
August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

International Journal of Software Engineering
and Knowledge Engineering
Vol. 19, No. 4 (2009) 507–528
c© World Scientific Publishing Company

TRAP.NET: A REALIZATION OF TRANSPARENT
SHAPING IN .NET

S. MASOUD SADJADI∗

School of Computing and Information Sciences
Florida International University

Miami, FL 33199, USA
sadjadi@cs.fiu.edu

http://www.cs.fiu.edu/∼sadjadi/

FERNANDO TRIGOSO

1317 St. Tropez Cir. #1306
Weston, FL 33326, USA

fernando trigoso@ultimatesoftware.com

We define adaptability as the capacity of software in adjusting its behavior in response to
changing conditions. To list just a few examples, adaptability is important in pervasive
computing, where software in mobile devices need to adapt to dynamic changes in wire-
less networks; autonomic computing, where software in critical systems are required to
be self-manageable; and grid computing, where software for long running scientific appli-
cations need to be resilient to hardware crashes and network outages. In this paper, we
provide a realization of the transparent shaping programming model, called TRAP.NET,
which enables transparent adaptation in existing .NET applications as a response to the
changes in the application requirements and/or to the changes in their execution envi-
ronment. Using TRAP.NET, we can adapt an application dynamically, at run time, or
statically, at load time, without the need to manually modify the application original
functionality-hence transparent.

Keywords: Transparent shaping; dynamic adaptation; static adaptation; TRAP.NET;
.NET Attributes; reflection; metadata; reference redirection; adapt-ready; .NET Frame-
work; CIL; ILDASM; ILASM.

1. Introduction

The goal of our ongoing research is to improve software adaptability. Imagine a
world where software systems do not have to stop every time there was a need
for adapting the software to the new changes in its requirements or in its execu-
tion environment. For example, as a wireless user moves from one wireless cell to
another, the applications available to the user must adapt to different environments
and resources with minimal interruption in their service. Critical systems such as

∗Corresponding author.

507



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

508 S. M. Sadjadi & F. Trigoso

financial networks or power systems cannot afford to shut down due to the need
to adapt to new conditions or security attacks. A hurricane prediction application
running for hours cannot be restarted just because a few resources are out of service.

Adaptable software presents itself as a possible solution to the above problems.
An application is said to be adaptable if it can change its behavior dynamically at
runtime, which may be due to changes in its environment or due to new functional
or non-functional requirements [1]. Unfortunately, developing adaptable software
is non-trivial. An adaptable application involves both functional code and adap-
tive code. Functional code implements the business logic of the application while
adaptive code implements the adaptation logic which enables the application to be
adaptive. Usually, these two types of code are blended into one source code making
its maintenance and adaptation difficult.

The transparent shaping programming model poses a solution to solve the dif-
ficulty of developing adaptable applications [1]. This model allows the design and
development of adaptable applications without the need to modify their source code.

Transparent shaping produces adaptable programs in two steps. In the first
step, usually executed at compile time, an existing program is transformed so its
behavior can be adapted at runtime. And in the second step, executed at runtime,
these transformations receive the new behavior so the program can be adapted.

The first step of transparent shaping generates an adapt-ready program. An
adapt-ready program is a program whose behavior is initially equivalent to the
original program except for the fact that it can be adapted at startup and/or run
time.

Applying transparent shaping to object-oriented programs yields a new pro-
gramming model called Transparent Reflective Aspect Programming (TRAP) [1].
In this paper, we provide a realization of transparent shaping following the TRAP
model, called TRAP.NET, which is targeted for .NET applications.

TRAP.NET provides a language-independent mechanism for transparently pro-
ducing adapt-ready programs from existing programs in .NET. TRAP.NET also
provides a mechanism to adapt these adapt-ready programs. This adaptation can
be static, at load time, or dynamic, at runtime.

Static adaptation is more restrictive than dynamic adaptation. Static adaptation
can only occur once when the application is loading and it is useful for applications
that will be deployed on different platforms. These applications only need to adapt
to their corresponding platforms at startup time. Dynamic adaptation is useful
for applications that need to adapt to changes in their environment or to new
requirements without halting.

The major contributions of this paper are summarized as follows. First, we assess
the expressiveness and effectiveness of .NET Attributes in providing a means to
label what portions of an existing application should become adaptable. Attributes
are pieces of metadata information that can be placed in the source code of .NET
applications. TRAP.NET uses this metadata information to identify which pieces of
functionality should be made adapt-ready. Second, we researched and developed a



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 509

language-independent software tool that realizes the first step of transparent shap-
ing appropriate for .NET applications. We call this software tool the generator. The
generator automatically generates an adapt-ready application independent of the
programming language used in the development of the original application. Finally,
we researched and developed a language- and platform-independent software tool
that realizes the second step of transparent shaping. We call this software tool the
composer. The composer allows new adaptive behavior — to be added at startup
or runtime — to replace the existing adapt-ready behavior.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the .NET technologies that TRAP.NET uses. Section 3 explains
the design, implementation, and operation of TRAP.NET. Section 4 classifies
TRAP.NET based on how, when and where software composition takes place. Sec-
tion 5 describes the research challenges we faced. Section 6 demonstrates how to
use TRAP.NET using an example application and shows its performance overhead
is negligible. Section 7 compares TRAP.NET to some related work. Finally, Sec. 8
offers some concluding remarks.

2. Background

This section provides a brief overview of the .NET technologies that TRAP.NET
uses to implement the transparent shaping model.

The Microsoft .NET Framework is a software component that provides vast pre-
coded solutions to common program requirements in the form of class libraries. It
also manages the execution of programs written specifically for this framework [2].
The .NET Framework provides a run-time environment called the common language
runtime (CLR, or just runtime) that runs .NET applications and provides services
that make the development process easier. When compiling a .NET program, the
compiler translates the source code into common intermediate language (CIL, or
just IL), which is a CPU-independent set of instructions that can be efficiently
converted to native code. CIL, formerly called Microsoft intermediate language or
MSIL, resembles an object-oriented assembly language. TRAP.NET is language-
independent as it provides adaptation at the CIL level.

