
A Metamodel for Distributed Ensembles of Virtual
Appliances

Xabriel J. Collazo-Mojica and S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

Email: {xcoll001, sadjadi}@cs.fiu.edu

Abstract—We present our work on modeling distributed en-
sembles of virtual appliances (DEVAs) on Infrastructure as a
Service (IaaS) clouds. Designing solutions on IaaS providers
require a good understanding of the underlying details such
as the software installation or the network configuration. We
propose the use of DEVAs, a modeling approach built on top
of the notion of virtual appliances, that allows easy-to-compose
and ready-to-use cloud application architectures that are IaaS-
agnostic, and that abstract away unnecessary details for web
application developers. In this paper, we extend the definition
of a DEVA from previous work by presenting an underlying
metamodel and how that metamodel can be transformed to
an actual deployment. We also present a case study where we
model a web application architecture and we discuss how we can
instantiate it in an IaaS cloud. We argue that the DEVA modeling
approach is suitable for typical cloud use cases.

Index Terms—virtual appliance, non-functional requirements,
cloud computing architectures.

I. INTRODUCTION

In this paper, we extend our work on modeling groups of
interdependent virtual machines in the cloud. Designing these
compositions require a good understanding of the underly-
ing details such as the software installation or the network
configuration. They are typically deployed in a cloud layer
called Infrastructure as a Service (IaaS). Each IaaS provider
has its own API to configure the virtual machines and its
connections, requiring users to learn the details of yet another
API. Similarly, manually installing software stacks in these
virtual machines is a tedious task. In [1], we presented a
visual modeling approach to make these architectures easy-to-
compose and ready-to-use. We call these models distributed
ensembles of virtual appliances (DEVAs)1. We now extend our
work by presenting an underlying meta-model for DEVAs.

Sapuntzakis et al. presented in 2003 the idea of a virtual
appliance, effectively treating full stacks of software appli-
cations and OS as updatable image files [2]. These virtual
appliance files could then be cloned in bare metal computers,
or instantiated in virtual machines. Still, when the time comes
to compose multi appliance systems with interdependencies,
Sapuntzaki’s implementation relied on defaults from software

1Note that in [1] we called our models virtual environments instead of
DEVAs. We have desisted of the previous name as it is already used in other
CS areas.

vendors for most of the configurations. This may not be
the case for web applications (e.g., when trying to configure
interdependencies between a database server and its clients).
Similarly, the configuration of the network connection between
appliances had to be done by hand. Various recent attempts at
automatically configuring virtual appliances and their network
dependencies have been presented [3], [4], [5], but they all rely
on having experts on appliance configurations, or on specific
IaaS providers.

In [1], we proposed that with proper modeling of these kind
of scenarios, the configuration problems could be abstracted
away. By designing DEVAs, non-expert users can easily archi-
tect interdependent virtual appliances. DEVA models include
quality of service (QoS) constraints, which can account for the
non-functional requirements of the modeled architecture. In
this paper, we extend our modeling approach by 1) presenting
an underlying meta-model, and 2) how a model generated from
the meta-model can be instantiated to an actual deployment.

The main technical challenge for this work was to come
up with a meta-model with sufficient details to be able to
instantiate DEVAs on the spectrum of current IaaS providers.
To demonstrate our modeling approach, we present a case
study where we model a web application architecture and
discuss how we can instantiate it in a current IaaS provider.

We argue that the DEVA modeling approach is suitable for
typical cloud use cases, and that having a model of a cloud
architecture can simplify co-allocations and migrations across-
different IaaS providers. In Section II, we present background
information on the methodology used and on our previous
work. In Section III, we present our metamodeling framework.
In Section IV-A, we discuss a system that can transform DEVA
models into instances, and in Section IV-B, we present a
simple case study. In Section V, we discuss related work, and
finally, in Section VI, we enumerate some concluding remarks.

II. BACKGROUND

In this section, we present background information on
model-driven engineering, the methodology used for this work,
and present details on previous work including the definition
of DEVAs.



