve initial references( ”RootPOA” ));
8 poa.the POAManager().activate();
9 StockQuoteServer server = new StockQuoteServer();

10 org.omg.CORBA.Object obj = poa.servant to reference( server );
11 PrintWriter pw = new PrintWriter( new FileWriter( args[ 0 ] ));
12 pw.println( orb.object to string( obj )); pw.flush(); pw.close();
13 orb.run();
14 } catch( Exception e ) {. . . }
15 }
16 }

Figure A.11: Implementation of the stock quote server program in CORBA.

reference to the CORBA object (server defined in line 3) is obtained in the constructor of

theStockQuoteClient class using the IOR file provided to the client program as a com-

mand line parameter (lines 5 to 12). Next, this reference is used to call thegetQuote()

method on the CORBA object hosted in the server program (lines 16 to 18).

To intercept and redirect the CORBA requests, first, we make the client pro-

gram adapt-ready by running the program using extra command-line parameters:java

StockQuoteClient ORBconfig file:StockQuoteClient.cfg.2 Next, the devel-

oper inserts a new rule to the rule-based decision maker of the ACT core that intercepts all

the CORBA requests using GUI tools.

Figures A.13 and A.14 list the excerpted code that we developed to make the CORBA

program interoperate with the XMethods Web service. The condition part of the rule

is defined in theStockQuote Condtion.java file (Figure A.13, lines 1 to 8), which

basically returnstrue always to make all the intercepted CORBA requests to be for-

warded to the action part of the rule. The action part of the rule is defined in the

StockQuote Action.java file (lines 10 to 25). In the constructor of the (Stock-

2For details of how ACT works, please refer to Chapter 5.
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1 // The stock quote client implemented in CORBA defined in StockQuoteClient.java
2 public class StockQuoteClient {
3 StockQuoteInterface server;
4 public StockQuoteClient(String args[]) {
5 try {
6 ORB orb = ORB.init( args, null );
7 String iorFileName = args[0]; File f = new File( iorFileName );
8 BufferedReader br = new BufferedReader( new FileReader( f ));
9 org.omg.CORBA.Object obj = orb.string to object( br.readLine() );

10 br.close();
11 server = StockQuoteInterfaceHelper.narrow( obj );
12 } catch( Exception ex ) {. . . }
13 }
14 public static void main( String args[] ) {
15 StockQuoteClient client = new StockQuoteClient(args);
16 try {
17 while (true) { System.out.println(. . . + client.server.getQuote(“IBM”)); . . . }
18 } catch( Exception ex ) {. . . }
19 }
20 }

Figure A.12: Implementation of the stock quote client program in CORBA.

Quote Action ) class (Figure A.13, lines 12 to 17), an instance of the translator compo-

nent (defined in theStockQuote ClientLocalProxy.java file listed in Figure A.14)

is created.

Once the rule is inserted, all CORBA requests will be reified by the CORBA ORB and

will eventually be intercepted by theprocess() method of theStockQuote Action

class (lines 18 to 25). Theprocess() method creates another CORBA request similar to

the one intercepted, except that the target object of the request isstockQuote Client-

LocalProxy , which is an instance of theStockQuote ClientLocalProxy class, in-

stead of the original CORBA object. Theprocess() method replies the original request

using the reply returned from thestockQuote ClientLocalProxy .

The translator component is defined in theStockQuote ClientLocalProxy.java

file. First, a reference to the XMethods Web service is obtained using the Java WSDP

framework (Figure A.14, lines 5 to 11). Next, all calls to thegetQuote() method are

forwarded to the XMethods Web service (lines 14 to 15).
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1 // The condition class defined in StockQuoteCondtion.java
2 public class StockQuote Condition extends InBandDMCondition {
3 public StockQuote Condition(ActiveRule activeRule, ORB orb) { super(activeRule, orb); }
4 public boolean check(org.omg.CORBA.Object targetObj, FullInterfaceDescription
5 fullIntDesc, ServerRequest serverRequest, Request request) {
6 return true;
7 }
8 }
9

10 // The action class defined in StockQuoteAction.java
11 public class StockQuote Action extends edu.msu.cse.sens.act.dm.InBandDMAction {
12 public StockQuote Action(ActiveRule activeRule, org.omg.CORBA.ORB orb) {
13 super(activeRule, orb);
14 StockQuote ClientLocalProxy stockQuote ClientLocalProxy =
15 new StockQuote ClientLocalProxy(orb);
16 // publishing the StockQuote ClientLocalProxy CORBA object in the naming service
17 }
18 public boolean process(org.omg.CORBA.Object targetObj, FullInterfaceDescription
19 fullIntDesc, ServerRequest serverRequest, Request request) {
20 request = createReq(stockQuote ClientLocalProxy, serverRequest, fullIntDesc, opNum);
21 request.invoke();
22 org.omg.CORBA.Any res any = request.result().value();
23 serverRequest.set result(res any);
24 return true;
25 }

Figure A.13: Excerpted code of the rule used in the client program.

