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ABSTRACT

TRANSPARENTSHAPING OF EXISTING SOFTWARE TO SUPPORT
PERVASIVE AND AUTONOMIC COMPUTING

By
S. Masoud Sadjadi

As the computing and communication infrastructure corggo expand and diversify,
the need for adaptability in software is growing. Adapti&pils especially important to
pervasive computingvhich promises anywhere, anytime access to data and corgput
resources. The need for adaptation in pervasive compupiplications is particularly evi-
dent at the “wireless edge” of the Internet, where softwamaobile devices must balance
several conflicting concerns, including quality-of-seryisecurity, fault-tolerance, and en-
ergy consumption. We say that an applicatiomdaptableif it can change its behavior
dynamically (at run time). Developing and maintaining adaje software are nontrivial
tasks, however. Even more challenging is to enhance egigtograms so that they execute
effectively in new, dynamic environments.

We propose a new programming model calieshsparent shapingvhich supports dy-
namic adaptation in existing programs. The key insightams$parent shaping is the syn-
ergy resulting from the integration of four key fundamenéhnologiesaspect-oriented
programmingto enable separation of concerns at development tireleavioral reflection
to enable software reconfiguration at run tirnemponent-based desigmenable indepen-
dent development and deployment of adaptive code aalaghtive middlewar¢o hide the
adaptive behavior from the functional code. The major dbuations of this dissertation
can be summarized as follows.

First, we assess the effectiveness and expressivenessgoflge support in develop-

ing adaptable components separately from the functiondé.cdn a case study, we use



the Adaptive Java language to design and evaluate a comtpoadksd MetaSocketwhose

behavior and structure can be adapted at run time in resgonseternal stimuli. We
demonstrate how MetaSockets can be used to support adagtatnobile computing en-
vironments.

Second, we investigate how to enhance existing applicaialetransparentlyin or-
der to support dynamic adaptation. We propose transpagettive aspect programming
(TRAP), a development model that enables partial behauiefiaction in existing object-
oriented programs. The reflection model provided enablearaéon of crosscutting con-
cerns atrun timewith minimal overhead.

Third, we demonstrate the use of existing adaptive middieirameworks to support
transparent shaping of distributed applications. As afpwbooncept, we propose thHeCT
framework, which enables new behavior to be added dynalyiaid transparently) to
running CORBA applications. We demonstrate how ACT can stppoth adaptation in
pervasive computing contexts and interoperability witheotmiddleware frameworks.

Fourth, we assess the potential role of transparent shaeywnd the domain of a sin-
gle program, specifically to support application integmatiWWe propose several alternative
architectures that can be used to integrate heterogenpplisagions, while the interoper-

ation is transparent with respect to the applications aslidution middleware.
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Chapter 1

Introduction

As the computing and communication infrastructure cormto expand and diversify,
the need for adaptability in software cannot be overstatathptability is especially im-
portant topervasive computingwvhich promises anywhere, anytime access to data and
computing resources with few limitations and disruptiohs{15]. Pervasive computing is
becoming a reality by a convergence of the recent advanagsdcironic technologies, es-
pecially wireless communication, and the growth of therimé¢. The need for adaptability
in pervasive computing is particularly evident at the “wess edge” of the Internet, where
software in mobile devices must balance conflicting coresurch as quality-of-service
(QoS) and energy consumption in responding to variabilitganditions €.g., wireless
network loss rate). Adaptability is also importanaistonomic computingvhich promises
self-managed and long-running systems that require amiydd human guidance [16—19].
Autonomic computing supports systems such as financialargsytransportation systems,
and water and power systems, which must continue to opevatectly during exceptional
situations. Such systems require adaptation in order iov&ihardware component fail-
ures, network outages, software faults, and securitykstac

Developing and maintaining adaptable software are noattizsks. We say a software

application isadaptabléf it can change its behavior dynamically (at run time) asspomnse



to transient changes in its execution environmery.(to address dynamic network condi-
tions) or to permanent changes in its requiremeais. (o upgrade long-running mission-
critical systems). An adaptable application comprigsgstionalcode, which implements
the business logic of the application and supports its iaiper behavior, anéddaptive
code, which implements the adaptation logic of the appboaand supports its adaptive
behavior. The difficulty of developing and maintaining aiddgbe applications comes from
the nature of the adaptive code, which tendsimsscutthe functional code. Example
crosscutting concerns include QoS, mobility, fault tohee, recovery, security, self au-
diting, and energy consumption. Even more challenging ttereloping new adaptable
applications is enhancingxistingapplications, such that they execute effectively in new,
dynamic environments not envisioned during their desighdavelopment. For example,
many non-adaptive applications are being ported to mobiepriting environments where
they require dynamic adaptation.

Separation of concernR0-22] enables the separate development of the functional
code from the adaptive code of an application. This semaraimplifies development
and maintenance, while promoting software reuse. Separafi concerns has become
an important principle in software engineering [23], andngndevelopment techniques
apply it to some degree. Examples include domain-specifiguages, generative pro-
gramming, generic programming, constraint languagesyfeariented development, and
aspect-oriented programming [24]. Presently, the mosehlyidsed approach appears to
be aspect-oriented programming (AOP) [1, 25, 26]. Whileeobpriented programming
abstracts out commonalities among classes in an inhegitlee, crosscutting concerns
are scattered among different classes, complicating thelalgment and maintenance of
applications. AOP enables these concerns to be isolatedtfie rest of the application.
However, in traditional AOP the adaptive code is tangledhwlite functional code during
compilation. To support adaptable software, the programmaeds a way to maintain this

separation at run time.



One way to support separation of concerns at run time is gfirdle use of behavioral
reflection [27—29]. According to Maes [3d)ehavioralor computationateflection refers
to the ability of a program to reason about, and possibly,alie own behavior. Behav-
ioral reflection enables a system to “open up” its implemimtedetails at run time [31].
A reflective system has a self representation, which deals the computational aspects
(implementation) of the system, andciausally connectetb the system, meaning that any
modifications either to the system or to its representatiemeflected in the other. Since the
self representation of a reflective system is not tanglet thi¢ system, if we incorporate
the crosscutting concerns associated with the system tefptr self representation, then
the resulting code at run time is not tangled and can be repmefi dynamically. When
combined with AOP, behavioral reflection enables dynamiawivey of cross-cutting con-
cerns into an application at run time [27, 32]. However, naetéms are needed to enable
the dynamic loading and unloading of adaptive code duriregeton.

Software componenése software units that can be independently developethyksh
and composed by third parties [33]. Well-defined interfapecsfications supported in
component-based design enable adaptive code to be degdlugependently from the
functional code, and potentially by different parties,ngsthe interface as a contract.
Component-based design supports two types of compositiostatic composition, a de-
veloper can combine several components at compile timedduge an application. In
dynamic composition, the developer can add, remove, omfegge components within
an application at runtime. By enabling the assembly of leé-shelf components from dif-
ferent vendors, component-based design promotes softease. When combined with
behavioral reflection, component-based design enablesug-gmd-play” capability for
adaptive code to be incorporated with functional code attime that facilitates develop-
ment and maintenance of adaptable software.

Finally, in many cases it is desirable to hide the adaptiveab®r from the appli-

cation using middleware. Traditionallyniddlewareis intended to mask the distribution



of resources across a network and hide differences amonguorg platforms and net-
works [34-36]. As observed by several researchers [37+b}ever, middleware is also
a natural place to incorporate the adaptation required foryndlifferent crosscutting con-
cerns.Adaptivemiddleware enables dynamic reconfiguration of middlewareises while
an application is running, adjusting the middleware betraa environmental changes dy-
namically.

This dissertation proposes a new programming model, catbrtsparent shaping
which supports the design and development of adaptablergregfrom existing pro-
grams without the need to modify the existing programs sogade directly. The key
insight in transparent shaping is the synergy resultingnftioe integration of four key fun-
damental technologiesispect-oriented programmirtg enable separation of concerns at
development timebehavioral reflectiorto enable software reconfiguration at run time,
component-based desigm enable independent development and deployment of adapti
code, anchdaptive middlewaréo encapsulate the adaptive code inside middleware.

Adaptable programs derived from an existing program shedusiness logic of the
existing program and differ only in their adaptive behav®ecause of such commonality,
instead of developing each adaptable program individuadysparent shaping provides a
model to produce &amily of adaptable programs from an existing programpragram
family [46] is a set of programs whose extensive commonalitiefyubie expensive effort
required to study them as a whole rather than individually.

An adaptable program produced by transparent shaping ¢eesfthe original program
code, which is fixed during the program execution, and antagapgode, which can be re-
placed with another adaptive code dynamically. Replacmgyadaptive code with another
adaptive code converts an adaptable program into anothetatule program in the corre-
sponding family. This conversion is possible, since thepida code is not tangled into
the functional code. We use the tegomposerto refer to the entity that performs this

conversion. The composer might be a human — a software gerebo an administrator in-



teracting with a running program through a graphical userface — or a piece of software
— a dynamic aspect weaver, a component loader, a runtimensyst a metaobject.

As illustrated in Figure 1.1, transparent shaping prodadegptable programs in two
steps. In the first step, an adapt-ready program is producednapile, startup, or load
time using static transformation techniques. &tapt-readyprogram is a program whose
behavior can be adapted at run time by a composer insertiregrving adaptive code at
certain points in the execution path of the program, callesitive joinpointsTo support
such functionality, in the first step, transparent shapiegwes generic interceptors, called
hooks at the sensitive joinpoints, which may reside inside tlogypam code itself or inside
its supporting middleware. Example techniques for impletimg hooks include aspects
at compile time, CORBA portable interceptors [47] at startitne, and byte-code rewrit-
ing [48] at load time. In the second step, the hooks in the tadsguly program are used
by the composer to convert the adapt-ready program into aptadle program, as need
arises. Adapt-ready programs derived from the same egiptimgram are different in their

corresponding sensitive joinpoints and hooks.

X+ X, > X, First Step:
(adapt-ready program)  (existing program) (adapt-ready program) | at compile, startup, or load time

/N N

)(3 )(4 )(5 )(6 )(7 Second Step:
I at run time
X8 X9

EX working program l design decision I reversible design decision subfamily boundary ]

Figure 1.1: A transparent shaping design tree illustraéirigmily of adaptable programs
produced from an existing program, which is the root of treget Children of the root are
adapt-ready programs. Other descendants are adaptagtamo

As an example, let us consider an existing distributed pnmgX,) originally devel-
oped for a wired and secured network. To enable this progoanmtefficiently in a mobile

computing environment, transparent shaping can be usewbtiupe an adapt-ready ver-



sion of this program X), which has hooks intercepting all the remote interactiginst
step). At run time, if the system detects a low quality wissleonnection, the composer
can insert adaptive code for tolerating long periods of@hsection into the adapt-ready
program (producingX, from X). Later, if the user enters an insecure wireless network,
the composer can insert adaptive code for encryption/g@éoryof the remote interactions
into the program (producing’s from X,). Finally, when the user returns to an area with
a secure and reliable wireless connection, the composearcaove the adaptive code for
both security and connection-management to avoid unnagegsrformance overhead re-

sulted from the adaptive code (produciiig from Xg and X; from X,).

Thesis Statement. Transparent shaping provides a programming model for ponuiy
adaptable programs from existing programs. Transpareapgig enables reuse of exist-
ing programs in new environments even though the specifimctaistics of such new

environments were not anticipated during the original desaf the existing programs.

The major contributions of this dissertation are summareefollows.

1. We assessed the effectiveness and expressiveness addgngupport in developing
adaptable components separately from the functional cédeviously, our group
developedAdaptive Javd49], an extension to Java that contains constructs to sup-
port dynamic recomposition. We used Adaptive Java to inyat the process of
developing adaptable components [50-54]. Specificallyfesgned and evaluated
a component calleMetaSocketwhose behavior and structure can be adapted at run
time in response to external stimué.g.,wireless channel conditions). Our study
shows the use of new constructs in development of adaptabipanents improves

both expressiveness and effectiveness of the adaptive code

2. We developed a technique to enhance existing applicatidetransparentlyin order
to support dynamic adaptation. We proposed transparesttie# aspect program-

ming (TRAP), which enables partial behavioral reflectioexisting object-oriented



programs [55, 56]. The reflection model provided enablesisgion of crosscut-
ting concerns atun timewith minimal overhead. A prototype of TRAP for Java,
called TRAP/J, was developed and used to evaluate TRAP octipea Results of
a case study show the improvement in the execution of anixiapplication in a
mobile computing environment, while the dynamic adaptateotransparent to the

application code.

3. We developed an technique to use of adaptive middlewaseipport transparent
shaping of distributed applications. As a proof of concey, proposed th&dCT
framework, which enables new behavior to be added dynalyieadd transparently)
to running CORBA applications [57,58]. In addition, we demtvated how ACT
enables interoperation among otherwise incompatibletaga@ORBA frameworks.
The results of evaluating the ACT framework show the ovedhiettoduced by ACT

is negligible, while the adaptation provided is highly flebei.

4. To assess the potential role of transparent shaping bdey@ndomain of a single
program, we developed a technique that uses transpareguingtta support appli-
cation integration. We proposed several alternative sachires that can be used
to integrate heterogeneous applications, where the pgeation is transparent with
respect to the applications and distribution middlewars.afproof of concept, we
used the proposed architectures to provide transparestbperation in heteroge-
neous applications developed in Java RMI, CORBA, and .NEmd&mg. A case
study demonstrates the use of transparent shaping in atil@giof two existing ap-

plications.

The remainder of this dissertation is organized as follo@isapter 2 provides a back-
ground on middleware and adaptation techniques, thendintes a taxonomy of adaptive
middleware, and classifies several representative adapiisidleware projects. Chapter 3

introduces MetaSockets. This chapter provides a backdronrAdaptive Java, describes



the internal architecture of MetaSockets, and finally estas MetaSockets in a number of
case studies. Chapter 4 introduces TRAP and TRAP/J, andsshow TRAP/J can en-
able existing Java applications to support dynamic adaptatithout the need to directly
modify their source code. Chapter 5 presents ACT. This @ngpovides a background
on CORBA and its portable request interceptors, descrite@\CT internal architecture,
and provides two case studies through which we demonstratade of ACT to enhance
existing CORBA applications with new adaptive code at rumettransparently. Chapter 6
demonstrates the use of transparent shaping in applicatiegration and provides a case
study where two existing heterogeneous applications degyiiated. Finally, Chapter 7

offers conclusions and discusses future research dirsctio



Chapter 2

Background and Related Work

Developing distributed applications is a difficult task da¢hree major problems: the com-
plexity of programming interprocess communication, thech#® support services across
heterogeneous platforms, and the need to adapt to charmgidgions. Traditional middle-
ware (such as CORBA, DCOM, and Java RMI) addresses the fissptablems to some
extent through the use of a “black-box” approaelg( encapsulation in object-oriented
programming). However, traditional middleware is limitiedits ability to support adap-
tation. To address all three problenaglaptivemiddleware has evolved from traditional
middleware. In addition to the object-oriented progranmgnparadigm, adaptive mid-
dleware employs several other key technologies includomputational reflection [30],
component-based design [33], aspect-oriented progragifhjnand software design pat-
terns [59].

Since the transparent shaping programming model benedits fesults in adaptive
middleware research, in this chapter we review the work igs #inea. Section 2.1 pro-
vides a background on traditional middleware. Section 2&cdbes four key supporting
techniques used in the development of adaptive middlevagetion 2.3 proposes a three-
dimensional taxonomy that categorizes different adaptiidelleware approaches, and de-

scribes and compares examples of each. Finally, Sectiatistbsses different approaches



to transparent shaping.

2.1 Traditional Middleware

Middlewareis connectivity software that encapsulates a set of sesviesiding above the
network operating system layer and below the user appicédiyer, effectively the session
and presentation layers of the ISO OSI reference model [BBildleware facilitates the
communication and coordination of application compon#msare potentially distributed
across several networked hosts. Moreover, middlewareiges\application developers
with high-level programming abstractions, for exampleg 0§ remote objects instead of
socket programming [36]. In this manner, middleware car iderprocess communica-
tion, mask the heterogeneity of the underlying systemd{iare devices, operating sys-
tems, and network protocols), and facilitate the use of iplelprogramming languages at
the application level. Middleware can also be considerea ‘ggue” that enables integra-
tion of different legacy applications [34].

Various paradigms [34, 35] have been used in the developofemiddleware. Em-
merich [35] provides a frequently referenced taxonomy afdteware, which classifies ap-
proaches according to four programming-language abgirsctised for interaction among
distributed software component$ransactional middlewar§0—-62] supports distributed
transactions among processes running on distributed .hddessage-oriented middle-
ware[63, 64] facilitates asynchronous message exchange betwlieats and servers using
the message-queue programming abstraction B®jcedural middlewargs5, 66] extends
the procedure call in procedural programming languagasdaderemote procedure calls
(RPC) where the body of the procedure resides on a remote hostaanteccalled the
same way as a local procedure. Finafipject-oriented middlewargs7—-69] is based on
both the object-oriented programming paradigm and the REtacture. It provides the
abstraction of aemote objectwhose methods can be invoked as if the object were in the

same address space as its client.
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Since most research in adaptive middleware is based on jeetalyiented paradigm,
we focus on that type in more detail. Basically, object-otéel middleware separates object
interfaces which comprise a set of functionally related methods, ftbeir implementa-
tions, which define how objects should respond to messages reldeora remote objects.
Object-oriented middleware also provides a local repriegiem for each remote object,
and hides the interprocess communication between a rerbet@nd its local represen-
tation. The three major examples of object-oriented middte are CORBA [67], Java
RMI [68], and DCOM/.NET [69, 70]. We review each in turn.

The Common Object Request Broker Architecture (CORBA)is a distributed object
framework proposed by the Object Management Group (OMG)RBA® supports dis-
tributed object-oriented computing across heterogenbatvare devices, operating sys-
tems, network protocols, and programming languages.(lject Request Broker (ORB)
allows objects to interact transparently with other olgélicated locally or remotely). To
use a remote object, a client first acquires a referencesdcalt interoperable object refer-
ence (IOR), using either a static file containing the IOR oIGRBA naming service [47].
Next, the client invokes methods on this reference as if tijead was located in the client
address space. Thaterface Definition Language (IDL3 a language for defining CORBA
interfaces. An IDL compiler generates the code for stubssketketons automatically. A
stubrepresents a remote object in the client address spaceskedetorrepresents a client
in the remote address space. Stubs and skeletons marshah@adshal requests and re-
sponses to enable object interactions over a network.

Java remote method invocation (Java R3] was proposed by JavaSoft to support
the development of distributed Java-based applicatiomsa RMI supports distributed
computing across heterogeneous hardware devices andingesgstems using the Java
Virtual Machine (JVM). Unlike CORBA, which is language imiEndent, Java RMI sup-
ports only the Java language. Instead of CORBA marshalhidgiamarshalling, Java RMI

uses object serialization, which preserves the type of biects being serialized. Theg-
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istry in Java RMI is similar to a CORBA naming service, which resslha symbolic name
to an actual remote object reference. A server object egigself with the registry, where
a client object can look up the remote object address. Javiac@Mdynamically load the
class bytecode of an object that is passed between rem@&et®bsing Java reflection.
TheDistributed Component Object Model (DCOMP] was proposed by Microsoft as
a distributed extension to the Component Object Model (COM). Similar to CORBA,
DCOM supports heterogeneous programming languages, ke VDORBA and Java
RMI, DCOM supports only Windows-based platforms. The DCOBject proxyandob-
ject stubare the equivalent to the CORBA stub and skeleton, resgdgtidnlike CORBA
and Java RMI, DCOM supports neither multiple inheritance exceptions at the IDL
level. However, with regard to inheritance, DCOM supporigdtiple interfaces using a
binary standard similar to the C++ vtable [69]. DCOM alsous dynamic invocation
using the IDispatch interface [69]. The .NET remoting math [70, 72] is the follow-
on to DCOM. For more detailed comparisons of CORBA, Java Rivif DCOM/.NET

remoting, please refer to [36, 70, 72—74].

2.2 Key Supporting Techniques for Adaptation

In addition to the foundation provided by the design and diseaditional middleware plat-

forms, numerous advances in programming paradigms [1(233359, 75-81] have also
contributed to the emergence of adaptive middleware. Alglhanany important contribu-
tions have been made in this area [23, 76-81], a review ofitiiatiure shows that four
paradigms, in addition to object-oriented paradigm, play koles in supporting adaptive
middleware: computational reflection [30], componentdabgesign [33], aspect-oriented

programming [1], and software design patterns [59, 75].
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2.2.1 Computational Reflection

Computational reflectiof80,82] refers to the ability of a program to reason aboud, [@ws-
sibly alter, its own behavioiReflectiorenables a system to “open up” its implementation
details for such analysis without compromising portapibt revealing the unnecessary
parts [31]. In other words, reflection exposes a system imeigation at a level of abstrac-
tion that hides unnecessary details, but still enablesgdmto the system behavior [30,82].
As depicted in Figure 2.1, a reflective system (represergdase-levebbjects) has a self
representation (representednasta-levebbjects) that icausally connectetb the system,
meaning that any modifications either to the system or tejisasentation are reflected in
the other [83]. Thédase-levepart of a system deals with the “normal” (functional) aspect
of the system, whereas tmeeta-levelpart deals with the computation (implementation)
aspects of the system. rAeta-object protocol (MOH}¥ a meta-level interface that enables

“systematic” (as opposed to ad hoc) inspection and modiicatf the base-level objects.

Meta-Level Objects  Meta-Object Protocols Meta Level

@ E('O‘I-Q’ Base Leve
=

Base-Level Objects

Figure 2.1: Relationship between meta-level objects asd-@vel objects.

Computational reflection has been studied for several yedre context of program-
ming languages [30, 82, 84-87] and operating systems [§8-R€cently, reflection has
also been studied in middleware, where it enables adagtimdpéhavior of a distributed
application by modifying the middleware implementatioreflective middleware is often
concerned with adapting non-functional aspects of disteith applications including QoS,
performance, security, fault tolerance, and energy manage Section 2.4 describes sev-

eral examples of reflective middleware platforms [6, 3753391-95].
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We also note that several reflective programming langua96—98] have been pro-
posed recently to support development of distributed systend reflective middleware.
MetaJava[96] extends Java reflection with behavioral reflection #maébles modifying
the behavior of the Java RMI package at run tiragy(,encrypting requests before trans-
mitting them over a networkProgram Control Logic (PCL)97] provides a programming
framework that enables programmers to design, developoptiihize the performance of
adaptive distributed applications [97]. A source-to-seutompiler is provided, which in-
puts meta code specified in a language very close to C++ aadB&LC and PCLJ respec-
tively) and outputs a program source in C++ or Java that is toenpiled and linked with
the base progranAdaptive Javd49] is an extension to Java that introduces new language
constructs to support behavioral reflection. In its behaliceflective meta-model archi-
tecture, Adaptive Java separates monitoring the behawtoogpection) from changing the
behavior (intercession), using “refractive” and “transative” meta methods, respectively.
Iguana/J[98] extends the Java Virtual Machine to intercept metheddation, object cre-
ation, and field read and write at run time. Iguana/J can aith@pintercepted operations
by loading new code dynamically. These and other reflecéimgliages [30, 82,84-87] are

likely to facilitate the development of adaptive middlewand distributed applications.

2.2.2 Component-Based Design

Software componentre software units that can be independently developedoykegh
and composed by third parties [33]. Components are seliagued: components clearly
specify what they require and what they provide. Compomhased design (CBD) sup-
ports the large scale reuse of software by enabling assevhidpmmodity-off-the-shelf”
(COTS) components from a variety of vendors [36]. The indeleat deployment of com-
ponents enabldsate compositior(also referred to ate binding, which is essential for
adaptive systems. Late composition provides coupling of tampatible components at

run time through a well-defined interface. A system devealopging CBD is an amalgam
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of components that can be reorganized easily.

Figure 2.2(a) depictsstaticcomposition approach, in which four components are com-
bined at compile time to produce an application. Of paréicumportance to dynamic
recomposition is binding timelLate or dynamic, binding supports coupling of compat-
ible service clients and providers through well-defineeifaices at run time. As shown
in Figure 2.2(b), new components can be bound to an apmicati run time. Moreover,
object-oriented languages uselirect interfaces, primarily as a means to support inheri-
tance and polymorphism [33]. Effectively, method calls aeeirected to the appropriate
method implementation. This level of indirection when cledgjwith dynamic class loading

and late binding, helps to support dynamic adaptation.

[P
@ R

Compile Time Compile Time Run Time

(a) Static composition. (b) Static composition and dynamic recomposition.

Figure 2.2: Component-based design enables static cotigpoand dynamic recomposi-
tion.

When applied to middleware, CBD provides a flexible and esitda system that can be
reconfigured by upgrading each individual component at taaance time (and possibly
at run time) [6, 45,53, 91, 93, 99, 100]. Specifically, a métahre can be customized to
specific application domains, through the integration ahdm-specific components, and
can evolve using third-party components. Moreover, corsptbased middleware can
be dynamically adapted to its environment using late comipas Examples of major
component-based middleware solutions are DCOM [69] (dised earlier), EJB [101],
and CCM [102]. Enterprise Java Beans (EJB}01] is a middleware component model

for Java proposed by Sun Microsystems that enables Javéogereto use off-the-shelf
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Java components, tyeans Since EJB is built on top of Java technology, EJB components
can only be implemented using the Java language, however.EJB component model
supports adaptation by automatically supporting sengces as transactions and security
for distributed applications. THEORBA Component Model (CCN)02] is a distributed
component model proposed by OMG that can be considered asss-platform, cross-
language superset of EJB. CCM supports adaptation by ewgahjection of adaptive code

into component containers€., the component themselves remain intact).

2.2.3 Aspect-Oriented Programming

The third major software development paradigm used in agaptiddleware is aspect-
oriented programming (AOP). Kiczales et al. [1] realizedtttomplex programs are com-
posed of different interleavaeztoss-cutting concern@roperties or areas of interest such as
QoS, energy consumption, fault tolerance, and securityilé\bbject-oriented program-
ming abstracts out commonalities among classes in an tahed tree, cross-cutting con-
cerns are still scattered among different classes, coatpig the development and main-
tenance of applications. As depicted in Figure 2.3, AOP lesadeparation of crosscutting
concerns during development of the software. Specifictlly,code implementing such
crosscutting concerns of the system, callesphects are developed separately from other
parts of the system. In AOP, locations in the program whepeetscode can be woven,
called pointcuts are typically identified during development. Later, fommple during
compilation, anaspect weavecan be used to weave different aspects of the program to-
gether to form a program with new behavior. AOP proponergsi@that disentangling
crosscutting concerns leads to simpler development, evaanice, and evolution of soft-
ware [1,22]. Examples of AOP approaches include Aspec8][10/per/J [104], DemeterJ
(DJ) [105], JAC [106], Kava [107], PROSE [32], and CompasitFilters [78].

These benefits are important to adaptive middleware. AOBIlesdactorization and

separation of cross-cutting concerns from the middlewarre [108], which promotes reuse
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Figure 2.3: Conceptual representation of aspect-weayfkagpted from [1].)

of cross-cutting code and facilitates adaptation. Usind?PA€ustomized versions of mid-
dleware can be generated for application-specific domavasg et al. [L09] and David
et al. [27] both provide a two-step approach to dynamic wagwaf aspects, in the con-
text of adaptive middleware, using a static AOP weaver ducmmpile time and reflection
during run time.PROSH32] is an extension to the standard JVM that supports dyaami
weaving of aspects into Java programs. Weaving instrustzma defined using the JVM
debug interface (JVMDI). Other aspect-oriented middlenaojects [28,42,53,110,111]

are described in detail in Section 2.4.

2.2.4 Software Design Patterns

Software design patterr{89, 75] provide a way to reuse the software designs that have
been successfully used for several years. The goal of s@tdesign patterns is to create
a common vocabulary for communicating insight and expegerbout recurring problems
and their known “refined” solutions [59].

It is very costly, time consuming, and error-prone to indefently rediscover and rein-

vent solutions to middleware challenges. Schmidt and aglles [75] have identified a

17



relatively concise set of patterns that enables develogpdagptive middleware. For exam-
ple, the virtual component pattern [112], used in TAO [44d &EN [45], enables adapting
a distributed application to the memory constraints of esidieel devices by providing a
small middleware footprint including only a minimum coredaa set of “virtual” compo-

nents, whose code can be dynamically loaded on demand. Musadaptive middleware
projects [6,37,42,44,45,53,93,99,110, 113, 114] berreiih fthe use of adaptive design

patterns, as discussed in Section 2.4.

2.3 A Taxonomy of Adaptive Middleware

Since the Transparent Shaping spans several related ¢smtépe design of adaptive mid-
dleware, we recognized the need to organize the extensitkeimwthis area. Therefore, we
have developed a three-dimensional taxonomy, comprisikgleware layermiddleware
access typeandmiddleware composition timéimensions, for classifying adaptive mid-
dleware projects. The first dimension was introduced by $dt{2], while the second and

third are proposed by the author.

2.3.1 Middleware Layer

Schmidt [2] decomposes middleware services into four Eybkost-infrastructure, distri-
bution, common, and domain-specific services. Figure Ridtiates these layers.
Host-infrastructure middlewareesides directly atop the operating system kernel and

network protocols and provides a higher-level applicapoagramming interface (API)
than the ones provided by different operating systems ashektthe heterogeneity of hard-
ware platforms, operating systems and, to some extentonefarotocols. This middle-
ware layer provides generic services to the upper middielagers by encapsulating func-
tionality that would otherwise require many tedious, egavne, and non-portable codes,
such as socket programming and thread communication présit ACE [113] and Java

network package are examples of middleware in this layer.
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Figure 2.4: Middleware services decomposed into four Byaefined by Schmidt [2].

Distribution middlewareesides atop the host-infrastructure services layer andges
a high-level programming abstraction, such as remote rdativmcation, to its users. To
a great extent, this layer hides the distribution of resesiraver a network. Using ser-
vices provided in distribution services layer, applicatiaevelopers do not need to deal
with details of network programming(g, socket programming), which is a difficult task.
CORBA [67], Java RMI [68], and DCOM/.NET [69], discussed|eay are examples of
standard APIs specified in this layer.

Common-middleware servicesside atop the distribution layer and support distributed
applications with non-functional concerns such as qualftgervice, fault tolerance, se-
curity, load balancing, event propagation, logging, [stesice, real-time scheduling, and
transactions. The high-level services provided in thigtayan be reused in many different
applications and are not limited to only a specific domainpyligations. QuO [42] is an
example of middleware projects in this layer.

Finally, domain-specific middlewaresides atop the common services layer and is tai-
lored to a specific class of distributed applications. Unlike common-services layer,
the high-level services in this layer can be reused only fepecific domain. Boeing
Bold Stroke [115] component-based framework is an examipegpooprietary middleware

project in this layer.
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2.3.2 Middleware Access Type

Studying several middleware projects, we recognized thexetare two main methods to
incorporating middleware services into distributed aggtions: integration and intercep-
tion. We refer to the corresponding middleware servicesngegrated and intercepting
middleware, respectively.

In theintegrationmethod, a client of a middleware service interacts with treise by
sending request messages to the middleware seexjiecitly. In other words, the client
is aware of the services provided by the middleware or threntlis programmed against
the middleware API. A client can be an application progrararmther middleware service
stacked on top of this middleware service. Figure 2.5 shawepplication using middle-
ware services by sending request messages to the middlew@iatly. Typically, middle-
ware services adhere to a standard defined in differentdafeniddleware. CORBA [47]
is an example of such a standard in the distribution sentases. TAO [44] and Dynam-
iCTAO [37] are examples of adaptive middleware framewohet tadhere to the CORBA
standardi(e., they are CORBA compatible) and provide adaptive real-sem@ices. Using
the integrated middleware method, we can develop adaptiddleware that hides details

of its adaptive behavior from its users.

Application

A 4
Integrated Middleware Services

A 4

Operating System

[ ¢ Flow of Service Reque}ts

Figure 2.5: Incorporating middleware using integratiortimoe.