A. Model-Driven Engineering

MDE is a methodology that aims to effectively apply
models to software development. Instead of looking at models
as simple diagrams, MDE captures the problem domain in
a modeling language. This language can later be used to
generate solutions that can be automatically generated. MDE
has many goals, including accelerated development, automated
transformations, and platform independence [6].

In this work, we utilize the MDE methodology to present a
modeling approach that simplifies cloud architecture design, as
well as to achieve platform independence from IaaS providers.
In addition, we use MDE’s metamodeling approach as pre-
sented in [6] to realize an abstract syntax definition for our
models. Static semantics are presented in Object Constraint
Language (OCL) notation [7].

B. Distributed Ensembles of Virtual Appliances

A distributed ensemble of virtual appliances is a model of a
logical architecture of interdependent virtual appliances. From
the point of view of users of DEVAs, these models should
present the following properties:

1) Easy to understand: Views for the design, deployment,
change management, and monitoring of these architec-
tures should only present what is strictly necessary to
realize them. Advanced options should be available but
normally hidden.

2) Self-configurable: Once the user has specified a descrip-
tion of the architecture needed, our solution should be
able to instantiate the model and configure all the details
automatically by following the constraints and policies
specified.

3) Present deployment choices: Modeling should be ab-
stract enough to allow for an implementation to present
deployment choices. Given the heterogeneity of current
IaaS APIs, this is one of the main challenges of our
approach.

C. Visual Concrete Syntax for DEVAs

Research has shown the benefits of visual aids when de-
signing system architectures, claiming a gain of over 60% in
comprehension [8]. Since our target users are web developers,
which may not be experts on architectures for the cloud, a
graphical representation is desirable. We model virtual appli-
ances with boxes with service endpoints. The boxes represent
all the necessary software, the OS and the configuration nec-
essary to support the services provided or consumed. Figure
1 presents an example of a DEVA composed of two virtual
appliances. The box entitled ‘RoR Node’ is a representation
of an appliance provisioned with the Ruby on Rails web
framework (and all other needed software). Similarly, the box
entitled ‘MySQL DB’ is an appliance provisioned with a
MySQL database. These appliances have been interconnected
with a ‘db’ link by joining the corresponding endpoints. This
connection assumes that any interdependent configuration will
be resolved by our solution. For example, to be able to provide
the db service, a username and password must be agreed by

Fig. 1. An example of a simple DEVA as presented in [1].

the db provider and db consumers. In our approach, there is
no need to configure IP addresses, ports or configuration files.

III. A METAMODELING FRAMEWORK FOR DEVAS

In [1], we investigated the first property of our model by
presenting an uncomplicated visual concrete syntax to design
DEVAs. In this paper, we investigate the second property. We
realized that for our solution to be able to model arbitrarily
complex cloud architectures, we needed a formal definition
of our modeling approach. The third property, to be able to
present deployment choices, remains as future work.

Having an underlying metamodeling framework for DEVAs
facilitates the steps necessary to go from a model to an instance
in a similar way that the Meta-Object Facility (MOF) defines
the UML language. Figure 2 presents an overview of the
framework. Note that to keep our modeling as simple as
possible, we do not currently use the MOF, or UML Profiles
to define our framework.

At the top of the figure, we have the DEVA Meta-
metamodel. This level defines what the valid constructs are for
our modeling approach. Based on this constructs, we propose
two different DEVA metamodels with the main difference
being that one allows the instantiation of resource-independent
(RI-DEVA) models, and the other allows resource-dependent
(RD-DEVA) models. Resources in this paper mean compu-
tational resources as we would typically obtain from a IaaS
provider, such as CPU allocations, RAM memory, and network
connection speed and IP addresses.

We make this resource dependency distinction for two main
reasons. First, to present the user with a simple designing
tool that separates the concern of modeling a DEVA, and the
concern of modeling the resources needed to run such DEVA.
By having a RI-DEVA, a user can let our framework allo-
cate the required resources based on the specified high-level
policies and constraints. We can achieve this by transforming
an RI-DEVA to a RD-DEVA using model to model (M2M)
transformations [6].