A.3.2 Exposing CORBA Server Applications as Web Services

We propose three solutions to expose CORBA server applications as Web services. The first

two solutions use the architecture in Figure 6.7(b) and the last one uses the architecture

in Figure 6.7(a). First, we can use TRAP/J to host the translator component inside the

CORBA server application. This approach is possible only ifthe CORBA application is

written in Java. However, when other implementations of TRAP, such as TRAP/C++ and

TRAP/C#, are available, we can use this approach for CORBA applications written in C++

and C#, respectively. Second, we can use ACT to host the translator component inside the

CORBA server application. Third, we can use the architecture illustrated in Figure 6.7(a),

where a server-side bridge hosts the translator component.Because those solutions involve

straightforward modifications to code described earlier, we do not list the corresponding
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1 // The stock quote proxy defined in StockQuoteClientLocalProxy.java
2 public class StockQuote ClientLocalProxy extends StockQuotePOA
3 implements Serializable, StockQuoteOperations {
4 public StockQuote ClientLocalProxy(ORB orb) { . . .
5 try {
6 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService Impl().
7 getNetXmethodsServicesStockquoteStockQuotePort());
8 stub. setProperty(javax.xml.rpc.Stub.ENDPOINT ADDRESS PROPERTY,
9 ”http://64.124.140.30:9090/soap”);

10 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
11 } catch (Exception ex) {. . . }
12 }
13 public float getQuote(String symbol) throws RemoteException {
14 try { return stockQuoteWebService.getQuote(symbol); }
15 catch (Exception e) {. . . }
16 }
17 }

Figure A.14: Excerpted code of the proxy used in the client program.

code.

A.4 Transparent Integration of .NET Remoting Applica-
tions and Web Services

Microsoft .NET [70] is a collection of software technologies intended to support integration

of small, discrete applications as well as larger applications over the Internet. Similar to

Java RMI and CORBA applications, a typical .NET remoting application is composed of

client and server programs. In .NET remoting, unlike CORBA there is no need to define

the interface of a CORBA object in an IDL file, and unlike Java RMI there is no need to

define the interface of a remote object separately from its implementation.

Figures A.15, A.16, and A.17 list excerpted code for a client/server stock quote ap-

plication developed in C#. TheStockQuoteObject.cs file defines both the interface

and implementation of the remote objects of typeStockQuoteObject . The Stock-

QuoteServer.cs file defines the server program that follows the instructionslisted in its

configuration file. TheStockQuoteServer.exe.config file defines the configuration

of the server program. It instructs the server program to define its name as “StockQuote-
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Server” (Figure A.16, line 10) and to listen to the port number 9000 that may receivehttp

requests (line 15). If a SOAP message is received that refersto theStockQuoteObject

service (lines 11 to 14), then the server program instantiates an object of typeStock-

Quote.StockQuoteObject (available in theStockQuoteObject.dll library file) for

the message and forwards the message to the object.3

1 // The stock quote object defined in StockQuoteObject.cs
2 public class StockQuoteObject : MarshalByRefObject {
3 public float getQuote(string symbol) {
4 if (symbol.Equals(“Microsoft”)) return 1; . . .
5 }
6 }

Figure A.15: Excerpted code of the stock quote object in the .NET remoting application.

1 // The stock quote server defined in StockQuoteServer.cs
2 class StockQuoteServer {
3 [STAThread] static void Main(string[] args) {
4 RemotingConfiguration.Configure(“StockQuoteServer.exe.config”);
5 String keyState = “”; keyState = Console.ReadLine();
6 }
7 }
8
9 // The stock quote server configuration defined in StockQuoteServer.exe.config

10 ≺configuration≻ ≺system.runtime.remoting≻ ≺application name=“StockQuoteServer”≻
11 ≺service≻
12 ≺wellknown mode=“SingleCall” type=“StockQuote.StockQuoteObject,
13 StockQuoteObject” objectUri=“StockQuoteObject.soap” /≻
14 ≺/service≻
15 ≺channels≻ ≺channel port=“9000” ref=“http” /≻ ≺/channels≻
16 ≺/application≻ ≺/system.runtime.remoting≻ ≺/configuration≻

Figure A.16: Excerpted code of the server program in the .NETremoting application.

The StockQuoteClient.cs file (listed in Figure A.17) defines the client program.