When a .NET compiler produces code in CIL, it also produces the correspond-
ing metadata. Metadata is “data about data;” in the programming context it is
data about the program. Metadata describes the types in the code, including the
definition of each type, the signatures of each type’s members, the members that
the code references, and other data that the runtime uses at execution time. The
CIL and metadata are contained in a portable executable (PE) file referred to as
module. The presence of metadata in the module along with CIL enables the code
to describe itself. The runtime locates and extracts the metadata from the module
as needed during execution.

.NET Reflection is the component that provides class libraries to access the
metadata of .NET applications. Therefore it contains classes to describe every



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

510 S. M. Sadjadi & F. Trigoso

programming element such as assemblies, modules, namespaces, types, fields, meth-
ods, attributes, events, etc. Using reflection, TRAP.NET can access the metadata
and the IL code of existing applications. TRAP.NET takes advantage of this feature
and puts all the adaptive-related metadata into the same file and this way, there is
no need to load a separate file with the metadata information about the adaptive
behavior.

Reflection can also be used to dynamically create an instance of a type, bind
the type to an existing object, or get the type from an existing object. Then it
can invoke the type’s methods or access its fields and properties. TRAP.NET can
discover information about all the elements of an application. Also, it can modify
an application’s behavior mainly through the usage of dynamic methods. Dynamic
methods are methods that can be generated and executed at runtime.

.NET Attributes are keyword-like descriptive declarations. They resemble pro-
gramming languages reserved keywords such as public or private. These two key-
words further define the behavior of class members by describing their accessibility
to other classes. Because compilers are designed to recognize these predefined key-
words, a developer does not traditionally have the opportunity to create their
own. The CLR, however, allows the addition of attributes to annotate program-
ming elements such as types, fields, methods and properties [3]. These attributes
can be extracted using runtime reflection services. TRAP.NET uses attributes to
label methods that should become adapt-ready and to gather metadata information
about these methods.

3. TRAP.NET Overview

This section provides an overview of TRAP.NET from its usage perspective. It
describes the steps required to achieve dynamic adaptation with TRAP.NET at
development time, compile time and run time. Static adaptation is presented at the
end of this section since it reuses the techniques used to achieve dynamic adaptation.

3.1. At development time

To tailor the TRAP approach to the .NET development practices we allow the user
to manually place .NET Attributes to annotate which methods should be adapt-
ready. In our particular case we implemented a custom attribute which we call the
AdaptReady attribute. By placing this attribute, the user is staging the application
so it is suitable for the generator at compilation time. The generator can then
look for the methods with the AdaptReady attribute to automatically make them
adapt-ready. The code snippet in Fig. 1 shows this attribute with a method called
Some-Method.

Another important step that occurs at development time is the fact that the user
has to add a reference to the TRAP.NET class library. The AdaptReady attribute is
defined in the TRAP.NET class library, thus to successfully compile the application
with this attribute, the application has to reference this class library. This particular



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 511

[AdaptReady(true)]
public void Some-Method()
{
     /* some implementation */
}

Fig. 1. A method with the AdaptReady attribute.

reference coalesces the original application and TRAP.NET into one application.
This union makes the generation process much easier since most of the functionality
to support adaptation can be placed in the TRAP.NET library. Therefore, most of
the adaptive code that needs to be weaved can be simple calls to functions in the
TRAP.NET library.

3.2. At compile time

After the annotated application is compiled as it normally would, the user can send
its application to the generator. The generator can be executed from a plug-in for
Visual Studio or from the command-line.

The generator is in essence an aspect weaver which adds the adaptive aspect to
the methods annotated with the AdaptReady attribute. The adaptive aspect in this
case consists of hooks that will intercept and redirect the control flow as appropriate.
As mentioned earlier, since all .NET assemblies are compiled into CIL, the generator
can weave the adaptive aspect in CIL code. The addition of the adaptive aspect at
this level makes the TRAP.NET generator language independent and transparent
with respect to the original source code.

When the generator is executed, it receives as input the annotated assembly.
This assembly is immediately loaded into an Assembly object provided by the .NET
reflection facilities. This object allows the discovery of the types and methods of
the staged assembly. The generator iterates through the list of types and methods
and finds all the methods with the AdaptReady attribute.

At this point, as illustrated in Fig. 2, first the annotated assembly is disassembled
using ILDASM, which is a tool distributed with the .NET Framework, to create a
text file with the intermediate language (IL) code of the assembly. Next, the source
code of the method, in IL, is used as a base for the generation of the adapt-ready IL
code. Finally, the adapt-ready IL code is reassembled using ILASM, which generates
the adapt-ready assembly. The process described in this paragraph is called round-
tripping, which involves three steps: disassembly, tinkering with the CIL source
code, and reassembly [4].

During the tinkering phase, the generator only adds the hooks to the methods
that have the AdaptReady attribute. The actual hooks consist of a simple if-then-else
statement to intercept and redirect the control flow. The if-condition intercepts the
control flow and checks whether adaptation is enabled for that particular method.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

512 S. M. Sadjadi & F. Trigoso

TRAP.NET Generator

Sample.exe

Adapt-Ready
Sample.exe

Sample.il

ILDASM
IL Disassembler

Adapt-Ready
Generation

ILASM
IL Assembler

Sample.il

Adapt-Ready
Sample.il

Adapt-Ready
Sample.il

Fig. 2. TRAP.NET Round-tripping.

If it is, the automatically generated code inside the if-condition redirects the control
flow. It loads and invokes the new adaptive functionality for this method using a
dynamic method. The else-condition wraps the original functionality of the method
which is executed if adaptation is not enabled.