In theinterceptionmethod, a client application may benefit from the servicesided

by a middleware servicgansparently To provide transparency, an intercepting middle-
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ware service must capture and handle service request nesssiaginally targeted to either
another middleware service or to an operating system sendiciong other actions that an
intercepting service may perform as a response to an iqterdeequest, it may reply to the
request or it may modify the original request and allow thginal target service to reply to
the modified request. Figure 2.6(a) illustrates a middlevearvice intercepting a service
request from an application to an operating system. FiguioRillustrates a middleware
service intercepting a service request from an applicabcemother middleware service.
IRL [116] is an example of an intercepting middleware sextltat provides fault-tolerant
CORBA service transparently to the CORBA applications a@RBA implementations.
One advantage of interception over the integration metbodhtorporating adaptive be-
havior to distributed applications is that the interceptinethod promotes separation of
concernsj.e., non-functional concerns can be developed separately fuoetional con-
cerns. One disadvantage of interception over the integratiethod is the overhead that

the interception method introduce as a result of extra $ewkindirection.

Application Application

l | Intercepting Middleware Services |

Intercepting Middleware Services l

1 Integrated Middleware Services
A 4
Operating System Operating System

[:'_"_'_j Intercepted Service Reque}ts [:'_"_'_: Intercepted Service Reque}ts

€Y (b)

Figure 2.6: Incorporating middleware using interceptiogtinod.
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2.3.3 Middleware Composition Time

As illustrated in Figure 2.7, the lifetime of middlewaredees can be divided into devel-
opment time, compile time, startup (or load) time, and rureti Adaptive behavior can be
incorporated into middleware at any of these four times. rfiddleware approach allows
adaptive behavior to be incorporated into the middlewanéses at development, compile,
or startup time, we call istaticmiddleware; and if the incorporation of adaptive behavior
can continue to run time, we calldtynamicmiddleware.

As illustrated in Figure 2.7, depending on the time adapbekavior is incorporated
into middleware, we identified three classes of static neddre: hardwired, customiz-
able, and configurable middleware. If adaptive code is thtp the code for middleware
services during development time, the middleware is cdiEdwiredmiddleware. Elec-
tra [117] is an example of hardwired middleware that incoapes the adaptive code for
fault tolerance into its CORBA compliant middleware seedc|f adaptive behavior is in-
corporated into middleware services during compile (dk)ltime, so that a developer can
generate customized versions of the middleware servicesall it customizableniddle-
ware. Please note that the adaptable version is generat&sgpionse to the changes realized
after the application development time, but before appbeoastartup and run time. For
example, EmbeddedJava [118] minimizes the footprint of edied applications during
the application compile time. Other examples include apgines that benefit from static
weaving of aspects [1] into application source code, coenfibgs [45], and precompiler
directives [45]. If the incorporation of adaptive behavioto middleware services starts
either at development or compile time and ends at startup, time call itconfigurable
middleware. Typically, the interception facilities aredgrated with the functional code at
development timeg.g.,QuO [42]). Alternatively, the interception facilities cée woven
into the functional code at compile timee¢.,using AspectJ [103]) or at startup time.g.,
using a configuration file in ORBacus [119] or a command ligeiarent in JacORB [120]).

Eternal [121], IRL [116], and Rocks [122] are among examplesonfigurable evolution

22



approaches.

Middleware Type
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Figure 2.7: Middleware type according to the time of incogtimg adaptive behavior.

As illustrated in Figure 2.7, depending on the starting tiimat adaptive behavior is
incorporated into middleware, we identified two classesyofasinic middleware: tunable
and mutable middleware. If a middleware allows adaptivealgigh to be incorporated into
middleware services starting at development, compiletaotigo time and continuing to run
time, we call itmutablemiddleware. Hence, the process of making a program adaptabl
can be continued while it is being used. Typically, the io¢gtion facilities are integrated
with the functional code either at development tinegy(, TAO [44]) or at compile time
(e.g.,OpenCORBA [92]) or at startup time.@.,Eternal [121]) and using computational
reflection and dynamic code loading adaptive code is intedravith the functional code
dynamically. Intunablemiddleware, the middleware core services remain intadndur
the incorporation of adaptive behavior. Hence, mutabledieigare in general is capable
of evolving an application to something completely diffgrand unexpected, but tunable

middleware limits the evolution to only the adaptive codd ant the middleware core ser-
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vices. In other words, in mutable middleware there are nalfewlare core services. Tun-
able middleware enables fine-tuning of an application ipoase to the dynamic changes
that can be realized only after the application is startecanples of tunable middleware
include the “two-phase” adaptation approaches employeDdwd et. al [27] and Yang
et. al [109], the component configurator pattern [75] useBynamicTAO [37], and the
virtual component pattern [112] used in TAO [44] and ZEN [4Bkamples of techniques
used for dynamic middleware include reflection [38], lateyposition of components [45],
and dynamic weaving of aspects [28, 109]. OpenORB [38], discussed in Section 2.4,

is an example of mutable (but not tunable) middleware.

2.4 Adaptive Middleware Examples

Developing adaptable software using adaptive middlewaraéworks is an active research
area. We summarize the state of this research in Figure Z2&adf¢ that this figure is not
exhaustive and only representative projects are inclutled.figure shows where we place
each project with respect to the middleware layers. Thedigiso shows what access type
is supported by each project (either integration or infgtioa).

In the following discussion, we focus on those projects #natmost directly related to
our work. A survey of other adaptive middleware projects barfound in [123]. Before
beginning our classification of adaptive middleware prigewe should emphasize that
a given project may provide services categorized in more three middleware layer. In
such cases, we placed the project in the layer that matcleegrimary functionality of
the middleware project. If a middleware project supportsariban one composition time,
we say that the project provides a hybrid adaptation. Rinalhen related, details of how

supporting paradigms used in each project are discussecbampiared to other projects.
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Figure 2.8: State of research in developing adaptable aodtwsing adaptive middleware.

2.4.1 ACE, TAO, and Relatives

The distributed object computing (DOC) group has condusideral adaptive middle-
ware projects including ACE [113], TAO [44], CIAO [99], TA@B [114], and ZEN [45].
Schmidt'sAdaptive Communication Environment (ACEL3, 124] is one of the earliest
middleware projects. ACE is a real-time object-orientethownication framework writ-
ten in C++. ACE employs software design patterns to suppsiriluted applications with
efficiency and predictability, including low latency for ldg-sensitive applications, high
performance for bandwidth-intensive applications, aretifmtability for real-time applica-
tions. Figure 2.9 illustrates the key components in the A@EnEwork. TheOS Adap-
tation Layerresides directly atop the native operating system APIlsyigiog a platform-
independent API. Hence, we place ACE in the host-infrastinedayer. ACE components
can be dynamically updated using the service configuratidenme[75] and C++ dynamic
binding feature. Therefore, we consider ACE as tunable floitmutable) middleware
because the ACE core remains intact during the tuning psod®e consider ACE as an in-

tegrated middleware because a client of this middlewaresxample TAO, must explicitly
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send request messages to this middleware.

SERVICE
HANDLER HANDLER

FRAMEWORES ACCEFTOR CONNECTOR]

ADAPTIVE SERVICE EXECUTIVE (ASX)

PROCESS/
C++

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AnD Wind2 SERVICES

Figure 2.9: ACE architecture [3].

Schmidt et al. [44] extended their ACE work to cretite ACE ORB (TAQ)x CORBA
compliant real-time ORB built atop the ACE components, aswhin Figure 2.10. TAO
enhances the standard CORBA event service to provideimealdvent dispatching and
scheduling required by real-time applications such asreesy telecommunications and
network management systems. Earlier versions of TAO emipleystrategy design pat-
tern [59] to encapsulate different aspects of the ORB imterrsuch as [IOP pluggable
protocols, concurrency, request demultiplexing, schadgubnd connection management.
A configuration file is used to specify the strategies usethflement these aspects during
startup time. TAO parses the configuration file and loads ¢la@ired strategies. There-
fore, we consider TAO as configurable middleware. Recergiors of TAO decomposes
the C++ implementation of TAO into several core ORB compds¢imat can be dynami-
cally loaded on demand using the virtual component pattet@][ Therefore, we consider
recent versions of TAO as tunable middleware. TAO natunadhides in the distribution
layer because it is a CORBA compliant ORB. Similar to ACE,iardlof TAO requires to
send request messages to used the services provided by Ta®,.We consider TAO as an

integrated middleware.
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The Component-Integrated ACE ORB (CIA{9P], ZEN [45], andTAO load balanc-
ing (TAO-LB)[114] are follow-on middleware projects by the DOC group.AQlis the
TAO implementation of CORBA Component Model (CCM) [47]. ZENthe TAO imple-
mentation in Java and Real-Time Java [125] that providesceor®RB architecture. ZEN
identifies several major ORB services, such as object adagtel transport protocols, that
can be moved out of the micro-ORB kernel. The virtual compopattern [112] is em-
ployed to make each service dynamically pluggable. SimdarAO, CIAO and ZEN are
both also considered as integrated middleware. Finally)-I8 adds load balancing to
TAO [44] transparently from the application code. We corsiAO-LB as an intercepting
middleware because it uses the CORBA portable requesteptars to intercept requests
messages originally targeted to TAO.
in args

O
operation() OBJECT
out args + return value (SERVANT)

- I Y
/ — l
SKELETON
IDL ORB RUN-TIME REAL-TIME
OBJECT
STUBS SCHEDULER AD
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SUBSYSTEM
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Figure 2.10: TAO architecture [4].

2.4.2 DynamicTAO and UIC

Researchers at the University of lllinois have developeese adaptive middleware plat-
forms [6, 37,93, 100]. Kon et al. [37] adopted earlier vensod TAO [44], which itself is

considered as configurable middleware, and built a dyndiyiadaptive version of TAO
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called DynamicTAO using computational reflection. To pdevreal-time services, Dy-
namicTAO uses the Dynamic Soft Real-Time Scheduler (DSRZ] that provides QoS
guarantees to applications with soft real-time requireieReflection in DynamicTAO is
achieved using the service configurator pattern [75], wieichbles configuration and im-
plementation decisions about the ORB services to be defemgl run time. Figure 2.11
illustrates the DynamicTAO reified structure. ThemainConfigurator, TAOConfigurator,
and ServantConfigurator are all realizations of service configurator pattern in Dyia
TAO. A service configurator in DyanimcTAO exports tbgnamicConfigurator interface,
which is a CORBA IDL interface, defined also as the MOP for exmng, adapting, load-
ing, and unloading “component implementations” dynanijcalomponent implementa-
tions are organized in categories representing differgmeets of the TAO ORB packaged
as dynamically loadable libraries that can be linked to tiRBGt run time. We consider
DynamicTAO as tunable middleware. Similar to TAO, DynanA€is also considered as

an integrated middleware.

|Servanthonfiguratti)rlServant2Configurat4)r

A A

ConcurrencyStrategy

|

SchedulingStrateg

4>| TAOConfigurator1~

SecurityStrategy

MonitoringStrategy

t DomainConfigurator ’

Figure 2.11: DynamicTAO reified structure [5].

Universal Interoperable Core (UIC]G] is the successor of LegORB [93] both devel-
oped at UIUC. UIC, in addition to the small footprint proviie LegORB, can adopt one

or morepersonalitiessuch as CORBA, Java RMI, and DCOM for interoperability pur-
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poses. Figure 2.12 illustrates the interaction betweerUliizcore and its personalities.
UIC personalities can be either customized staticallyrduthe application compile time,
or tuned dynamically using late composition of componentsng run time. UIC mini-
mum ORB core runs uninterruptedly while ORB strategies ardasits are dynamically
updated. We consider UIC as both customizable and repgédiaathble middleware. A
UIC client-side ORB for PalmOS can be as small as 16KB. UlCla@tgpcustomizable
adaptation for the rare and expensive changes during cerigik, and exploits tunable
adaptation for the frequent and inexpensive changes dwrmgme. Using UIC, the same
server objects can interoperate with different persaealivithout modifying their imple-
mentations. UIC naturally resides at the distribution faygmilar to DynamicTAO, UIC
is also considered as an integrated middleware.

uIC Abstract Core

Specialization— """ Specialization
Specialization
CORBA JavaRMI CORBA/JavaR
Personalit Personalit Personality

Single-personalities Multi-personality

Figure 2.12: The UIC personalities [6].

2.43 QuO

Researchers at BBN Technologies have developed an ad&ptivework for CORBA and

Java RMI applications that supports QoS using aspectiedeprogramming paradigm.
QuO [42] provides a high-level QoS abstraction at the conusemvices layer. Figure 2.13
illustrates QuO components residing between the apphicatnd distribution ORB. QuO

wraps CORBA stubs and skeletons using functional delegAtelustrated in Figure 2.13,
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the delegate intercepts outgoing requests and incominigsed he delegate consults the
“contract,” using thepremethod and postmethod methods. The contract is part of the
QuO kernel that is aware of acceptable QoS regions and atiepapplication behavior by
modifying requests and replies according to the currertegystatus monitored by system
condition objects.

QuO provides a quality description language (QDL) to writetcacts that specifies
QoS regions. Theuogen utility can be used to translate these contracts to higatlev
languages such as C++ and Java. In addition, QuO providespattaoriented structure
description language (ASL) that enables developers t@wgeheric or application-specific
aspects. Later, thguogen utility can be used to generate delegates from CORBA ob-
ject interfaces written in IDL, aspects written in ASL, arshtracts written in QDL. We
consider QuO as customizable middleware because QuO aatapigplication during the
application compile time using thegiogen utility. The delegates in QuO are similar to the
statically shipped smart proxies in Squirrel [127] (desed later). However, delegates can
also wrap skeletons on the server side whereas smart prasdesnly at the client side.
To use services provided by QuO, a client requires to sengestgnessages to the QuO

framework explicitly. Thus, we consider QuO as an integtaieddleware.
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Figure 2.13: QuO architecture [7].
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2.4.4 Open ORB and Cousins

Researchers at Lancaster University have conducted $pvejects in multimedia middle-
ware [38, 83,128, 129]. Blair et al. [83] have investigateel middleware implementation
for mobile multimedia applications which can be dynamigallapted in response to the
environmental changes in the context of Adapt project. B @pen ORB project [38],
the successor of the Adapt project, Blair et al. continueir timvestigation studying the
role of computational reflection in middleware. More retgrBlair et al. [128] designed
Open ORB v2 that adds a component-based design framewohie tOppen ORB reflec-
tive framework. OpenCOM [129] is the implementation of O2RB v2, designed for
Microsoft COM systems. All above mentioned projects aratiyanfluenced by the ITU-
T/ISO RM-ODP [130], a meta standard for multimedia applaat. Unlike TAO [44] and
DynamicTAO [37], none of Adapt, Open ORB, and Open ORB v2 gutg are CORBA
compliant.

Open ORB uses reflection to provide dynamic adaptation. irfpdeimentation of the
Open ORB current reflective architecture is based on thectifte model illustrated in
Figure 2.14. Open ORB categorizes reflection into strutturd behavioral reflection [5], a
distinction first introduced in [131]Structural reflections the ability of a system to inspect
and modify its internal architecture, abéhavioral reflections the ability of a system to
inspect and modify its computation. Structural reflectismiodeled by the “architecture”
and “interface” meta-models, and the behavioral refledgionodeled by the “interception”
and “resources” meta-models. Thechitecture meta-modgirovides access to an object
using its object graph. Thaterface meta-mod@rovides access to the methods, associated
attributes, and inheritance structure of each interfacnadbject. Thenterception meta-
modelprovides interception hooks for each interface of an ob@ttiding message arrival,
dispatching, marshalling and unmarshalling interceptiooks. Theesources meta-model
provides access to available resources per address sgheaanies resource reservation.

Unlike DynamicTAO [37] that uses reflection mainly to implent the service configurator

31



pattern, Open ORB provides an ORB wide reflection. Therefoseconsider Open ORB

as mutable middleware. Similar to TAO, Open ORB is also atgreid as an integrated
middleware.

Architecture Interface Interception Resource meta-object
meta-object meta-object meta-object (per address space)

.\ Meta-levef

Base-lev

Figure 2.14: Open ORB reflection model [5].

Open ORB supports stream-oriented applications usingli@kpinding,” as opposed
to the implicit binding provided in CORBA. In explicit bindg, remote objects are bound
explicitly by a programmer. Figure 2.15 illustrates theutesf an explicit binding in a
live video application, which represents the end-to-enchrooinication path. Using the
Open ORB reflection meta-model (in this case only architectoeta-model), an MPEG
encoder can be replaced by an H.263 encoder that uses mushdandwidth adapting the

application to situation that network bandwidth availakldecreasing at run time.

Control interfaces - [RTP Real-time transport protocol
/\ " |

RTP Brndrng
Video MPEG RTP RTP MPEG Vldeo
Source encoder sender UDP/IP Binding recerver ecoder Render
R
|
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H.263 \ | An MPEG video Inserting a delay buffer object to Delay
encoder/ | encoder replacement.  counteract the effects of jtter. buffer

Figure 2.15: Open binding in Open ORB [8].
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2.4.5 Infopipes and Squirrel

Infopipes [132], a subproject of Squirrel [127], is a mideéee platform for information
flow, which is a joint work by University of Kaiserslauterncda@regon Graduate Institute
(OGI) base of the Infopipe abstraction [133] jointly intcombd with GorgiaTech as part of
the Infosphere projects. The designers argue that CORB#s stnd skeletons generated
from IDL interfaces follow a standard protocol (marshajlend unmarshalling) that is not
suitable for multimedia applications with different QoSju@ements. To solve this prob-
lem, Squirrel introducesmart proxieq9], which are service-specific stubs that include
adaptive code. A smart proxy for a specific application canldeloped and shipped to
the client program statically (during compile time) or dymeally (during run time). Fig-
ure 2.16 illustrates dynamic smart proxy shipping in a lildew application. We consider
Squirrel at the distribution layer because, similar to C@RRBubs, Squirrel uses smart
proxies to hide the interprocess communication detailsfegpplication developers. We
consider Squirrel as both tunable and mutable middlewacause of its ability to stati-
cally and dynamically load smart proxies. The tuning in Saliican only occur once at
the remote object binding time and the configuration setebthding time cannot be re-
configured later at run time. For a CORBA object to benefit fritw® services provided
by Squirrel, the object requires to send request messadgsguiorel explicitly. Thus, we

consider Squirrel as an integrated middleware.
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Figure 2.16: Squirrel: dynamic shipping of a smart proxy [9]

33



2.5 Toward Transparent Shaping

The transparent shapingrogramming model is intended to support production, neaint
nance, and dynamic reconfiguration of adaptable prograniiésmntransparently to their
corresponding existing programs. Depending on where tlokshare incorporated in-
side an existing program during the first step of the shapnoggss, we identify three
approaches to transparent shaping. As illustrated in Eiguir7, hooks can be incorporated
inside an application program itself, inside its suppa@rtimddleware, or inside the system

platform (network protocols and operating system).

Client Program Server Program
Layer Requester_~7 A ” %)\ Provider
Component ] Component
Middleware (o)
Layer
e |0 (e
atform v
~ - =

process boundaries

[O Program component — Flow of service request © Hook ]

Figure 2.17: Alternative places to insert hooks for tramsptshaping.

In this dissertation, we investigate the first two approachehere the hooks are in-
corporated either inside the application or inside adaptnddleware. For the former, we
propose solutions that weave the hooks inside existingrpnog using either language ex-
tensions or aspect-oriented programming, as describedthapt€rs 3 and 4, respectively.
For the latter, we propose techniques that leverage a@apinddleware mechanisms, such
as CORBA portable interceptors [47], as described in Ch&pt€inally, in Chapter 6, we
demonstrate how the combination of these approaches caeldaéausupport a higher level

of adaptation, namely, integration of otherwise incontgatapplications.
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Chapter 3

Designing Adaptable Components

In transparent shaping, tlaelaptive codgwhich implements the adaptive behavior, must be
separately developed from thenctional codewhich implements the business logic of an
application. In addition, the adaptive code must be recardigie at run time. In an earlier
study, our group designedcammposable proxj134] in Java that enables mobile Internet
users to collaborate via heterogeneous devices and netwarkections. This approach
is based on detachable Java 1/0O streams, which enable phexg &ind transcoders to be
dynamically inserted, removed, and reordered on a givem statam. Using this adapt-
able component, proxy services can be reconfigured dyndyicalthough the result-
ing system performed well, our experience in this study stbthat developing adaptive
code in object-oriented languages such as Java, which a@bgsavide facilities to design
adaptable components, is difficult and error-prone. Alsgdme cases we observed that
separation of adaptive code from functional code is alnmapbissible.

In this chapter, we explore the effectiveness and expresssas of language support
in designing adaptable components. Previously, our grewgldpedAdaptive Javd49],
which extends Java with new constructs and keywords tatfeilthe design of adaptable
components. Adaptive Java adds behavioral reflection [B0hva’s structural reflection,

enabling dynamic reconfiguration of software componenssnggAdaptive Java behavioral
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reflection facilities, we designed and implemented an addg@tmiddleware component
called a MetaSocket. MetaSockets an adaptable communication component created
from existing Java socket classes, but its structure anavb@hcan be adapted at run time
in response to external stimuli such as dynamic wireleseradaconditions. Although the
socket abstraction is relatively low-level (host-infrasture services layer), its ubiquity in
distributed applications, as well as in middleware platfsy makes it a good place to begin
our studies.

A key concept in the MetaSocket model is that adaptive fonetity related to com-
munication streams, possibly tangled throughout appdinatode, is extracted and placed
in the MetaSocket layer. Application modules and higheelleniddleware layers can in-
voke traditional socket operations using MetaSocketslenthe MetaSockets themselves
can adapt (or be adapted) to changes in the environmentsé&péeration of concerns, de-
picted in Figure 3.1, leads to code that is easier to mair@athevolve to incorporate new

adaptive functionality.

Adaptive Code
= —
— Application Code = Application Code
= = / High-Level Middleware
High-Level Middleware N ==
= |:> = = MetaSockets ~ = ~
JUM JUM
Operating System Operating System

Figure 3.1: Separation of concerns using MetaSockets.

This chapter describes the internal architecture and tkeatipn of MetaSockets and
presents a case study in the use of MetaSockets to suppaotstitehming over wireless
channels. The case study, in which iPAQ handheld computersised as audio “com-
municators,” illustrates how MetaSockets interact withestadaptive components, such

as decision makers and event mediators, to realize runadaptability in real-time com-
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munication services. The main contribution of this workasshow the effectiveness of
programming language support in the development of adpsatitware and, through the
case study, to reveal several subtle design issues thatméedaddressed in the design of
such software.

The remainder of this chapter is organized as follows. 8e@&il provides background
information on the Adaptive Java programming language.€dctiSn 3.2, we describe the
design and implementation of a MetaSocket variation thaased on the Jawdulticast-
Socket class. Section 3.3 discusses a case study in the use of M&&tSaohat supports
adaptive error control on wireless audio channels. Se@&idrpresents results of experi-
ments that demonstrate the effectiveness of the proposttdsein adapting to dynamic
changes in packet loss rate. Section 3.5 discusses relatkdamd Section 3.6 summarizes

this chapter.

3.1 Adaptive Java Background

Adaptive Java [49] is an extension to Java that adds befavieitection to Java’s struc-
tural reflection, by introducing new language constructBese constructs are rooted in
computational reflection [30, 82], which refers to the abitf a computational process to
reason about (and possibly alter) its own behavior. A kayasgbat arises in the application
of reflection to middleware platforms is the degree to whiwh $ystem should be able to
change its own behavior. A completely open implementatioplies that an application
can be recomposed entirely at run-time. In the extremehaltiefault components of the
system can be destroyed and new ones instantiated, suctih¢hgoal of the base-level
computation is changed (A spreadsheet can be recomposetidsoaplayer!). On the
other hand, limiting adaptability also limits the ability the system to survive adverse
situations.
The basic building blocks used in an Adaptive Java prograc@nponentswhich in

this context can be equated to adaptable classes. The kgnaprming concept in Adaptive
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Java is to provide three separate component interfacedooperforming normal impera-
tive operations on the objeatdmputatiof), one for observing internal behavion{rospec-
tion), and one for changing internal behaviortércessioj Operations in the computation
dimension are referred to asvocations Operations in the introspection dimension are
calledrefractions they offer a partial view of internal structure and behavit are not
allowed to change the state or behavior of the componentraflpes in the intercession
dimension are callettansmutationsthey are used to modify the computational behavior
of the component.

An existing Java class can be converted into an adaptablpaoent in two steps. In
the first step, @ase-levelAdaptive Java component is constructed from the Java class
through an operation calleabsorption which uses thabsorbs keyword. As part of the
absorption procedure, mutable methods caiteacationsare created on the base-level
component to expose the functionality of the absorbed clas®cations are mutable in
the sense that they can be added to and removed from existmganents at run time
using meta-level transmutations. In the second stegiaficationenables the creation of
refractions and transmutations that operate on the basparmnt. Meta components are
defined using thenetafy keyword. The meta-level can also be given a meta-level (meta
meta-level), which can be used to refract and transmute #ta-favel. In theory, this
reification of meta-levels for other meta-levels could awne indefinitely [30]. Example
code is provided in Section 3.2.2.

Adaptive Java [49] is implemented using CUP [135], a parseegator for Java. CUP
takes the grammar productions for the Adaptive Java exieasind generates an LALR
parser, called ajc, which performs a source-to-sourcearsion of Adaptive Java code into
Java code. Semantic routines were added to this parser Isaicthé generated Java code

could then be compiled using a standard Java compiler.
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3.2 MetaSocket Design and Implementation

In this section we describe the architecture and operafidhetaSockets. Our discussion
is limited to particular types of MetaSockets designed toegice the quality of service for
multicast communication streams. However, the MetaSatketel is general: MetaSock-
ets can also be used for unicast communication and can loeetito provide adaptive
functionality in other cross-cutting concerns, such asisgg energy consumption, and
fault tolerance.

Figure 3.2 shows the absorption of a J&udticastSocket base-level class by$endM-
Socket base-level component, and the metafication of this compdoneaMetaSendM-
Socket meta-level component. Figure 3.2(a) depicts a MubicastSocket class and a
subset of its public methodseceive(), send(), close(), joinGroup(), andleaveGroup(). Fig-
ure 3.2(b) shows &endMSocket component, which is designed to be used asrad-only
multicast socket. Th8endMSocket componenabsorbghe JavaMulticastSocket class and
implementssend() andclose() invocations that can be used by other components. Other
methods of the base-level class are occluded. A link betweeanvocation and a method
indicates a dependency. For example,déed() invocation depends on tend() method,
because its implementation calls that method. Figure Bs¥{{ows aMetaSendMSocket
component, which metafies an instance of #emdMSocket component and provides a
refraction,getStatus(), and two transmutation#sertFilter() andremoveFilter(). The use
and operation of these primitives will be explained shortly

In a similar manner, eceive-onlyMetaSocket can be created for use on the receiving
side of a communication channel. TRecvMSocket base-level component absorbs a Java
MulticastSocket class. In addition to theeceive() andclose() invocations, this component
also providegoinGroup() andleaveGroup() invocations, which are needed for joining and
leaving an IP multicast group. All these invocations dependheir respective counter-
parts in the JavMulticastSocket class. TheMetaRecvMSocket metafies an instance of

RecvMSocket component and provides the same refractions and transongais does the
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Figure 3.2: MetaSocket absorption and metafication: (a5 MaMicastSocket as the base-
level class; (bBendMSocket as the base-level component; ftgtaSendMSocket, a filter-
oriented meta-level component.

MetaSendMSocket component. The code foetaSendMSocket and MetaRecvMSocket
can be loaded at run time, using the J&lass class and Javeeflection package. This

dynamic loading of adaptive code enables Adaptive Javaagipins to adapt to unantici-

pated changes at run time.

3.2.1 Internal Architecture and Operation

Figure 3.3 illustrates the internal architecture of bothMataSendMSocket and a
MetaRecvMSocket, as configured in our study. In this metafication, packetspassed
through a pipeline ofilter components, each of which processes the packet. Example
filter services include: auditing traffic and usage pattetrascoding data streams into
lower-bandwidth versions, scanning for viruses, and immgleting forward error correc-
tion (FEC) to make data streams more resilient to packet Itssome cases, such as
auditing, a filter can act alone on either the sending or tbeiveng side of the channel. In
other cases, such as FEC, modification of the packet streiodirced by a filter on the
sender must be reversed by a peer filter on the receiver. lingalementation, when a
packet is processed by a filter, an application-level hemderepended to the packet. On
the receiver, these headers identify the processing orakfiléers required to reverse the

transformations applied by the sender.
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Figure 3.3: MetaSocket internal architecture: N#taSendMSocket, a send-only meta-
morphic multicast socket; (yetaRecvMSocket, a receive-only metamorphic multicast
socket.

Packet Buffers. The set offilter components configured in a MetaSocket pipeline ex-
change packets via a setrRdcketBuffer components. Each filter uses a source and destina-
tion packet buffer. Since a packet buffer may be used by plalthreads, its invocations,
including get() and put(), are defined asynchronized. All filters in the filter pipeline,
execute concurrently, where each filter retrieves a pactist its source packet buffer, pro-
cesses it, and places it into its destination packet buffiee destination packet buffer of a

filter in the pipeline is either the source packet buffer & tiext filter olastPacketBuffer.

Inserting and Removing Filters. The transmutationiasertFilter() andremoveFilter() are
used to change the filter configuration, anddbeStatus() refraction is used to read the cur-
rent configuration. ThimsertFilter() transmutation consists of three operations. First, it sets
the source packet buffer of the next filter in the pipelinénernew filter's destination packet

buffer. Next, it sets the new filter's source packet buffethi® destination packet buffer of
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the previous filter in the pipeline. Finally, it starts thexnilter. TheremoveFilter() trans-
mutation also consists of three operations. First, it stbpdilter that should be removed.
Next, it flushes all the packets out of the filter’s destinafi@cket buffer and destroys the
filter. Finally, it removes the filter from the pipeline andséhe source packet buffer of
the next filter to the destination packet buffer of the prasidilter in the pipeline. The

getStatus() returns a list of filters IDs currently configured in the pipel

Sender Operation. Let us consider the sender, as shown in Figure 3.3(a). Airedf
metafication, &endMSocket component is encapsulated by thletaSendMSocket com-
ponent. Among other actions, tkend() invocation ofSendMSocket is replaced by a new
send() invocation defined by the meta-level component. After measifon, any call to the
base-levekend() invocation is delegated to the meta-lesehd() invocation. This invoca-
tion adds aerminator headeto the datagram packet it receives, which identifies packets
that are ready for delivery to the application by the reaeiwext, the meta-levedend()
invocation stores this packet fitsstPacketBuffer (the first packet buffer of the pipeline).
Initially, both firstPacketBuffer andlastPacketBuffer refer to the same packet buffer. While
lastPacketBuffer may change as new filters are inserted, always pointing ttattgacket
buffer in the pipeline firstPacketBuffer remains fixed. WhersendMSocket is metafied
by MetaSendMSocket, a thread is created and assigned toSbhedMSocket send() invo-
cation. This thread loops, retrieving a packet frastPacketBuffer, creating a datagram
packet, and passing it to the original base-lesegld() invocation, which in turn transmits
the packet to the multicast group using sead() method of the underlyinglulticastSocket

base class.

Receiver Operation. On the receiver, as shown in Figure 3.3(b)ylataRecvMSocket
encapsulates a base-le®alcvMSocket component. The receiver can be added to the mul-
ticast group, either before or after metafication, by cgllis joinGroup() invocation. Once

metafied, a thread is assigned to BervMSocket receive() invocation. The thread loops
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continuously, callingeceive() and placing the returned packetfirstPacketBuffer. The
order of filters on the receiver is the mirror image of that ba $ender with function in-
verted. Each filter in the pipeline processes a packet frgnsatirce packet buffer and
places it in its destination packet buffer. Similar to 8end() invocation on the sender,
metafication replaces the base-lexaleive() invocation with the meta-levekceive() in-
vocation defined byvetaRecvMSocket. Instead of calling th&ecvMSocket receive() in-
vocation, theMetaRecvMSocket receive() invocation retrieves packets directly fraast-
PacketBuffer. Before returning the packet to the caller, however,rthweive() invocation
checks the packet’s MetaSocket header. If a terminatordreadound at the beginning of
the packet, thereceive() removes this header and returns the original packet to tlez.ca
Otherwise, additional filter processing needs to be pertorion the packet before deliv-
ering it to the application. In this caseceive() generates &ilterMismatchEvent event
containing the packet and the position of the requifé@r in the filter pipeline. (Every
Filter at the receiving side performs a similar task and carag the filter ID of the next
packet to its ID.) This event is sent to tBentMediatoy a singleton component in each
addresss space that decouples event generators from stengeis [136]. Theeceive()
invocation waits until the event has been handled, meamhiagthe needed filter has been
inserted in the pipeline using thesertFilter() transmutation. Additional details on event

handling are discussed in the next section.