The client program first follows the configuration provided in its configuration file (line

4). Next, it creates an instance of theStockQuoteObject class (line 5). Finally, it uses

3Please note that themode="SingleCall" attribute in the configuration file (Figure A.16, line 12)
instructs the server program to instantiate a separate object for each arriving message. Alternatively, if the
mode="Singleton" attribute is used, only one singleton object will be createdfor all arriving messages.
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1 // The stock quote client defined in StockQuoteClinet.cs
2 class StockQuoteClient {
3 [STAThread] static void Main(string[] args) {
4 RemotingConfiguration.Configure(“StockQuoteClient.exe.config”);
5 StockQuoteObject server = new StockQuoteObject();
6 while (true) {
7 Console.WriteLine(“Stock quote for IBM is: ” + server.getQuote(“IBM”));
8 Thread.Sleep(1000);
9 }

10 }
11 }
12
13 // The stock quote client configuration defined in StockQuoteClient.exe.config
14 ≺configuration≻ ≺system.runtime.remoting≻ ≺application name=“StockQuoteClient”≻
15 ≺client≻
16 ≺wellknown type=“StockQuote.StockQuoteObject, StockQuoteObject”
17 url=“http://haydn.cse.msu.edu:9000/StockQuoteServer/StockQuoteObject.soap” /≻
18 ≺/client≻
19 ≺/application≻ ≺/system.runtime.remoting≻ ≺/configuration≻

Figure A.17: Excerpted code of the client program in the .NETremoting program.

the .NET remote object (lines 6 to 9). TheStockQuoteClient.exe.config file (lines

13 to 19) defines the configuration of the client program. Thisconfiguration file instructs

the client program to define its name as “StockQuoteClient” (line 14) and to register the

StockQuote.StockQuoteObject type as a remote object. The effect of this registra-

tion is that whenever the client program instantiates a new object of typeStockQuote.-

StockQuoteObject (such as line 5), the instance is not created locally. Instead, a proxy

is automatically created that represents the .NET remote object as a local object. Whenever

a call to the object is made (such as line 7), the call is forwarded to the service resid-

ing at the “http://haydn.cse.msu.edu:9000/StockQuoteServer/Stoc kQuote-

Object.soap ” URL (line 17). Eventually, the call will be received by the server program,

where an instance of typeStockQuote.StockQuoteObject is created to respond to the

request.

170



A.4.1 Enabling .NET Client Applications to use Web Services

In this part, we show how the architectures illustrated in Figures 6.6(a) and 6.6(b) can be

used to enable the .NET client program to use the XMethods Webservice.

First, we use the architecture in Figure 6.6(a), where a bridge program hosts the trans-

lator component. Figure A.18 lists the excerpted code for the translator component de-

fined in theStockQutoeObject.cs file. First, a reference to the XMethods Web service

(webService ) is obtained (lines 4 to 6 ). Next, calls to thegetQuote() method are for-

warded to thewebService (lines 7 to 9). The code for the bridge program that hosts this

translator component is the same as the one for the server program listed in Figure A.16.

1 // The stock quote proxy defined in StockQutoeObject.cs
2 public class StockQuoteObject : MarshalByRefObject {
3 private netxmethodsservicesstockquoteStockQuoteService webService;
4 public StockQuoteObject() {
5 webService = new netxmethodsservicesstockquoteStockQuoteService();
6 }
7 public float getQuote(string symbol) {
8 return webService.getQuote(symbol);
9 }

10 }

Figure A.18: Excerpted code of the translator component that is hosted inside a bridge
program.

The netxmethodsservicesstockquoteStockQuoteService type, representing

the XMethods Web service, is available to the translator program by creating the cor-

responding proxy class using either thewsdl.exe utility from Microsoft or the Add

Web Reference facility in the VisualStudio .NET . All the plumbing and marshal-

ing are hidden in the generated Web service proxy and the translator program sim-

ply uses thenetxmethodsservicesstockquoteStockQuoteService type. Fig-

ure A.19 shows a screen dump of theAdd Web Reference GUI that we used to make

available the web reference to thehttp://services.xmethods.net/soap/urn:-

xmethods-delayed-quotes.wsdl WSDL definition for the XMethods Web service.
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Figure A.19: A screen dump of the Add Web Service GUI of VisualStudio .NET that adds
the reference to the XMethods Web service to a .NET project.

Alternatively, we could use the architecture illustrated in Figure 6.6(b), where the trans-

lator component is hosted inside the client program. However, because this example is

developed in C# and we do not have the C# version of TRAP yet, currently the alternative

solution is not available.