Presenting the code of an adapt-ready method in CIL can be cumbersome due
to the fact that intermediate language notation is very similar to assembly language
which tends to be lengthy even for simplistic logic. Moreover, understanding CIL
requires knowledge of CIL instructions and syntax. Therefore, for clarity, in Fig. 3
we show what an adapt-ready method would look like in pseudo-code before and
after generation.

Inside the if-condition, the generator has to perform code generation to invoke
the dynamic method. The dynamic method has to be invoked with all the param-
eters of the original method which may be one or more and may be of different

[AdaptReady(true)]

SOME-METHOD()

1    call original implementation

(a) Some-method before generation.

[AdaptReady(true)]

SOME-METHOD()

1    if t his method is adapted
2         then call INVOKE-DYNAMIC-METHOD()
3         else call original implementation

(b) Some-method after generation.

Fig. 3. Adapt-ready method in pseudo code before and after generation.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 513

types. Also, the return type of the invocation needs to be casted to the return type
of the original method. Using reflection the generator can determine the number
and the types of parameters as well as the return type of the method. Based on this
information, the code to invoke the dynamic method is automatically generated.

Finally, besides adding the hooks, the generator also inserts a method call in
the startup point of the application. When the adapt-ready application starts run-
ning, this method call is the first thing that gets executed. This method is part of
the TRAP.NET class library and initializes all the components and data structures
needed to support static and dynamic adaptation at runtime. As part of this ini-
tialization a communication channel is opened so the application can receive new
functionality at runtime. This communication is implemented using .NET Remot-
ing, which supports interprocess communication in distributed applications.

3.3. At runtime

The last few steps to achieve dynamic adaptation with TRAP.NET occur at runtime
when the adapt-ready application is executing. They are triggered when the user
decides that the functionality of a particular adapt-ready method needs to adapt
to some changing condition. Future work may involve automated decision making
according to some policy. After this decision is made, the user develops the new
functionality using the original source code. Then, the user can utilize the composer
to upload the new adaptive functionality.

The composer is essentially a distributed application composed by two mod-
ules: the client composer and the server composer. The client composer is the user
interface used to upload new functionality to the running application. The server
composer — hosted by the TRAP.NET class library — is part of the running adapt-
ready application and it serves requests from the client composer. The composer
is the core of TRAP.NET because it achieves dynamic adaptation. Figure 4 shows
the dependency of these components at runtime.

We developed two client composers, a Windows application composer and a
Web application composer. Among all of their functionality, these composers per-
form three basic operations. The first one is to get the status of the adapt-ready

Adapt-Ready
Assembly

Server Composer
(TRAP.NET.dll)

Client Composer

Network

Fig. 4. Dependency of components at runtime.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

514 S. M. Sadjadi & F. Trigoso

application so the user can see which methods can be adapted. The second opera-
tion lets the user upload a new delegate assembly to the adapt-ready application. A
delegate assembly is an assembly that contains delegate methods. Delegate methods
contain the functionality that replaces the functionality of adapt-ready methods.
Once the delegate assembly is loaded, the third operation lets the user adapt an
adapt-ready method with a delegate method.

After the second operation, when user loads the delegate assembly, the server
composer matches adapt-ready methods to their potential delegate methods can-
didates. Potential delegate methods are methods that have the same return type
and parameter types as the adapt-ready method. Once this matching is complete,
the results are returned in XML format to the client. The user interface then dis-
plays the adapt-ready methods with their potential delegate methods. At this time,
the user may select one of the delegate methods for adaptation of its adapt-ready
method. This adaptation request is sent to the server which prepares the contents
of this delegate method so they are suitable for adaptation.

The preparation of the delegate method consists of the generation of a dynamic
method with the contents and information of the delegate method. This genera-
tion is a complex process that relies heavily on reflection. The shell of the dynamic
method has to have the same metadata as the delegate method. This metadata
includes the parameter types, the declaring type and the local variables of the del-
egate method. After the shell of the dynamic method is completed, its contents are
populated with the body of the delegate method. This body is the IL of the delegate
method in byte code. Assuming the delegate method has no external references —
that is, it only works with local variables and it does not call other methods —
the newly created dynamic method is ready for usage. This dynamic method is
stored in a data structure inside the server composer so it can be referenced when
needed. The next time the adapt-ready method is called, it finds out that is has been
adapted and its execution enters the if-condition which gets the dynamic method
from the server composer. After the dynamic method is retrieved, the adapt-ready
method invokes it with its current parameter values.

The process just described assumes that the delegate method had no external
references to members outside the method itself. Non-trivial applications usually
require access to external references. Members are any language element that can
be referenced, i.e. methods, constructors, fields, properties and events. Each of these
members may also have return types, parameters, access modifiers (such as public
or private) and implementation details (such as abstract or virtual) among others.
When a delegate method is developed and compiled it may reference members in
the delegate assembly itself. After the delegate method is ported into a dynamic
method in the running application, these references are still pointing to the delegate
assembly. However, the delegate assembly is not being executed and it is out of
the context of the running application thus, these references are really pointing to
nothing. Therefore invocation of a dynamic method with references to the delegate
assembly would fail. The server composer solves this issue by redirecting these



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 515

references to the running application. The reference redirection process is explained
in the next section which discusses member access in more detail.

So far we have presented how dynamic adaptation is achieved at runtime.
TRAP.NET can be used in a mode that enables static adaptation. This type of
adaptation occurs at load time by reusing the functionality that achieves dynamic
adaptation. To achieve static adaptation the generator adds code to the startup of
the application to pause it as soon as it starts executing. While the application is
paused, the composer is the only available component which is waiting to receive
delegate methods. The user then sends delegate methods and adapts the desired
adapt-ready methods. The composer then flags these methods as adapted and will
not allow new adaptive functionality during the execution of the program. When
the user wishes, the application will be resumed.