3.2.2 Syntax of Absorption and Metafication

Figure 3.4 shows simplified Adaptive Java code for $eadMSocket component. A con-
structor is defined for this component that creates a MeiticastSocket and sets it as the
base-level object for this component (lines 4 to 6). Pleate tihat the base-level object is
treated as a secret of the base-level component. A comptranises th&endMSocket
component does not necessarily need to know anything aheutiriderlyingMulticast-

Socket or its interface. Two invocationsend() andclose() are defined, but they simply
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call their associated methods from the base object (lines12}. The code foRecvM-
Socket is similar. Once definedSendMSocket and RecvMSocket can be used via their

invocations.

public componentSendMSocket
absorbsjava.net.MulticastSocket {

[* constructor */
public SendMSocket(...) {
setBas¢new MulticastSocket(...));}

[* invocations */

public invocation void send(...) {
10 basesend(...); }

11 public invocation void close() {
12 baseclose(); }

13 1

O©CoO~NOOUITA WN -

Figure 3.4: Excerpted code f@endMSocket.

The metafication of these base-level components can be deftrdevelopment time
or later, at run time. Simplified code fimetaSendMSocket is shown in Figure 3.5. At
any point during the execution of the application, a runréegdMSocket component can
be metafied by calling its constructor (lines 3 to 5). Thednst ofSendMSocket passed
to the constructor of this meta-component is designatetieabdse-level component. As
described earlier, in addition to refractions and transtoihs, an invocatiorsend(), is re-
defined in this meta-level component (lines 7 to 9). Definimgw&@ocation at the meta-level
is used to replace an invocation of the base-level compohehis example, the new in-
vocation does not call the JavaulticastSocket send() method. Instead, it places the packet
in firstPacketBuffer defined as a private field of this meta-component (line 23pthAer pri-
vate field filterPipeline, is an instance ghava.util.Vector and keeps track of all the
filters currently configured in theletaSendMSocket (line 22). The refractiogetStatus()
returns a byte array containing the IDs of these filters ¢lib& to 13). The transmutations
insertFilter() andremoveFilter() are used to insert and remove filters at specified positions

in the filter pipeline (lines 15 to 19). The code figletaRecvMSocket is similar to that
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of MetaSendMSocket. In this case, however, theceive() invocation is redefined in the
meta-level. In the new definition of this invocation, a padkem thelastPacketBuffer , if

available, is delivered to the caller.

public componentMetaSendMSocket metafy SendMSocket {

* constructor */
public MetaSendMSocket(SendMSocket s) {
setBasés); }

* replacing the SendMSocket.send() */
public invocation void send(...) {...
firstPacketBuffer.put(packet); ...}

OCO~NOOUITAWNPEF

11 I* refractions */
12 public refraction byte[] getStatus() {

13 return filterPipeline.getStatus(); }

14

15 [* transmutations */

16 public transmutation void insertFilter(int pos, Filter f) {...
17 filterPipeline.add(pos, f); ...}

18 public transmutation Filter removeFilter(int pos) {...
19 return filterPipeline.remove(pos); }

20

21 [* private fields */

22 private Vector filterPipeline = new Vector();

23 PacketBuffer firstPacketBuffer = new PacketBuffer();
24 3

Figure 3.5: Excerpted code fotetaSendMSocket.

3.3 Case Study: Adapting an Audio Streaming Applica-
tion

The JavaMulticastSocket class is used in many distributed applications. The Metk&sc
described in the previous section provide the same imperatinctionality to applica-
tions and can be used in place of regular Java sockets. Isghi®n, we use an example
Adaptive Java application to demonstrate how MetaSoclkaisfurther provide adaptive
functionality by interacting with other supporting comgmts, such as decision makers
and event mediators. A key concept in this approach is thatattaptive functionality,

whether it be related to quality-of-service, fault tolezanor security, is not tangled with
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the application code. Rather, the “base” application caskswnly invocations provided
by MetaSockets, while the code that manipulates the behal/MetaSockets is localized.
This separation of concerns, depicted in Figure 3.6, leadsde that is easier to maintain
and evolve to incorporate new adaptive functionality. la following example, we use
MetaSockets to support adaptable quality-of-service bgtreg to changes in the quality

of the wireless channel.

MulticastSocket

Adaptive Logic
(DM, FM, ...)

Java Virtual Machine

Figure 3.6: Example of separation of concerns using MetaSec

3.3.1 ASA Architecture and Operation

In this study, we modified an audio streaming applicationAA® use MetaSockets in-
stead of regular Java sockets, and we added components &gendne adaptive behavior.
We then experimented with ASA by streaming live audio fromeakdop workstation to
multiple iPAQ handheld computers over an 802.11b wirelesallarea network (WLAN).

The experimental configuration is depicted in Figure 3.7.

‘- Audio Stream ((<->>>> /’,,

-~
.
-~

Wired Access Wireless
Sender Point Receivers

Figure 3.7: Physical experimental configuration.

The ASA code comprises two main parts. On the sending statieRecorderuses
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the javax.sound package to read live audio data from a system’s microphoriee T
audio encoding uses a single channel with 8-bit samplesREgerder multicasts this data
to the receivers via a wireless access point usingsénel() invocation of a MetaSocket.
Each packet contains 128 bytes, or 16 milliseconds of auaka; delatively small packets
are necessary to reduce jitter and minimize losses. On e&eliving station, th@layer
receives the audio data using tleeeive() invocation of a MetaSocket and plays the data
using thgavax.sound package.

Figure 3.8 illustrates the major parts of the receiving siflehe ASA; the sending
side has a similar structure. Please note that we introdaeenotations to distinguish
the type of interactions among components (One for invonatand another for refrac-
tions and/or transmutations). Most of the receiving syséestutes on an iPAQ handheld
computer, but one program, calledieader, executes on a desktop workstation. The two
systems communicate over the WLAN. In Adaptive Java, eachesd space comprises
one or more components, each of which in turn may compriserakmteracting compo-
nents. The program running on the iPAQ in Figure 3.8 comprise main components:
a Player, a DecisionMaker, an EventMediator, a ComponentLoader, and aMetaRecvM-
Socket. The MetaRecvMSocket contains several components that together implement the
filter pipeline. As indicated, some of these components agtafied and therefore offer
refractive and transmutative interfaces, whereas otlrersimple base-level components
that offer only invocations to other components. The flow\wrés among components,
via anEventMediator, is also shown.

A DecisionMaker (DM) is an optional subcomponent within any Adaptive Javen€o
ponent. According to a set of rules applied to the currentasion, a DM controls all of
the nonfunctional behavior of the subcomponents of itsaioet component. DMs are
arranged hierarchically, such that a given DM inheritssdlem a higher-level DM and
might provide rules to lower-level DMs. (In our simple exdmppplication, the main

component on the iPAQ contains a single DM.) Depending orules and the current sit-
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Figure 3.8: Interaction among components in the Audio $treg Application.

uation, a DM might decide to metafy or change the configunadfcan existing component
by invoking transmutations of the component. A transmatathight simply set the value
of an internal variable, or might involve the insertion om@val of a subcomponent (such
as a filter, in our example). In the insertion case, the DM actisttheComponentLoader
(CL) and requests the needed component. The CL is unique #oldmess space. If the
CL does not find the component in its cache, it sends a reqoestbmponentrader,
which may reside on another computing system. The Tradarn®ta component im-
plementation corresponding to a syntactic or semantic compt request. In our current
implementation, we use simple identifiers to search for camepts. Eventually, the CL
uses thgava.lang.ClassLoader to load this implementation, creates an instance of

this class, and returns it to the local DM. The ability to dyneally load components is
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especially important for mobile devices, where resourcegtrbe limited and overhead
should be minimized.

Components can interact directly via invocations, refoexst and transmutations. To
support asynchronous interactions, we implemented ant eeevice. AnEventMediator
(EM) decouples event generators from eMesténers[136]. The ASA sender and receiver
each contain a single EM that handles all events in the réspgrogram. A listener regis-
ters its interest in an event by calling the ENVEgjisterinterest() invocation. When an event
is detected by a component, it calls tiify() invocation of the EM. The EM records the
event and subsequently alerts all listeners by calling tiwify() invocations. To complete
the earlier discussion on missing filters, let us considersituation in which the thread
in the receive() meta-level invocation detects that another filter needsetodnfigured in
the pipeline. AFilterMismatchEvent event is sent to the EM, which forwards it to the DM.
The DM decides to insert a new filter based on informationiedrby the event and the
pipeline status retrieved using thetStatus() refraction. The DM requests the CL to load

the missing filter, after which the DM inserts it at the projmeation in the pipeline.

3.3.2 Filter Components

In this case study, we used two types of filters in MetaSockétse first type provides
forward error correction (FEC) encoding and decoding fiometlity. The second type is
used to monitor packet loss conditions and to forward evaitgerest to the DM. In turn,
the DM may decide to insert, remove, or modify an FEC filter.

FEC is widely used in wireless networks, where factors schignal strength, inter-
ference, and antennae alignment produce dynamic anddoedéipendent packet losses.
In current wireless LANS, these problems affect multicastreections more than unicast
connections, since the 802.11b MAC layer does not providelkvel acknowledgements
for multicast frames. FEC can be used to improve reliabbigyintroducing redundancy

into the data channel. Our filters use ) block erasure codes [137]. As shown in Fig-
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ure 3.9,k source packets are converted into a group @hcoded packets, such that any
k of then encoded packets can be used to reconstruck thaurce packets [137]. These
codes are ideal for wireless multicasting, since a singi@&parity packets can correct

different packet losses among receivers.
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X

Figure 3.9: Operation of block erasure code.
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The FECEncoder and FECDecoder components are extended from thiger compo-
nent and use a Java FEC package . FBEEncoder runs on the sender. This component
retrievesk packets from its source packet buffer, generates: parity packets, and places
the originalk packets plus the — £ parity packets into its destination packet buffer. The
FECDecoder runs at the receiving side and retrieves up fmackets from its source packet
buffer, decodes them if possible, and places the recovergohal & packets in its desti-
nation packet buffer. Any unneeded parity packets are sidmpped. If fewer thark
out of then packets arrive, for a given FEC group, then #®CDecoder retrieves any
data packets and places them into its destination packirbiiheMetaFECEncoder and
MetaFECDecoder, shown in Figure 3.10, metafy tiECEncoder andFECDecoder com-
ponents, respectively. Each providegeaNK() refraction andetNK() transmutation, which
are used at run time to read and set the values afid k. If a packet arrives with a dif-
ferentn or k£ value than is expected, tiMetaFECDecoder fires aFECMismatchNKEvent
event. In response, the DM ussstNK() transmutation and adjusts the values#andn
appropriately.

The second type of filter used in our case study monitors svetdted to packet loss
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Figure 3.10: Design of forward error correction filters.

rate and reports these to the DM. We developed two sets aifilheSendNetLossDe-
tector andRecvNetLossDetector filters monitor the raw loss rate of the wireless channel.
The SendAppLossDetector andRecvAppLossDetector filters monitor the packet loss rate
as observed by the application, which may be lower than twvepiacket loss rate due to
the use of FEC. The metafied versions of these filters is showdgure 3.11. In our ex-
perimentsSendAppLossDetector is used as the first filter on the sender side, RadvAp-
pLossDetector is used as the last filter on the receiver. ConverssdydNetLossDetector
is the last filter on the sender, aR&cvNetLossDetector is the first filter on the receiver.
The sender’s filters simply prepare packets by prependimgddr containing the identifier
of the corresponding peer filter on the receiver. Each filteth@ receiver uses sequence
numbers to calculate the packet loss rate over a specifiedbwim the packet stream and
stores this information in a vector. Metafying these congras provides refractions and
transmutations to read the current loss rate and to set agehgper and lower thresholds
with respect to the loss rate.

The sender’'s DM (the global DM) and the receiver's DM (theald@M) work together
and use a simple set of rules to make decisions about the tittersfand changes in their
behavior. If the loss rate observed by the application bese a specified threshold, then

the global DM can decide to insert an FEC filter in the pipelimenodify the(n, k) pa-
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Figure 3.11: Design of packet loss monitoring filters.

rameters of an existing FEC filter. On the other hand, if tive packet loss rate on the
channel drops below a lower threshold, then the level ofmddncy may be decreased, or
the FEC filter may be removed entirely. To realize this betvathe local DM uses the
setUpperBound() and setLowerBound() transmutations of the metafied filters. The local
DM also configures th&letaRecvAppLossDetector to generate atinacceptableLossRa-
teEvent if the observed loss rate rises too high, by callingsdtnform(true) transmutation.
When this event fires, the global DM will eventually take aotand attempt to reduce the
observed loss rate by inserting an FEC filter or changing #rarpeters of an existing
FEC filter. After firing such an event, the local DM cadkstinform(false) for the MetaRec-

vAppLossDetector to suppress further events from this filter. At this time, ibeal DM
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also callssetinform(true) for the MetaRecvNetLossDetector, SO that anAcceptableLoss-
RateEvent will fire if the network loss rate returns to a satisfactoryde When this event
fires, depending on its rules, the global DM can decide toaedhen-to-% ratio or to re-
move the FEC filter entirely. As in the first case, the local Dbbaallssetinform(false) for

the MetaRecvNetLossDetector to suppress further events. Any time a filter is inserted or
removed on the senderfFiterMismatchEvent will eventually fire on the receiver, causing

the filter pipeline at the receiver to be adjusted accorging|

3.4 Performance Evaluation

To evaluate the effect of MetaSockets on the performancedidatreaming, we conducted
several experiments using ASA. First, we report the efféaising MetaSockets in an
environment with simulated packet loss, followed by reswith real packet loss on a

mobile computing testbed.

3.4.1 Adapting to Simulated Packet Loss

One well-known difficulty in conducting experimental resgain wireless environments
is the ability to reproduce results, given the highly dynamature of the medium [138].
In this set of tests, we created artificial losses by droppiackets in software according
to a predefined loss function. In this way, we are able to comfiee effects of different
parameter settings on the behavior of MetaSockets.

In this experiment, the Recorder program is configured torce8000 samples per sec-
ond of live audio, using a single channel at 8 bits per sampémples are collected into
128-byte packets packets, that is, each packet containslli€nonds of audio data. We
used(8, 4) FEC filters. The upper threshold for tRecvAppLossDetector to generate an
UnAcceptableLossRateEvent is 30%, and the lower threshold for tRecvNetLossDetec-
tor to generate aAcceptableLossRateEvent is 10%.

Figure 3.12 plots packet loss as observed by the two losstorong filters on the re-
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ceiver. The Network Packet Loss curve experiences two geiad high packet loss. The
Application Packet Loss curve shows the effect of dynamseition and removal of the
FEC filter, according to the rules described in Section 3\8/Ben the program begins exe-
cution, the sender insertssendAppLossDetector filter into its MetaSocket, which quickly
causes the receiver to insert the correspondiagvAppLossDetector. At packet set 8
(meaning the 800th packet), tRecvAppLossDetector filter detects that the loss rate has
passed the upper threshold. The filter fireSUarAcceptableLossRateEvent, causing the
local DM to request an FEC filter. The global DM decides, basedts set of rules, to
insert two filters, arFECEncoder filter with default parameters = 8 andk = 4, and

a SendNetLossDetector filter, at the second and third positions in thietaSendMSocket
filter pipeline, respectively. When packets containingtteaders of the two new filters be-
gin arriving at the receiver, thRecvAppLossDetector detects a packet header that does not
match its own identifier. Therefore, it firesRiterMismatchEvent at two different times,
one for each new packet type. These events result in thdimsef aRecvNetLossDetec-

tor filter and aFECDecoder filter at the first and second positions in tiletaRecvMSocket
filter pipeline, respectively.

As shown in Figure 3.12, the, 4) FEC code is very effective in reducing the packet
loss rate as observed by the application from packet set &dkep set 45. At packet set
45, theRecvNetLossDetector detects that the loss rate has dipped below the 10% lower
threshold, so it fires acceptableLossRateEvent. In response, the local DM sends a
request to the global DM to remove the FEC filter. The DM coemlisince under low-
loss conditions, the 100% overhead of @n4) FEC code simply wastes bandwidth. It
also removes th8endNetLossDetector filter in order to minimize data stream processing
under favorable conditions. The arrival of packets withiwet two headers produces two
FilterMismatchEvent events at the receiving side, and the peer filters are remo&eda
result, the loss rate experienced by the application isnatlj@d same as the network loss

rate. At packet set 60, the FEC filter is again inserted, duedlo loss rate, and it is later
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Figure 3.12: MetaSocket performance in an environment xgigh packet loss.

removed at packet set 80. Considering Figure 3.12 as a wvelsee that the loss rate
observed by the application is very low, with the exceptidbtme brief spikes. In order
to minimize overhead, FEC is applied only when necessaris @&ample illustrates how
Adaptive Java components can interact at run time to recemfite system in response
to changing conditions. While a task such as FEC filter mamagé can be implemented
in an ad hoc manner, run-time metafication in Adaptive Jawbks such concerns to be

added to the system after it is already deployed and exegutin

3.4.2 Adapting to Real Packet Loss

Figure 3.13 provides a trace of an experiment, with real paldsses, that demonstrates
how MetaSockets adapt to loss rates due to user motion. @nsitsat a desktop worksta-

tion in our research lab and speaks, while another lister@0RAQ as he moves about an
adjacent hallway. The loss rate is very high while the userasing. In this particular test,

the iIPAQ user stood outside the lab for approximately 30 sgésowalked up and down
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the hall for another 90 seconds, then stood relativelyfstilanother 30 seconds. The up-
per threshold for th&ecvAppLossDetector to generate alinAcceptableLossRateEvent is
10%, and the lower threshold for tRecvNetLossDetector to generate aAcceptableLoss-
RateEvent is 1%. Figure 3.13 plots the packet loss as observed by théosganonitoring
filters on the receiver iPAQ. When the program begins exenuthe sending process in-
serts aSendAppLossDetector filter into its MetaSocket, which quickly causes the receive
to insert the correspondirigecvAppLossDetector. As shown in the Figure 3.13, the loss
rate is low at the beginning of the test, then increases tuvweken the user starts walking.
TheRecvAppLossDetector filter detects that the loss rate has passed the upper thdextho
10% and fires akunAcceptableLossRateEvent. The DM decides, based on its set of rules,
to insert two filters, atFECEncoder filter with default parameters,(= 20 andk = 4 in
this particular test), and &endNetLossDetector filter. When packets containing the head-
ers of the two new filters begin arriving at the receiver, ReevAppLossDetector detects
a packet header that does not match its own identifier. It &redterMismatchEvent at
two different times, one for each new packet type. Thesetsvesult in the insertion of a
RecvNetLossDetector filter and aFECDecoder filter in the opposite order as at the sender.
As shown in Figure 3.13, the0, 4) FEC code is effective in reducing the packet loss
rate as observed by the application. The average loss r#te imbsence of FEC filters is
about 16%, while in the presence of FEC filters the loss rategoved to 3.5%. Near
packet 15,200 thRecvNetLossDetector detects that the loss rate has dipped below the 1%
lower threshold, so it fires afcceptableLossRateEvent. In response, the local DM sends a
request to the global DM to remove the FEC filter. The DM coeglsince under low-loss
conditions, the high overhead of &0, 4) FEC code simply wastes bandwidth and energy.
It also removes th8endNetLossDetector filter in order to minimize data stream processing
under favorable conditions. The arrival of packets withitwet two headers produces two
FilterMismatchEvent events at the receiving side, and the peer filters are remo&eda

result, the loss rate experienced by the application isnatlj@d same as the network loss
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Figure 3.13: MetaSocket performance in an environment rgigh packet loss.

rate for the remainder of the experiment.

3.5 Related Work

In this section, we identify and discuss three categorigs@jécts related to Adaptive Java
and MetaSockets.

The first category includes middleware projects that supgdaptive behavior in Java
programs by extending the Java Virtual Machine. Examplelide Iguana/J [98], Meta
Java [96], JDrums [139], Guarana on Java [140], PROSE E8#],R-Java [141]. A ma-
jor benefit of implementing adaptation in this way is that géxecution of virtually any
bytecode instruction can be intercepted within a custochidéM. In contrast, only mes-
sages originally targeted for Java sockets can be intexdeptd adapted dynamically using
MetaSockets. However, some researchers have noted tharéimed interception at the
JVM level can produce significant performance overhead ekample, according to [98],
the time for common operations such as creating new objactbe increased by an order

of magnitude. Another advantage of JVM-supported adaptas that it is usually trans-
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parent to the target Java program (no code modification reduiOn the other hand, using
a custom JVM tends to limit portability. Since our implemegian of Adaptive Java uses
source-to-source compilation, MetaSockets can execopesaty standard JVM. Moreover,
to address the transparency issue, we developed a genksat@work, called TRAP/J,
which enables adaptable components such as MetaSocketsatoven into existing Java
programs without modifying the application source codeAPR] is introduced in the next
chapter.

The second category includes projects that use aspect@digorogramming [1] to
weave adaptive code into functional code. Although manyegts in the AOP commu-
nity address compile-time weaving [103], a growing numkesrojects focus on run-time
composition [27, 32, 48, 107, 109, 142-147]. By defining aextibn-based component
model, Adaptive Java also supports run-time reconfigunatdorelated concept is compo-
sition filters [78], which provide a mechanism for disent@mgthe cross-cutting concerns
of a software system. This system declares filters thataafgrmessages received and sent
by objects. As such, messages can be massaged and checkedlbey are delivered to an
object, separating aspects, such as security authenticatbounds checking, from the ob-
jects that send and receive these messages. Adaptive dppatsgach to composition using
encapsulation could be used to instantiate a messagenfjjteéeisign where components are
extended and invocations added such that a call to an inencabuld be filtered through
subsequent encapsulation layers. However, such a desigid wot have the source code
expressiveness provided by the declarative specificatioguage in composition filters.

The third category of related work includes projects thike Adaptive Java, extend
the Java syntax and provide new constructs to allow deveddpevrite adaptable applica-
tions more expressively. Examples include Open Java [HREENDS [94], PCL [97], R-
Java [141], and Handi-Wrap [149]. Open Java provides aroagprsupporting customized
compilers that define new compile-time MOPs [150]. For exiaqo support writing ex-

pressive programs that use a set of design patterns, Opamdables a developer to build
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a customized compiler that understands the new syntax. ThepPoject [97] also focuses
on language support for run-time adaptability. Our conadgtwrapping” classes with
base components is similar to the usedofaptorsused in PCL. However, modification of
the base class in PCL appears to be limited to changing Vvanalues, whereas Adaptive
Java transmutations can modify arbitrary structures oc@oiponents. Moreover, by com-
bining encapsulation with metafication, Adaptive Java canded to realize adaptations in

multiple meta-levels.

3.6 Summary

As a step toward transparent shaping, in this chapter weestuide effectiveness of new
programming language constructs and keywords to sepazagtappment of adaptive code
from functional code. We used Adaptive Java to develop aptaiée component, called
the MetaSocket, which can be used in existing socket-basedapplicationdetaSockets
can be reconfigured dynamically in response to externalditihrough the use of a filter
pipeline. The filter pipeline allows insertion and removaélfiiers dynamically. Since
the core MetaSocket code remains intact during the tuninggss, we classify them as
repeatedly-tunable middleware (the corresponding taxgnig introduced in Section 2).
The filters in MetaSockets can be developed by third partiescan be independent of
the functional code of an application. In other words, Me@E&ts provide transparency
with respect to adaptive code. The code for MetaSocketsngpded by the Adaptive
Java compiler, which is a source-to-source compiler, sedbelting Java program can be
compiled by the standard Java compilers and run by the StAJYM.

In a case study, we used MetaSockets to support run timeataapin iPAQ handheld
computers used as audio “communicators.” We describedtail dew adaptive behavior
is implemented and how MetaSockets interact with other @gapomponents, including
decision makers and event mediators. Results from expetinam a mobile computing

testbed demonstrate the effectiveness of these methodsponding to dynamic wireless
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channel conditions. While this chapter demonstrated th@icgtion of MetaSocket to
a specific communication service, we emphasize that the thdafava mechanisms are
general: any component in the system can be metafied anceddatptun time.

Referring back to the transparent shaping programming modi@duced in Chapter 1
and illustrated in Figure 1.1, Adaptive Java can be usedddiuymre an adaptable program
family from an existing Java program. For example, if wetstdath an existing socket-
based Java program, first we can produce an adapt-readgverfgshis program by mod-
ifying all lines in the program that create an instance of dawya socket classes, and then
compiling the program using the Adaptive Java compiler. tNakrun time we can insert
and remove filters in the adapt-ready program to produce atkenbers of this adaptable
program family.

Although MetaSockets proved to be useful in supporting dyinadaptation, our study
of them revealed the following two issues. First, to incogte a MetaSocket into an exist-
ing program, we need to modify the program source code djrachich is not desirable.
Second, once the existing program is modified to use a Meka$Sostead of a Java socket,
dynamic adaptation is only possibéthin the MetaSocketq.g.,through the insertion and
removal of filters). In other words, we cannot replace oneiverof a MetaSocket with
another more appropriate version of the MetaSocket at me.t\We address these issues

in the next chapter.
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Chapter 4

Transparent Shaping of Object-Oriented
Programs

In this part of our study, we developed an extension of trareu shaping that can be
used to support dynamic adaptation in existing programsldped in class-based, object-
oriented programming languages. We call this programmiadetilransparent Reflective
Aspect Programming (TRAR)nlike Adaptive Java [49], TRAP does not require any direct
modifications to the existing programs.

As an extension of transparent shaping, TRAP provide a progring model to pro-
duce a family of adaptable programs from an existing prograonenable a developer to
balance the flexibility of dynamic adaptation and the penf@ance of adaptable programs,
TRAP employs a@wo-stepapproach to dynamic adaptation. Specifically, TRAP enables
the developer to select, at compile time, a subset of claegbe existing program to be
reflective at run time. We say a clasge$lectiveat run time if its behaviord.g.,the imple-
mentation of its methods) can be inspected and modified dipadlsn Many class-based,
object-oriented languages such as Java and C++ do not sugumbr reflective classes at
run time. Therefore, programs developed in these progragianguages are required to
be modified to accommodate dynamic reflection facilities.

To eliminate the need for direct modifications to an existonggram, TRAP uses
compile- and load-time program transformation techniq(esg., compile-time aspect

weaving [103], compile-time meta-object protocols [848]L4nd load-time meta-object
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protocols [48,147]). Software generator tools producedapaready version of the pro-
gram augmented with the required hooks. The hooks provelestitective facilities for the
selected classes required for dynamic adaptation. As thptadady program executes,
new behavior can be introduced to the program by insertiolhramoval of adaptive code
via interfaces to the reflective classes.

Extensive use of behavioral reflection in adaptable progriauturs unnecessary over-
head and in extreme cases every message sent to an objetenmistcepted and possibly
redirected [98]. To avoid this problem, TRAP enables a dgl to selecivhatshould be
reflective (called spatial selection [151]) at compile tiamelwhenthe reflection should be
active (called temporal selection [151]) at run time.

To validate these ideas, we developed TRAP/J, a prototygiartiation of TRAP for
Java programs. In this chapter, we focus on the operatiofR&PVJ and describe the de-
tails of the techniques used to generate adapt-ready pnsgram existing Java programs,
as well as their corresponding subfamily of adaptable @nog: In earlier work [109], our
group showed how to use aspect-oriented programming totsaly introduce behavioral
reflection into an existing program. However, the reflectised there iad hocin that the
developer must invent the reflective mechanisms and supgontfrastructure for adapta-
tion, and must create an aspect that weaves this infrastauictto an existing program. In
contrast, TRAP/J employssystemati@pproach to dynamic adaptation. TRAP/J generates
the required reflective infrastructure and weaves it intexsting program automatically.

The remainder of this chapter is organized as follows. 8eetil presents background
information. Section 4.2 describes the operation of TRABgLtion 4.3 presents a case
study, where we used TRAP/J to augment an existing audéassiing application with
adaptive behavior, enabling it to operate more effectiaglyoss wireless networks. Sec-
tion 4.4 categorizes related research projects, whichesddidynamic adaptation in dis-
tributed applications, and discusses how TRAP relatesamitFinally, Section 4.5 sum-

marizes this chapter.
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4.1 Background

Many approaches to developing adaptable software, inogu@RAP/J, use behavioral re-
flection, aspect-oriented programming, or a combinatidoodti. In this section, we explain

how these technologies are supported in Java.

4.1.1 Behavioral Reflection and Java

Unfortunately, Java by itself does not support behavioedllection. Java supports a
structural reflection through itgva.reflect package and thgava.lang.Class

class [152]. The Java reflection facilities enable inspectof a Java programe(qg.,
to determine the class of a given object, and the methods eafus$ fof that class) as
well as to perform limited operation®.Q., to get and set an object’s field value and
to invoke one of its methods using the method name provided sging of charac-
ters) at run time. Moreover, thierName() static method of thgava.lang.Class

allows dynamic class loading in Java programs. Althougha Jswpports structural
reflection, it does not support behavioral reflection [30].RAP/J and several other
projects [27, 49, 98,107,109, 140, 141, 148, 149, 151, 1548, Hiscussed in Section 4.4,

provide behavioral reflection in Java programs.

4.1.2 Aspect-Oriented Programming and Java

AspectJ103], used in TRAP/J, is a widely used AOP extension to JAvaaspect in As-

pectd is a class-like language element, which is used to laoze a crosscutting concern.
An aspect has two parts: advice and point@dyviceis an implementation of a crosscut-
ting concern and pointcutis a set of joinpoints, where the advice is wovenjofpoint

is an identifiable point in the execution path of an applaatsuch as a method call or an
access to a field. At compile time, a number of such aspectbeaelected to be woven
into a Java program using the AspectJ compiler, called aspesver, to produce a modi-

fied version of the program. As described next, TRAP/J us@&étd to augment existing
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Java programs with the necessary “hooks” to produce adaplyrversions of the existing

programs.

4.2 TRAP/J Operation

TRAP/J is an instance of TRAP in Java. To augment an existxg grogram with the re-
quired hooks, TRAP/J uses the compile-time aspect weasilities provided in AspectJ.

TRAP/J leverages Java structural reflection to supportmynadaptation.

4.2.1 Overview

TRAP/J operates in two phases. The first phase takes plaoengile time, when TRAP/J
converts an existing Java program into an adapt-ready @magFigure 4.1 shows a high-
level representation of TRAP/J operation at compile timiee @pplication source code is
compiled using the Java compilgavac), and the compiled classes and a file containing a
list of class names are input to an Aspect Generator and adRedl€lass Generator. For
each class name in the list, these generators produce oeetaspe wrapper-level class,
and one meta-level class. Next, the generated aspectsfaulive classes, along with the
original application source code, are passed to the Aspecthpiler @jc), which weaves
the generated and original source code together to produaeapt-ready application. The
second phase occurs at run time. New behavior can be inteddadhe adapt-ready appli-
cation using the wrapper- and meta-level classes (herthakferred to as the adaptation
infrastructure).

Figure 4.2 illustrates the interaction among the Java ®irMachine (JVM) and the
administrative consoles (GUI). First, the adapt-readyieggon is loaded by the JVM. At
the time each metaobject is instantiated, it registerff itgth the Java rmiregistry using a
unique ID. Next, if an adaptation is required, the compogaadhically adds new code to
the adapt-ready application at run time, using Java RMI teract with the metaobjects.

As part of the behavioral reflection provided in the adaptainfrastructure, a meta-object
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Figure 4.1: TRAP/J operation at compile time.

protocol (MOP) is supported in TRAP/J that allows intereapiand reification of method

invocations targeted to objects of the classes selectanhgite time to be adaptable.