Second, the resource performance from IaaS providers has
been shown to have high variability [9]. Similarly, different
IaaS providers have different metrics for specifying available
resources. Thus, we believe it is desirable to model application
architectures by quantifiable SLA constraints (i.e., “able to do
100 transactions per second”), rather than subjective resource
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Fig. 2. Metamodeling Framework for DEVAs.

metrics (i.e., “having an equivalent of a 1GHz CPU with
256MB RAM”) as IaaS providers currently offer [10]. Our
main concern is to allow developers to specify RI-DEVAs that
are transformed to RD-DEVAs by our system.

A. DEVA Meta-metamodel

Our proposed DEVA meta-metamodel abstract syntax is
presented on Figure 3(a), and the static semantics on Figure
3(b). At this level, we can construct simple graphs, with Nodes
and Edges. This metamodel is a simple extension of a graph
which allows Annotations against Nodes. These Annotations
can be either Policies or Constraints. Each of the Nodes can
have a list of Attributes, or a list of Enumerations, but not both.
Edges have a source Node and a sink Node, which cannot be
the same Node. An attribute is composed by a name and a
type. Enumerations have names and literal values. With these
basic constructs, we can generate the metamodels for both
RI-DEVAs and RD-DEVAs, which we describe below.

B. RI-DEVA Metamodel

Our proposed RI-DEVA meta-model abstract syntax is
presented in Figure 4(a), and the static semantics in Figure
4(b). An RI-DEVA is a named composition of zero or more
global Policies and one or more virtual Appliances. In this
context, Policies refer to high-level guidelines that a DEVA
instance will try to meet. An example of a policy is to
be able to instantiate a RI-DEVA with the least amount of
resources possible (i.e. ‘asCheapAsPossible’ in our PolicyType
enumeration). This means that economy will have a bigger
weight whenever we try to realize this RI-DEVA. A RI-DEVA
could include policies that are contradicting. In such cases,
they would be accommodated in an arbitrary order.

At least one virtual appliance is necessary to convey a RI-
DEVA. Note again that our Appliance definition is isolated
completely from resource usage. These Appliances are repre-
sented by a name, a specific operating system, and a list of
one or more services.

Each service is identified by a name, a version number, a
list of the services it depends on (if any), and a set of zero

Edge

+sourceCardinality : string

+sinkCardinality : string

+isContainment : bool

Node

Annotation

Policy Constraint

Attributes

+name : string

+type

Enumeration

+name : string

+value : string

+source1

+sink 1

1

+attributes

*

1
+enumerations

*

: Type

(a) Abstract syntax for DEVA meta-metamodel.

context Node
inv: self.attributes.size == 0 or

self.enumerations.size == 0

context Edge
inv: self.source != self.sink

(b) Static semantics for DEVA meta-metamodel.

Fig. 3. Meta-metamodel for DEVAs.

or more endpoints. These endpoints are key to our approach,
as can be seen in Figure 1. They allow to specify service
production or consumption at the service level, rather than
specifying network level details. This approach implicitly gen-
erates meta-data about the architecture that allows for easier
appliance provisioning, as all the connection and service-to-
service dependencies are known a priori.

Endpoints are represented by a name, a type, and an
integer that specifies how many connections are allowed. A
connection is composed of a source endpoint linked to a
sink endpoint; sink and source cannot be the same endpoint.
Connections should have valid type matches at each endpoint.
Going back to Figure 1, a database-consumer can only be
connected to a database-provider, and the provider endpoint
can specify a maximum number of consumer connections. For
this, we include a function isV alidConn : EndpointType×
EndpointType→ bool which determines Connection validity
based on Endpoint type and their allowedConn property.
Endpoints also specify if they can be left unused, or if a
connection is necessary.