3.4. Member access

Members are any language element that can be referenced, i.e. methods, construc-
tors, fields, properties and events. Each of these members may also have return
types, parameters, access modifiers (such as public or private) and implementation
details (such as abstract or virtual) among others. When a delegate method is devel-
oped and compiled it may reference members in the delegate assembly itself. After
the delegate method is ported into a dynamic method in the running application,
these references are still pointing to the delegate assembly. However, the delegate
assembly is not being executed and it is out of the context of the running applica-
tion, thus these references are really pointing to nothing. Therefore invocation of
a dynamic method with references to the delegate assembly would fail. The server
composer solves this issue by redirecting these references to the running application.
Figure 5 illustrates a dynamic method with external references before redirection.

3.4.1. Reference redirection

To redirect references into the running application, the composer takes the following
steps. First, it finds the references in the body of the delegate methods. After
they are found, it resolves them, that is, it gets the actual delegate member being
reference so it can discover its signature. Using the signature of the delegate member,
it locates the member with the same signature in the running application. Then,
it replaces the reference in the delegate body so it points to the member in the
running application. Figure 6 shows the reference redirection steps.

The functionality that finds references in the body of delegate methods had
to be developed from scratch. Reflection only provides access to the metadata of
methods, not their actual contents. As a consequence, we developed a component,
called the token parser, which finds external references by parsing the byte code of
delegate methods.

Every member has a unique metadata identifier. These metadata identifiers —
also referred to as metadata tokens — represent member references. These tokens



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

516 S. M. Sadjadi & F. Trigoso

Delegate Assembly

Delegate Method body:

- Reference to Field A

- Reference to Method B

Field A

Method B

Adapt-Ready Assembly (running application)

Dynamic Method body 
(created from Delegate 
Method body):

- Reference to Field A

- Reference to Method B

Field A

Method B

Actual 
Members

Delegate transferred by Composer

X

X

Fig. 5. Dynamic method before reference redirection. Notice that references in the dynamic method
point to ‘X’ which represents nothing.

Delegate Assembly

Delegate Method body:

- Reference to Field A

- Reference to Method B

Field A

Method B

Adapt-Ready Assembly (running application)

Dynamic Method body 
(created from Delegate 
Method body):

- Reference to Field A

- Reference to Method B

Field A

Method B

Actual 
Members

Delegate transferred by Composer

X

X

1

2

3

4

Fig. 6. Reference redirection steps. Step 1, find references; step 2, resolve members; step 3, locate
members in adapt-ready assembly and; step 4, replace references.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 517

can be extracted from the byte code of delegate methods. The byte code of methods
can be obtained using ILDASM which places the corresponding byte code of each
IL instruction as comments inside the method code.

The token parser is the component that finds metadata tokens by parsing the
body of delegate methods. When the user selects a delegate method for adaptation,
the composer disassembles the delegate assembly using ILDASM. The token parser
then parses the contents of the delegate method looking for these tokens.

After the tokens — which represent references — are found the composer needs
to resolve their corresponding members. It uses the method ResolveMember in the
Module class to resolve the members in the delegate assembly. This method takes a
token identifier as a parameter and returns an object that encapsulates the mem-
ber. The return object could be either of these types: MethodInfo, ConstructorInfo,
FieldInfo, PropertyInfo or EventInfo. These reflection types provide all the infor-
mation we need to locate the member with the same signature in the running
application.

To locate a member the composer uses the methods GetMember, GetMethod,
GetField, etc. in the Type class. The composer calls these methods with respect to
the adapt-ready assembly so they return members in this assembly. These methods
take a member signature and return the member with that signature. Therefore,
the signature the composer passes to these methods is the signature of a member
in the delegate assembly and the return value is the corresponding member in the
adapt-ready assembly.

As mentioned earlier, tokens represent member references. Therefore, to replace
a reference the composer needs to replace its token. Moreover, tokens are part of
the byte code of a method. Hence the composer can replace tokens referring to
members in the delegate assembly with tokens referring to members in the adapt-
ready assembly at the byte code level. To achieve this replacement the composer
needs two pieces of information.

First, it needs to know the token of the member in the adapt-ready assembly.
This token can be easily retrieved since we already know the member metadata
information which includes the token identifier. Second, it needs to know the offset
in the byte code at which to execute the replacement. The token parser calculates
this offset, which at the time of finding references also calculates the offset in the
byte code at which delegate references appear.

With these two pieces of information available, the composer proceeds to replace
the tokens in the body of the delegate method. After replacement is completed, the
new body is assigned to the dynamic method. The references in the dynamic method
body have now been redirected to members in the running application. Now, the
dynamic method is ready for invocation.

3.4.2. Current member access scope

The member access scope is limited by the composer’s ability to locate members.
At the time of this writing, the functionality to locate members in the adapt-ready



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

518 S. M. Sadjadi & F. Trigoso

application was almost complete. Different types of members require different calls
with different parameters to the reflective methods used to find members. Future
work is expected to complete this functionality. The following list shows the type
of members that can be located with the current functionality of the composer.

• Local fields are fields in the same class the adapt-ready method belongs to; the
composer can locate public, protected and private instance and static local fields.

• Local methods are methods in the same class the adapt-ready method belongs to;
the composer can locate public, protected, private, internal and protected internal
instance and static methods. It can also locate overloaded methods.

• External fields are fields in classes different from the class of the adapt-ready
method; the composer can locate public instance and static external fields.

• External methods are methods in classes different from the class of the adapt-
ready method; the composer can locate public instance and static external meth-
ods. It can also locate overloaded methods.

• External constructors are constructors of classes different from the class of the
adapt-ready method; the composer can locate public external constructors. Static
constructors can only be called by the runtime. It can also locate overloaded
constructors.

• Parent fields are fields declared in the base class of the class the adapt-ready
method belongs to; the composer can locate public and protected instance and
static parent fields.

• Parent methods are methods declared in the base class of the class the adapt-
ready method belongs to; the composer can locate public, protected, internal
and protected internal instance and static parent methods. It can also locate
abstract, virtual and new public parent methods. It can also locate overloaded
parent methods.