4.2.2 TRAP/J Run-Time Model

To illustrate the operation of TRAP/J, let us consider a $application comprising two
classesService andClient, and three objectsclent, s1, ands2). Figure 4.3 depicts a
simple run-time class graph for this application that is pbamt with the run-time archi-
tecture of most class-based object-oriented languages.cléss library containService
andcClient classes, and the heap contadfient, s1, ands2 objects. The “instantiates” re-
lationship among objects and their classes are shown usstged arrows, and the “uses”

relationships among objects are depicted with solid arrows
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Figure 4.2: TRAP/J run-time support.

Figure 4.4 illustrates a layered run-time class graph mimtehis application. Please
note that the base-level layer depicted in Figure 4.4 isvadgnt to the class graph illus-
trated in Figure 4.3. For simplicity, only the “uses” retaiships are represented in Fig-
ure 4.4. The wrapper level contains the generated wrappsses for the selected subset
of base-level classes and their corresponding instandas.bd@se-level client objects use
these wrapper-level instances instead of base-levelcgeobjects. As showrsl ands?2
no longer refer to objects of the tyjgervice, but instead refer to objects of tyjservice-
Wrapper class. The meta level contains the generated meta-lewsedacorresponding to
each selected base-level class and their corresponditenoes. Each wrapper class has
exactly one associated meta-level class, and associatedeatch wrapper object can be
at most one metaobject. Please note that the behavior ofodgebt in response to each
message is dynamically programmable, using the generitadeixecution MOP provided
in TRAP/J.

Finally, the delegate level contains adaptive code thatdyaamically override base-

level methods that are wrapped by the wrapper classes. idajade is introduced into
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Figure 4.3: A simplified run-time class graph.
TRAP/J usingdelegateclasses. A delegate class can contain implementation fartan
trary collection of base-level methods of the wrapped elsssnabling the localization of
a cross-cutting concern in a delegate class. A composerrogingm metaobjects dynam-
ically to redirect messages destined originally to basetlimethods to their correspond-
ing implementations in delegate classes. Each metaokjactise one or more delegate
instances, enabling different cross-cutting concernsetddéndled by different delegate
instances. Moreover, delegates can be shared among diffeetaobjects, effectively pro-
viding a means to support dynamic aspects.

For example, let us assume that we want to adapt the behdwosacket object (in-
stantiated from a Java socket class such a3aveenet.MulticastSocket class) in an existing
Java program at run time. First, at compile time, we use TRABherators to generate the
wrapper and metaobject classes associated with the sdakst Blext, at run time, a com-
poser can program the metaobject associated with the sobjestt to support dynamic
reconfiguration. Programming the metaobject can be donetbyducing a delegate class
to the metaobject at run time. The metaobject then loads ¢legdte class, instantiates
an object of the delegate class, intercepts all subsequessages originally targeted to
the socket object, and forwards the intercepted messagkes tielegate object. Let us as-

sume that the delegate object provides a new implementitidhe send(...) method
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Figure 4.4: TRAP layered run-time model.

of the socket class. In this case, all subsequent messagfgsgend(...) method are
handled by the delegate object and the other messages aliedvéy the original socket
object. Alternatively, the delegate object could modifg thtercepted messages and then
forward them back to the socket object, resulting in a newabigin. TRAP/J allows the
composer to remove delegates at runtime, bringing the bbgtavior back to its original

implementation. Thus, TRAP/J is a non-invasive [155] apploto dynamic adaptation.
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4.3 Case Study: Transparent Shaping of ASA

To demonstrate how TRAP/J can be used to produce adaptalgeaprs from an existing
program without the need to modify the existing program sewode directly, we use
the same example application used in the previous Chaptar.cdmpleteness, a brief

description of ASA and our adaptation strategy is provided.

4.3.1 Example Application

ASA, introduced in Section 3.3.1, is an audio streaming iappbn designed to stream
interactive audio from a microphone at one network node ttipte receiving nodes. The
original application was developed for wired networks. Qoal is to adapt this application
to wireless environments, where the packet loss rate isrdygnand location dependent.

In this case study, we configured the experiments iradrocwireless network as
illustrated in Figure 4.5. A laptop workstation transmitsaudio stream to multiple wire-
less iPAQs over an 802.11b (11Mbps) ad hoc wireless localaeévork (WLAN). Please
note that unlike in wired networks, in wireless networkgdas such as signal strength, in-
terference, and antenna alignment produce dynamic antidonedependent packet losses.
In current WLANS, these problems affect multicast conrxgimore than unicast con-
nections, since the 802.11b MAC layer does not provide leviel acknowledgements for

multicast frames.

| Receiver

Sender / = :

Ad-Hoc
Wireless
Network

Figure 4.5: Audio streaming in a wireless LAN.
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Figure 4.6 illustrates the strategy we used to enable ASAl&pito variable channel
conditions in wireless networks. This is the same stratagiha one used in Section 3.4.
However, we used TRAP/J to modify ASfansparentlysuch that it uses MetaSockets in-
stead of Java multicast sockets. The particular MetaSaalagtation used here is the dy-
namic insertion and removal édrward-error correction(FEC) filters [137]. Specifically,
an FEC encoder filter can be inserted and removed dynamatdtye sending MetaSocket,
in synchronization with an FEC decoder being inserted amibved at each receiving
MetaSocket. Use of FEC under high packet loss conditionscesithe packet loss rate as
observed by the application. Under low packet loss conatillowever, FEC should be

removed so as not to waste bandwidth on redundant data.

1234 Sender Base Level Receiver e
rewsm (Tropped R
rappe rappe
Decodex Socket Meta Level Socket /Jecoder
\ Z A A
Java Java
Socket Java.net package Socket
JVM on _ ~ |JVMon
Windows XP [Java Virtual Machine | pamifiar Linux
iR Wireless Network R
[ —> Audio Packet Path —>x Packet Lost ]

Figure 4.6: Adaptation strategy.

4.3.2 Making ASA Adapt-Ready

Figure 4.7 shows excerpted code for the origbahder class. Thenain method creates a

new instance of th8ender class and calls iteun method. Theun method first creates an
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instance ofAudioRecorder andMulticastSocket and assigns them to the instance variables,
ar and ms, respectively. The multicast socketg) is used to send the audio datagram
packets to the receiver applications. Next,timemethod executes an infinite loop that, for

each iteration, reads live audio data and transmits thevikatae mulitcast socket.

1 public class Sender
2 |
3 AudioRecorder ar;
4 MulticastSocket ms;
5 public void run()
6 {...
7 ar = new AudioRecorder(...);
8 ms = new MulticastSocket();
9 byte[] buf = new byte[500];
10 DatagramPacket packetToSend =
11 new DatagramPacket(buf, buf.length,
12 target_address, target_port);
13 while (IEndOfStream)
14 {
15 ar.read(buf, 0, 500);
16 ms.send(packetToSend);
17 } /l end while ...
18 }
19 }//end Sender

Figure 4.7: Excerpted code for tisender class.

Compile-Time Actions. The Sender.java file and a file containing only th@va.net-
.MulticastSocket class name are input to the TRAP/J aspect and reflective @&tengr The
TRAP/J class generators produce one aspect file, namsatbing_MulticastSocket.aj (for
base level), and two reflective classes, namadpperLevel MulticastSocket.java (wrap-
per level) andvetaLevel MulticastSocket.java (meta level). Next, the generated files and
the original application code are compiled using the Aspeotnpiler gjc) to produce the
adapt-ready program. We note thaijé could acceptclass files instead ofjava files,
then we would not even need the original source code in oalenake the application

adapt-ready.
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Generated Aspect. The aspect generated by TRAP/J defines an initializaiodmtcut

and the correspondiregound advice for eaclpublic constructor of théulticastSocket
class. Anaround advice causes an instance of the generated wrapper clatsadnof

an instance oMulticastSocket, to serve thesender. Figure 4.8 shows excerpted code
for the generatedbsorbing_MulticastSocket aspect. This figure shows the “initialization”
pointcut  (lines 3-4) and its correspondiraglvice (lines 6-11) for theMulticastSocket
constructor used in th8ender class. Referring back to the layered class graph in Fig-
ure 4.4, thesender (client) uses an instance of the wrapper class instead dfdbe class.

In addition to handlingoublic  constructors, TRAP/J also definepeaintcut and an

around advice to intercept appublic final andpublic static methods.
1 public aspect Absorbing_MulticastSocket
2 A
3 pointcut MulticastSocket() :
4 call(java.net.MulticastSocket.new()) && ... ;
5
6 java.net.MulticastSocket around()
7 throws java.net.SocketException
8 : MulticastSocket()
9 |
10 return new WrapperLevel MulticastSocket();
11 }
12
13 pointcut MulticastSocket_int(int pO0) :
14 call(java.net.MulticastSocket.new(int))
15 && args(p0) && .. .;
16
17 I/ Pointcuts and advices around the final public methods
18 pointcut getClass(WrapperLevel_MulticastSocket
19 targetObj) :
20 e
21}

Figure 4.8: Excerpted generated aspect code.

Generated Wrapper-Level Class. Figure 4.9 shows excerpted code for tWeapper-
Level_MulticastSocket class, the generated wrapper class for fheticastSocket. This

wrapper class extends tiulticastSocket class. All thepublic constructors are over-
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ridden by passing the parameters to the super class (badellass) (lines 4-6). Also, all

thepublic instance methods are overridden (lines 8-29).

public class WrapperLevel_MulticastSocket extends
MulticastSocket implements WrapperLevel_Interface {

/I Overriding the base-level constructors.
public WrapperLevel_MulticastSocket()
throws SocketException { super(); }

I/l Overriding the base-level methods.

public void send(java.net.DatagramPacket p0)
throws I0Exception {
if(metaObject == null)
{ super.send(p0); return; }

Class[] paramType = new Class[1];

paramType[0] = java.net.DatagramPacket.class;

Method method = WrapperLevel_MulticastSocket.
class.getDeclaredMethod(“send”, paramType);

Object[] tempArgs = new Object[1];
tempArgs[0] = p0;
21 ChangeableBoolean isReplyReady =

22 new ChangeableBoolean(false);

23

24 try {

25 metaObject.invokeMetaMethod

26 (method, tempArgs, ...);

27 } catch (java.io.lOException e) { throw e; }
28 catch (MetaMethodlsNotAvailable e) {}
29 }

Figure 4.9: Excerpted generated wrapper code.

To better explain how the generated code works, we walk tiirdloe details of how the
send method is overridden, as shown in Figure 4.9. The genesatetimethod first checks
if the metaObject variable, referring to the metaobject corresponding te wriapper-level
object, is null (lines 11-12). If so, then the base-levep@) method is called, as if the base-
level method had been invoked directly by another objeath ss an instance aknder.
Otherwise, a message containing the context informatidgnamically created using Java
reflection and passed to the metaobjestt@Object) (lines 14-28). It might be the case

that a metaobject may need to call one or more of the baser®mtbods. To support such
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cases, which we suspect might be very common, the wrappelrdiss provides access to
the base-level methods through the special wrapper-legtiods whose names match the

base-level method names, but with @rig " prefix.

Generated Meta-Level Class. Figure 4.10 shows excerpted code foetalLevel_Multi-
castSocket, the generated meta-level class for MulticastSocket. Tliss keeps an in-
stance variablegelegates, which is of typeVector and refers to all the delegate objects
associated with a metaobject that implements one or moreeabase-level methods. To
support dynamic adaptation of teatic = methods, a meta-level class provides $tee-
icDelegates instance variable and its corresponding insertion and vahmoethods (not
shown). Delegateclasses introduce new code to applications at run time byridugg a
collection of base-level methods selected from one or mbtheadaptablebase-level
classes. An adaptable base-level class has corresponcapgev- and meta-level classes,
generated by TRAP/J at compile time. metaobjects can begroged dynamically by
inserting or removing delegate objects at run time. To enahlser to change the behavior
of a metaobject dynamically, the meta-level class implaséme DelegateManagement
interface, which in turn extends the Java RREmote interface (lines 5-10). A composer
can remotely “program” a metaobject through Java RMI. ihkertDelegate andremove-
Delegate methods are developed for this purpose.

The meta-object protocol developed for meta-level clasedimies only one method,
invokeMetaMethod, which first checks if any delegate is associated with thisawigect
(lines 12-22). If not, then &letaMethodIsNotAvailable exception is thrown, which eventu-
ally causes the wrapper method to call the base-level metho@scribed before. Alterna-
tively, if one or more delegates is available, then the fiet¢date that overrides the method
is selected, a new method on the delegate is created usiageféection, and the method

is invoked.
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public class Metal evel MulticastSocket
extends UnicastRemoteObject
implements MetaLevel_Interface,DelegateManagement{

private Vector delegates = new Vector();
public synchronized void insertDelegate
(int i, String delegateClassName)
throws RemoteException { ...}
public synchronized void removeDelegate(int i)
10 throws RemoteException { ...}

OCO~NOOUITAWNPE

12 public synchronized Object invokeMetaMethod
13 (Method method, Obiject][] args,
14 ChangeableBoolean isReplyReady) throws Throwable{

15 /I Finding a delegate that implements this method
16 e

17 if('delegateFound) // No meta-level method available
18 throw new MetaMethodlsNotAvailable();

19 else

20 return newMethod.invoke(delegates.get(i-1),

21 tempArgs);

22}

Figure 4.10: Excerpted generated metaobject code.

4.3.3 Adapting to Loss Rate

To evaluate the TRAP/J-enhanced audio application, wewiad two sets of experiments
similar to those in the previous chapter. The configuratiemin these sets of experiments
are illustrated in Figure 4.5.

In the first sets of experiments, a user holding a receividQiB’ walking within the
wireless cell, receiving and playing a live audio streamguRé 4.11 shows a sample of
the results. For the first 120 seconds, the program has no Bg&bity. At 120 seconds,
the user walks away from the sender and enters an area withidtess around 30%. The
adaptable application detects the high loss rate and sadd,2) FEC filter, which greatly
reduces the packet loss rate as observed by the applicatdnimproves the quality of
the audio as heard by the user. At 240 seconds, the user appsothe sender, where the
network loss rate is again low. The adaptable applicatiagaale the improved transmis-

sion and removes the FEC filters, avoiding the waste of badfttiwvith redundant packets.
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Again at 360 seconds, the user walks away from the sendeltingsin the insertion of
FEC filters. This experiment demonstrates the utility of THRAto transparently and auto-

matically enhance an existing application with new adapbghavior.

Loss Rate Status
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\+ Network Loss Rate —=- Application Loss Rate

40 -
o Dl /
20 Y

5 65 125 185 245 305 365 425
Time to the experiment in seconds (Samples per 5 seconds)

Loss Rate (%)
3

Figure 4.11: The effect of using FEC filters to adapt ASA tohhigss rates on a wireless
network.

4.3.4 Balancing QoS and Energy Consumption

In the second set of experiments, we used two MetaSocketfiiendNetLossDetector

and RecvNetLossDetector, which cooperate to monitor the raw loss rate of the wireless
channel. Similarly, th&sendAppLossDetector and RecvAppLossDetector filters are used

to monitor the packet loss rate as observed by the applicatibich may be lower than the
raw packet loss rate due to the use of FEC. At present, a sistgile machine is used by

a decision maker (DM) component to govern changes in filtafigaration. For example,

if the loss rate observed by the application rises above @fgggbthreshold, then the DM
decides to insert an FEC filter in the pipeline. In case an FE<2 s already present in the
pipeline, DM decides to modify th@:, k) parameters of the FEC filter to increase improve

QoS. On the other hand, if the raw packet loss rate on the ehamnops below a lower
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threshold, then the level of redundancy is decreased byfyiogithe parameters of the
FEC filter, or in case the FEC filter is not required anymore, B¥xhoves the FEC filter
entirely.

Figure 4.12 shows a trace of an experiment using the ASA itbestearlier, running
in ad hoc mode. A stationary user speaks into a laptop micnophwhile another user
listens on an iPAQ as he changes his location in the wirelekgrom time to time. In
this particular test, the iPAQ user remains in a low packss larea for approximately 30
minutes, moves to a high packet loss area for another 40 esnpotoves back to the low
packet loss location for another 30 minutes, then reenterkigh packet loss location. He

remains there until the iPAQ’s external battery drains dnedrtetwork is disconnected.
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Figure 4.12: MetaSocket packet loss behavior with dynar&€ Filter insertion and re-
moval.

In this experiment, the upper threshold for BexvAppLossDetector to generate atin-
AcceptableLossRateEvent is 20%, and the lower threshold for tiRecvNetLossDetector
to generate aAcceptableLossRateEvent is 5%. As shown in Figure 4.12, the FEC, 2)

code is effective in reducing the packet loss rate as obdéxyéne application. Figure 4.13
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plots the remaining battery capacity as measured duringlibee experiment and that for

a non-adaptive trace. The adaptive version extends therpdifietime by approximately

27 minutes.
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Figure 4.13: Trace of energy consumption during experinuginig a software measure-
ment technique.

4.4 Related Work

Like TRAP/J, many approaches to constructing adaptablgranos involveintercepting
interactions among objects in functional code, asdirectingthem to adaptive code. We
identify three categories of related work.

The first category includes approaches adend middlewar& support adaptive be-
havior. Since the traditional role of middleware is to hidsaurce distribution and platform
heterogeneity from the business logic of applicationss & logical place to put adaptive
behavior related to other cross-cutting concerns, suchuaktyof-service, energy man-
agement, fault tolerance, and security [6, 37, 44, 45,92199, 114,116, 117,119, 121,

122,127,156-158]. In addition to providing transparemcthe functional code, some ap-
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proaches provide transparency to the distribution middtevcode as well. For example,
IRL [116] and FTS [156, 159] use CORBA portable intercepf{dii to intercept CORBA
messages transparently, and Eternal [121] interceptstcatthe TCP layer using the Linux
Iproc file system. Adaptive middleware approaches provide arctafiemeans to support
adaptability, but they are applicable only to programs &natwritten for a specific middle-
ware platform such as CORBA, Java RMI, or DCOM/.NET. We dsscapproaches in this
category in more details in the next chapter.

The second category provides such transparenogxbgnding Java virtual machines
with facilities to intercept and redirect interactions imetfunctional code'. Exam-
ples of extensions to Java virtual machines (JVMs) incluB®BE [32], Iguana/J [98],
metaXa [153], Guarana [140], and R-Java [141]. These pi®jemploy a variety of
techniques. For example, Guarana extends the Kaffe opgeesdVM [160], whereas
PROSE and Iguana/J extend the standard JVM using comnmaagarameterse(g.,
-Xbootclasspath and various HotSpot options) to introduce their specific cdmpil-
ers to the JVM and to disable the Java HotSpot option. Gaasan Iguana/J employ
meta-object protocols to provide dynamic adaptation tetexg Java programs, whereas
PROSE employs a dynamic aspect weaving technique for thigopa, without modify-
ing the program and JVM source code. In general, approachiéssi category are very
flexible with respect to dynamic reconfiguration, in that reemle can be introduced to the
application at run time. Iguana/J suppantsanticipatedadaptation at run time by allow-
ing new MOPs to be associated with classes and objects ofrengiapplication, without
the need for any pre- or post-processing of the applicatimle @t compile or load time.
However, while these solutions provide transparency vagipect to the application source
code, extensions to the JVM may reduce their portability.

Finally, the third category includes approaches that prarentlyaugment the applica-

1According to the taxonomy of adaptive middleware introdliceChapter 2, we consider JVM as host-
infrastructure middleware. However, for their specificreteristics, here we consider extensions to JVM in
a separate category than the middleware extensions categor
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tion code itselfwith facilities for interception and redirection. Exampgieojects include
OpenJava [148], FRIENDS [94], PCL [97], AspectJ [103], Casipion Filters [78], AR-
CAD [27], Hyper/J [104], Demeterd (DJ) [105], JAC [106], Refl[151], Kava [107],
Dalang [161], Javassist [147], and JOIE [48]. Most of thestesns are designed to work
in two phases. In the first phase, interception hooks are woue the application code
at either compile time, using a pre- or post-processor, tvaat time, using a specialized
class loader. For example, AspectJ enables aspect weavoogngile time. In contrast,
Reflex and Kava use bytecode rewriting at load time to sugpamsparent generation of
adaptable programs. In the second phase, interceptedioperare forwarded to adaptive
code using reflection.

TRAP/J belongs to this last category and employs a two-pbhppeoach to adapta-
tion. TRAP/J is completely transparent with respect to thgimal application source code
and does not require an extended JVM. By supporting contipile-selection of classes
for possible later adaptation, TRAP/J enables the developealance flexibility and effi-
ciency. Reflex [151] also address this issue by allowing aaretel architect to select an
application-specific MOP that best fits the application refunents. A default MOP can
be used when an application-specific MOP is not needed. TRAGthplements Reflex
by providing a generic MOP that could serve as the default MBRAP/J is most similar
to ARCAD [27], which also provides a two-phase approach toasgic adaptation. AR-
CAD also uses AspectJ at compile time and behavioral reflect run time. However,
the partial behavioral reflection [151] provided in TRAP3Jmore fine-grained than that
of ARCAD. Specifically, TRAP/J supports method invocatiefiection, enabling an arbi-
trary subset of an object’s methods to be selected for iepti@n and reification; ARCAD
does not support such fine-grained reflection. The abiliffRAP/J to avoid unnecessary

reifications is due to its multi-layer architecture.
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4.5 Summary

In this chapter, we introduced TRAP, which is a languagesthagpproach to transparent
shaping. TRAP enables production of adaptable programli&srirom existing programs
developed in class-based, object-oriented programmimguiages. We described the de-
sign and operation of TRAP/J, which is an instance of TRAPavaJ TRAP/J enables
dynamic reconfiguration of Java applications without theche®e modify the application
source code directly and without extending the JVM. TRARYdrates in two phases. At
compile time, TRAP/J produces an adapt-ready version okestieg Java program. Later
at run time, TRAP/J enables adding new behavior to the adaoly program dynamically
through insertion and removal of delegates into the adagudyr program. As such, other
members of the adaptable program family associated witlatlapt-ready program can
be produced dynamically. A case study in a wireless netwarkrenment was used to
demonstrate the operation and effectiveness of TRAP/J.

In TRAP/J, an adaptation hook is realized by a pair of wragmer meta classes asso-
ciated with a class in an existing Java program, and adagpoige is realized by delegates,
which can modify the behavior of the class by overriding t@lementation of its meth-
ods. We developed a delegate using a MetaSocket, which taritssupports dynamic
adaptation through insertion and removal of filters. As altesnlike the approach in the
previous chapter, at run time, a MetaSocket can be replagbdavwmore appropriate one,
if required.

Although TRAP/J is not an adaptive middleware, it can be usedeave adaptive
middleware component®.g., MetaSockets) into distributed applications. Therefore, w
classify it according to the taxonomy introduced in SecorFirst, TRAP/J operates in
the application layer because it is a language-based agptbat can be used to transform
existing application code. Second, TRAP/J can be used tspgeaently weave adaptive
middleware services into applications, so it supports éer@epting technique for access-

ing middleware services. Finally, TRAP/J supports tunauaaptation since the original
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application code remains intact during run time.
As part of our future studies, we plan to develop TRAP/C++ @R&P/C# to provide

dynamic adaptation in existing C++ and C# programs, regfebgt
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Chapter 5

Transparent Shaping of CORBA
Programs

Although TRAP is transparent to application code, the aamtagpt behavior is still wo-
ven into the application, which must be recompiled. Impletimg transparent shap-
ing in middleware can produce even greater transparencyob&srved by several re-
searchers [6, 28, 37-45, 91, 92,99, 113, 114, 116, 117, 219,122, 127, 156-158, 162],
middleware is a natural place to incorporate adaptive hehand to hide unanticipated
conditions from existing distributed applications. Instpart of our study, we investi-
gate enhancements to CORBA ORBs to support dynamic recoafign of middleware
services transparently both to the application and midaievwcode. Moreover, we ad-
dress interoperation among otherwise incompatible agaptiddleware framework®(g.,
QuO [42] and Open ORB [38]) to enable existing programs tebefrom more than one
adaptive framework. The result of this study is a middlew=zaeed extension of transpar-
ent shaping, which supports dynamic adaptation in exisEi®RBA applications. We call
this programming model th&daptive CORBA Template (ACT)

As an extension of transparent shaping, ACT can be used ttupecan adapt-ready
version of an existing CORBA program by introducing a hooljich intercepts all
CORBA remote interactions, into the program at compile timi do so, ACT uses
CORBA portable interceptors [47], supported in CORBA caomm ORBs (described

later). Portable interceptors can be incorporated into &B&® program at startup time
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using a command-line parameter. Later at run time, theskswsmn be used to insert adap-
tive code into the adapt-ready program, which in turn carptttee requests, replies, and
exceptions passing through the ORBs. In this manner, ACblesaun-time improve-
ments to the program in response to unanticipated changesearecution environment,
effectively producing other members of the adaptable nogiamily dynamically.

We refer to ACT as demplate because it is independent of programming languages
and CORBA ORB implementations. As depicted in Figure 5.1TA@n be instantiated in
a programming language, such as Java and C++, that supgoam code loading and
is supported by CORBA. Moreover, ACT can be used to exterstiagi adaptive CORBA
frameworks such as QuO [42]. To evaluate the performanceflamttionality of ACT,
we constructed a prototype of ACT in Java, callRdT/d ACT/J supports unanticipated
adaptation for crosscutting concerns such as QoS and systaurce management. Our
experimental results show that the overhead introducetddACT/J infrastructure is neg-
ligible, while the adaptations offered are highly flexible.

Adaptive CORBA Template

instantiates

instantiates instantiates

ACT/QuO

——

ACT/C++

AT
Figure 5.1: ACT as a template that can be instantiated iemifft programming languages

and can be used to enhance existing adaptive CORBA framework

The remainder of this chapter is organized as follows. 8edi.l provides a back-
ground on CORBA portable interceptors. Section 5.2 desstibe ACT architecture. Sec-

tion 5.3 introduces the generic proxy, which facilitatesmsparent development of adaptive
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code with respect to application code. Section 5.4 intredW&CT/J and its operation. Sec-
tion 5.5 describes a case study, where we used the genexg rd\CT/J to implement
transparent self-optimization in an existing CORBA apgtiicn, enabling it to accommo-
date changing conditions of a wireless network infrastiect Section 5.6 describes an-
other case study, where we coupled ACT and QuO, caled/QuQ as an example of
how ACT enables integration of different middleware fraroekg. Section 5.7 categorizes
research projects and discusses how ACT relates to othevages. Finally, Section 5.8

summarizes the chapter.

5.1 Background

In this section, we provide a background on CORBA and revi@RBA portable inter-
ceptors as defined by OMG [47]. Although we have briefly intrcel CORBA in Section 2,

here we introduce it again with more details for completsnes

5.1.1 CORBA

The Common Object Request Broker Architecture (CORBK] is a distributed object
framework proposed by the Object Management Group (OMG)RBM® supports dis-
tributed object-oriented computing across heterogenbattvare devices, operating sys-
tems, network protocols, and programming languages. €igwt illustrates the CORBA
components described as follows. Thbject Request Broker (ORBhe core of CORBA,
allows objects to interact transparently with other olgdtdcated locally or remotely). A
CORBA object is represented by its interface, is identifigdt® reference, and is realized
in an object-oriented program as a local object callecs#rgant The client of a CORBA
object first acquires a reference to the CORBA object usitigeean interoperable object
reference (IOR) file or a CORBA naming service [47]. Next, thient calls methods on
this reference as if the object were located in the clientegkispace. Thaterface Defi-

nition Language (IDL)s a language for defining CORBA interfaces. An IDL compiter i
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used to automatically generate the code for stubs and skeleAnIDL stubrepresents a
servant locally in the client address space andCinskeletonrepresents a client locally
in the servant address space. IDL stubs and skeletons rharshanmarshal requests and

responses to enable object interactions over a network.

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

oA,
operation()
REF ) out + return value
REF | out args
-

’ , @ ‘
SKELETON
DO IDL ORB OBJECT
STUBS INTERFACE ADAPTER
[ GIOP/IOP % ]

Q STANDARD INTERFACE Q STANDARD LANGUAGE MAPPING

OBJECT
{SERVANT)

D ORB-SPECIFIC INTERFACE DSTANDARD PROTOCOL

Figure 5.2: CORBA architecture [10].

Thedynamic invocation interface (DInables clients to directly access the underlying
request mechanisms at run time to generate dynamic reqaesigects, whose type (inter-
face) were not known at the time the client program was cadpil heinterface repository
provides the type information that a client needs to dynalftyicreate a request. Thuy-
namic skeleton interface (DShables an ORB to deliver requests to a servant, which does
not have compile-time knowledge of the type of the objeatj®orts €.g.,a gateway object
may not know the type of the target objects to which it is faiduag requests). Then-
plementation repositorgnables late deployment of CORBA objects. The implemestati
repository receives the first request targeted to a CORBAabPjooks up the object meta
information in its database, activates the object, anddot® the request “permanently” to
the target object. Permanent forwarding, in contrast tesiemnt forwarding, also causes au-
tomatic forwarding of all future requests from the samentlend to the same target object
directly from the client ORB. Thebject adapterctivates servants and dispatches requests

to them. TheORB interfaceprovides access to standard ORB services, such as resolving
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the CORBA initial services such as the CORBA naming servidee general inter-ORB
protocol (GIOP)is a standard for inter-ORB communication, which enablesraperabil-
ity among different CORBA-compliant ORBs. Theternet inter-ORB protocol (1IOP)s

a specific mapping of the GIOP specification developed tohsa&€CP/IP protocol stack.

5.1.2 CORBA Portable Request Interceptors

CORBA Portable Request Intercept@rovide a transparent mechanism to intercept mes-
sages (reified requests, replies, and exceptions) insed@®Bs of a CORBA application.
According to the specification, a request interceptor isswered as part of an ORB and
must be registered with the ORB at its initialization timetably, a request interceptor
cannot be registered with the ORB at run time). Figure 5.3vshibe flow of a CORBA
request/reply sequence with interceptors present in aay@ORBA application. This ap-
plication comprises two autonomous programs hosted on twmapaters connected by a
network. Let us assume that the client has a valid CORBA eefar to the CORBA object
realized by the servant. The client’'s request to the sengfitst received by the stub,
which represents the CORBA object at the client side. Thie starshals the request and
sends it to the client ORB, where the request is intercepyeatid client request intercep-
tor. The interceptor can inspect requests, create new sejuend raise exceptions. For
example, the=orwardRequest exception can be used to forward a particular request to a
different CORBA object. However, to ensure portability, interceptare not allowed to
reply to intercepted requests or to modify the parametefk [#his restriction limits the
ability of request interceptors alone to adapt the behafi@ORBA applications.
Continuing the example, let us assume that the client-gqoeerceptor in Figure 5.3
simply passes the request unmodified. In this case the €iBE sends the request to the
server ORB, where it is intercepted by the server-requéstdaptor. Again, let us assume
that the request is passed unmodified, in which case it igatelil to the servant by way

of a skeleton, which unmarshals the request. The servalesdp the request, by way of
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Figure 5.3: A simple CORBA application with request intgres.

the server ORB, where the reply also is intercepted. Evégttiae reply will be received
by the client ORB and is intercepted by the client-requestraeptor before it reaches the
client.

As we shall discuss in Section 5, the generic interceptoA&di are in fact CORBA
portable interceptors. The interceptors provide “hooksd the interaction between clients
and servants. Moreover, they use #mwardRequest exception to deliver requests to a

proxy, a CORBA object that is not prohibited from replying to or nifgohg the request.

