
Generation of Self-Optimizing Wireless Network Applications
(Poster Summary)

S. M. Sadjadi, P. K. McKinley, R. .E. K. Stirewalt, and B. H. C. Cheng
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824
�sadjadis,mckinley,stire,chengb�@cse.msu.edu

Motivations. As the computing and communication in-
frastructure continues to expand and diversify, managing
the software developed for such heterogeneous environ-
ments is becoming more and more complex; therefore, the
need for autonomic computing [1] is increasing. As one ex-
ample, the advent of the “Mobile Internet” has produced a
variety of handheld and wearable computing devices, whose
software must adapt to multiple, potentially conflicting con-
cerns, such as quality-of-service, security, and energy con-
sumption. Unfortunately, many applications being ported to
mobile computing environments were not designed to be
adaptable to the corresponding concerns. We say that a pro-
gram is adaptable if it contains facilities for selecting and
incorporating new behaviors at run time.

Adaptable applications are difficult to develop and main-
tain especially if adaptive code, which implements the
adaptive behavior, is tangled into functional code, which
implements the imperative behavior. Adaptive code that
deals with concerns such as quality of service tends to cross-
cut the conventional “functional decomposition” of an ap-
plication used for the functional code. Therefore, modifying
existing programs directly to support adaptation can lead to
tangled code that is error-prone and difficult to maintain.
In the past few years, numerous techniques have been pro-
posed that enable separation of adaptive code from the func-
tional code [2]. Kephart and Chess [1] describe an architec-
ture for autonomic elements that promotes this separation of
concerns. They suggest a structure for autonomic elements
that consists of one or more manageable elements, which
implement the imperative behavior, coupled with a single
autonomic manager, which implements the adaptive behav-
ior and controls the managed elements.

Our Approach. Our work investigates how to wrap ex-
isting applications transparently to generate such manage-
able components. Developing manageable components re-
quires some mechanism to support adaptation in behavior.
The predominant mechanism for implementing adaptation

in object-oriented software is behavioral reflection, which
can be used to modify how an object responds to a message.
In recent years, behavioral reflection has been used to sup-
port adaptation to a variety of different concerns, including
quality-of-service and fault tolerance. Unfortunately, pro-
grams that use behavioral reflection incur additional over-
head, as in some cases every message sent to an object must
be intercepted and possibly redirected. To provide efficient
autonomy, a developer should be able to selectively intro-
duce behavioral reflection only where needed to support the
desired adaptations. Specifically, the developer should be
able to identify, at compile time, which individual classes
should be able to support adaptation at run time.

We previously showed how to use aspect-oriented pro-
gramming to selectively introduce behavioral reflec-
tion into an existing program [3]. However, the reflec-
tion used there is ad hoc in that the developer must
invent the reflective support classes and supporting in-
frastructure for adaptation, and must create an aspect
that weaves this infrastructure into the existing pro-
gram. More recently, we developed transparent reflective
aspect programming (TRAP) [4], which combines behav-
ioral reflection [5] and aspect-oriented programming [6] to
transform extant programs into manageable programs with-
out the need to modify the original source code manually.
TRAP supports general behavioral reflection by automat-
ically generating wrapper classes and meta-classes from
selected classes in an application. TRAP then generates as-
pects that replace instantiations of selected classes with in-
stantiations of their corresponding wrapper classes. This
two-pronged, automated approach enables powerful behav-
ioral reflection with minimal overhead. To validate these
ideas, we developed TRAP/J, which instantiates TRAP for
Java programs [4].

Case Study. This work describes the application of
TRAP/J to a multicast audio application. The Audio-
Streaming Application (ASA) is designed to deliver in-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:08 from IEEE Xplore. Restrictions apply.

teractive audio from a microphone at one network
node to multiple receiving nodes. Although the origi-
nal application was developed for wired networks, we
used TRAP/J to make it adaptable to wireless environ-
ments, where the packet loss rate is dynamic and location
dependent. In our experiments, a laptop workstation mul-
ticasts the audio stream to multiple wireless iPAQs over
an 802.11b (11Mbps) ad-hoc wireless local area net-
work (WLAN) (Figure 1). In current WLANs, packet
losses affect multicast communication more than uni-
cast communication, since the 802.11b MAC layer does
not provide link-level acknowledgements for multi-
cast frames.