The functionality to locate members has passed testing with at least one sample
of each member type listed above. A few features are missing that will allow the
composer to access all the types of members in the adapt-ready application. Some
of these features are listed below.

• Property and Event access.
• Access to member in other modules that are part of the adapt-ready application.

4. TRAP.NET Classification

This section provides a classification of TRAP.NET using the taxonomy introduced
by McKinley et al. [5] based on how, when and where software composition takes
place.

4.1. How to compose and TRAP.NET

The first dimension of this taxonomy is how composition is implemented, that is,
what specific mechanisms are used to enable compositional adaptation. There are a



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 519

variety of techniques available. Among those we have: function pointers, wrappers,
proxies, metaobject protocol, aspect weaving, middleware interception, integrated
middleware, etc. TRAP.NET uses two of these techniques — metaobject protocol
and aspect weaving.

A metaobject protocol is a mechanism supporting intercession and introspection
that enable modification of program behavior. TRAP.NET uses two main metaob-
ject protocols: the .NET reflection components and dynamic methods. The reflection
components in .NET are used to discover information about the program; and the
dynamic methods are used to modify the program’s behavior.

Aspect weaving consists in weaving code fragments that implement crosscutting
concerns into an application dynamically. The TRAP.NET Generator performs the
aspect weaving of code that supports dynamic adaptation. It generates and inserts
code fragments into methods according to their signature. Moreover, the genera-
tor adds the adaptive crosscutting concern at compilation time to the intermedi-
ate language code of the application. Therefore, the original source code is never
modified.

4.2. When to compose and TRAP.NET

McKinley et al. [5] also differentiate approaches according to when the adaptive
behavior is composed with the business logic. They state the following: “Generally
speaking, later composition time supports more powerful adaptation methods, but
it also complicates the problem of ensuring consistency in the adapted program. For
example, when composition occurs at development, compile, or load time, dynamism
is limited but it is easier to ensure that the adaptation will not produce anomalous
behavior. On the other hand, while runtime composition is very powerful, it is diffi-
cult to use traditional testing and formal verification techniques to check safety and
other correctness properties.” From this argument, they further divided composition
into two main approaches: static composition and dynamic composition.

In static composition, also called static adaptation, software is composed at
development, compile, or load time. If an adaptive program is composed at develop-
ment time, then any behavior is hardwired into the program and cannot be changed
without recoding. Adaptive behavior can also be added at compile time with aspect-
oriented languages such as AspectJ. Different aspects can be weaved for different
environments at compile or link time. These applications are called customizable and
they only require recompilation to fit to a new environment. Configurable applica-
tions delay the final adaptation decision until the application loads a particular
component. Although composition at load time is still a form of static composition,
it is very useful for applications that run on different environments. These type
of applications only need to adapt to its environment when they area loaded. For
example, if a user starts an application in a handheld device, the display compo-
nents loaded are going to be different than the ones loaded if the same application
was executed on a regular desktop computer.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

520 S. M. Sadjadi & F. Trigoso

In dynamic composition, also called dynamic adaptation, software is composed
by a composer at runtime. In this case, a composer could replace or modify algo-
rithmic and structural units during execution without halting or restarting the pro-
gram. Additionally, they differentiate two types of dynamic composition approaches
according to whether the composer is allowed to change the business logic of the
application. Tunable software prohibits the modification of code for the business
logic. It only supports fine-tuning of crosscutting concerns. In contrast, mutable
software, allows the composer to change any functionality of the program’s compo-
nents, including the business logic functionality.

TRAP.NET follows the static and dynamic composition approaches. To achieve
static composition, the composer only allows adaptation when the application loads.
To achieve dynamic composition, the composer allows changing the implementation
of the business logic of the application at run time. Therefore, TRAP.NET creates
both configurable and mutable software.

4.3. Where to compose and TRAP.NET

This is the final dimension in the taxonomy presented by McKinley et al. It focuses
on where in the system the composer inserts the adaptive code. There are three
main areas where this insertion may occur: the middleware layers, the application
code or the operating system. Our work focuses in the middleware layers and the
application code since these are the areas that affect TRAP.NET.

Middleware layers can provide facilities that aid recomposition at runtime. For
example, the Java Virtual Machine (JVM) and common language runtime (CLR)
assist dynamic recomposition through reflection facilities provided by the Java lan-
guage and the .NET framework. In the case of TRAP.NET, these reflection facilities
are extensively used by the generator and composer. However, the adaptive code is
not inserted in these layers.

The adaptive code can also be inserted in the application code in two ways.
The developer can explicitly add the code to support dynamic adaptation or the
adaptive code can be woven into the functional code. TRAP.NET follows the latter
approach. The generator weaves the adaptive aspect at compile time and the com-
poser inserts the adaptive code at runtime. The TRAP.NET approach offers a way
to add adaptive behavior to applications transparently with respect to its original
code.

5. Research Challenges

We faced several challenges in the research of how to implement transparent shaping
for the .NET framework. Previous implementations of transparent shaping worked
with the original source code and were language dependent. Even though .NET
caters many languages, it also centralizes everything in a lower layer of abstrac-
tion at the Common Intermediate Language level. This centralization gave us the



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 521

opportunity to make this particular implementation of transparent shaping lan-
guage independent. The fact that we chose to work with the CIL level was another
challenge.

Intermediate language resembles assembly code thus it is more complicated to
use and understand than a fourth-generation language such as Java or C#. In order
to achieve language independence, we had to become familiar with the intermediate
language syntax and usage. After we learned enough about intermediate language,
we researched a way to add the adaptive aspect at this level. To add the adap-
tive aspect at this level, we followed the interception and redirection principles
and investigated a way to implement them in IL code. We believe this approach
was the harder path to take but it was the right one. The easier path would have
been providing different implementations of transparent shaping for different .NET
languages. We may have ended up with TRAP/C#, TRAP/VB, TRAP/J#, etc.
These different implementations would not have provided any new contributions.
Implementing transparent shaping at a higher-level language has already been per-
formed with TRAP/J and TRAP/C++. Instead we chose to provide a more difficult
implementation that applications written in different languages can use.