5.2 ACT Architecture and Operation

ACT is intended to support the construction and enhanceofadaptive CORBA frame-
works. ACT enables CORBA applications to support unarngitgd adaptation at run time
without the need to modify, recompile, and relink the apgtlien source code. We intro-
duce ACT by defining its core components and by describinig itlieraction with the rest

of the system.
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5.2.1 ACT Core Components

Figure 5.4 shows the flow of a request/reply sequence in asi@PRBA application us-
ing ACT. For clarity, details such as stubs and skeletonsnateshown. ACT comprises
two main components: a generic interceptor and an ACT corgerferic interceptois a
specialized request interceptor that is registered wggQRB of a CORBA application at
startup time. Thelient generic interceptor intercepts all outgoing requests andming
replies (or exceptions) and forwards them to its ACT coremilarly, the servergeneric
interceptor intercepts all the incoming requests and ontgreplies (or exceptions) and
forwards them to its ACT core. A CORBA application is callediapt-readyif a generic
interceptor is registered with all its ORBs at startup titfign addition to the generic inter-
ceptors, all the ACT core components are also loaded intajp&cation, the application
is calledACT-ready Making the application ACT-ready can be done either atigpatime

or at run time.

Client Application Server Application
Client Applications
! ] Domain-Services I
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Client ACT Core

Common-Services
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Figure 5.4: ACT configuration in the context of a simple COR&#plication.

Figure 5.5 shows the flow of a request/reply sequence imtrdeby the client ACT

89



core. The components of the core include dynamic intercepagroxy, a decision maker,

and an event mediator. Each component is described in turn.

4 | to/from the common-services middleware
(T R
« ; D
! Client ACT Core
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Figure 5.5: ACT core components interacting with the reshefsystem.

Dynamic Interceptors. According to the CORBA specification [47], a request intgrce
tor is required to be registered with an ORB at the ORB in#&lon time. The ACT
core enables registration of request interceptors afeeldRB initialization time (at run
time) by publishing a CORBA interceptor-registration seev Such request interceptors
are calleddynamic interceptorsDynamic interceptors can be unregistered with the ORB
at run time also. In contrast, a request interceptor thagstered with the ORB at startup
time is called astatic interceptoand cannot be unregistered with the ORB during run time.
We note that the code developed for a static interceptorlaaiddr a dynamic interceptor
can be identical, the difference being the time at which #eyregistered. In ACT, only
generic interceptors are static.

A rule-based interceptois a particular type of dynamic interceptor that uses a set of
rules to direct the operations on intercepted requests.rdiee can be inserted, removed,

and modified at run time. Aule consists of two objects: a condition and an action. To
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determine whether a rule matches a request, a rule-baszdaptor consults its condition
object. Once a match is found, the interceptor sends thees¢¢oi the action object of the
rule. Since it is part of a CORBA portable interceptor, theacobject cannot itself reply
to the request or modify the request parameters [47]. Theracbject can, however, send
new requests, record statistics, or rais®avardRequest exception, causing the request to

be forwarded to another CORBA object such as a proxy.

Proxies. A proxyis a surrogate for a CORBA object that provides the same seetfods
as the CORBA object. Unlike a request interceptor, a proxyptgprohibited from replying
to intercepted requests. A proxy can reply to the interabpgguest by sending a new
request (possibly with modified arguments) to either thgetaobject or to another object.
Alternatively, a proxy can reply to the intercepted regsesting local datae(g.,cached

replies).

Decision Makers. A decision makeassists proxies in replying to intercepted requests as
depicted in Figure 5.5. A decision maker receives requesits & proxy and, similar to a
rule-based interceptor, uses a set of rules to direct theatpe on the intercepted requests.
However, unlike a rule-based interceptor, a decision meskeot prohibited from replying

to the requests.

Event Mediators. An event mediatas a CORBA object that decouples event generators
from event listeners using a publish/subscribe approach. adpted this concept from
the work by Bacon et al. [136]. An event mediator publishesi@mer service, enabling
registration of CORBA objects as event listeners. The enattiator is informed of events
through a notification service. An event mediator forwardpy of a new event to all

listeners that have registered interest in this type of even
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5.2.2 Interaction among ACT Components

To describe the interactions among the ACT components, axde a detailed sequence
diagram [163] in Figure 5.6. The diagram shows the flow of aiestfreply sequence in an
ACT-ready application. The configuration shown in Figuregsdnd 5.5 is used as the basis
for this particular sequence diagram. Here, we considgrtbiel activities on the client side

and, for clarity, stubs and skeletons are not shown.

Client Gl | CientRBI | | Proxy | [ DM || EM || SeveroRB
' #3 '

Client | | Ciient ORB |
]

# > >
< #5 < #4
>
#7 . #3 R
< #10 < #9
#11 o #2  #3
P #16 4#15 4#14
#17 . #18 >
< #20 < #19
#21 R
< #22
#23 . #24 >
P #26 P #25
#27 #28 . #29 .
#32 _#31 #30
) #33 . #34 . L )
< #37 P #36 < #35 |
Gl: generic interceptor DM: decision maker ——» request message
RBI: rule-based interceptor EM: event mediator <----- return message (reply or exception)

Figure 5.6: Request/reply sequence in the client side of@h-#eady application.

First, the request from the client to the servant is forwdrttethe proxy (messages
#1 to #11). After the request is received by the client ORB),(itls intercepted by the

client generic interceptor (#2), where it is forwarded te ttiient rule-based interceptor
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(#3). The client rule-based interceptor checks its actives: In this scenario, we assume
it finds a rule that matches the request. The rule raisesweardRequest exception, which
is passed to the client generic interceptor (#4) and thehaelient ORB (#5), where the
request target is changed to the proxy (#6). Before the nquest is sent to the proxy, it
is intercepted again by the client generic and rule-bastedaeptors (#7 and #8), but this
time no exception is raised (#9 and #10), and the calls simgilyn. The proxy receives
the request (#11).

Next, the proxy processes the request and forwards it togheast (messages #12
to #21). The proxy consults the decision maker (#12), wharewent may be raised to
handle an unknown situation (#13 and #14). The decision miaday adapt the client
application by modifying the request parameters, sendaw requests to other objects,
or directing the proxy to reply to the requestd.,using cached replies). We assume that
in this scenario, the decision maker modifies the requesinpaters and directs the proxy
to send the modified request to the servant (#15) via thetdh&B (#16). The modified
request is also intercepted by the client generic and rased interceptors (#17 and #18)
but again no exception is raised (#19 and #20). Therefoeemibdified request is sent to
the server ORB (#21).

The reverse sequence of actions occurs at the server appli¢aot shown) and the
reply to the modified request is returned to the client ORBJ#Z he reply is intercepted
by the client generic and rule-based interceptors (#23 &4, #vhere no exception is
raised (#25 and #26). The reply is sent back to the proxy (#&fgre it is forwarded to
the decision maker (#28) for possible modifications and iptesgvent raising (#29, #30,
and #31).

Finally, using the reply from the servant and the directiveqg by the decision maker,
the proxy replies to the client’s request (#32). The repintsrcepted by the client generic
and rule-based interceptors (#33 and #34). Again no exare#iraised (#35 and #36), and
the client ORB sends the reply back to the client (#37).
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The extensive redirecting of messages in ACT raises the sfquerformance overhead.
We deem such overhead as necessary to provide flexibilitjrangparency. Moreover, our
experimental results, described in Section 5.6, indidat the overhead is actually quite

small.

5.3 Generic Proxy

To enable dynamic weaving of adaptive functionality thatasnmon to multiple appli-
cations, ACT needs to intercept and adapt CORBA requegibese and exceptions in a
manner independent of the semantics (the application)lagid syntax (the CORBA inter-

faces defined in the application) of specific applications.

5.3.1 Architecture

The generic proxyis a particular CORBA object that is able to recearey CORBA re-
guest (hence the label “generic”). To determine how to hamdparticular request, the
generic proxy accesses the CORBA interface repository, (fiich provides all the IDL
descriptions for CORBA requests. The repository execuses separate process and is
usually accessed through the ORB. Most CORBA ORBs providendiguration file or
support a command-line argument that allows the user todntre the interface repository
to the application ORB. Providing IDL information to the geit proxy in this manner im-
plies no need to modify or recompile the application souamec The interface repository,
however, requires access to the CORBA IDL files used in thécgton.

In default operation, the generic proxy intercepts CORBAuests, acquires the re-
guest specifications from a CORBA interface repositoryata® similar CORBA requests
and sends them to the original targets, and forwards refpbes those targets back to the
original clients. A generic proxy also publishes a CORBAvgsy that can be used to

register adecision maker
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5.3.2 Operation

Figure 5.7 illustrates the sequence of a request/replya@nABT core, which contains a
rule-based interceptor, a generic proxy, and a rule-baseisidn maker. First, a request
from the client application is intercepted by the rule-lohsgerceptor, which checks its
rules for possible matches. A default rule, initially ingerin its knowledge base, directs
the rule-based interceptor to raisé-@rwardRequest exception, which results in its for-
warding the request to the generic proxy. When the geneoixypreceives the request, it
acquires the request interface definition via the appbeca@RB, which in turn retrieves the
information from the interface repository. The proxy cesaf new request and forwards
it to the rule-based decision maker. The rule-based decmsi@ker checks its knowledge
base for possible matches to the request. Depending on fhlermentation of the rules,
the decision maker may return either a modified request tgeheric proxy or a reply to
the request. If the decision maker returns the request (oodifidd request), the generic
proxy will continue its operation by invoking the requedtthe reply to the request is re-
turned by the decision maker, the proxy replies to the oalgiequest using the reply from
the decision maker. The generic proxy uses the CORBA dynakeieton interface (DSI)
[47] to receive any type of request. The generic proxy andulebased decision maker
use the CORBA dynamic invocation interface (DIl) [47] toateand invoke a new request

dynamically.

5.4 ACT/J Implementation

We have developed an instance of ACT in Java, cal€éd/J to evaluate ACT in practice.
ACT/J was tested over ORBacus [119], a CORBA-compliant OR®Bidduted by IONA
Technologies. ORBacus [119], like JacORB [120], TAO [44jdanany other CORBA
ORBs, supports CORBA portable interceptors [47], the oatjuirement for using ACT.
To make a CORBA application ACT-ready at the applicatiomtsfatime, we need to

resolve the following bootstrapping issues. First, we neeggister a generic interceptor
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Figure 5.7: Incorporating generic proxy in the ACT core.

with the application ORB. Like many other ORBs, ORBacus |1is®s a configuration file
that enables an administrator to register a CORBA portaitdeéeptor with the application
ORB. JacORB [120] and TAO [44] use a similar approach. Secsinde the components
in the ACT core are also CORBA objects, they require an ORBifpert their operation
(registration of services, and so on). Therefore, we nebeeio obtain a reference to the
application ORB for this purpose, or to create a new ORB. GfRBaloes provide such a
reference, although the CORBA specification does not supipisrfeature. To implement
ACT/J over an ORB that does not provide such a reference, welgicreate a new ORB,
although its use introduces additional overhead.

To test the operation of ACT/J, we developed two adminiseatonsoles: the Inter-

ceptor Registration Console and the Rule Management Can&dkase note that in this
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study the composer is assumed to be a human, who performsnayadaptation using
the administrative consoles. Figure 5.8 showsltiierceptor Registration Consqglehich
enables a user to manually register a dynamic interceptbrs donsole first obtains a
generic interceptor name from the user and checks if thergeinéerceptor is registered
with the CORBA naming service. Next, the user can registeyraachic interceptor with
the generic interceptor. Figure 5.9 shows Bide Management Consolehich allows a

user to manually insert rules into rule-based interceptors

Enter the generic interceptar name: |SIideCIient.GenericRequestlnterceptor1| Check

Enteran interceptor-class mame; |edu.msu.cse.sens.act.interceptor.RuleBasedRequestlnterceptm‘l' Insert

Figure 5.8: Interceptor Registration Console

Rule Management Console E”EJ £|

Enter the rule=hased intercepror name: |SIideCIient.RuIeEasel| Cannect.

Rule

pridition Class: |edu.msu.cs e sens.act.proxy. DynamicConditionAction. ForwardAllRequestsZReliahleProxy _Canditidg

Action Class: |edu.msu.cs e sens.act.proxy DynamicConditionAction. ForwardAllRequestsZReliableFroxy _Action|

| insert || remove

Figure 5.9: Rule Management Console

5.5 Case Study: Transparent Self Optimization

To evaluate the effectiveness of ACT/J to support self-rganeent in existing CORBA
applications, without modifying the application code, venducted a case study in which
self-optimization is enabled in an existing applicationdditional experiments involving

IP handoff, are described in an accompanying technicart¢p®4]. We begin with a brief
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overview of the application and the experimental environtyi®llowed by the description
of the experiment. The experiment shows how ACT/J could leel s support autonomic

computing in either a generic or application-specific manne

5.5.1 The Example Application and Experimental Environmern

For the application, we adopted an existing distributedgienegetrieval application devel-
oped by BBN Technologies [165]. The application has twogatclient that requests and
displays images, and a server that stores the images anesréplrequests for them. In
this study, we treat the application as though it were useddoveillance, with a mobile
user executing the client code on a laptop and monitoringyaipdl facility through con-
tinuous still images from multiple camera sources. For ttieeement described later in
this section, we executed the server on a desktop computaected to a 100 Mbps wired
network and the client on a laptop computer connected toeetbell 802.11b wireless
network. Both the desktop and laptop systems are runninfjitiux operating system.

Figure 5.10 shows the physical configuration of the threeesg@oints used in the
experiment. (The wireless cells are drawn as circles fopkaity — the actual cell shapes
are irregular, due to the physical construction of the bagdind orientation of antennas.)
AP-1 and AP-3 provide 11Mbps connections, whereas AP-2igesvonly 2Mbps. The
desktop running the server application is close to AP-1. 1A&8d AP-2 are managed
by our Computer Science and Engineering Department, wheBa3 is managed by the
College of Engineering. This difference implies that theatRiress assigned to the client
laptop needs to change as the user moves from a CSE wirelessa€ollege cell.

Figure 5.11 shows an example image from the experiment. @heisprovides four
different versions of each image, varying in size and gualiypical comparative file sizes

are 90KB, 25KB, 14KB, and 4KB.
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AP-2: 2 Mbps,
Dept. subnet

Figure 5.10: The configuration of the access points useckiexperiment.

5.5.2 Self-Management and Self-Optimization

To investigate how ACT/J can support self-management, weldped an application-

specific rule that maintains the frame rate of the applicalip controlling the image size
or inserting inter-frame delays dynamically. The origimahge retrieval application op-
erates in a default mode, which retrieves and plays imagdasass possible. ACT/J
enables a developer to weave the rule into the applicationratime, thereby providing

new functionality (frame rate control) transparently witspect to the application. The
self-optimization rule maintains the frame rate of the agion in the presence of dy-
namic changes to the wireless network loss rate, the net(warkd/wireless) traffic, and

CPU availability.

Figure 5.12 shows the Automatic Adaptation Console, whiglagis the application
status and also enables the user to user to enter qual@igreice preferences. As shown in
this figure, the rule uses several parameters to decide on arethow to adapt the appli-
cation in order to maintain the frame rate. These paramhbtars default values as shown

in the figure, but can be modified at run time by the user. Afwrage Frame Rate
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Figure 5.11: An image from the experiment.

Period indicates the period during which the average frame rateldhze calculated to be
considered for adaptation. Tlstabilizing Period specifies the amount of time that
the rule should wait until the last adaptation stabilizéso & a sudden change occurs in
the environment such as hand-off from one wireless cell tdleer one, the system should
wait for this period before it decides on the stability of #ystem. The rule detects a stable
situation using thé\cceptable Rate Deviation ; when the frame rate deviation goes
below this value, the system is considered stable. Simjleie rule detects an unstable
situation, if the instantaneous frame rate deviation gegeihd theUnacceptable Rate
Deviation value. The rule also maintains a history of the round-tripygassociated with
each request in each wireless cell. Using this history aadbiove parameters, the rule can
decide to maintain the frame rate either by increasingé#esing the inter-frame delay or
by changing the request to ask for a different version of tiege with smaller/larger size.
The default behavior of the rule is to display images thatarkarge as possible, given the
constraints of the environment.

Figure 5.13 shows a trace demonstrating automatic adaptatithe application in the
following scenario. In this experiment, the user has setket desired frame rate of 2

frames per second, as shown in Figure 5.12. For the first Gihdsoof the experiment,
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Figure 5.12: Automatic Adaptation Console.

the user stays close to the location A (Figure 5.10). Thedatects that the desired frame
rate is lower than the maximum possible frame rate, basedsareed round-trip times.
Hence, it inserts an inter-frame delay of approximately glliseconds to maintain the
frame rate at about 2 frames per second. At point 120 sectiresser starts walking from
location A to location B for 60 seconds. The automatic adaptaule maintains the frame
rate by decreasing the inter-frame delay during this perdgoint 180 seconds, the user
begins walking from location B to location C and back agaétiming to location B at 360
seconds. During this period, because the AP-2 access powitps 2Mbps, the automatic
adaptation rule detects that the current frame rate is ltveerthat desired. It first removes
the inter-frame delay, but the frame rate does not reach tar2ds per second. Therefore,
it reduces the quality of the image by asking for a smallergenaize. Now the frame

increases beyond that desired, so the automatic adaptateimserts an inter-frame delay
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of 400 milliseconds to maintain the frame rate at 2 framesspeond. Although there is
some oscillation, the rate stabilizes by time 360 secondshi8 point, the user continues
walking from location B to location A, prompting the rule teverse the actions. First the
inter-frame delay is increased to maintain the frame ralig\wWwed by an increase in image
size. In this manner, the rule brings the application bacistoriginal behavior. Again,

because the current frame rate is higher that expected temfiame delay of about 200

milliseconds is inserted to maintain the frame rate at 2 é&sper second.

Frame Rate Using Automatic Adaptation
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Figure 5.13: Maintaining the application frame rate usiotpenatic adaptation.

This result is promising and demonstrates that it is posdibladd self-management
behavior to an application transparently to the applicattode. Moreover, the use of
a generic proxy enables self-optimization functionalitgth application-independent and

application-specific, to be added to the application, etearatime.

5.6 Case Study: Coupling ACT and QuO

To investigate the integration of ACT with an existing CORBAmework, we combined

ACT/J with the Quality Objects (QuO) framework [42], devedal by BBN Technologies
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and released under an open-source license. QuO is a powaeafolive framework that sup-
ports dynamic adaptability in CORBA and Java RMI applicasioACT and QuO can work
together in two major ways. First, ACT enables legacy CORBpligations to incorporate
and benefit from QuO functionality, without modifying theusoe code of the application
(indeed, even if the the source code is unavailable). Sueled may arise if the application
is to be executed in an environment where conditions miglguie different than origi-
nally planned. Second, combining QuO and ACT enables wgaviradaptive code into
distributed applications at both compile time and run time;describe a specific example
later in this section. We begin a brief overview of QuO, fomgeteness, followed by a
discussion of how ACT and QuO interact and a description a@bgreriment in which they

were combined to enhance an extant application.

5.6.1 QuO Background

QuO employs aspect-oriented programming [1] to separatadh-functional (systematic)
aspects from the functional aspects of an application.rEi§uL4 illustrates a very simple
QuO application. The client wrapper (delegat¢ is the main point of contact between
the client and the QuO core. The client wrapper is generated & program written in
the aspect-oriented structural description language JA8L The QuO core comprises a
contract and several system conditions.cdntractis written in the contract-description
language (CDL) [7] and defines acceptable regions of omerafiystem conditionsan be
considered as software “sensors” that record values reqtiag the state of the execution
environment. QuO combines the code for the QuO core and tike fww wrapper into a
package called gosket Using an aspect weaver callgdogen, QuO weaves a qosket into
an application at compile time.

As shown in Figure 5.14, a request from the client is firstiramkby the client wrapper.
In a typical CORBA application, a client has a reference t@2RBA object stub. In QuO,

however, the application developer explicitly createsdient wrapper, which wraps the
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Figure 5.14: A simplified depiction of the QuO architecture.

stub (not shown). The client wrapper consults the contratheé client QuO core. The
contract evaluates the current acceptable region of aparatcording to the details of the
request and the status of the system as monitored by thersgstedition objects. Once
the current region of operation is identified, the actiorecsdjed in the contract are carried
out. These actions might include returning a cached reptiidalient, sending a request
different than the original, forwarding the request withdif@d parameters, or redirecting
the request to another CORBA object. If the reply is not gateet locally, the request (or a
modified request) is passed to the client ORB. The requdsersdent to the server side of
the application, where the reverse sequence of actionscthe reply generated by the
servant, possibly modified by the server QuO core, will ewally reach the client ORB,
where it is passed to the client wrapper. The client wrappasults the client QuO core

again for possible modifications and, finally, returns th@yréo the client.
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5.6.2 Dynamic Weaving of Qoskets Using ACT

Combining ACT with QuO enables transparent weaving of neskgts into applications
at run time. We identify three types of applications that roagefit from such a capability.
First, dependable applications are required to operaténtmusly without interruption;
code for handling newly discovered faults can be added teetla@plications as they ex-
ecute. Second, embedded applications are required todera@ry small footprints; a
minimal adaptive core can be compiled with the applicateomd optional adaptive code
can be swapped in and out as needed during run time. Thirgsaimee code for some
legacy CORBA applications may be unavailable, or modifytimgisource code may be un-
desirable. Such applications can be adapted transpangsitig ACT and QuO, without
modifying or even recompiling the application source code.

Figure 5.15 shows a request/reply sequence in a simple CQfpPBAcation using both
QuO and ACT. The client and server generic interceptorsegistered with the client and
server ORBs, respectively, at startup time. To weave a nakejdonto the application at
run time, a new rule can be inserted in the client rule-bastztéeptor. The new rule can
direct the rule-based interceptor to load the code for aypemd a decision maker. The
proxy in this case is simply a modified QuO wrapper, and thesdet maker is exactly
the contract defined in the new gosket. The rule then intésadpincoming and outgoing
requests/replies and forwards them to the proxy, wheredheyrocessed as if the qosket

had been woven in to the application at compile time.

5.6.3 Example: Supporting Unanticipated Adaptation

To evaluate the performance and functionality of the hyB@T/QuO architecture de-
scribed above, we used it to insert new adaptive functignialio the image retrieval appli-
cation (introduced before) at run time. This applicatioparts several different types of
goskets, which can be woven into the application at stamo@.tA particular gosket called

“UserAdapt” enables a user to modify the application interactively gating it to retrieve
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Figure 5.15: Coupling ACT and QuO.

different versions of the images. For example, selectinglisimstead of large versions of
images can be used to reduce bandwidth consumption and delay

First, we incorporated ACT/J into this application by irduzing generic interceptors.
To do so, we started the application with a command-linerpatar directing it to an OR-
Bacus configuration file defining how to load, create and tegegeneric interceptor with
the application ORB. At this point the application is adegady. Figure 5.16 compares the
round-trip delay for retrieving images of varying size,ngsboth the original application
and the adapt-ready version. As shown, this overhead igyitelgl

Next, we developed a new gosket callg¢skrAdaptFrameRate to weave to the applica-
tion at run time using ACT/J. This qosket enables the usentiractively control the rate
at which images are retrieved. Figure 5.17 and 5.18 showdtie that define the contract
(in CDL) and the wrapper (in ADL) for the new qosket, respagil. We defined three
regions of operationBast, Normal, andSlow in the contract, enabling the user to control
the frame rate, for example, to conserve bandwidth. Astrted in Figure 5.18, this

control is accomplished by inserting appropriate delays:. the Fast region, we did not
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Figure 5.16: Round-trip delay in ACT/QuO application.

insert any delay, but for thidormal andSlow regions, we inserted 50 and 100 milliseconds

frame-interval delays, respectively. We useddhbegen utility to compile the new qosket.

1 contract UserAdaptFrameRate ( syscond quo::ValueSC
2 quo_sc::ValueSClmpl userFrameRate )

3 {

4 region Fast (userFrameRate == 2) {}

5 region Normal (userFrameRate == 1) {}

6 region Slow (userFrameRate == 0) {}

7 .

¥

Figure 5.17: Code for the contract of the new qosket writteGDL.

5.6.4 Experimental Results

To demonstrate the interaction between ACT and QuO, we raxperiment that involves
both static and dynamic weaving of qoskets into this apptica The experiment is in-
tended to represent run-time upgrading of a surveillanséegy (implemented using the
image retrieval application) to add a new feature that cdsithe frame rate. Figure 5.19

shows a sample image from a camera in an instructional l&trgra
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1 behavior UserAdaptFrameRate ()

2

3 void slide::SlideShow::read(in long gifNumber,

4 out string size, out octetArray buf)

5

6 before METHODCALL

7

8 region Fast {}

9 region Normal { ... Thread.sleep(50); ... }
10 region Slow { ... Thread.sleep(100); ... }
11 }

12 b
13 }

Figure 5.18: Excerpted code for the wrapper of the new qosk#en in ASL.

Figure 5.19: Sample image of a monitored instructional fatoy.

We executed the server on a desktop computer connected tbMidis wired network
and the client on a laptop computer connected to an 11Mbpd 862vireless network;
both systems are running the Linux operating system. Atigidhe“UserAdapt” qosket is
woven into the application by specifying the wrapper clasa @ommand-line parameter.
Later, at run time, we used our Interceptor Registrationgotto weave théJserAdapt-
FrameRate” gosket into the application. Figures 5.20 and 5.21 showescdeimps of the
application as it displays large and small versions of argenaespectively.

Figure 5.22 shows a trace of the rate at which frames areagisglat the client applica-

tion. During the experiment, a user modifies the applicasi®follows. When application
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Figure 5.20: Screen capture of a 252 KB version of imagedaiisg in the ACT/QuO
application.

starts, large versions of frames (the default option) atréeked from the server as fast as
possible. The size of these images, combined with the ldrbendwidth of the wireless
network, produces a frame rate of approximately 2 images@awnd for the first 30 sec-
onds of this experiment. At this point, the user selects thallsimages option by way of
the GUI in the"UserAdapt” gosket, thereby increasing the frame rate to approximatly
images per second.

At 60 seconds into the experiment, the user dynamically e®#veUserAdaptFrame-
Rate gqosket into the application, using the interactive adntiatgon utilities described in
Section 5.4. Figure 5.22 shows a short, downward spike irrdmee rate caused by the
delay for weaving the new gosket. We consider such a onedatay to be acceptable for

this type of application. Immediately after the qosket seiried, an interactive console is
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Figure 5.21: Screen capture of a 19 KB version of images aygal in the ACT/QuO
application.
displayed by the gosket, enabling the user to choose frorthtbe optionsKast, Normal,
andsSlow) interactively at run time. TheEast option is the default. At 90 seconds into the
experiment, the user selects thermal option; the additional 50 msec delay reduces the
frame rate to approximately 7.5 images per second. At 120meks; the user chooses the
Slow option (100 msec delay), which reduces the frame rate tooappately 5.5 images
per second. At 150 seconds, the user chooses the Fast og#on which increases the
frame rate to 14 images per second.

This experiment illustrates how ACT can be used to dynanyi@atorporate new be-
havior (in this case, a new QuO gosket) into a CORBA applicedit run time. The process
is transparent to the application, in that we did not modifg aipplication code or the

QuO code. We simply started the application with generiersgptors registered with the
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Figure 5.22: Dynamic adaptation in a ACT/QuO hybrid appgiaa

application ORB.

5.7 Related Work

ACT is intended to complement adaptive middleware fram&sand to support interop-
eration among incompatible frameworks. Specifically, AGh de used to dynamically
load components of one adaptive framework into an existi@RBA application that was
developed using a different framework. By transparentigricepting requests and replies,
ACT enables such applications to exploit adaptive fundtiiby defined in other frame-
works. We refer to such a system asramework gateway Next, we discuss several
adaptive middleware frameworks and their relationship @I'AWe group the frameworks
into three categories: aspect-oriented middleware, tefeemiddleware, and interception-

based middleware.

Aspect-Oriented Middleware. Aspect-oriented middleware enables separation of func-

tional aspects from its non-functional aspe@&sy(,quality-of-service, security, and fault-
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tolerance) of a distributed application. One of the moseesive projects in this area is
Quality Objects (QuO) [42], which provides an adaptableneavork to support QoS in
CORBA applications. QuO weaves QoS aspects, referred ¢tosietsinto the applica-
tions at compile time by wrapping stubs and skeletons wittcsizeddelegateswhich
intercept requests and replies for possible modificatid@% [In Section 5.6, we showed
how ACT can interact with QuO transparently to enable urcgrdied adaptation by dy-
namically weaving new goskets into the application at rameti In a related project, Ja-
cobsen et al. [166] developed an annotated version of CORRBAthat enables weaving
of semantic properties (such as synchronization and sggurio the CORBA skeleton at
compile time. AspectlX [28] is an aspect-oriented disttibo middleware that is based
on the distributed object model [167], in which an object poises multiple fragments
distributed across nodes. AspectlX enables dynamic wgavimon-functional aspects
into object fragments. Although AspectiX is CORBA comptiaits dynamic adaptation
feature cannot be used when it interoperates with otherAspectlX, but CORBA com-
pliant ORBs. To solve this problem, ACT could be used as adtaonk gateway that hosts
fragments of a distributed object at the non-AspectlX OREguirrel [127] is an adaptive
distribution middleware, specialized for streaming d#tat supports QoS for multimedia
applications. Again, ACT could be used as a gateway thatlesatteroperation among
non-Squirrel and Squirrel ORBs. Specifically, ACT can eaaimn-Squirrel ORBs to ac-
cept and usemart proxieq79] transparently so that they could better communicaté wi

Squirrel ORBs.

Reflective Middleware. Reflective middleware uses computational reflection to kesab
inspection and modification of middleware dynamically dgrapplication execution [5].
DynamicTAO [37] and UIC [6] are CORBA-compliant reflectiveRBs that employ the
component-configurator pattern [75] to support dynamiggateon. OpenORB [38] is a

reflective ORB that provides explicit binding of remote atgeand enables unanticipated
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dynamic adaptation using structural and behavioral refle¢83]. The Coyote project [98]
also addresses unanticipated dynamic adaptation inligtd applications using Iguana/J.
ZEN [45] is a Java ORB that use Java reflection and the virtomponent pattern [112]
to provide a minimal-footprint ORB that loads ORB composeoh demand. To exploit
the adaptive features provided by these ORBs, one must asmathe ORB in all the au-
tonomous programs that constitute the CORBA applicatid@T Aould be used as a gate-
way between a non-reflective CORBA-compliant ORB and a refle©RB, as well as
between two reflective ORBs of different types, to enablermperation while exploiting
the adaptive features of the reflective ORBs. To do so, ACTheest different reflective
ORBs transparently while intercepting all CORBA requestplies, and exceptions and

passing them to the appropriate reflective ORB.

Intercepting Middleware. The concept of transparently intercepting CORBA requests
and replies has been used in several projects. Friedman[@68] use CORBA portable
interceptors [47] to enhance the client side of a CORBA aailbn by introducing proxies
that can cache replies and forward requests to other CORZ3b This work is among
the first to exploit CORBA portable interceptors for transgrd adaptation. In the IRL
project, Baldoni et al. [116] use portable interceptorsaosparently introduce their imple-
mentation of fault-tolerant CORBA [47] to CORBA-complia@RBs. Moser et al. [121]
also use an interception-based approach to transparemthduce their implementation
of fault-tolerant CORBA (Eternal [121] over Totem [168]) @DRBA applications. Eter-
nal, however, employs an operating-system interceptased approach instead of using
CORBA portable interceptors. In ALICE project, Haahr ef{ 569] usemobility gateways
which are proxies at the edge of wired network, to supportilitplof CORBA applica-
tions by intercepting requests to/from mobile hosts. Inegal the above projects focus
on modifying program behavior in a particular way, for exdemo enhance fault toler-

ance. In contrast, ACT uses the concept of generic intescepd enable adaptation of
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different types (security, fault tolerance, QoS, mobjlity ways that were not anticipated
at application development time. Moreover, generic irgption enables ACT to be used

as a framework gateway.