Each connection can have zero or more Constraints. These
Constraints specify QoS non-functional requirements for the
service-to-service connections. For example, in the case of a
database connection, a constraint “at least 50 transactions per
second” could be applied. Again, this meta-data could be used
in the model transformation to try to guarantee the constrained
connection performance.
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+type : PolicyType
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+name : string
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1..*

1

+dependsOn

*
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1
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1
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(a) Abstract syntax for RI-DEVAs.

context Connection
inv: sourceEndpoint != sinkEndpoint and isValidConn()

context Service
inv: self.dependsOn->forAll(dep: Service | dep != self)

context Constraint
inv: self.value >= 0

context Endpoint
inv: self.allowedConn > 0

(b) Static semantics for RI-DEVAs.

Fig. 4. Meta-metamodel for RI-DEVAs.

C. RD-DEVA Metamodel

Figure 5(a) presents a partial abstract syntax for RD-
DEVAs, and Figure 5(b) the static semantics. These models
have a similar metamodel as RI-DEVAs. The main difference
is that we do not have policies nor constraints; rather, we have
IaaS resources mapped to each Appliance. These Appliances
must be mapped to 3 or more resources, and there should be
at least one resource of CPU, RAM, and NIC, respectively.

In this paper, we focus on how to construct RI-DEVAs
and how to transform them to RD-DEVAs. Work on directly
modeling RD-DEVAs is presented elsewhere [11].

IV. TRANSFORMING DEVAS

A. A model to instance reference system

Figure 6 presents an overview of a system that can transform
DEVA models into instances. As input, the system would have
a RI-DEVA model. This model would be received by a Model
to Model (M2M) transformation engine aware of the metamod-
els for RI- and RD-DEVAs. The transformation between these
models can be done in various ways. The task is to translate

quantifiable constraints and policies to available resources in
an IaaS cloud. This could be realized by having a mapping
Instantiate : ConstraintType × Constraint.value −→<
RCPU , RRAM , RNIC > applied to all of the services in a
specific virtual appliance, where < RCPU , RRAM , RNIC >
is a tuple representing the allocated resources in a specific
IaaS cloud. This mapping could be implemented by using
resource usage predictions based on empirical data in a black
box manner, as in previous work where we model resources
used by specific software [12], or in a white box approach
as presented in [13]. The results of the mapping can then be
aggregated to have the total needed resources for an Appliance.

Once we have a RD-DEVA, we need to have a DEVA model
to instance (M2I) transformation engine that is aware of the
IaaS resources. Again, we have various choices. Either the
engine could be an IaaS provider which is aware of DEVAs, as
in [11], or the engine could be a middleware which translates
RD-DEVA models to IaaS API calls. To resolve interdepen-
dencies and to provision the appliances with the necessary
software, this middleware would generate configuration scripts
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+name : string

+os : OS

Resource

+provider : Provider

1

+resources3..*

CPU

+speed : int

RAM

+size : int

NIC

+speed : int

+ip : string

«enumeration»

Provider

+AmazonEC2

+GoGrid

+RackspaceCloudServers

+...

(a) Partial abstract syntax for RD-DEVAs.

context Appliance
inv: self.resources->

exists(c | c.oclIsKindOf(CPU))
inv: self.resources->

exists(r | r.oclIsKindOf(RAM))
inv: self.resources->

exists(n | n.oclIsKindOf(NIC))
(b) Partial static semantics for RD-DEVAs.

Fig. 5. Partial metamodel for RD-DEVAs. All other entities are as in RI-
DEVAs if we eliminate the Policies and Constraints.

which would then be run on the instantiated Virtual Machines
(VM) on top of the IaaS provider. Note that in our approach,
a different M2I engine would be needed for each target IaaS
provider. Nonetheless, some work from this engine can be
modularized. For example, to make the software provisioning
process repeatable, a software installation utility like Chef
could be used [14].

B. A Simple Case Study

Because of space constraints, we present a simple case study
of our approach based on Figure 1. A small composition like
this can be instantiated as follows. First the user would define
this RI-DEVA by using our prototype DEVA designer. We
chose to have a web-based designer for DEVAs to provide a
cross-platform solution. The model would then be sent to the
M2M engine. Note that we can always compare the DEVA
being designed against the metamodel to find discrepancies,
and acknowledge the designer accordingly.