Another challenge was making this implementation more transparent to the user.
Other implementations of transparent shaping present the user with two different
user interfaces — one for the generator and another one for the composer. The
user interface for the generator actually displays all the methods and classes in
an assembly. From this list the user can select the methods or classes to make
adapt-ready. This approach is not very common in the .NET world. To overcome
this obstacle we researched the .NET development practices and decided to use
attributes so the user can annotate methods to make adapt-ready. Attributes are
very common in .NET and they are used in a variety of ways.

The next challenge we had to overcome was the fact that delegate methods
may reference members in the delegate assembly. The problem arises when a del-
egate method is ported into the executing adapt-ready application. The member
references of the delegate method are not in the execution context of the running
application. Therefore we investigated and implemented a technique to redirect the
references from the delegate assembly to the executing assembly.

6. TRAP.NET Case Study

This section will show how to provide dynamic adaptation to a sample applica-
tion. The application used in this example sorts and searches a set of numbers
which are received from an external process. For the sake of the example let’s
assume that once deployed this application shall not be stopped. However, to
allow for dynamic change, the developers of this sample application made it adapt-
ready using TRAP.NET. When first deployed the external process was sending an
unsorted list of 5 million numbers. The sample application would sort them and
then search for a subset of those numbers. After some time, the external process



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

522 S. M. Sadjadi & F. Trigoso

starts sending a sorted list of 5 million numbers. Since the sample application does
not know that the numbers are already sorted, it continues to sort them and search
for a subset of those numbers. Using TRAP.NET we can improve the performance of
this application at run time by providing a new implementation of the method that
sorts and searches. The new implementation of this method would just search for a
subset of these numbers. Obviously, this is very simplistic scenario; nevertheless, it
proves the usability of TRAP.NET.

The following steps show how to use TRAP.NET on this sample application
to make it adapt-ready. First, as shown in Fig. 7, we decorate the method that
searches numbers with the AdaptReady attribute. The implementation of method
SearchNumbers is rather complex. It calls the methods Sort and Search, it also uses
local and class variables and it returns a long data type. We intentionally added this
complexity to demonstrate some of the member access that TRAP.NET supports.

After the development of the sample application is completed. It can be built and
then made adapt-ready with the TRAP.NET Generator which can be used through
a Visual Studio add-in or a standalone windows application. Figure 8 shows the
user interface of the Visual Studio add-in.

[AdaptReady(true)]
public long SearchNumbers()
{
     long timeToSort = Sort();

     _allNumbersFound = Search();

     return timeToSort;
}

Fig. 7. Sample application method with AdaptReady attribute.

Fig. 8. TRAP.NET Visual Studio add-in.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 523

[AdaptReady(true)]
public long SearchNumbers()
{
     long timeToSort = 0;

     _allNumbersFound = Search();

     return timeToSort;
}

Fig. 9. New implementation of SearchNumbers to avoid sorting.

The Sample Application is now adapt-ready, it can be deployed and start receiv-
ing numbers from the external process. When we decide to change its behavior we
can develop the delegate with the new implementation of its SearchNumbers method.
Figure 9 shows the new implementation.

Using the client composer we can access the server composer which is part of
the running sample application. The endpoint of the server composer was set by
another attribute that was placed in the main method of the Sample Application
before deployment. The client composer can be exposed through a web or windows
application. Figure 10 shows the windows application user interface of the client
composer. This interface shows the server composer endpoint, the delegate assembly
to be loaded and adapt-ready methods mapping.

After the user clicks adapt, the client composer would send the delegate
method to the server composer through the network which would then flag the

Fig. 10. TRAP.NET Client composer.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

524 S. M. Sadjadi & F. Trigoso

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Experiment Number

E
xe

cu
tio

n
 T

im
e
 (

in
 t
ic

ks
)

Original Application

AdaptReady Application

Fig. 11. Performance analysis; the adapt-ready application is adapted at the 40th experiment.

SearchNumbers method as adapted. The next time the runtime calls the Search-
Numbers method, the new implementation, provided by the delegate, will be used.

We analyzed this application with and without TRAP.NET. We executed the
original application several times with different number arrays recording these
results. Then we executed the adapt-ready version of the original application. We
noticed that the executions times were extremely close, thus there was not a signifi-
cant performance penalty. The reason being that TRAP.NET adds an O(1) constant
complexity. Then we adapted the adapt-ready application so it would benefit the
new delegate logic or searching numbers. Obviously, we saw a dramatic decrease in
the execution time as compared to that of the original application. For this case
study, TRAP.NET proved to be very useful as it did not decrease the performance
of the adapt-ready application and it drastically increased the performance of the
adapted application. Figure 11 shows the results of our performance analysis.

7. Related Work

Similar to TRAP.NET, other approaches to build adaptable programs involve inter-
cepting calls to functional code, and redirecting them to adaptive code [1]. There
are two main categories of related work.

The first category involves approaches that extend middleware to support adap-
tive behavior. For example, Iguana/J [6] extends JVM; mKernel [7] extends EJB;
DynamicTAO [8] extends TAO [9], Open ORB [10], QuO [11], Orbix [12], ORBacus
[13], IRL [14], Eternal [15], and ACT [16] extend CORBA. Since the role of tradi-
tional middleware is to hide resource distribution and platform heterogeneity from



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 525

the business logic of applications; it is a natural place to put adaptive behavior.
However, these approaches generally become outdated after a newer version of the
middleware (e.g. JVM) is released.