5.8 Summary

In this chapter, we introduced ACT, an extension of transpiashaping in CORBA. ACT
can be used to produce families of adaptable program frostiegi CORBA programs.
Specifically, ACT can be used to develop new adaptive CORBA&wWorks and to enhance
existing frameworks with unanticipated adaptive funcéilily and interoperability features.
ACT can adapt legacy CORBA applications at run time withdw& heed to modify or
recompile their source code. We developed ACT/J, an instah&CT in Java. Two case
studies were conducted, where we used ACT/J to accommoldatging conditions of a
wireless network infrastructure and to integrate ACT andQ42]. The results of our
experiments show that the overhead introduced by ACT idgibig. We also showed that
ACT can enable transparent integration of new adaptive sudextant QuO applications.
We can use the taxonomy of adaptive middleware introducegkeution 2 to classify
ACT. First, ACT is considered in the common services middienlayer because it uses
CORBA, which is a distribution middleware, and can be usadaement high-level ser-
vices such as those defined in CORBA services [170]. For ebam&CT can be used
to control the QoS in distribution middleware, to apply nexewrity policies at run time,
to enable transparent fault tolerance (FT-CORBA can beemphted using ACT), and
to perform dynamic type checking. Second, ACT services acessed by distributed
applications transparently; hence, ACT is considered esdapting middleware. ACT
transparently intercepts CORBA requests and modifies treeraquired. Finally, ACT is
considered as tunable middleware because it supports dynaconfiguration of distribu-

tion services while the core functionality of CORBA is not difeed at run time.
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Chapter 6

Transparent Application Integration

In the previous chapters, we focused on transparent adaptat pervasive and autonomic
computing. Specifically, in Chapters 4 and 5, we introducBAP and ACT as language-
and middleware-based approaches to transparent shapsmgctively. In addition, we
provided two transparent shaping tools, namely, TRAP/JA@Qd/J, to demonstrate the
usefulness of transparent shaping in the course of sewasalstudies. In general, the case
studies in the previous chapters provided relatively lewel adaptation in single applica-
tions. In this chapter, we demonstrate that the same tramsfpshaping tools can be used
beyond a single application and for a higher level type optatéon, namely, application
integration.

To integrate two heterogeneous applications, possiblgldped in different program-
ming languages and targeted to run on different platformespeed to convert data and
commands between the two applications on an ongoing basesadvent of middleware in
the 1990’s, which hides differences among programminguaggs, computing platforms,
and network protocols [34—-36], mitigated the difficulty gidication integration. The ma-
turity of middleware technologies resulted in several sgstul approaches enterprise-
wide application integration [171, 172], where applicationgaleped and managed by the
same enterprise are made to interoperate with one another.

Ironically, the difficulty of application integration, oaalleviated by middleware, has

reappeared with the proliferation deterogeneousiddleware technologies [173]. As
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a result, there is a need for anfddlewarefor middleware” to enable Internet-wide and
business-to-business application integration [173].

The Web Services Architecture [174] offers one approachdtyressing this problem.
A Web servicas a program delivered over the Internet that provides aicedescribed
in the Web Service Description Language (WSDL) [175] and mamicates with other
programs using the SOAP messages [176]. WSDL and SOAP dréroi®pendent of spe-
cific platforms, programming languages, and middlewarbrietogies. Moreover, SOAP
leverages the optional use of HTTP protocol, which allowpdsging firewalls, thereby
enabling Internet scalability in application integration

Although Web services have been successfully used to attegpplications, they do
not provide atransparentsolution to integrate existing applications. The chalkemgto
integrate existing applications without the need to mothsir source code directly. In this
chapter, we show how transparent shaping can be used torsegpsparent application
integration.

The rest of this chapter is organized as follows. SectionpéoVides background on
web services. Section 6.2 introduces several alternatolatactures supporting applica-
tion integration. Section 6.3 presents a case study, wherasg transparent shaping to
integrate two existing applications, one developed in CARIBd the other in the .NET
platform. Section 6.4 categorizes research projects amdracial products addressing
application integration and discusses how transparepirstheelates to them. Finally, Sec-

tion 6.5 summarizes this chapter.

6.1 Web Services Background

A service-oriented architecture, as depicted in Figurei§ domposed of at leasipmovider
program which is a program capable of performing the actions aasediwith a service

defined in a service description, andeqjuester programwhich is a program capable
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of using the service provided by a service provitiemn this model, we assume that a
program is executed inside a process, with a boundary digshing local and remote
interactions, and is composed of a number of software coemsnwhich are units of
software composition hosted inside a program prdcegs component implementing a
service is called grovider componenand a component requesting a service is called
a requester componentrigure 6.1 also shows that the application-to-applicafi®2A)
interaction is accomplished through the use of a middlewsrsknology over a network.

The network can be the Internet, an Intranet, or simply aariptocess communication

(IPC).
Requester Program Provider Program
Application O« >
Layer Requester_~ X ~. Provider
Component v L Component
Middleware
Layer
A 4
System Network
Platform " m >
T~ process boundaries™
[O Program component —> Flow of service request <> A2A Interaction ]

Figure 6.1: A simplified service-oriented architecture.

In the case of Web services, the middleware is composed ofayers: a SOAP mes-
saging layer governed by a WSDL layer (described beloWgb serviceare software
programs delivered over the Internet that are accessibt#hmr programs using the ser-
vice descriptor of the Web service defined in WSDL and throtilghSOAP messaging

protocol.

We use the terms “provider program” and “requester prograstéad of the terms “provider agent” and
“requester agent” used in [174] to avoid the confusion wijlergts in agent-based systems and to provide
consistency with the terms used in the other chapters ofithéertation.

2The example programs provided in this chapter are all deeeldn object-oriented languages. For
simplicity, the terms component and object have been ugedcimangeably. However, this does not imply
that a service-oriented system must be either implemersied vbject-oriented languages or designed using
an object-oriented paradigm.
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SOAP. SOAP [176] is an XML-based messaging protocol independespecific plat-
forms, programming languages, middleware technologigs fransport protocols. SOAP
messages are used for interactions among Web service pre\add requesters. Unlike
object-oriented middleware such as CORBA, which requiresigect-oriented model of
interaction, SOAP provides a simple message exchange aimengcting parties. As a re-
sult, SOAP can be used as a layer of abstraction on top of oilteleware technologies;
essentially providing a “middleware for middleware.”

A SOAP message is an XML document with one element, calledveel@pe, and two
children elements, called header and body. The contentsaufdr and body elements are
arbitrary XML. Figure 6.2 shows the structure of a SOAP mgesa he header is an op-
tional element, whereas the body is not optional and thers beiexactly one body defined
in each SOAP message. To provide the developers with theea@nce of a procedure-
call abstraction, a pair of related SOAP messages can betosedlize a request and its
corresponding response. SOAP messagigysichronoughat is, after sending a request
message, the service requester will not be blocked waitinghfe response message to

arrive. For more information about details of SOAP messgglease refer to [176—-178].

<?xml version="1.0" encoding="UTF-8" 7>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/ ... -
<soap:Header:>-
<!- Header contents in defined in arbitrary XML. —~
</soap:Header>
<soap:Body-
<!- Body contents in defined in arbitrary XML. —>
</soap:Body~
</soap:Envelope>-

OCoO~NOUITWN P

Figure 6.2: SOAP message structure.

WSDL. Web Services Description Language (WSDL) [175, 179] is anlXbased lan-
guage for describing valid message exchanges among seegoesters and providers.

The SOAP messaging protocol provides only basic commuaoitand does not describe
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what pattern of message exchanges are required to be followservice requesters and
providers to perform a successful interaction. WSDL adsieshis issue by describing an
interface to a Web service and providing the conveniencerabte procedure calls (or even
more complicated interactions such as back-and-fortmantens). For more information

about details of WSDL, please refer to [175,178,179].

6.2 Transparent Shaping and Application Integration

Several different approaches have been employed in thatlire to integrate applica-
tions [180]. Regardless of what approaches are being emg)dy integrate two het-
erogeneous applications, essentially we need to translateyntax and semantics of the
two applications during execution. In the rest of this settwe first introduce alternative
architectures for application integration and describ& transparent shaping can be used
to providetransparentapplication integration. Next, we discuss the role of Welvises

in the process of application integration.

6.2.1 Alternative Architectures for Application Integration

Depending onwherethe translation is performee .g.,inside the requester program, inside
the provider program, or inside a separate program), wéndissh three approaches to

application integration as follows.

Hosting translator components inside a bridge program. An intuitive approach to in-
tegrate two applications is to uséddge program which sits between the two programs,
intercepts all the interactions, and translates the intienas from one application semantic
and syntax to the other. The architecture for this approadlustrated in Figure 6.3. The
bridge program hoststeanslator componenihich encapsulates the logic for translation.
A translator component plays the role of a provider compofmnthe requester compo-

nent, as well as the role of a requester component for thegeogomponent. We note that
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a translation may involve more than one requester and peoeamponents and it may not
be as simple as a one-to-one mapping of requester and praaadgonents.

Requester Program Bridge Program Provider Program

Application O < >

Layer Requester_7 2 ~. Provider
Component__ v Component

A
Sysen ,, Gevord| | L |Neword

Platform c\%ﬁ)/ Q\%/J/

[ ®@ Program components @ Translator component  —>  Flow of service request > A2AInteraction]

\

.0

N
N

Figure 6.3: Hosting translator components inside a bridggnam.

Using this architecture is beneficial for the following reas. First, hosting translator
components inside a separate process (the bridge progmes)dt require modifications
to the requester and provider programs. Second, a bridggegocan host several transla-
tor components, where each translator component may m@oradslation to one or more
requester and provider programs. Third, the localizatibmamslator components in one
location (the bridge program) simplifies the maintenancapplication integration. For ex-
ample, security policies can be applied in the bridge pmogvace, which will be effective
to all the translator components hosted by the bridge.

The main disadvantage of this architecture is the overheposed to the interactions
because of one extra level of process-to-process redire@tn case the bridge program
is located on the same machine as the requester and/or erquidgrams) or machine-
to-machine redirection (in case the bridge program is kxtanh a separate machine). The

single-point-of-failure and the bottleneck problem ateeotdisadvantages of this approach.

Hosting Translator Components inside the Requester Progmnam. To avoid the over-
head of the extra level of process-to-process or machimeaichine redirection imposed
by the previous architecture, the translator componeniddostead be hosted inside the

requester program, as illustrated in Figure 6.4. Howexemnspareninterception and redi-
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rection of interactions to the translator component in #pproach are not as simple as in

the previous approach.

Requester Program Provider Program
Application ® <
Layer
A 4
N A
Middleware Q\\\Qé? // //
g M\
o oy
atform C\"e’]
[ ®@ Program components @ Translator component ~ —>  Flow of service request «—> A2Alnteraction]

Figure 6.4: Hosting the translator components inside thaester program.

Transparent shaping can be used to provide a transparelitadjom integration by
transparently augmenting existing applications with eiokercepting and redirecting the
interactions to adaptive code, which implements the tedosl The hooks can be inserted
into the application code using a language-based apprasthas TRAP or inserted into

the supporting middleware using a middleware-based appreach as ACT.

Hosting Translator Components inside the Provider Program Figure 6.5 shows the
architecture of heterogeneous application integratioare/tthe provider program hosts the
translator. Hosting a translator component inside a pesjidogram is beneficial if several
requester programs use the same translator. Instead ofyimgdall requester programs to
host the translator, only the provider program can be matiiiethis purpose. However, if
the translation process is CPU-intensive, this approachrmaascale well with the number
of requester programs.

As in the previous approach, transparent shaping can betaosedst the translator
components inside the provider program in a non-invasivenaa However, depending
on the specific middleware technologies and the programiaimguages used to develop
requester and provider programs, also depending on thedwailable in transparent shap-

ing, it might be easier to host translator components intiéerequester program than
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Requester Program Provider Program

Application ® < > @
Layer I 1
Middleware w\& Qﬁ?%/
Loyer \\ N N\~
S
Do —
[ ®@ Program components ® Translator component  —>  Flow of service request <>  A2A Interaction ]

Figure 6.5: Hosting the translator components inside tbeiger program.

inside the provider program. For example, let us assumevthatant to integrate a re-
guester program developed in Java and a provider prograeiapmd in C++. Since the
tools currently provided in transparent shaping, nameRAP/J and ACT/J, support only

Java programs, we can only shape the requester programdrandly.

6.2.2 The Role of Web Services in Application Integration

Providing direct translations faV heterogeneous middleware technologies requiés
translators to cover all possible application integratidosing a common language reduces
the number of translators frolv? to NV, assuming that one side of the interaction, either
requester or provider program, always uses the common dgegu\Veb services provide
one such language.

Figure 6.6(a) and 6.6(b) show two architectures enablirgpaester program to use a
Web service by hosting the translator component eithedénai requester-side bridge or
inside the requester program, respectively. SimilarlguFeé 6.7(a) and 6.7(b) show two
architectures enabling a provider program to be exposedVdsbaservice by hosting the
translator component either inside a provider-side briolgmside the provider program,
respectively. To integrate requester and provider prograrane of which is a Web ser-
vice requester or provider, we can use a combination of @actires in Figures 6.6(a)
and 6.6(b) and Figures 6.7(a) and 6.7(b). Out of the fouriptesssombinations, Fig-

ure 6.8(a) and 6.8(b) illustrate only two of them. These tvaléiectures enable integration
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of two heterogeneous applications through Web servicebtirtg the translator compo-
nents either inside requester- and provider-side bridggrams or inside the requester and

provider programs, respectively.

Requester Program Requester-Side Bridge Web Service Provider
O« > (D) <« ;CP
W\Q NN wsDL |
\\x N & SOAP SOAP |
v m 3 Internet

& ©

(a) Using a requester-side bridge.

Requester Program Web Service Provider
S < >0
N f
\N\WSDL WSDL
Ny soap SOAP
: %Internetg

&

(b) Shaping the requester.

[ @O Program components G) Translator component ~ ——>  Flow of service request <« A2A Interaction]

Figure 6.6: Alternative requester-side architecturesypplication integration through Web
services.

Many existing distributed applications have been devalopé&eterogeneous platforms
such as Java RMI [68], CORBA [47], and .NET [70]. Appendix Aoyides a complete
solution for transparent integration of such heterogesepplications using transparent

shaping and Web services in the course of a simple stock gxataple.

6.3 Case Study: Integrating Two Existing Applications

To show how transparent shaping can be used to integragéngapplications transpar-

ently, in this section we integrate an existing CORBA apgilmn with an existing .NET
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(a) Using a provider-side bridge.
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(b) Shaping the provider.

[ O Pprogram components  (B) Translator component  ——>  Flow of service request <« A2A Interaction]

Figure 6.7: Alternative provider-side architectures fpplkcation integration through Web
services.

application through Web services. The architecture thatiseefor this integration is the
one illustrated in Figure 6.8(b), where the Web servicedia@nors are hosted inside the
requester and provider programs. In the remainder of tlusosg we first introduce each
of the two applications briefly. Next, we describe our sggtéor how to shape each ap-
plication to interoperate with Web services. Finally, wectée the details of the shaping

process.

6.3.1 The Image Retrieval Application

The first application is a distributed image retrieval apgiion developed by BBN Tech-
nologies distributed with the QuO framework [42]. We preasty introduced and used this

application in Chapter 5. The application is a CORBA appiaradeveloped in Java. It
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Figure 6.8: Two combinations out of four possible combimrasiresulting from combining
Figures 6.6(a) and 6.6(b) and Figures 6.7(a) and 6.7(b).

has two parts, alient program(calledSlideClient ) that requests and displays images,
and aserver progran(calledSlideService ) that stores images and replies to the client
program requests.

The image retrieval application by itself can benefit frora @QuO framework, which
supports several adaptive behaviors. However, in thisysiweddisabled the QuO frame-
work and used the application only as a CORBA applicationc#een dump of the client
program GUI is depicted in Figure 6.9, which shows an aeliat@graph retrieved from
the server program. The client program continuously seeqisasts to the server program

asking for images. After each request is replied, the negdemage is displayed.
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Figure 6.9: A screen dump of the client program GUI showingamal photograph of the
Sarasota bay.

6.3.2 The Sample Grabber Application

The second application is a sample grabber applicatiofec@bhmpleGrabberNET ) that
is part of theDirectShow.NET framework developed by NETMaster This applica-
tion is a .NET application written in C# and is freely avalllat the Code Project web
site (URL.: http://www.codeproject.com/ ). It uses the interfaces provided in the
DirectShow.NET framework to interoperate with DirectShow.

DirectShow[181] is a standard Microsoft Win32 API that can be used frowliadows
application to interact with compliant movie and video ded installed on a Windows
computer. DirectShow is developed as COM components [7d]cam be used through
COM programming in a Visual C++ program. Tb&ectShow.NET framework by NET-
Master enables a convenient use of DirectShow in C#. All thediShow interfaces writ-
ten in IDL is rewritten in C# that are compliant with the Dit8bow documents for Visual
C++ provided by Microsoft.

Figure 6.10 shows a screen dump of the frame grabber apphc@tUl. On the left

side of the GUI, a preview panel shows a live video streamucagtfrom a video camera

SNETMaster is an active member of the Code Project. The Codg®r(URL: http://www.-
codeproject.com/ ) is a place for a large number of free C++, C# and .NET articlede snippets,
discussions, and news on the Internet. It organizes therpape programs developed by its members and
provides them freely to be used or improved by others.
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installed on a Windows XP machine. On the right side, an inzageel shows a bitmap

image grabbed from the camera using the “Grab” toolbar hutto

Figure 6.10: A screen dump of the sample grabber applic&idh The left panel shows
a preview of the live video captured from a video camera aeditiht panel shows a still
image grabbed using the “Grab” toolbar button.

Similar to other DirectShow applications, the frame gratdgeplication first builds a
filter graphand then controls the filter graph and responds to the eveedsifi the graph.
The filter graph for the sample grabber application is iHaistd in Figure 6.11. Basically, a
filter graph is a directed graph of filters, which are the basi@ding blocks of DirectShow
applications and generally perform a single operation onkimedia stream. For example,
a filter may read multimedia files, capture video from a vidaptare device, encode or

decode a particular stream formatd., MPEG-1 video), or send data to a graphics or a

sound card.
Capture — Input  Capture —» XForm In XForm Out —# Input Output
Ds.NET Video Capture Device Smanp‘lr'gveiew AVI Decompressor 0001 Ds.NET Grabber
XForm In XForm Out —— > Input
AVI Decompressor Video Renderer

Figure 6.11: The filter graph of the .NET frame grabber appicn taken by the GraphEdit
tool.

127



The filter graph first captures a live video stream from a vicature device using the
Ds.NET Video Capture Device filter. Next, it makes two copies of the video stream
using theSmart Tee filter and decompresses them using #xd Decompressor filters.
Finally, it provides a preview of the video stream using Yigeo Renderer filter and
enables frame grabbing using tb8.NET Grabber filter. Once the “Grab” button is
pressed, the request is handled by grabbing a frame usimzstNET Grabber filter.

GraphEdit [181] is one of the standard tools distributechviiticrosoft DirectShow.
Using GraphEdit, we can discover the graph used in a DirestSipplication while it is
running without the need to look into the application sowode. Figure 6.11 shows the

the filter graph of the sample grabber application that isioled by the GraphEdit tool.

6.3.3 Application Integration Strategy

Our goal is to enable the client program in the CORBA imagee! application to re-
trieve live images from the .NET frame grabber applicatidio. make this possible, we
need to shape both applications to interoperate with edoar.oAs described in Section 6.2,
there are several architectures that we can choose forghpigation integration. Also, as
described in Sections A.2, A.3, and A.4, there are sevetatisns to implement each
architecture.

Among the architectures, we selected the one illustratédgare 6.8(b), which is the
result of combining the architectures illustrated in Fe&gi6.6(b) and 6.7(b). This architec-
ture provides an application integration through the usé/eb services, where the Web
services translator components are hosted inside thesegud provider programs. The
.NET frame grabber application plays the role of a providegpam and must be exposed
as a frame grabber Web service. On the other side, the cliegtam of the image retrieval
application plays the role of a requester program and mushlaped to use the frame
grabber Web service.

In the rest of this section, first we describe how transpaskaping is used to expose
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the frame grabber application as a Web service. Next, weitheswow the image retrieval

client program is shaped to use this Web service.

6.3.4 Exposing the Frame Grabber Application as a Web Servie

As explained in Section A.4.2, we have two solutions to ee@INET server program as
a Web service using the architecture in Figure 6.7(b). Tis¢ $olution uses an IS Web
server to host the translator and provider componentsgwhé second solution uses the
.NET server program itself as a Web service. The latter goius better than the former,
if the none of the types to be exposed by the .NET server pnogsaa .NET specific
types [182, 183]. Since we do not need to use any of the .NEdifgpty/pes to expose the
frame grabber application as a Web service, we pick the sesolation.

However, the frame grabber application is a .N&&ndaloneapplication (as opposed
to a .NET remoting application). Therefore, no .NET remgtservice is exposed by the
frame grabber application itself. So, we first need to shapeNET frame grabber applica-
tion to become a .NET remoting application and then use it&@slaservice. As we do not
have a C# version of the TRAP generator framework, we canmtiid part transparently
from the application source code. We note that when the TRABEcomes available, this
part can be done automaticallye(, there will be no need to directly modify the source
code of the .NET frame grabber application).

Our goal is to minimize the modifications to the frame gralaygglication source code.
Therefore, we only put a hook inside the application and lpaitrést of the code regarding
making the application as a .NET remoting application in @asate program. These two
programs are loaded inside another program, calempe.exe , which is listed in Fig-
ure 6.12 (lines 1 to 14). The modified .NET frame grabber @ougis inside th&sample-
GrabberNET.exe assembl§, the .NET remoting code is inside tbetNETServer.exe

assembly, and the configuration file for thleape.exe is inside theShape.exe.config

4A NET assembly is simply a .NET executable filee(, a .EXE file) or a .NET library filei(e.a .DLL
file).
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file. The excerpted code for ti&hape.exe.config configuration file is listed in Fig-

ure 6.12 (lines 16 to 23).

/I The host application defined in Shape.cs
public class Shape {
static private string configFilename, dotNET Server, sampleGrabberNET;
public static void Main(string [] args) {
if (args.Length != 3) return;
configFilename = args[0]; dotNETServer = args[1]; sampleGrabberNET = args|[2];
try {
RemotingConfiguration.Configure(configFilename);
AppDomain ad = AppDomain.CurrentDomain;
10 ad.ExecuteAssembly(dotNETServer);
11 ad.ExecuteAssembly(sampleGrabberNET);
12 } catch(Exception e) {}
13 String keyState = “; keyState = Console.ReadLine();
14 3}

O©CoO~NOUITAWN P

16 /I The configuration file defined in Shape.exe.config

17  <configuration> <system.runtime.remoting> <application name="Server”>-

18 <service>

19 <wellknown mode="Singleton” type="SampleGrabberWebService.

20 SampleGrabberObject, SampleGrabberObject” objectUri="SampleGrabberObject” />~
21 </service-

22 <channels> <channel port="9000" ref="http” />~ </channels>

23  </application~ </system.runtime.remoting>~ </configuration;-

Figure 6.12: Excerpted code for the Shape program that hosghtsthe .NET server and
frame grabber assembilies.

The command line that we use to run the provider program isaflawving: Shape.-
exe Shape.exe.config DotNETServer.exe SampleGrabberNET .exe . As listed
in Figure 6.12, first, the configuration file is parsed and tisgructions are followed (line
8), which provides flexibility to configure th&hape program at startup time as discussed
before. Next, thedDotNETServer.exe and theSampleGrabberNET.exe are executed
using the .NET reflection facilities (lines 10 and 11).

To put a hook inside th&€ampleGrabberNET.exe assembly, we added omiblic
method to the frame grabber application that basically gealmew frame and returns it
as a bitmap image. Figure 6.13 lists all the code that we tijreclded to the sample

grabber application (the added code istalic). The hook is thepublic Image grab-
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Sample ‘WovenCode() method inside thé&lainForm class (lines 8 to 16). Basically, this
method calls theoolBar _ButtonClick() method (line 11) to grab a frame. By using
the codetoolBaButtonClick() method to grab a frame, we make the calls tohbek

method appear to the original application as if the user helsecl on the “Grab” button.

1 /I The MainFormcs file used in the SampleGrabberNET.exeprogram
2 using System.Threading;
3 namespace SampleGrabberNET {
4 public class MainForm : System.Windows.Forms.Form, ISampleGrabberCB {
5 private object lockObject = new Object();
6 private Image image = null;
7 private Bitmap bmp = null;
8 public Image grabSample_WovenCode() {
9 lock(lockObject) {
10 image = null;
11 toolBar_ButtonClick(this, new ToolBarButtonClickEventArgs(toolBarBtnGrab));
12 if (image == null) try { Monitor.Wait(lockObject); } catch (...) { ...}
13 Monitor.Pulse(lockObiject);
14 }
15 return bmp;
16 }
17
18 void OnCaptureDone() { ...
19 lock(lockObject) {
20 Image o = bmp; bmp = new Bitmap(b);
21 if( o '= null ) o.Dispose();
22 Monitor.Pulse(lockObiject);
23 }
24 }
25
26 static private MainForm instance = null;
27 static public MainForm getinstance() {
28 if (instance == null) instance = new MainForm();
29 return instance;
30 }
31 [STAThread] static void Main() {
32 /I Application.Run(new MainForm());
33 Application.Run(getinstance());
34 1}

Figure 6.13: Direct modifications to the .NET frame grablmlzation source code.

Unfortunately, implementing the hook was not as easy as wea&d. Grabbing a
frame in a DirectShow application is done through the use fifea graph, which works

asynchronously with respect to the thread executing thedi@how application [181]. In
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other words, the thread that asks for a frame does not bloktlie frame is grabbed and
returned by the filter graph. Instead, the filter graph wilicd@n event to the application
when the frame is ready to be returned. The event is handl#eeioriginal program in-
side theOnCaptureDone method. To ensure that the thread calling the hook method is
notified when the frame is ready, we used a lock object keptatotkObject  variable
(line 5). The calling thread waits on the lock object (ling LiAtil the OnCaptureDone()
method is called as a result of frame being ready. The lockabb$ pulsed inside the
OnCaptureDone() method to notify the calling thread that the frame is readpdae-
turned (line 22).

Finally, we need to enable the code inside D@NETServer.exe assembly to be
able to get a hold of the hook inside tBampleGrabberNET.exe assembly. For this
purpose, we made thainFrame class as a singleton class [59] (lines 26 to 30 and 32 to
33). In this way, the instance of tiainForm class inside th&ampleGrabberNET.exe
will be accessible to the code inside thetNETServer.exe

Figure 6.14 shows the excerpted code of$hepleGrabberObject  class defined in
theSampleGrabberObject.cs file and used in thBotNETServer.exe  program. First,
the .NET reflection facilities is used to get a hold of the haokich is thepublic Image
grabSample WovenCode() method (lines 3 to 10). Specifically, thegetinstance())
method of theMainForm singleton class is used to get a reference to the singleten ob
ject of this class, which is kept in thef variable (line 8). Thenf variable is used to get a
reference to the hook, which is kept in tin¢ variable (line 9).

Next, the public short[] GrabFrame( int nQuality ) method is defined
(lines 11 to 22), which is the method that is exposed byDh&NETServer.exe  pro-
gram that can be used from a .NET client application or a Weli@erequester program
(described next). This method first calls the hook methodchlvgets a live frame from
the camera and returnsBitmap image (lines 12 to 13). Next, it converts tBémap

image to gpeg image using th@Quality (lines 14 to 20).nQuality can vary from 0O
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/I The SampleGrabberObject.csfile used in the DotNETServer.exeprogram
public class SampleGrabberObject : MarshalByRefObject {
private MethodInfo mi; private Object mf = null;
public SampleGrabberObject() {
AppDomain ad = AppDomain.CurrentDomain;
Assembly [] assemblies = ad.GetAssemblies();
/I Finding the main form using the .NET reflection facilities (not shown).
mf = mainForm.InvokeMember("getinstance”, . ..);
mi = mf.GetType().GetMethod("grabSample_WovenCode”);

OCO~NOOUITAWNPE

10

11 public short[] GrabFrame( int nQuality ) {

12 object [] parameters = new object[0];

13 Bitmap bitmap = (bitmap)mi.Invoke( mf, parameters );

14 ImageCodecinfo mylmageCodecinfo = GetEncoderinfo("image/jpeg”);
15 EncoderParameters encps = new EncoderParameters( 1 );

16 EncoderParameter encp = new EncoderParameter( Encoder.Quality, (long)nQuality);
17 encps.Param[0] = encp;

18 MemoryStream ms = new MemoryStream();

19 bitmap.Save( ms, mylmageCodeclnfo, encps );

20 ms.Close();

21 return converyByteArray2ShortArray( ms.ToArray() );

22 }

23}

Figure 6.14: Shape.

to 100, wherenQuality=100 means to compress the image with 100% quality. Finally,
it converts thebyte[] data to theshort[]  for compatibility reasonsufpsignedByte
defined in the XML schema data types is not interpreted in #meesway in the C# and
Java languages) and returns the image (line 21).

Now that the provider program is ready to run, we need to gead¢he Web service de-
scription of our provider program (to be used in the shapirtg@CORBA client program).
We used the&SOAPsuds.exe utility with the -sdl  option that generates a WSDL schema
file. The excerpted WSDL description is listed in Figure 6.Ihis WSDL describes an
abstractapplication-level service description (interface) to YNeb service (lines 3 to 16)
as well as aoncreteprotocol-dependent details of how to access the servicesl18 to
33).

The abstract description part (lines 3 to 16) describesrttegface to the Web service

using themessage elements (lines 3 to 8), which defines what type of messageseaent
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1  <7?xmlversion="1.0’ encoding="UTF-8"?>
2 <definitions name='SampleGrabberObject’ ...~ <types> ... </types>
3 <message name="'SampleGrabberObject.GrabFramelnput’>-
4 <part name="nQuality’ type="'xsd:int'/>~
5 </message>
6 <message name="'SampleGrabberObject.GrabFrameOutput’>-
7 <part name='‘return’ type="ns2:ArrayOfShort'/>-
8 </message:-
9 <portType name='SampleGrabberObjectPortType’>-
10 <operation name="'GrabFrame’ parameterOrder="nQuality’>
11 <input name='GrabFrameRequest’
12 message="tns:SampleGrabberObject.GrabFramelnput'/>-
13 <output name='GrabFrameResponse’
14 message="tns:SampleGrabberObject.GrabFrameOutput’/>
15 =</operation-
16 =</portType>
17

18 <binding name='SampleGrabberObjectBinding’
19 type="tns:SampleGrabberObjectPortType’>-

20 <soap:binding style=‘rpc’ transport="http://schemas.xmlsoap.org/soap/http’/>- . ..
21 <operation name='GrabFrame’s>

22 <soap:operation soapAction="..."/~ ...

23 <input name='GrabFrameRequest’>- <soap:body .../ </input>-

24 <output name='GrabFrameResponse’> <soap:body .../~ </output>

25 =</operation-

26 =</binding>

27

28 ~<service name='SampleGrabberObjectService’-

29 <port name="'SampleGrabberObjectPort’ binding="tns:SampleGrabberObjectBinding’>-
30 <soap:address location=

31 ‘http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject'/>-

32 =</port-
33 </service>
34  </definitions>

Figure 6.15: The excerpted WSDL description of the sampblger Web service.

to and received from the Web service, and poetType element (lines 9 to 16), which
defines all the operations that are supported by the WelcgerVheGrabFrame operation
(lines 10 to 15) defines the valid message exchange pattppoged by the Web service.
The concrete description part (lines 18 to 33) complemdmsabstract part using the
binding element (lines 18 to 26), which basically descrilb@sva given interaction is
performed ovewhatspecific transport protocol, and tkervice element (lines 28 to 33)

that describesvhereto access the service. The how part describes how marstealichg
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unmarshaling is performed using tbperation element inside théinding element
(lines 21 to 25). The what part is described in line 20 usiregtdnsport  attribute. The

where part is described using thert element (lines 29 to 32).

6.3.5 Transparent Shaping of the Image Retrieval Client Prgram

According to our strategy, we follow the architecture ithased in Figure 6.6(b) to shape
the CORBA client program to interoperate with the .NET fragnabber program that is
exposed as a Web service provider program. As describedcdto8eA.2, we have two
solutions that can be used to host the translator componsidiei the CORBA client pro-
grams. Among the two solutions, we picked the first solutiwhere we use the ACT
framework (introduced in Chapter 5) to host a proxy objeat flays the role of the Web
service translator for the client program.