Sender

Receiver

Receiver

Receiver
Ad-Hoc
Wireless
Network

Audio Stream Path

Figure 1: Audio streaming in a wireless LAN.

Figure 2 illustrates the strategy we used to enable ASA to
adapt to variable channel conditions in wireless networks.
We use TRAP/J to replace normal Java socket functional-
ity with MetaSocket [7] functionality, transparently to the
ASA code. MetaSockets are adaptable communication com-
ponents created from existing Java socket classes, but their
structure and behavior can be adapted at run time in re-
sponse to external stimuli (e.g., dynamic wireless channel
conditions).

The particular MetaSocket adaptation used here is the
dynamic insertion and removal of forward-error correc-
tion (FEC) filters [8]. Specifically, an FEC encoder filter
can be inserted and removed dynamically at the sending
MetaSocket, in synchronization with an FEC decoder be-
ing inserted and removed at each receiving MetaSocket.
Use of FEC under high packet loss conditions reduces the
packet loss rate as observed by the application. Under low
packet loss conditions, however, FEC should be removed
so as not to waste bandwidth on redundant data. Experi-
ments on a mobile computing testbed demonstrate the util-
ity of TRAP/J to transparently and automatically enhance
an existing application with new adaptive behavior, specifi-
cally, enabling ASA to better deal with highly variable con-
ditions in wireless networks.

Further Information. A number of related papers and
technical reports of the Software Engineering and Network

Wireless Network

Sender

Trapped
Socket

Java
Socket

JVM on
Windows XP

Receiver

Trapped
Socket

Java
Socket

JVM on
Familiar Linux

Base Level

Meta Level

Java.net package

Java Virtual Machine

Audio Packet Path

FEC
Encoder

FEC
Decoder

x
xx
x

1 2 3 4 1 2 3 4

Packet Lostx

Figure 2: Adaptation strategy.

Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.

Acknowledgements. This work was supported in part
by the U.S. Department of the Navy, Office of Naval Re-
search under Grant No. N00014-01-1-0744, and in part by
National Science Foundation grants CCR-9912407, EIA-
0000433, EIA-0130724, and ITR-0313142.

References

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] K. Czarnecki and U. Eisenecker, Generative programming.
Addison Wesley, 2000.

[3] Z. Yang, B. Cheng, R. Stirewalt, J. Sowell, S. M. Sadjadi,
and P. K. McKinley, “An aspect-oriented approach to dynamic
adaptation,” in Proceedings of the ACM SIGSOFT Workshop
On Self-healing Software, Nov. 2002.

[4] S. M. Sadjadi, P. McKinley, R. Stirewalt, and B. Cheng,
“TRAP: Transparent reflective aspect programming,” Tech.
Rep. MSU-CSE-03-31, Department of Computer Science,
Michigan State University, East Lansing, Michigan, Novem-
ber 2003.

[5] P. Maes, “Concepts and experiments in computational re-
flection,” in Proceedings of the ACM Conference on Object-
Oriented Languages (OOPSLA), December 1987.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer-Verlag
LNCS 1241, June 1997.

[7] S. M. Sadjadi, P. K. McKinley, and E. P. Kasten, “Architec-
ture and operation of an adaptable communication substrate,”
in Proceedings of the Ninth International Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS ’03),
May 2003.

[8] L. Rizzo and L. Vicisano, “RMDP: An FEC-based reliable
multicast protocol for wireless environments,” ACM Mobile
Computer and Communication Review, vol. 2, April 1998.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:08 from IEEE Xplore. Restrictions apply.