The second category includes approaches to transparently augment the applica-
tion code with facilities for interception and redirection. Examples related to our
work include AspectJ [17], Aspect.NET [18], Hyper/J [19], DemeterJ (DJ) [20], JAC
[21], Composition Filters [22], ARCAD [23, 24], Reflex [25], Kava [26], Dalang [27],
Javassist [28], and TRAP/J [29]. AspectJ and Aspect.NET enable aspect weaving
at compile time which is similar to the task the TRAP.NET generator performs.
However, they do not provide a means for dynamically weaving new code into the
application at runtime.

TRAP/J is an instance of TRAP in Java. To augment an existing Java program
with the required hooks, TRAP/J uses compile-time aspect weaving provided by
AspectJ. Following the TRAP approach, TRAP/J operates in two phases. In the
first one, at compile time, TRAP/J converts an existing program into an adapt-
ready program. This conversion is accomplished using an Aspect Generator and
a Reflective Class Generator. These generators produce aspects and the reflective
classes. Next, these two products, with the original source code, are passed to the
AspectJ compiler which weaves the generated and the original source code together
to generate and adapt-ready assembly. Note that the generation process in TRAP/J
generates significantly more code than the generation process in TRAP.NET. The
second phase occurs at runtime when using the reflective classes, new behavior can
be introduced to the application.

A limitation of TRAP/J is the fact that it can only make classes adapt-ready.
Even if the user only wishes to make one method in a class adapt-ready, TRAP/J
will make the entire class adapt-ready. Performance and flexibility seem affected by
this limitation. In contrast, TRAP.NET overcomes this limitation since it is able
to make methods adapt-ready. Moreover, methods are the units of functionality
and behavior in the object oriented paradigm. Since transparent shaping focuses on
changing the business logic which is hosted by methods, TRAP.NET offers a more
natural implementation. The state of the object is not changed by adaptation itself.
Adapting a method only changes its functionality. The new adaptive functionality
may change the state of the object as it was programmed by the user.

Other contributions of TRAP.NET include its support to all .NET programming
languages, tailoring of the transparent shaping model to .NET development prac-
tices and extensive member access. TRAP.NET can make any application adapt-
ready, independently of the .NET language that it was developed in since it works
at the intermediate language level. Also, by using attributes it customizes the trans-
parent shaping model so it fits .NET development practices. Moreover, TRAP.NET
is the implementation that offers the most types of member access to the adap-
tive functionality. The new adaptive functionality may need to access resources or
members in the running application. TRAP.NET enables this accessibility.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

526 S. M. Sadjadi & F. Trigoso

Finally, we would like to acknowledge other useful frameworks, such as RAppia
[30], that allow the developer of adaptive and autonomic systems to use predefined
generic components for example to instantiate the most appropriate strategy to dif-
ferent configurations, without having to re-implement a customized solution for each
configuration. Such approaches although are very helpful for developing new adap-
tive and autonomic systems, they do not address incorporation of adaptation logic
in existing system with no source code available. Of course, the generic and plug-
gable components of such frameworks can be incorporated to existing applications
using TRAP/J and TRAP.NET facilities without the need of manual modification
to the source code; hence, we consider TRAP approach to be complementary to
these frameworks. Note that the rationale behind using .NET Attribute at develop-
ment time is just for developer’s convenience and TRAP.NET really does not need
to have access to the source code.

8. Conclusion

The next major step for TRAP.NET should be the development of a case study
with an application geared towards pervasive, autonomic or grid computing. This
case study will produce important results to improve and evaluate TRAP.NET in
many aspects including performance, reliability and usability.

Safe adaptation and security are two main concerns that remain pending in
this research. Safe adaptation is the ability of a program to maintain its integrity
during adaptation [31]. And, security deals with protecting an adaptable program
from malicious entries [1]. These two issues are ongoing research areas for dynamic
adaptation. Future work in TRAP.NET should support safe adaptation and security
as these techniques become available.

The major achievement of this paper is the research on the design and devel-
opment of TRAP.NET. This tool is a successful realization of transparent shaping
using the TRAP model that provides dynamic adaptation of applications without
the need to modify their original functionality. TRAP.NET provides the means to
achieve separation of concerns when developing adaptive applications. It adheres to
the aspect-oriented paradigm by adding adaptive functionality across the business
logic of an application. It uses reflection to discover and modify the functionality
of an application. Moreover, unlike similar tools, it intercepts only the methods
selected by the user. The rest of the application remains intact maintaining its orig-
inal performance. Adaptive code in TRAP.NET is achieved by developing delegates
which can provide its own new functionality and reuse the already existing func-
tionality of the adapt-ready application. This important achievement contributes
to the developing area of software adaptation in order to support critical and long-
time running applications such as the ones found in pervasive, autonomic and grid
computing.



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

TRAP.NET: A Realization of Transparent Shaping in .NET 527

Acknowledgments

This work was supported in part by IBM, the National Science Foundation (grants
OISE-0730065, OCI-0636031, IIS-0552555, and HRD-0317692). Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of the NSF and IBM. The
authors are very thankful to the following students who played a significant role in
the implementation of TRAP.NET: Allen Lee, Tuan Cameron, Ana Rodriguez, Juan
H. Cifuentes, Javier Ocasio, Amit Patel, Mitul Patel, Enrique E. Villa, Frank Suero,
Etnan Gonzalez, Edwin Garcia, Alain Rodriguez, and Lazaro Millo. TRAP.NET is
a follow-up work on the Transparent Shaping research originated in Michigan State
University and the authors are thankful to Philip McKinley, Betty Chen, and Kurt
Stirewalt who contributed to the original ideas in Transparent Shaping, its TRAP
extension, and the realization of TRAP in Java, called TRAP/J. Our gratitude is
also extended to our colleagues at Florida International University, Peter Clarke
and Masoud Milani, who provided us with feedback on this work.

References

1. S. M. Sadjadi, Transparent Shaping of Existing Software to Support Pervasive and
Autonomic Computing, A Dissertation submitted to Michigan State University, 2004.