To intercept and redirect the CORBA requests, first, we miaelient program adapt-
ready by running the program using two extra command-limarpaters;java client
ORBconfig file:client.cfg.® Next, we insert a new rule to the rule-based decision
maker of the ACT core that intercepts all the CORBA requests.

Figure 6.16 lists the excerpted code of the condition antbaatlasses of the rule.
The condition part of the rule is defined in tisfideService = _Condtion.java file
(lines 1 to 8) that returngue always to make all the intercepted CORBA request to
be forwarded to the action part of the rule. The action pathefrule is defined in the
SlideService  _Action.java file (lines 10 to 25). In the constructor of ti&dide-
Service _Action class (lines 12 to 17), an instance of the translator comudaefined
in the SlideService  _ClientLocalProxy.java file, which is described next) is cre-
ated.

Once the rule is inserted, all CORBA requests will be reifigdie CORBA ORB and

will eventually be intercepted by th@ocess() method of theSlideService  _Action

SFor details of how ACT works, please refer to Chapter 5.
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/I The condition class defined in SlideServiceCondtion.java
public class SlideService_Condition extends InBandDMCondition {
public SlideService_Condition(ActiveRule activeRule, ORB orb) { super(...); }
public boolean check(org.omg.CORBA.Object targetObj, FullinterfaceDescription
fullintDesc, ServerRequest serverRequest, Request request) {
return true;

}
}

10 // The action class defined in SlideServiceAction.java

11  public class SlideService_Action extends edu.msu.cse.sens.act.dm.InBandDMAction {
12 public SlideService_Action(ActiveRule activeRule, org.omg.CORBA.ORB orb) {

13 super(activeRule, orb);

14 SlideService_ClientLocalProxy slideService_ClientLocalProxy =

15 new SlideService_ClientLocalProxy(orb);

16 /I publishing the SlideService_ClientLocalProxy CORBA object in the naming service

OCO~NOOUITAWNPE

18 public boolean process(org.omg.CORBA.Object targetObj, FullinterfaceDescription

19 fullintDesc, ServerRequest serverRequest, Request request) {

20 request = createReq(slideService_ClientLocalProxy, serverRequest, fullintDesc, opNum);
21 request.invoke();

22 org.omg.CORBA.Any res_any = request.result().value();

23 serverRequest.set_result(res_any);

24 return true;

Figure 6.16: Excerpted code for the condition and actiossda for shaping the CORBA
image retrieval client program using the ACT framework.
class (lines 18 to 25). Thaocess() method creates another CORBA request similar to
the one intercepted, except that its target objeslideService  _ClientLocalProxy

The SlideService _ClientLocalProxy class is defined in theSlide-
Service _ClientLocalProxy.java file that is listed in Figure 6.17. First, a reference
to the SampleGrabberObject ~ Web service is obtained (lines 4 to 13). We used the
Java WSDP framework to generate the stub class corresgptalthe Web service using
the WSDL file listed in Figure 6.15. Next, all calls to the ongl CORBA object are
forwarded to the Web service (lines 14 to 27).

Figure 6.18 lists the IDL description used in the originatted CORBA image retrieval
application. TheSlideShow interface defines six methods (lines 4 to 9). As listed in

Figure 6.17 (lines 21 to 26), all thead*() methods defined in the IDL file are mapped
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/I The proxy defined in SlideServiceClientLocalProxy.java
public class SlideService_ClientLocalProxy extends SlideShowPOA
implements Serializable, SlideShowOperations {
private SampleGrabberObjectPortType sampleGrabberObject = null;
public SlideService_ClientLocalProxy(ORB orb) { ...
string endpoint = "http://haydn.cse.msu.edu:9000/Server/SampleGrabberObject”;
try {
Stub stub = (Stub)(new SampleGrabberObjectService_Impl().
getSampleGrabberObjectPort());

OCO~NOOUITAWNPE

10 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);
11 sampleGrabberObject = (SampleGrabberObjectPortType)stub;

12 } catch (Exception ex) {...}

13 }

14 private byte[] grabFrame( int nQuality ) {

15 byte [] frameByteArray = null; short[] frameShortArray = null;

16 try { frameShortArray = sampleGrabberObject.GrabFrame( nQuality ); }
17 catch(Exceptione) {...}
18 frameByteArray = convertShortArray2ByteArray( frameShortArray );

19 return frameByteArray;

20 .

21 public void readBig(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
22 pixHolder.value = grabFrame( 75 ); sizeHolder.value = "big”;

23 .

24 public void readSmall(int gifNum, StringHolder sizeHolder, octetArrayHolder pixHolder) {
25 pixHolder.value = grabFrame( 25 ); sizeHolder.value = "small”;

26 o

27 public int getNumberOfGifs() { return -1; }

28 }

Figure 6.17: Excerpted code for the Web service translaiomponent defined as a proxy
object in the ACT framework.

to theGrabFrame() method of the Web service exposed by the provider prograne. Th
getNumberOfGifs()  method simply returns -1 (line 27) to indicate that the inslgeing
retrieved are live images (as opposed to being retrieved #mumber of stored images at
the server side).

Figure 6.19 depicts two screen dumps of the GUI of the CORBAgenretrieval pro-
gram. Figure 6.19(a) depicts the client application whilesiusing the CORBA server
application, where the image shows a stored aerial imager&i6.19(b) depicts the client
application after it has been shaped dynamically to userdrad grabber Web service,
where the captured image shows a live picture of a user frentéimera installed at the

machine running the provider program.

137



/I The slide show interface defined in SlideShow.idI
module com { module bbn { module quo { module examples { module bette {
interface SlideShow {

void readSmall ( in long gifNumber, out string size, out octetArray buf );
void readSmallProcessed ( in long gifNumber, out string size, out octetArray buf );
void readBig ( in long gifNumber, out string size, out octetArray buf );
void readBigProcessed ( in long gifNumber, out string size, out octetArray buf );
void read ( in long gifNumber, out string size, out octetArray buf );
long getNumberOfGifs ();

b
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Figure 6.18: The slide show IDL file.
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(a) Before integration. (b) After integration.

Figure 6.19: Two screen dumps of the CORBA image retrievahtiprogram GUI. One
before the application integration and the other after tivegration.

6.4 Related Work

In this section, we categorize several research projetetsdard specifications, and com-
mercial products that support application integrationsdthon the transparency and flex-
ibility of the adaptation mechanisms used to support appba integration, we identify

three categories as follows.

First Category. In the first category, we consider approaches that provatesfprarency
with respect to either an existing provider program or arstaxj requester program, but

not both. To provide transparency to provider or requestegnams, approaches in this
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category typically use either the architecture illustdate Figure 6.4 or in Figure 6.5, re-
spectively. However, please note that the existence o$laor components is not trans-
parent to the programs hosting the translators. Therefloeeprograms hosting translator
components are required to be either developed from scaatchodified directly by a
developer.

Examples of research projects in this category include thimwated Interface Code
Generator (AIAG) [184], the Cal-Aggie Wrap-O-Matic projd CAWOM) [185], and the
World Wide Web Factory (W4F) [186]. AIAG [184] supports ajggaltion integration by
providing an interface wrapper model, which enables dgatto treat distributed ob-
jects as local objects. AIAG is an automatic wrapper geoetatilt on top of JavaSpaces.
AIAG can be used to generate the required glue code to be nsdknt programs. CA-
WOM [185] provides a tool that generates wrappers enablimgneand-line systems to be
accessed by client programs developed in CORBA. This apprpeovides transparency
for existing command-line systems. Examples of the use aVOM include wrapping
the JDB debugger, which enables distributed debuggingwaadping the Appache Web
server, which enables remote administration. Finally, W#6] is a Java toolkit that gen-
erates wrapper for Web resources. This toolkit providesgpimg mechanism for Java and
XML.

Microsoft Visual Studio .NET [187] and IBM WebSphere Studipplication Devel-
oper [188] are among numerous commercial developmentamnwients that also fall in
this category. Visual Studio .NET provides a set of visuald@nabling developers to in-
tegrate existing .NET programs with Web services. One ekaofsuch visual tools is the
Add Web Reference GUI introduced in Section A.4 (see Figu®A which generates the
proxy required to interoperate with Web services. SimylaNebSphere provides a set of
visual tools enabling a developer to transform existing ponents €.g.,Java beans, EJB
beans, and SQL statements) into Web services.

In addition to the development environments and visualstamhumber of command-
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line tools are also supported by Sun Microsystems and Midtos enable fast application
integration bygeneratingthe required glue code. For example, Sun Microsystems Java
Web Services Developer Pack (Java WSDP) [189], which is e tioelkit for develop-

ing Web services, provides command-line tools suclve®mpile.bat , which can be
used to generate stubs and skeletons from WSDL files. Mitiratsn provides a set of
command-line tools includingpapsuds.exe , which generates a WSDL file from a .NET
assembly file (and vice versa), amddl.exe , which generates code for Web service re-
guester and provider programs from WSDL files, XSD schemas,discomap discovery
documents. Examples of the use of these tools have beerdptbii Sections A.2, A.3,

A.4, and 6.3.

Second Category. In the second category, we consider approaches that prtnads-
parency with respect to both the provider and requesterrgnagi Approaches in this
category typically use the architectures illustrated igures 6.3, where a bridge program
is used to host the translator components. Although suctoapbes provide transparency
with respect to both requester and provider programs, thigr§rom extra overhead im-
posed by one more level of process-to-process or machinetine redirection. In ad-
dition, if only one bridge is used for integrating severasgmams, then the approaches in
this category may also suffer from the single-point-oftfie@ and performance bottleneck
problems. However, as described before, we note that feglihe translator components
in one process has several advantages, among which thefeasetenance is the most
notable one.

Examples of standard specifications and commercial predandhis category include
SCOAP [190], CORBA Web services [191], Soap2Corba [171],1&2NA Artix [193],
and Apache Web Services Invocation Framework (WSIF) [19Bjpically, the goal in
these approaches is to provideautomatictranslation mechanism. In general, unless the

automatic translation guarantees both syntax and semaatislations, such approaches
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may fail their purpose [173]. As an analogy, translating avessation from English to
French using a word-by-word translation approach, althaugy make sense in some few
examples, but it generally fails the purpose. The reasomtetuch failure is that the se-
mantics of application interactions are not captured omtye interface descriptions.@.,
CORBA IDL and Web services WSDL). By translating just thetsyaof CORBA IDL to
WSDL for example, we cannot guarantee the semantic of hgeeous applications are
translated also.

For example, an object reference in CORBA cannot be mappad/eb service ad-
dress, because such addressing is not provided in Web ervin addition, consider
exception and faults implemented in different ways in défeé middleware technologies
cannot be easily translated to one another. Some propasdisas WS-Addressing [195],
WSDL 2.0 [175], WS-Events [196], WS-Eventing [197], and WStification [198] are
examples of attempts to address these issues. Soap2C&djapfbvides a partial so-
lution to representing a CORBA object references for Webises by translating object
references to Web service “contexts” that are managed indgébetween CORBA and
web services applications. IONA Artix [193] and Apache Waln&es Invocation Frame-
work (WSIF) [194] provide a muti-middleware approach to laggdion integration through
multi-middleware routing and switching [173]. These twojpcts benefit from the WSDL
abstractions and binding extensions and maximize the lpibsss of integration.

Finally, an example of research projects in this categotiteéson-the-fly wrapping of
Web services [199]. In this project, Web services are wrdppde used by Java programs
developed in Jini [200]Jini is a service-based framework originally developed to stppo
integration of devices as services. The wrapping procesgiltated by thewSDL2Java
andWsSDL2Jini generator tools, which generate the glue code part of thigémprogram
and the translator component. Please note that a devefoggguired to complete the code
for the bridge and to make sure the semantics of transladomgorrect. Using the Jini

lookup service, the bridge publishes the wrapped Web seasa Jini service, which can
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be used transparently by Jini client programs.

Third Category. We consider transparent shaping in a third category. Sirtaléhe ap-
proaches in the second category, transparent shapinglpsotransparency to provider and
requester programs, and in addition, provides flexibiliilhwespect to where the translator
components are hosted. Transparent shaping providepatlter solutions to application
integration as illustrated in Figures 6.3, 6.4, or 6.5. Ascdssed before, depending on the
application needs and the integration requirements, otteese three architectures may be
more appropriate. Transparent shaping benefits from thmmitgees provided in the first
two categories and is considered as a complementary apptodlce former approaches.
We have shown how transparent shaping benefits from theitpasprovided by the first
category in Sections A.2, A.3, A.4, and 6.3. We plan to empth@yautomatic translation

techniques provided by the approaches in the second cgtegour future work.

6.5 Summary

In this chapter, we have demonstrated how transparentrghapn be used to facilitate
transparent application integration. Using TRAP/J and ACWe provided alternative so-
lutions to integrate heterogeneous applications. A cas®ysvas described, in which we
used transparent shaping to integrate two existing apfgits, one of them was developed
in CORBA and the other in .NET platform. Finally, we classifthe approaches to appli-
cation integration and discussed how transparent shapiatgs to them. For our future
work, we plan to extend the tools supporting transparenpisigaand use the automatic
translation techniques provided by other approaches tcagipn integration. Specifi-
cally, for the former, our group is currently developing ampiementation of TRAP for
C++, and we plan to develop an implementation for C#. For lledatter, we plan to use
Artix [193] as a supporting tool in transparent shaping.

We note that several challenges remain in the domain ofgeaesat application inte-
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gration, including automatic translation of the semantidseterogeneous applications and
automatic discovery of appropriate Web services. The exaeasing maturity of business
standards, which have been supporting the automatedctiters in business-to-business
application integration over the past 20 years, addrebsse issues to some extent [172].
Examples of some electronic businesses based on Web sematade ebXML, Roset-
taNet, UCCNet, and XMethods. Also, the automatic servicating, which is one of the
goals of Web services, has been specified in the Universarpésn, Discovery, and In-
tegration (UDDI) [201] specification. UDDI is a Web servicar fregistering other Web

services descriptions.
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Chapter 7

Conclusions

Transparent shaping supports reuse of existing programsvin dynamic environments
even though the specific characteristics of such new envieoits were not anticipated
during the original design of the programs. In particulaanypopular programs, not de-
signed to be adaptable, are being ported to dynamic enveatsn Transparent shaping
enables dynamic adaptation in such programs and promoéesezgrained reuse of soft-
ware. In the rest of this chapter, we summarize our specifitriimtions and achievements,

and discuss the future work.

7.1 Contributions

This dissertation produced four main contributions. We tsnmarize the contributions,

and then discuss our achievements as a whole.

1. Assessment of language support in dynamic adaptation.In the first part of our

study, we assessed how appropriate programming languag#ects can facilitate the de-
velopment of adaptable programs. We used Adaptive Javahvelxtends Java with behav-
ioral reflection, to design a component calld@taSocketwhose behavior and structure

can be adapted at run time in response to external stiraui, (vireless channel condi-
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tions). We evaluated the use of MetaSockets in a case stimyewve provided dynamic
adaptation in an audio streaming application. In this casdys the adaptation hooks
were realized by the MetaSocket infrastructure and adaginde was realized by filters
in MetaSockets.

Although MetaSockets proved to be useful in supporting dyinadaptation, our study
of them revealed the following two issues. First, to incogte a MetaSocket into an exist-
ing program, we need to modify the program source code djrechich is not desirable.
Second, once the existing program is modified to use a Meka$mstead of a Java socket,
dynamic adaptation is only possibiéthin the MetaSocketd.g.,through the insertion and
removal of filters). In other words, we cannot replace oneiverof a MetaSocket with

another more appropriate version of the MetaSocket at mie. ti

2. Transparent, dynamic adaptation in object-oriented praggrams. In the second part
of our study, we designed an extension of transparent spajailted Transparent Reflec-
tive Aspect Programming (TRAP), which supports dynamigpéak#on in existing object-
oriented programsransparently A prototype of TRAP for Java, calleiRAP/J was de-
veloped and used to evaluate the TRAP concept. TRAP/J esitileystructural reflection
provided in Java and the aspect weaver provided in Aspe@g] {& support partial behav-
ioral reflection [151] in existing Java programs. TRAP/Jtfgenerates wrapper and meta
classes and weaves them into an existing program at conmpiéetd generate an adapt-
ready version of the program. Next, the adapt-ready progamnbe adapted at run time by
insertion and removal of delegates.

In TRAP/J, a hook is realized by a pair of wrapper and metaselgassociated with
a class in the existing Java program, and adaptive code ligagdy delegates, which
can modify the behavior of the class by overriding the immatation of its methods.
We developed a delegate using a MetaSocket, which in itsswpports dynamic adapta-

tion through insertion and removal of filters. As a resultriat time, a MetaSocket can
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be replaced with a more appropriate one, if required. Resilthis study showed the
improvement in the execution of the audio streaming apgdtinan a mobile computing

environment, while the adaptation is completely transpiatieethe application code.

3. Transparent, dynamic adaptation in CORBA programs. In the third part of
our study, we designed and evaluated another extensioramégarent shaping, called
the Adaptive CORBA Template (ACT), which supports dynami@atation in existing
CORBA programs transparently. ACT implements interceptiad redirection inside the
supporting middleware instead of the program code itseladdition, ACT enables inter-
operation among otherwise incompatible adaptive CORBAé&aorks.

We developed an instance of ACT in Java, calkdT/J to evaluate ACT in prac-
tice. In case studies, we showed the overhead introducediyJAs negligible, while the
adaptation provided is highly flexible. Specifically, we digeCT/J to enable an existing
image retrieval program, originally designed for wiredwatk, to continue working cor-
rectly in a mobile computing environment, where network rhagome disconnected and
reconnected at any point in the execution of the program.Qii,A00ks are realized by a
generic CORBA portable interceptor and adaptive code iszezhby rule-based dynamic

interceptors and their corresponding rules.

4. Transparent application integration. Finally, in the last part of our study, we as-
sessed the potential role of transparent shaping beyorgttpe of a single program. We
demonstrated how transparent shaping can be used to sappdidation integration. We
proposed several alternative architectures and showediamsparent shaping can sup-
port interoperability, via Web service, for Java RMI, CORB#d .NET applications. A
case study demonstrated the use of transparent shapinggnation of an image retrieval

application developed in CORBA and a frame grabber apjpdicateveloped in .NET.
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7.2 Ac

hievements

Figure 7.1 summarizes the achievements of this dissanmtasoa whole and shows how

the contribu
posed as a

grams. Two

tions discussed above are related to one andilensparent shaping is pro-
new programming model, which supports dynamtatean in existing pro-

instances of transparent shaping are providgdPTand ACT. TRAP employs

a language-based approach and augments the existing mogvdh partial behavioral

reflection using transformers at compile time. In contra&T employs a middleware-

based approach and augments the supporting middlewarawiheric interceptor using

CORBA portable interceptors. Prototype implementatidnERAP and ACT are provided

in Java (TRAP/J and ACT/J, respectively).

Programming Model

Core Assets < Adaptive Code

Model ..o | Transparent Shaping |
[
v ¥
INStances ...........coovevvvennnn. | TRAP | | ACT |
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v v
0KS .o | Wrappers & Metaobjects | | Generic Interceptors |
v v
Coarse-Grained .. | Delegates: MetaSockets | | Proxies: Generic Proxy |
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Figure 7.1: Achievements of this dissertation viewed as aleh

and ACT/J are two concrete instances of transpabaqisg, which can be

used in the development of adaptable software several ssggsasupporting such product

lines are developed. The core artifacts have been developmdading examples of hooks,

adaptive co

de, and existing programs. The hooks in TRARY pairs of wrappers and
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meta classes, which are generated by TRAP/J generatorsatitally. In ACT/J, there is
only one hook, which is the generic portable interceptore @aneric portable interceptor
was developed once and can be reused in any CORBA programti¥elaode in TRAP/J
is realized by developing delegates. A reusable delegang hdetaSockets and filters
is provided. A generic proxy was developed for ACT/J that barused in any existing
CORBA applications. The generic proxy can receive any COR&flest and can adapt it
using adaptive code realized by rules. Other reusable izdaqude €.g. filters, delegates,
and rules) can be developed incrementally during the lifetof a product line.

We have used TRAP/J and ACT/J to support dynamic adaptatithrée existing ap-
plications, namely, an audio streaming application pnesipdeveloped in our group [53],
an image retrieval application developed by BBN [42], anchanke grabber application de-
veloped by NETMaster and distributed by Code Project [20&.conducted several case
studies using these applications, where we addressed aemwhbrosscutting concerns
including QoS, security, energy consumption, self-mansagd, and application integra-
tion. Our results have been well received by the communityuth publications in several
conferences and workshops. We look forward to continuimgehinvestigations and fur-
ther contributing to the understanding of the important,sgdl emerging, area of dynamic

adaptation to support pervasive and autonomic computing.

7.3 Future Work

The work presented in this dissertation opens a door to akftgure research directions.
In the rest of this chapter, we discuss five directions ofriitmork, which complement this

dissertation.

Expanding the set of supported existing programs. The set of existing programs sup-
ported by transparent shaping can be greatly expandedreFig shows the areas where

we plan to work in near future. To support existing prograenetbped in C++ and C# pro-
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gramming languages, TRAP/C++ and TRAP/C# need to be devélojm fact, members
of our group have already started implementing the TRAP/Gsitig compile-time meta-
object protocols supported by Open C++ [84], instead of apilviime aspect weaver

used in TRAP/J. Also, to support CORBA programs developaus++ ORBs, we plan

to develop ACT/C++.
MOdel ..o | Transparent Shaping ‘
|
] v v
Programming Model INStaNCeS ........vveeverenene | TRAP | | ACT | | KMX ‘
Prototypes .........ccccvvennne. |TRAPIC++||TRAP/J||TRAPIC#|| ACT/C++ | | ACT/ || KMX/Linux ‘
I . T T T T
s = | T v
HOOKS ..o | Wrappers & Metaobjects | | Generic Interceptors | | iptables ‘
T T T
| | 1
v v A4
Coarse-Grained .. | Delegates: MetaSockets | | Proxies: Generic Proxy | | Transient Proxies ‘
Core Assets < Adaptive Code 3 -
Fine-Grained ...... | Filters: FEC, Encryption/Dec., Compression/Dec. | | Rules: Conn. Management,App. Integration ‘
- T
v
\Existing Applications ...........c.ccoevn | Audio Streaming App. | | Video Streaming App. | | Image Retrieval App. | | Frame Grabber App. ‘
L ) L m——, .
* A 4 y A 4 '
Crosscutting CONCEMS ........c.oovvvvriveviierereieieiis | QoS | | Security | | QoS vs. Energy Man. | |SeIf-Management/Optimization| |App. Integration ‘
[ — extends ----- provides e V-1 —-—-» isapplied to —--—» supports J

Figure 7.2: Expanding the set of existing programs supgddiyetransparent shaping.

Transparent shaping can be instantiated using technigiestban those used in TRAP
and ACT. In a related research project, called the Kerneldigare eXchange (KMX),
our group is investigating the use of iptables [203], whioh @ means of intercepting and
redirecting network packets passing through an operayisigs kernel. A case study was
conducted using a video streaming application previousietbped in our group [204].
Originally, this application was developed as an adaptphdgram, which is capable of
compensating the packet loss obae-hopwireless network. In a preliminary study, our
group adapted the flow of a video stream ovenualti-hopwireless ad hoc network by in-
tercepting and adapting the flow inside the intermediaryespdhich were used as routers.

Using iptables as kernel-level hooks and transient proxseadaptive code running inside
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the intermediate nodes, we showed how the flow of a videorstizm be adapted inside
the network completely transparent from the applicaticslecd his research project is still
ongoing and we plan to implement a complete instance of paesit shaping to support

dynamic adaptation of multimedia streams in existing thated, multimedia programs.

Coordinating the behavior of adaptable programs. Designing distributed systems that
can adapt to their environments requires not only adaptaifandividual components,
but coordinated adaptation across system layers and guaissrms [6, 205-208]. Our
work can be complemented by studies in the design of an ataptzoordinator to or-
chestrate the adaptation provided by adaptive compontesitaddress overlapping or even
conflicting concernsg.g.,preserving both QoS and energy in handheld devices). Biiter
components are likely to have been developed by differemiggaand the developer must
be able to integrate separately-designed adaptive mextharsuch that they cooperate to
meet the needs of the application. One problem is that matheaddaptive software solu-
tions proposed for different layers have been developeepeddently, and even solutions
within the same layer are often not compatible. As illugtdain Figure 7.3, tools and
methods are needed to enable developers to integrate thaiopeof adaptive components

across layers of a single system and among different systems

Client Program Server Program
Layer Requester =~ & < <> 0 ™ Provider
Component | Component
Middleware <>|Cross-Layer Inter-Process Cross-Layer ¢ 5,
Layer Adaptation Adaptation Adaptation
i <> <>
Operating % (fm %
System (\w)/ >
S~ process boundaries ~
[O Program component — Flow of service request © Hook <—> Flow of Control/Monitor ]

Figure 7.3: Future work on adaptation coordination.
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Providing safe adaptation in adaptable programs. During the adaptation process, tech-
niques are needed to ensure that the system continues tatexe@n acceptable, safe
manner. Although transparent shaping enables dynamidimse@nd removal of adaptive
code, it does not guarantee a safe adaptation. For exangaptige code may encap-
sulate part of the state of a running program and removingtiiaut care may result in
loss of state and unacceptable behavior by the running amagrOur group and others
are currently investigating this problem using a varietynathods, including dependency

analysis [209-213] and explicit management of state in&tiom [214].

Providing security in adaptable programs. Security deals with protecting an adaptable
program from malicious entities. An importantissue is howrevent the adaptation mech-
anisms from being exploited by a would-be attacker. In aoldito verifying the sources
of inserted components, the core of an adaptive softwartersysust be extremely well
protected from attackers. For example, the confidentialitgt authenticity of messages
related to adaptation must be ensured through strong aramy he current prototypes of
transparent shaping contain little support for preventimaicious entities from misusing
the adaptation facilities. We plan to provide such suppothe future versions of TRAP/J

and ACT/J.

Constructing product lines for adaptable software. Product line software engineer-
ing [215-218] provides a disciplined methodology to producegpem families. Trans-
parent shaping can be used to construct software prodest $ipecialized for “mass cus-
tomization” [217] of existing programs to new environmen@e plan to investigate de-
sign ofreactiveproduct lines (as opposed to proactive), where the prothes start from
existing programs. The core assets of such product linegpses existing programs,

adaptation hooks, and adaptive code.
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Appendix A

Transparent Integration of
Heterogeneous Distributed Applications

To show how transparent shaping and Web services can beaisgdgrate heterogeneous
distributed applications, in this appendix we demonstratesparent integration of applica-
tions developed in Java RMI [68], CORBA [47], and .NET [70ingsa simple stock quote
example. First, in Section A.1, we introduce a stock quotd \8&rvice. Next, in Sec-
tions A.2, A.3, and A.4, we use transparent shaping to iategWweb services with Java
RMI, CORBA, and .NET applications, respectively. Speclficdor each of these three
platforms, we show how a client program can be transparshtiped to use a Web Service
(using architectures illustrated in Figures 6.6(a) andlg)éand how a server program can
be exposed as a Web Service (using architectures illudtiaféigures 6.7(a) and 6.7(b)).
As discussed in Section 6.2, once two applications inteadpavith Web services, then

they are able to interoperate with each other via Web sesvice

A.1 A Stock Quote Web Service

Throughout this appendix, we use a stock quote Web servisedad by XMethods (URL:

http://www.xmethods.net/). This Web service, nanresl.xmethods.services.-

IPlease note that the terms client and server programs ateegsévalently with the terms requester and
provider programs, respectively. Similarly, the term&ictiand server objects are equivalent to the terms
requester and provider objects, and to the terms requexlqrravider components, respectively.
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stockquote.StockQuote , provides stock quotes with 20 minutes of delay. The inter-
face to this Web service is defined with the following methibeht getQuote(string
symbol) .

Figure A.1 shows a SOAP request representing gbe&uote(“Microsoft")
method call. We note that this SOAP message does not havelarredament. The method
call is defined in the body element (lines 4 to 6). Similarligudfe A.2 shows a SOAP
response representing tfieat result = -1 . The actual reply is defined in the body

element (lines 4 to 6).

1 <?xml version="1.0" encoding="UTF-8" 7>
2 <soap:Envelope xmins:n="urn:xmethods-delayed-quotes” ... >~
3 <soap:Body ... >
4 <n:getQuote>
5 <symbol xsi:type="xs:string”>Microsoft</symbol:>-
6 =</n:getQuote -
7 </soap:Body~
8 ~</soap:Envelope>
Figure A.1: A SOAP request example.
1  <?xml version="1.0" encoding="UTF-8" 7>~
2 <soap:Envelope xmins:n="urn:xmethods-delayed-quotes” . .. >
3 <soap:Body>
4 <n:getQuoteResponse >
5 <Result xsi:type="xsd:float">-1.0</Result>-
6 =</n:getQuoteResponse-
7 </soap:Body~
8 ~</soap:Envelope>

Figure A.2: A SOAP response example.

Figure A.3 shows the corresponding WSDL of this Web senagai{able ahttp://-
services.xmethods.net/soap/urn:xmethods-delayed-quo tes.wsdl ). This
WSDL describes ambstractapplication-level service description (interface) to iheb
service (lines 4 to 16) as well a®ncreteprotocol-dependent details of how to access the

service (lines 18 to 39).
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The abstract description part (lines 4 to 16) describesrttegface to the Web service
using themessage elements (lines 4 to 9), which defines what type of messageseaent
to and received from the Web service, and pbeType element (lines 11 to 16), which
defines all the operations supported by the Web service.gét@@uote operation (lines
12 to 15) defines the valid message exchange pattern sugpmyrtine Web service. The

SOAP messages in Figures A.1 and A.2 are examples affibe andoutput messages,

1 <?xml version="1.0" encoding="UTF-8" ?:~
2 =<definitions name="net.xmethods.services.stockquote.StockQuote” . .. >~
3
4 <message name="getQuoteResponsel”s>
5 <part name="Result” type="xsd:float” />
6 </message >~
7 <message name="getQuoteRequestl”>
8 <part name="symbol” type="xsd:string” />~
9 </message>-
10
11 <portType name="net.xmethods.services.stockquote.StockQuotePortType”~
12 <operation name="getQuote” parameterOrder="symbol”>-
13 <input message="tns:getQuoteRequestl” />~
14 <output message="tns:getQuoteResponsel” />~
15 </operation>
16 </portType>
17
18 <binding name="net.xmethods.services.stockquote.StockQuoteBinding”
19 type="tns:net.xmethods.services.stockquote.StockQuotePortType” >~
20 <soap:binding style="rpc” transport="http://schemas.xmlsoap.org/soap/http” />~
21 <operation name="getQuote”>-
22 <soap:operation soapAction="urn:xmethods-delayed-quotes#getQuote” /-
23 <input>-
24 <soap:body use="encoded” namespace="urn:xmethods-delayed-quotes”
25 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/” />
26 </input>
27 <output>
28 <soap:body use="encoded” namespace="urn:xmethods-delayed-quotes”
29 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/” />~
30 =</output>
31 =</operation>
32 =</binding>
33
34 ~<service name="net.xmethods.services.stockquote.StockQuoteService”>-
35 <port name="net.xmethods.services.stockquote.StockQuotePort”
36 binding="tns:net.xmethods.services.stockquote.StockQuoteBinding”>
37 <soap:address location="http://targethost:9090/soap” />
38 =</port>
39 =</service>
40 </definitions>-

Figure A.3: WSDL for net.xmethods.services.stockqudteiuote.
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respectively, in theperation  description.

The concrete description part (lines 18 to 39) complemdmsabstract part using the
binding andservice element. Théinding element describdsowa given interaction
is performed ovewhatspecific transport protocol (lines 18 to 32). Tdwvice element
describesvhereto access the service (lines 34 to 39). THuwev part describes how mar-
shaling and unmarshaling is performed usingdperation  element inside thkinding
element (lines 21 to 31). Thehatpart is described in line 20 using thansport  at-

tribute. Thewherepart is described using thrt element (lines 35 to 38).