Since the model in Figure 1 does not present any specific
Constraints, our system would choose the simplest transfor-
mation, which could be a direct mapping to, say, two Virtual
Machines in Amazon EC2 of the type “small instance”. A
small instance in Amazon EC2 provides one CPU allocation,
with 1.7GB of RAM, and a basic network connection with
two IPs, one public and one private [10]. This would be the
transformation to an RD-DEVA.

Now that we have an RD-DEVA, we can send the model
to the M2I engine. On this engine, we can instantiate the
architecture by making the IaaS-specific API calls necessary
to launch 2 VMs, and then provisioning the software of each

virtual appliance. After this, we would need to resolve the
interdependencies (such as username and password for the
database) by running configuration scripts on the instantiated
VMs. Note that the meta-data of the Connections could be
used in this step. For example, on Amazon EC2, the private
IP could be used to make the DB connection, instead of using
the public one. Similarly, we also know that there is only
one connection possible to the database server. Therefore, the
instance could be configured to reject any connection other
than to the DB port.

V. RELATED WORK

We have identified the need for better abstractions from
the current IaaS implementations provided by vendors such as
Amazon [10] or GoGrid [15]. Thus, we propose a modeling
approach that is abstract enough to allow these interdependent
systems to be easy-to-design, fast-to-deploy, and that limits
the effects of IaaS vendor lock-in. We do not currently use a
standardized IT information model, such as DMTF’s Common
Information Model [16], as current IaaS providers do not
support them.

Commercial applications implementing a similar modeling
approach are available [17], [18]. They only offer closed-
source implementations and only work on their proprietary
cloud platforms. IBM has worked on a similar project, but
their implementation assumes that users are experts in the
domains of virtual image provisioning, image composition,
and composition deployment [3]. While they target enterprise
customers, we target non-expert cloud users.

Platform as a Service (PaaS) providers, such as Google
AppEngine [19], abstract away the underpinnings of a fully
working web application. Of course, this means that the
user has to learn the vendor’s API, and that migrating the
application to other PaaS provider implies changing most of
the implementation. Our work envisions models that once
specified do not need to be changed because of a vendor
switch.

Recently, Amazon started to offer a service called CloudFor-
mation. Customers can now specify groups of virtual machines
with provisioning scripts that provide repeatable architecture
instantiation. Compared to our solution, Amazon’s offering
only work on their IaaS service and of course the details
of their API need to be well known. Nonetheless, this is a
welcomed addition to their cloud offering, and validates the
current and future importance of easier-to-compose solutions
for the cloud.

VI. CONCLUDING REMARKS

In this paper, we presented a modeling approach for DEVAs.
First, we defined a metamodeling framework to be able to
formulate two metamodels, one for RI-DEVAs, and the other
for RD-DEVAs. We argued that RI-DEVAs are more desirable
for describing cloud architectures, and that an automatic trans-
formation between these two metamodels allows developers to
specify DEVAs with quantifiable QoS constraints rather than
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by subjective performance metrics provided by current IaaS
providers.

We then presented the details of our framework, by describ-
ing RI-DEVAs and RD-DEVAs with their abstract syntax and
static semantics. We also described our key modeling abstrac-
tion, which consist of making service-to-service connections
between Appliances, so that the architecture developer does
not have to specify network level details. This abstraction aids
in two ways: network level details may not be the developer’s
expertise area, and also its configuration can vary between
different IaaS APIs.

We also presented how a system could implement our
modeling approach, by describing the various stages needed
to transform a RI-DEVA modeled by a developer to an actual
instance in an IaaS Provider. Finally, a simple case study of
how a typical web architecture could be modeled with our
approach was discussed.

Designing solutions on top of IaaS providers is a growing
problem domain in the cloud. A modeling approach such as
the one presented can potentially make these architectures
easy-to-compose and ready-to-use. We are in the process of
prototyping a system that follows the details presented in
Section IV. We are also investigating how to expand our
approach to monitor and autonomically enforce Constraints
and Policies of instantiated DEVAs.
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