2. .NET Framework, Wikipedia, 2 March 2007, available at URL: http://en.wikipedia.
org/wiki/ .NET framework.

3. Attributes Overview, MSDN Library for Visual Studio 2005, 2005, available at URL:
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconattributesovervi-ew.
asp.

4. Serge Lidin, Expert .NET 2.0 IL Assembler (Apress. 2006) pp. 389–408.
5. Philip K. McKinley, S. Masoud Sadjadi, Eric P. Kasten and Betty H. C. Chen, Com-

posing Adaptive Software, Computer (2004), pp. 56–64.
6. B. Redmond and V. Cahill, Supporting unanticipated dynamic adaptation of appli-

cation behavior, in Proceedings of ECOOP, 2002.
7. J. Bruhn and G. Wirtz, mKernel: A manageable kernel for EJB-based enterprise appli-

cations, in Proceedings of the First International Conference on Autonomic Computing
and Communication Systems (Autonomics 2007), 2007.

8. F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhães and R. H. Camp-
bell, Monitoring, security, and dynamic configuration with the dynamicTAO reflective
ORB, in Proceedings of the IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware 2000), New York (2000).

9. D. C. Schmidt, D. L. Levine and S. Mungee, The design of the TAO real-time object
request broker, Computer Communications 21 (1998) 294–324.

10. G. S. Blair, G. Coulson, P. Robin and M. Papathomas, An architecture for next gener-
ation middleware, in Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’98), The Lake Dis-
trict, England (1998).

11. J. A. Zinky, D. E. Bakken and R. E. Schantz, Architectural support for quality of
service for CORBA objects, Theory and Practice of Object Systems 3 (1997).

12. IONA Technology, (Orbix) available at URL: http://www.iona.com/products/
orbix.htm.

13. IONA Technologies Inc., ORBacus for C++ and Java version 4.1.0. (2001).



August 6, 2009 15:22 WSPC/117-IJSEKE - SPI-J111 00425

528 S. M. Sadjadi & F. Trigoso

14. R. Baldoni, C. Marchetti and A. Termini, Active software replication through a three-
tier approach, in Proceedings of the 22th IEEE International Symposium on Reliable
Distributed Systems (SRDS02), Osaka, Japan, 2002, pp. 109–118.

15. L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury and V. Kalogeraki, The
eternal system: An architecture for enterprise applications, in Proceedings of the Third
International Enterprise Distributed Object Computing Conference (EDOC’99), 1999.

16. S. M. Sadjadi and P. K. McKinley, ACT: An adaptive CORBA template to support
unanticipated adaptation, in Proceedings of the 24th IEEE International Conference
on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, 2004.

17. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. Loingtier
and J. Irwin, Aspect-oriented programming, in Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP), LNCS 1241 (Springer-Verlag, 1997).

18. Vladimir O. Safonov, Aspect.NET — an aspect-oriented programming tool for
Microsoft.NET, in Microsoft Research SSCLI RFP II Capstone Workshop 2005,
September 2005.

19. H. Ossher and P. Tarr, Using multidimensional separation of concerns to (re)shape
evolving software, Communications of the ACM 44 (2001) 43–50.

20. K. Lieberherr, D. Orleans and J. Ovlinger, Aspect-oriented programming with adap-
tive methods, Communications of the ACM 44 (2001) 39–41.

21. R. Pawlak, L. Seinturier, L. Duchien and G. Florin, JAC: A flexible and efficient
solution for aspect-oriented programming in Java, in Proceedings of Reflection 2001,
LNCS 2192, 2001, pp. 1–24.

22. L. Bergmans and M. Aksit, Composing crosscutting concerns using composition filters,
Communications of ACM (2001) 51–57.

23. P. C. David, T. Ledoux and N. M. N. Bouraqadi-Saadani, Two-step weaving with
reflection using AspectJ, in OOPSLA 2001 Workshop on Advanced Separation of Con-
cerns in Object-Oriented Systems, Tampa, 2001.

24. Z. Jarir, P.-C. David and T. Ledoux, Dynamic Adaptability of Services in Enterprise
JavaBeans Architecture, in Seventh International Workshop on Component-Oriented
Programming (WCOP’02) 2002.

25. E. Tanter, J. Noy’e, D. Caromel and P. Cointe, Partial behavioral reflection: Spatial
and temporal selection of reification, in R. Crocker and G. L. Steele, Jr., (eds.): Pro-
ceedings of the 18th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2003), Anaheim, California, 2003,
27–46.

26. I. Welch and R. J. Stroud, Kava — A reflective Java based on bytecode rewriting, in
W. Cazzola, R. J. Stroud and F. Tisato, (eds.), Reflection and Software Engineering,
LNCS 1826 (Springer-Verlag, Heidelberg, 2000), pp. 157–169.

27. I. Welch and R. Stroud, Dalang — a reflective extension for Java, technical report
CS-TR-672, University of Newcastle upon Tyne, East Lansing, Michigan (1999).

28. S. Chiba, Load-time Structural Reflection in Java, LNCS 1850, 2000.
29. S. Masoud-Sadjadi, Philip K. McKinley, Betty H. C. Cheng and R. E. Kurt Stirewalt,

TRAP/J: Transparent generation of adaptable Java programs, in Proceedings of the
International Symposium on Distributed Objects and Applications (DOA’04), Agia
Napa, Cyprus, October 2004.

30. L. Rosa, L. Rodrigues and A. Lopes, A framework to support multiple reconfigura-
tion strategies, in Proceedings of the First International Conference on Autonomic
Computing and Communication Systems (Autonomics 2007), 2007.

31. J. Zhang, Z. Yang, Betty H. C. Cheng and P. K. McKinley, Adding safeness to dynamic
adaptation techniques, in Proceedings of the ICSE 2004 Workshop on Architecting
Dependable Systems, Edinburgh, Scotland, May 2004.