A.4.2 Exposing .NET Server Applications as Web Services

A .NET server can be used directly as a Web service, if the types exposed by the .NET

server are all supported in XML schema type system4. The types that can be used in

a .NET remoting application are much richer than the restricted types supported in Web

services [182, 183]. If a .NET specific type such asSystem.Data.DataSet is exposed

by a .NET server program, then it cannot be used as a Web service directly. As our .NET

server program does not expose such .NET specific types, it can be used directly as a

Web service. To enable a Web requester program to use this service, a developer can use

the SOAPsuds.exe utility from Microsoft with the -sdl option to generate the WSDL

schema of the .NET service. This WSDL schema can be used by Webservice requester

4The XML schema type system specifies all the types that are allowed to be used in a Web service.
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programs to interoperate with the .NET server program. If a .NET specific type is used

in a .NET server program, then the corresponding WSDL schemawill have some extra

elements, which are not standard and may not be understood byother Web services tools.

In case a .NET server cannot be used directly as a Web service,we can expose it

as a Web service using the architecture illustrated in Figure 6.7(b), where the translator

component is hosted inside the provider program. We use the IIS Web server from Mi-

crosoft (http://www.microsoft.com/WindowsServer2003/iis/defa ult.mspx )

distributed with Windows XP as the provider program. We use the ASP.NET technology

to host the provider component inside the IIS Web server (forthis example the provider

component is an instance of theStockQuoteObject class listed in Figure A.18). The

excerpted code for the Web service is listed in Figure A.20. First, the Web service creates

an instance of theStockQuoteObject and stores it in theorigServer variable (lines 3

to 6). Next, it forwards calls to thegetQuote() method to theorigServer .

1 // The translator program defined in StockQuoteWebService.cs.
2 public class StockQuoteWebService : System.Web.Services.WebService {
3 StockQuoteObject origServer;
4 public StockQuoteWebService() {
5 origServer = new StockQuoteObject();
6 }
7 [WebMethod (EnableSession=true)]
8 public float getQuote(string symbol) {
9 origServer.getQuote(symbol);

10 }
11 }

Figure A.20: Excerpted code for the Web service written in ASP.NET and hosted inside
the IIS Web server.

Alternatively, we can expose the .NET server program as a Webservice using the ar-

chitecture illustrated in Figure 6.7(a), where the translator component is hosted inside a

bridge program. For this approach, we use the IIS Web server as the bridge program. This

approach is similar to the first solution discussed above (see Figure A.20), except that the

object can be instantiated as a .NET remote object instead ofa local object.
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[141] José de Oliveira Guimarães. Reflection for statically typed languages. InProceed-
ings of 12th European Conference on Object-Oriented Programming (ECOOP’98),
pages 440–461, 1998.

[142] Eddy Truyen, Bo N. Jörgensen, Wouter Joosen, and Pierre Verbaeten. Aspects for
run-time component integration. InProceedings of the ECOOP 2000 Workshop on
Aspects and Dimensions of Concerns, Sophia Antipolis and Cannes, France, 2000.

[143] F. Akkai, A. Bader, and T. Elrad. Dynamic weaving for building reconfigurable soft-
ware systems. InProceedings of OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object-Oriented Systems, Tampa Bay, Florida, October 2001.

[144] D. Wagelaar. Towards a context-driven development framework for ambient intel-
ligence. InProceedings of the Fourth IEEE International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems (with ICDCS’04), Tokyo, Japan, March
2004.

185



[145] S. Ren, M. Beckman, and T. Elrad. System imposed and application compliant adap-
tation. InProceedings of the Fourth IEEE International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems (with ICDCS’04), Tokyo, Japan, March
2004.

[146] R. Hirschfeld and K. Kawamura. Dynamic service adaptation. In Proceedings of
the Fourth IEEE International Workshop on Distributed Auto-adaptive and Recon-
figurable Systems (with ICDCS’04), Tokyo, Japan, March 2004.

[147] Shigeru Chiba. Load-time structural reflection in Java. Lecture Notes in Computer
Science, 1850, 2000.

[148] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. Open-
Java: A class-based macro system for Java. InProceedings of OORaSE, pages
117–133, 1999.

[149] Jason Baker and Wilson Hsieh. Runtime aspect weaving through metaprogramming.
In Proceedings of the first International Conference on Aspect-Oriented Software
Development, Enschede, The Netherlands, 2002.

[150] Denis Caromel and Julien Vayssière. Reflections on MOPs, Components, and Java
Security. In J. Lindskov Knudsen, editor,Proceedings of ECOOP 2001, volume
2072 ofLNCS, pages 256–274, Budapest, Hungary, June 2001. Springer-Verlag.
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