A.2 Transparent Integration of Java RMI Applications
and Web Services

Typically, a Java RMI application is composed of a client aselver programs.
Figure A.4 lists excerpted code for a client/server stoclotgquapplication devel-
oped in Java RMI. The code in this figure shows the contentshdet files: the
StockQuotelnterface.java file (lines 1 to 4) defines the interface to a stock quote
remote object, th&tockQuoteServer.java file (lines 5 to 20) defines the server pro-
gram that hosts a stock quote remote object, and finall\5tbekQuoteClient.java

file (lines 22 to 33) defines the client program that uses theksfjuote service provided
by the remote object. In the rest of this section, we show Hewctient and server pro-
grams can be transparently shaped to interoperate with ¥glrs requester and provider

programs, respectively.

A.2.1 Enabling Java RMI Client Applications to Use Web Servces

In this part, we use the architectures illustrated in Figugé(a) and 6.6(b) to enable the
Java RMI client program to use the delayed stock quote Welicestleveloped by XMeth-
ods URL: http://www.xmethods.net/ ) introduced in Section 6.1.

First, let us discuss the architecture in Figure 6.6(b), r@lilee Web service provider
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1 /I The interface defined in StockQuotelnterface.java
2 public interface StockQuotelnterface extends Remote {
3 public float getQuote(String symbol) throws RemoteException;
4
5
6 /I The server application defined in StockQuoteServer.java
7  public class StockQuoteServer extends UnicastRemoteObject {
8 implements StockQuotelnterface { ...
9 public float getQuote(String symbol) throws RemoteException {
10 if (symbol.equalsignoreCase(“Microsoft”)) return 1;
11 else if (symbol.equalsignoreCase( “IBM")) return 2;
12 else return -1;
13 }
14 public static void main(String args[]) {
15 try {
16 StockQuotelnterface obj = new StockQuoteServer();
17 Naming.rebind(“StockQuoteServer”, obj);
18 } catch (Exceptione) {...}
19 }
20 }
21

22 |/ The client application defined in StockQuoteClient.java
23  public class StockQuoteClient {
24 public static void main(String[] args) {

25 try {

26 StockQuotelnterface stockQuote = (StockQuotelnterface)Naming.lookup(args[0]);
27 while (true) {

28 System.out.printin(“Stock quote for IBM is: " + stockQuote.getQuote(“IBM"));

29 Thread.sleep(1000);

30

31 } catch (Exceptione) {...}

32 }

33 }

Figure A.4: A stock quote application developed in Java RMI.

is the XMethods Web server and the requester program is garRs| client application.
We used the TRAP/J generator framework introduced in Chdpte shape the Java RMI
client program to host a translator, and for the translaidre able to intercept, translate,
and forward all the Java RMI requests to the XMethods Webicerv

Looking more closely to the Java RMI client program showniguFe A.4 (lines 22
to 33), we can see that a reference to the remote object ignettéhrough a call to the
lookup()  static method of théava.rmi.Naming class (line 26). Using TRAP/J, we

make thgava.rmi.Naming  class adaptable so that we can overwrite the implementation
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of itslookup() method transparently. Next, we provide a specific imples& for the
lookup() method. Instead of its normal operation (that is contaciidgva RMI registry
to find the reference to the remote object), it instantiateamslator object and returns a
reference to the translator object to the client program.

Figures A.5 and A.6 show the excerpted code for the files geéeeiby TRAP/J gener-
ators as a result of making theva.rmi.Naming class adaptable. The generated aspect
is defined in theAbsorbing _Naming _aj.java file (Figure A.5) that defines gointcut
to the calls to théookup() method of thgava.rmi.Naming class (lines 3to 4). The
around advice calls thdookup() static method of the wrapper-level class associated

with theNaming class instead of thieokup() method of theNaming class (lines 5 to 8).

/I Generated aspect defined in Absorbing_Naming_aj.java
public aspect Absorbing_Naming_aj {
pointcut lookup_String(String p0) :
call(public static Remote lookup(String)) && .. .;
Remote around(String p0) throws ..., RemoteException
: lookup_String(p0) {
return (Remote)WrapperLevel Naming.lookup(pO0);

}
}

OCO~NOOUOTA,WNPEF

Figure A.5: Excerpted code of the aspect generated by TR&Pghape the Java RMI
client application.

The generated wrapper-level class is defined ivihepperLevel _Naming.java file
(Figure A.6, lines 1 to 19). It basically reifies calls to thekup() method (lines 4 to 9)
and forwards the reified method calls to iheokeMetaMethod() method of the static
meta-classgtaticMetaClass ) associated with the wrapper class (lines 11 to 13). In case
the reply to a method call is not provided by #taticMetaClass class, th@ookup()
method of thgava.rmi.Naming class is called (lines 14 to 16). Finally, the reply is
returned (line 17).

The generated meta-level class is defined in NfegaLevel _Nameing.java class

(Figure A.6, lines 21 to 29). The static part of this clasddntiates a meta-level class

158



/I Generated wrapper-level class defined in WrapperLevel Naming.java
public class WrapperLevel_Naming implements WrapperLevel_Interface { ...
public static Remote lookup(String p0) throws ... {
Class[] paramType = new Class[1]; paramType[0] = String.class;
Method method = null;
try { method = WrapperLevel_Naming.class.getMethod(“lookup”, paramType); }
catch (Exceptione) {...}
Object[] tempArgs = new Object[1]; tempArgs[0] = pO;
ChangeableBoolean isReplyReady = new ChangeableBoolean(false);
10 Remote retVar = null;

OCO~NOOUITAWNPE

11 try { retVar = (Remote) MetaLevel_Naming.staticMetaClass.
12 invokeMetaMethod(method, tempArgs, isReplyReady);

13 } catch (Exceptione) {...}

14 if(lisReplyReady.booleanValue()) {

15 retVar = (Remote)Naming.lookup(p0);

16 }

17 return retVar;

18 b

19 }

20

21 /I Generated meta-level class defined in MetalLevel_.Nameing.java
22 public class MetaLevel_Naming extends UnicastRemoteObject

23 implements MetalLevel_Interface, DelegateManagement {
24 public synchronized Object invokeMetaMethod(
25 Method method,Object[] args,ChangeableBoolean isReplyReady) throws ... { ...}

26 static public MetaLevel_Naming staticMetaClass;

27 static { try { staticMetaClass = new MetaLevel_Naming();} catch (Exception e) {} }
28 private MetalLevel_Naming() throws RemoteException { ...}

29 }

Figure A.6: Excerpted code of the reflective classes geseiat TRAP/J to shape the Java
RMI client application.

(staticMetaClass ) associated with the wrapper-level class using its pricatestruc-
tor (lines 26 to 28). This class provides tineokeMetaMethod() method that forward
reified method calls to delegates that overwrite the cooedimg method implementation.
Compiling the generated code listed in Figures A.5 and Aggtioer with the Java RMI
client program using the AspectJ [103] compiler, an adeptly version of the client pro-
gram is created. This adapt-ready program is adapted &istane using a configuration
file. The configuration file instructs the adapt-ready progta insert a delegate to the
staticMetaClass . The delegate provides the new implementation forltlo&up()

method.
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Figure A.7 shows excerpted code of the delegate class definedthe
Delegate _Naming lookup.java file (lines 1 to 6) and the translator component defined
in the StockQuoteProxy.java file (lines 8 to 25). TheDelegate _Naming _lookup
class simply provides a new implementation for thekup() = method that return an
instance of theStockQuoteProxy instead of using the Java RMI registry to find a refer-
ence to the Java RMI remote object (lines 3 to 5). TheekQuoteProxy  class provides
an implementation of the translator component that for tinea JRMI client program
plays the role of a Java RMI remote object and for the XMethdelayed stock quote
Web service plays the role of a requester object. A referémdbe delayed stock quote
Web service ftockQuoteWebService ) is obtained using the WSDL available @RL:
http://services.xmethods.net/soap/urn:xmethods-dela yed-quotes.wsdl
(listed in Figure A.3) and the Java Web Services Developek Rlva WSDP) version 1.4
(lines 11 to 20). The implementation of thetQuote() method (lines 21 to 24) simply
returns the result from the call to thgtQuote() of the XMethods stock quote Web
service.

Because the stock quote example is very simple and becaas¥Methods stock
guote Web service provides a similar service as that of oua BMI remote object, the
code for translation is very simple. As can be seen from theemated code for the
StockQuoteProxy  class, the developer did not need to provide any semantisl&ra
tion. However, the code for translation, no matter how cooapéd, can be encapsulated in
the StockQuoteProxy  class. A more complicated example of application integrais
provided in Section 6.3.

To make this application integration a bit more interesting listed an alternative
code for the translator class in Figure A.8. Basically, thiplementation provides a fault-
tolerance service for the Java RMI client program. It keepsfarence to the original
Java RMI remote objecbfigStockQuoteServer line 4 and lines 8 to 11) as well as

a reference to the XMethods stock quote Web sensaeEkQuoteWebService  line 6

160



1 /I The delegate defined in DelegateNaming_lookup.java
2 public class Delegate_Naming_lookup implements Delegate_Interface {
3 public static Remote lookup(String p0, ChangeableBooleanisReplyReady) throws ... {
4 return new StockQuoteProxy(p0);
S}
6 }
b
8 /I The proxy defined in StockQuoteProxy.java
9  public class StockQuoteProxy extends UnicastRemoteObject
10 implements StockQuotelnterface { ...
11 private NetXmethodsServicesStockquoteStockQuotePortType stockQuoteWebService;
12 public StockQuoteProxy(String p0) throws RemoteException { super();
13 try {
14 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService_Impl().
15 getNetXmethodsServicesStockquoteStockQuotePort());
16 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
17 "http://64.124.140.30:9090/soap");
18 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
19 } catch (Exception ex) {...}
20
21 public float getQuote(String symbol) throws RemoteException {
22 try { return stockQuoteWebService.getQuote(symbol); }
23 catch (Exceptione) {...}
24 }
25 }

Figure A.7: Excerpted code of the delegate and proxy classes

and lines 12 to 18). ThgetQuote() implementation is now fault-tolerant (lines 20 to
30). By default, the translator object first tries the oraidava RMI remote object (line

22). In case this remote object fails to respoed)(the network connection is temporarily
disconnected, or the remote object, or for some reason itlagbed), the XMethods Web
service is used (line 24). The translator component praterse the Java RMI remote
object for the next calls (lines 25 to 27), because the Javar@iMote object imposes less
delay than the XMethods Web service.

Alternatively, we can integrate the Java RMI client prograitihh the XMethods delayed
stock quote Web service using the other approach illustristd-igure 6.6(a), where the
translator component is hosted inside a bridge programcdte for the proxy component
would be the same as the proxy class listed in Figures A.7 &reéxcept that it would have

amain() method that instantiates and registers the proxy classaaothhe Java RMI
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1 /I The proxy defined in StockQuoteProxy.java
2 public class StockQuoteProxy extends UnicastRemoteObject
3 implements StockQuotelnterface { ...
4 private StockQuotelnterface origStockQuoteServer;
5 private String StockQuoteServerName;
6 private NetXmethodsServicesStockquoteStockQuotePortType stockQuoteWebService;
7 public StockQuoteProxy(String p0) throws RemoteException {
8 super(); StockQuoteServerName = pO0;
9 try { origStockQuoteServer = (StockQuotelnterface)
10 Naming.lookup(StockQuoteServerName);
11 } catch (Exceptione) {...}
12 try {
13 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService_Impl().
14 getNetXmethodsServicesStockquoteStockQuotePort());
15 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
16 "http://64.124.140.30:9090/s0ap”);
17 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
18 } catch (Exception ex) {...}
19

20 public float getQuote(String symbol) throws RemoteException {
21 float retval = -1,

22 try { retVal = origStockQuoteServer.getQuote(symbol); }

23 catch (Exception e) {

24 retVal = stockQuoteWebService.getQuote(symbol);
25 try { origStockQuoteServer = (StockQuotelnterface)
26 Naming.lookup(StockQuoteServerName);

27 } catch (Exception el) {}

28 1

29 return retVal;

30 }

Figure A.8: Excerpted code of the proxy class that adds-taldrance to the Java RMI
client application by using a Web Service if the Java RMI seis not available.
server program (similar to the code in Figure A.4 lines 149p For brevity, we do not list

the code for this approach.

A.2.2 Exposing Java RMI Server Applications as Web Services

In this part, we show how the Java RMI server program (liste&igure A.4, lines 6 to
20) can be exposed as a Web service using the architectlwustsated in Figures 6.7(a)
and 6.7(b).

First, let us discuss the architecture in Figure 6.7(a),re/lnee use a Web server as a

server-side bridge program to host the translator compgofenthe Web server, we use the
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Tomcat Web server from Apache Software Foundation religed with the Java WSDP
version 1.4 (URL: http://java.sun.com/webservices/jwsdp/index.jsp ).

Figure A.9 lists the excerpted code for the translator camepb that we de-
veloped and deployed on a Tomcat Web server. The interfacegeimed in the
StockQuoteWSinterface.java file (lines 1 to 4) and the Web service is defined in the
StockQuoteWS.java file (lines 6 to 18). Basically, the Web service obtains ansiee
to the Java RMI remote object (lines 8 to 13) and implemerggéiQuote() method by

forwarding the calls to the Java RMI remote object (linesd47).

1 /I The Web service interface defined in StockQuoteWSlInterface.java
2 public interface StockQuoteWSInterface extends Remote {
3 public float getQuote(String symbol) throws RemoteException;
4}
5
6 /I The Web service implementation defined in StockQuoteWsS.java
7  public class StockQuoteWS implements StockQuoteWSlInterface {
8 static StockQuotelnterface stockQuoteRMIServer;
9 static {

10 try { stockQuoteRMIServer = (StockQuotelnterface)

11 Naming.lookup(“//localhost/StockQuoteServer”); }

12 catch (Exceptione) { ...}

13 }

14 public float getQuote(String symbol) {

15 try {return stockQuoteRMIServer.getQuote(symbol);}

16 catch (Exception e) { return -1;}

17 }

18 }

Figure A.9: Excerpted code of the Web service.

Alternatively, as illustrated in Figure 6.7(b), we can hts translator program in-
side the Java RMI server program. For this approach, we carmfR&\P/J to overwrite
the implementation of theebind() method of thgava.rmi.Naming class. When the
rebind) method is called (Figure A.4 line 17), the new implementatbtherebind()
method (provided in a delegate class) that instantiate®@ypwbject. The proxy object
keeps a reference to the original Java RMI remote object gpdses itself as a Web ser-

vice. When a requester program sends a message to the Wede gdme proxy object), it
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simply forwards the request to the original Java RMI remdiject, which is a local object
for the proxy object, and replies to thetQuote() SOAP messages using the result form

the Java RMI object.

A.3 Transparent Integration of CORBA Applications and
Web Services

Similar to Java RMI applications, a typical CORBA applicatiis composed of a client
and server programs. Figures A.10, A.11, and A.12 list theegpted code for a
simple implementation of the stock quote application in BARthe stock quote in-
terface is defined in thetockQuotelnterface.idl file, the server code is de-
fined in the StockQuoteServer.java file, and the client code is defined in the
StockQuoteClient.java file. In the rest of this section, we show how the client and
server programs were transparently shaped to interopsiti&\Veb service requester and

provider programs.

I/l The stock quote interface defined in StockQuotelnterface.idl
module edu { module msu { module cse { module sens { module StockQuote {
interface StockQuotelnterface { float getQuote(in string symbol); }

A OWNPF

Figure A.10: The stock quote interface defined in IDL.

A.3.1 Enabling CORBA Client Applications to Use Web Servics

We use the architectures illustrated in Figures 6.6(a) abghpto enable the CORBA client
application to use the delayed Quote Web service.

First, we use the architecture in Figure 6.6(b), where thresiator component is hosted
inside the client program, to make the CORBA client progrataroperate with the XMeth-
ods delayed stock quote Web service. Before describingdbe tisted in Figures A.13

and A.14, let us take a closer look at the client programdisteFigure A.12. First, a
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1 /I The stock quote server implemented in CORBA defined in StockQuoteServer.java
2 public class StockQuoteServer extends StockQuotelnterfacePOA {
3 public float getQuote(String symbol) { ...}
4 public static void main(String[] args) {
5 try {
6 ORB orb = ORB.init( args, null );
7 POA poa = POAHelper.narrow( orb.resolve_initial_references( "RootPOA" ));
8 poa.the_POAManager().activate();
9 StockQuoteServer server = new StockQuoteServer();
10 org.omg.CORBA.Object obj = poa.servant_to_reference( server );
11 PrintWriter pw = new PrintWriter( new FileWriter( args[ 0]));
12 pw.println( orb.object_to_string( obj )); pw.flush(); pw.close();
13 orb.run();
14 } catch( Exceptione ) {...}
15 }
16 }

Figure A.11: Implementation of the stock quote server progm CORBA.

reference to the CORBA objecidrver defined in line 3) is obtained in the constructor of
theStockQuoteClient  class using the IOR file provided to the client program as a-com
mand line parameter (lines 5 to 12). Next, this referencesé&luo call theyetQuote()
method on the CORBA object hosted in the server programgllieto 18).

To intercept and redirect the CORBA requests, first, we mdles dlient pro-
gram adapt-ready by running the program using extra comrhaagarametersjava
StockQuoteClient ORBconfig file: StockQuoted i ent. cfg.? Next, the devel-
oper inserts a new rule to the rule-based decision makeedA@T core that intercepts all
the CORBA requests using GUI tools.

Figures A.13 and A.14 list the excerpted code that we deeelap make the CORBA
program interoperate with the XMethods Web service. Theditmm part of the rule
is defined in theStockQuote _Condtion.java  file (Figure A.13, lines 1 to 8), which
basically returngrue always to make all the intercepted CORBA requests to be for-
warded to the action part of the rule. The action part of the is defined in the

StockQuote _Action.java file (lines 10 to 25). In the constructor of th&tck-

2For details of how ACT works, please refer to Chapter 5.
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1 /I The stock quote client implemented in CORBA defined in StockQuoteClient.java
2 public class StockQuoteClient {
3 StockQuotelnterface server;
4 public StockQuoteClient(String args[]) {
5 try {
6 ORB orb = ORB.init( args, null );
7 String iorFileName = args|[0]; File f = new File( iorFileName );
8 BufferedReader br = new BufferedReader( new FileReader( f));
9 org.omg.CORBA.Object obj = orb.string_to_object( br.readLine() );
10 br.close();
11 server = StockQuotelnterfaceHelper.narrow( obj );
12 } catch( Exception ex ) {...}
13 }
14 public static void main( String args[] ) {
15 StockQuoteClient client = new StockQuoteClient(args);
16 try {
17 while (true) { System.out.printin(. .. + client.server.getQuote(“IBM")); ... }
18 } catch( Exceptionex) {...}
19 }
20 }

Figure A.12: Implementation of the stock quote client pezgrin CORBA.

Quote _Action ) class (Figure A.13, lines 12 to 17), an instance of the tedoascompo-
nent (defined in th&tockQuote _ClientLocalProxy.java file listed in Figure A.14)
is created.

Once the rule is inserted, all CORBA requests will be reifigdie CORBA ORB and
will eventually be intercepted by therocess() method of theStockQuote _Action
class (lines 18 to 25). Thaocess() method creates another CORBA request similar to
the one intercepted, except that the target object of theexstqsstockQuote _Client-
LocalProxy , which is an instance of th8tockQuote _ClientLocalProxy class, in-
stead of the original CORBA object. Tipeocess() method replies the original request
using the reply returned from thseockQuote _ClientLocalProxy

The translator component is defined in #teckQuote _ClientLocalProxy.java
file. First, a reference to the XMethods Web service is olethinsing the Java WSDP
framework (Figure A.14, lines 5 to 11). Next, all calls to thetQuote() method are
forwarded to the XMethods Web service (lines 14 to 15).
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/I The condition class defined in StockQuote Condtion.java
public class StockQuote_Condition extends InBandDMCondition {
public StockQuote_Condition(ActiveRule activeRule, ORB orb) { super(activeRule, orb); }
public boolean check(org.omg.CORBA.Object targetObj, FullinterfaceDescription
fulllintDesc, ServerRequest serverRequest, Request request) {
return true;

}
}

/I The action class defined in StockQuoteAction.java
public class StockQuote_Action extends edu.msu.cse.sens.act.dm.InBandDMAction {
public StockQuote_Action(ActiveRule activeRule, org.omg.CORBA.ORB orb) {
super(activeRule, orb);
StockQuote_ClientLocalProxy stockQuote_ClientLocalProxy =
new StockQuote_ClientLocalProxy(orb);
/I publishing the StockQuote_ClientLocalProxy CORBA object in the naming service

public boolean process(org.omg.CORBA.Object targetObj, FullinterfaceDescription
fullintDesc, ServerRequest serverRequest, Request request) {
request = createReq(stockQuote_ClientLocalProxy, serverRequest, fullintDesc, opNum);
request.invoke();
org.omg.CORBA.Any res_any = request.result().value();
serverRequest.set_result(res_any);
return true;

Figure A.13: Excerpted code of the rule used in the clieng@m.

A.3.2 Exposing CORBA Server Applications as Web Services

We propose three solutions to expose CORBA server apmitats Web services. The first

two solutions use the architecture in Figure 6.7(b) and &isé dne uses the architecture

in Figure 6.7(a). First, we can use TRAP/J to host the tréamslzomponent inside the

CORBA server application. This approach is possible onthé& CORBA application is

written in Java. However, when other implementations of PRéuch as TRAP/C++ and

TRAP/CH#, are available, we can use this approach for CORBAGgiions written in C++

and C#, respectively. Second, we can use ACT to host thddatansomponent inside the

CORBA server application. Third, we can use the architeciilustrated in Figure 6.7(a),

where a server-side bridge hosts the translator compoBenause those solutions involve

straightforward modifications to code described earliex,d@ not list the corresponding
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1 /I The stock quote proxy defined in StockQuote ClientLocalProxy.java
2 public class StockQuote_ClientLocalProxy extends StockQuotePOA
3 implements Serializable, StockQuoteOperations {
4 public StockQuote_ClientLocalProxy(ORB orb) { ...
5 try {
6 Stub stub = (Stub)(new NetXmethodsServicesStockquoteStockQuoteService_Impl().
7 getNetXmethodsServicesStockquoteStockQuotePort());
8 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
9 "http://64.124.140.30:9090/soap”);
10 stockQuoteWebService=(NetXmethodsServicesStockquoteStockQuotePortType)stub;
11 } catch (Exception ex) {...}
12
13 public float getQuote(String symbol) throws RemoteException {
14 try { return stockQuoteWebService.getQuote(symbol); }
15 catch (Exceptione) {...}
16 }
17 3}

Figure A.14: Excerpted code of the proxy used in the clieagpm.

code.

A.4 Transparent Integration of .NET Remoting Applica-
tions and Web Services

Microsoft .NET [70] is a collection of software technologiatended to support integration
of small, discrete applications as well as larger applcegiover the Internet. Similar to
Java RMI and CORBA applications, a typical .NET remotingleggpion is composed of
client and server programs. In .NET remoting, unlike CORBAre is no need to define
the interface of a CORBA object in an IDL file, and unlike JavdIRhere is no need to
define the interface of a remote object separately from ipg@mentation.

Figures A.15, A.16, and A.17 list excerpted code for a clsmwver stock quote ap-
plication developed in C#. ThgtockQuoteObject.cs file defines both the interface
and implementation of the remote objects of tyfteckQuoteObject . The Stock-
QuoteServer.cs file defines the server program that follows the instructiested in its
configuration file. TheStockQuoteServer.exe.config file defines the configuration

of the server program. It instructs the server program tamdets name as “StockQuote-
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Server” (Figure A.16, line 10) and to listen to the port num®@00 that may receivatp

requests (line 15). If a SOAP message is received that refdhse StockQuoteObject

service (lines 11 to 14), then the server program insta#iah object of typ&tock-

Quote.StockQuoteObiject (available in thestockQuoteObject.dll library file) for

the message and forwards the message to the cbject.

OO WNEF

I/l The stock quote object defined in StockQuoteObject.cs

public class StockQuoteObiject : MarshalByRefObject {
public float getQuote(string symbol) {
if (symbol.Equals(“Microsoft”)) return 1; ...

Figure A.15: Excerpted code of the stock quote object inKH€T. remoting application.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

/I The stock quote server defined in StockQuoteServer.cs
class StockQuoteServer {
[STAThread] static void Main(string[] args) {
RemotingConfiguration.Configure(“StockQuoteServer.exe.config”);
String keyState = *"; keyState = Console.ReadLine();

}
}

/I The stock quote server configuration defined in StockQuoteServer.exe.config
=<configuration’- <system.runtime.remoting- <application name="StockQuoteServer”>
<services>
<wellknown mode="SingleCall” type="StockQuote.StockQuoteObject,
StockQuoteObject” objectUri="StockQuoteObject.soap” /-
</services>
<channels> <channel port="9000" ref="http” /> </channels>
</application>- </system.runtime.remoting> </configurations>

Figure A.16: Excerpted code of the server program in the .Kdifoting application.

The StockQuoteClient.cs

The client program first follows the configuration providedits configuration file (line

4). Next, it creates an instance of tBsckQuoteObject

class (line 5). Finally, it uses

3Please note that trmode="SingleCall"

attribute is used, only one singleton object will be credoedll arriving messages.
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attribute in the configuration file (Figure A.16, line 12)
instructs the server program to instantiate a separatetoigjeeach arriving message. Alternatively, if the
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1 /I The stock quote client defined in StockQuoteClinet.cs
2 class StockQuoteClient {
3 [STAThread] static void Main(string[] args) {
4 RemotingConfiguration.Configure(“StockQuoteClient.exe.config”);
5 StockQuoteObject server = new StockQuoteObject();
6 while (true) {
7 Console.WriteLine(“Stock quote for IBM is: " + server.getQuote(“IBM"));
8 Thread.Sleep(1000);
9 }
10 }
11 }
12

13 /I The stock quote client configuration defined in StockQuoteClient.exe.config

14  <configuration> <system.runtime.remoting> <application name="StockQuoteClient">
15 <client>-

16 <wellknown type="StockQuote.StockQuoteObject, StockQuoteObject”

17 url="http://haydn.cse.msu.edu:9000/StockQuoteServer/StockQuoteObject.soap” /-
18 =</client>

19  </application> </system.runtime.remoting> </configuration

Figure A.17: Excerpted code of the client program in the .Ni&Toting program.

the .NET remote object (lines 6 to 9). TBe&ockQuoteClient.exe.config file (lines
13 to 19) defines the configuration of the client program. Thoisfiguration file instructs
the client program to define its name as “StockQuoteClidinté (14) and to register the
StockQuote.StockQuoteObject type as a remote object. The effect of this registra-
tion is that whenever the client program instantiates a na@ab of typeStockQuote.-
StockQuoteObject  (such as line 5), the instance is not created locally. Instagroxy
is automatically created that represents the .NET remqgézbas a local object. Whenever
a call to the object is made (such as line 7), the call is fodedrto the service resid-
ing at the ‘http://haydn.cse.msu.edu:9000/StockQuoteServer/Stoc kQuote-
Object.soap "URL (line 17). Eventually, the call will be received by therser program,
where an instance of tyg&ockQuote.StockQuoteObject is created to respond to the

request.
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A.4.1 Enabling .NET Client Applications to use Web Services

In this part, we show how the architectures illustrated iguiFés 6.6(a) and 6.6(b) can be
used to enable the .NET client program to use the XMethods3&®ehce.

First, we use the architecture in Figure 6.6(a), where agergrogram hosts the trans-
lator component. Figure A.18 lists the excerpted code ferttanslator component de-
fined in theStockQutoeObject.cs file. First, a reference to the XMethods Web service
(webService ) is obtained (lines 4 to 6 ). Next, calls to thetQuote() method are for-
warded to thevebService (lines 7 to 9). The code for the bridge program that hosts this

translator component is the same as the one for the servgrgondisted in Figure A.16.

I/l The stock quote proxy defined in StockQutoeObject.cs
public class StockQuoteObject : MarshalByRefObject {
private netxmethodsservicesstockquoteStockQuoteService webService;
public StockQuoteObject() {
webService = new netxmethodsservicesstockquoteStockQuoteService();

public float getQuote(string symbol) {
return webService.getQuote(symbol);

}
}

QOWO~NOUA~AWNPE
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Figure A.18: Excerpted code of the translator componerttithhosted inside a bridge
program.

The netxmethodsservicesstockquote StockQuoteService type, representing
the XMethods Web service, is available to the translatoggmm by creating the cor-
responding proxy class using either tivedl.exe utility from Microsoft or the Add
Web Reference facility in the VisualStudio .NET . All the plumbing and marshal-
ing are hidden in the generated Web service proxy and thesl&i@mmn program sim-
ply uses thenetxmethodsservicesstockquoteStockQuoteService type. Fig-
ure A.19 shows a screen dump of thed Web Reference GUI that we used to make
available the web reference to theép://services.xmethods.net/soap/urn:-

xmethods-delayed-quotes.wsdl WSDL definition for the XMethods Web service.
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Add Weh Reference @

Navigate ta a web service URL {asmx or wsdl) and click Add Reference to add all the available services Found at that URL.

Qeak & 0 @ &

~| Do

‘web services Found at this URL:
"net.xmethods.services.stockquote.StockQuoteService" [
Descri ption - urnizmethods-delayed-quotes
Documentation
net.xmethods.services.stockquote.StockQuote web service T o]
Methnds net.xmethods. services
= getQuote()
Caneel
£ 3 Help

Figure A.19: A screen dump of the Add Web Service GUI of ViSiatlio .NET that adds
the reference to the XMethods Web service to a .NET project.

Alternatively, we could use the architecture illustrateéigure 6.6(b), where the trans-
lator component is hosted inside the client program. Howdwecause this example is
developed in C# and we do not have the C# version of TRAP yetewtly the alternative

solution is not available.

A.4.2 Exposing .NET Server Applications as Web Services

A .NET server can be used directly as a Web service, if thestgxposed by the .NET
server are all supported in XML schema type systenfihe types that can be used in
a .NET remoting application are much richer than the rasili¢ypes supported in Web
services [182,183]. If a .NET specific type suchSystem.Data.DataSet is exposed

by a .NET server program, then it cannot be used as a Web satwerctly. As our .NET

server program does not expose such .NET specific typesnibeaused directly as a
Web service. To enable a Web requester program to use thisesea developer can use
the SOAPsuds.exe utility from Microsoft with the-sdl option to generate the WSDL

schema of the .NET service. This WSDL schema can be used bys@fglte requester

4The XML schema type system specifies all the types that avevedl to be used in a Web service.
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programs to interoperate with the .NET server program. NBT. specific type is used
in a .NET server program, then the corresponding WSDL scheithdnave some extra
elements, which are not standard and may not be understooithéy\Web services tools.
In case a .NET server cannot be used directly as a Web sew&&an expose it
as a Web service using the architecture illustrated in Eigu7(b), where the translator
component is hosted inside the provider program. We usel&&veb server from Mi-
crosoft (ttp://www.microsoft.com/WindowsServer2003/iis/defa ult.mspx )
distributed with Windows XP as the provider program. We umseASP.NET technology
to host the provider component inside the IIS Web serverttir example the provider
component is an instance of tis@ockQuoteObject  class listed in Figure A.18). The
excerpted code for the Web service is listed in Figure A.2stRhe Web service creates
an instance of th8tockQuoteObject  and stores it in therigServer  variable (lines 3

to 6). Next, it forwards calls to thgetQuote() method to therigServer

I/l The translator program defined in StockQuoteWebService.cs
public class StockQuoteWebService : System.Web.Services.WebService {
StockQuoteObject origServer;
public StockQuoteWebService() {
origServer = new StockQuoteObject();

[WebMethod (EnableSession=true)]
public float getQuote(string symbol) {
origServer.getQuote(symbol);

}
}

POOOONOUA~AWNE
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Figure A.20: Excerpted code for the Web service written irPAET and hosted inside
the IIS Web server.

Alternatively, we can expose the .NET server program as a $&elice using the ar-
chitecture illustrated in Figure 6.7(a), where the traimslaomponent is hosted inside a
bridge program. For this approach, we use the IIS Web sesvéiteabridge program. This
approach is similar to the first solution discussed above sgure A.20), except that the

object can be instantiated as a .NET remote object insteadoafal object.
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